CN114686608A - A rapid visual detection method for Actinobacillus pleuropneumoniae based on CRISPR-Cas12a - Google Patents
A rapid visual detection method for Actinobacillus pleuropneumoniae based on CRISPR-Cas12a Download PDFInfo
- Publication number
- CN114686608A CN114686608A CN202011643292.2A CN202011643292A CN114686608A CN 114686608 A CN114686608 A CN 114686608A CN 202011643292 A CN202011643292 A CN 202011643292A CN 114686608 A CN114686608 A CN 114686608A
- Authority
- CN
- China
- Prior art keywords
- seq
- detection
- cas12a
- crispr
- rpa
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000001514 detection method Methods 0.000 title claims abstract description 94
- 230000000007 visual effect Effects 0.000 title claims abstract description 9
- 241000606748 Actinobacillus pleuropneumoniae Species 0.000 title abstract description 35
- 108700004991 Cas12a Proteins 0.000 claims abstract description 37
- 238000000034 method Methods 0.000 claims abstract description 30
- 230000003321 amplification Effects 0.000 claims abstract description 27
- 238000003199 nucleic acid amplification method Methods 0.000 claims abstract description 27
- 102000018120 Recombinases Human genes 0.000 claims abstract description 6
- 108010091086 Recombinases Proteins 0.000 claims abstract description 6
- 108020005004 Guide RNA Proteins 0.000 claims description 61
- 108020004414 DNA Proteins 0.000 claims description 36
- 102000053602 DNA Human genes 0.000 claims description 27
- 238000001917 fluorescence detection Methods 0.000 claims description 14
- 238000005516 engineering process Methods 0.000 claims description 11
- 239000002202 Polyethylene glycol Substances 0.000 claims description 5
- 229920001223 polyethylene glycol Polymers 0.000 claims description 5
- 229920000642 polymer Polymers 0.000 claims description 2
- 241000606750 Actinobacillus Species 0.000 claims 1
- 210000004224 pleura Anatomy 0.000 claims 1
- 238000006243 chemical reaction Methods 0.000 abstract description 20
- 108091033409 CRISPR Proteins 0.000 abstract description 16
- 238000010354 CRISPR gene editing Methods 0.000 abstract description 16
- 239000000523 sample Substances 0.000 abstract description 15
- 108090000623 proteins and genes Proteins 0.000 abstract description 14
- 230000004544 DNA amplification Effects 0.000 abstract description 2
- 108700008625 Reporter Genes Proteins 0.000 abstract description 2
- 238000003752 polymerase chain reaction Methods 0.000 description 21
- 238000003317 immunochromatography Methods 0.000 description 15
- 238000002795 fluorescence method Methods 0.000 description 10
- 238000012216 screening Methods 0.000 description 10
- 230000035945 sensitivity Effects 0.000 description 10
- 150000007523 nucleic acids Chemical class 0.000 description 9
- 108020004682 Single-Stranded DNA Proteins 0.000 description 8
- 102000039446 nucleic acids Human genes 0.000 description 8
- 108020004707 nucleic acids Proteins 0.000 description 8
- 230000000694 effects Effects 0.000 description 7
- 239000013642 negative control Substances 0.000 description 7
- 238000005457 optimization Methods 0.000 description 7
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 7
- 238000013461 design Methods 0.000 description 6
- 241000282898 Sus scrofa Species 0.000 description 5
- 239000003153 chemical reaction reagent Substances 0.000 description 5
- 238000000338 in vitro Methods 0.000 description 5
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 4
- 238000002474 experimental method Methods 0.000 description 4
- 239000000499 gel Substances 0.000 description 4
- 238000011160 research Methods 0.000 description 4
- 239000000243 solution Substances 0.000 description 4
- 230000008685 targeting Effects 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- 238000013518 transcription Methods 0.000 description 4
- 230000035897 transcription Effects 0.000 description 4
- 238000007400 DNA extraction Methods 0.000 description 3
- 241000606807 Glaesserella parasuis Species 0.000 description 3
- 108010006464 Hemolysin Proteins Proteins 0.000 description 3
- 238000007397 LAMP assay Methods 0.000 description 3
- 241000202347 Porcine circovirus Species 0.000 description 3
- 241001135549 Porcine epidemic diarrhea virus Species 0.000 description 3
- 241000607142 Salmonella Species 0.000 description 3
- 241000194021 Streptococcus suis Species 0.000 description 3
- 241000701093 Suid alphaherpesvirus 1 Species 0.000 description 3
- 238000003556 assay Methods 0.000 description 3
- 238000003776 cleavage reaction Methods 0.000 description 3
- 201000010099 disease Diseases 0.000 description 3
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 3
- 238000000605 extraction Methods 0.000 description 3
- 239000003228 hemolysin Substances 0.000 description 3
- 230000002401 inhibitory effect Effects 0.000 description 3
- 239000002773 nucleotide Substances 0.000 description 3
- 125000003729 nucleotide group Chemical group 0.000 description 3
- 244000052769 pathogen Species 0.000 description 3
- 230000007017 scission Effects 0.000 description 3
- YBJHBAHKTGYVGT-ZKWXMUAHSA-N (+)-Biotin Chemical group N1C(=O)N[C@@H]2[C@H](CCCCC(=O)O)SC[C@@H]21 YBJHBAHKTGYVGT-ZKWXMUAHSA-N 0.000 description 2
- 241000894006 Bacteria Species 0.000 description 2
- TWRXJAOTZQYOKJ-UHFFFAOYSA-L Magnesium chloride Chemical compound [Mg+2].[Cl-].[Cl-] TWRXJAOTZQYOKJ-UHFFFAOYSA-L 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- 241000282887 Suidae Species 0.000 description 2
- 241000700605 Viruses Species 0.000 description 2
- 241000907316 Zika virus Species 0.000 description 2
- 230000001580 bacterial effect Effects 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 239000008367 deionised water Substances 0.000 description 2
- 229910021641 deionized water Inorganic materials 0.000 description 2
- 239000000975 dye Substances 0.000 description 2
- 230000005284 excitation Effects 0.000 description 2
- 230000002349 favourable effect Effects 0.000 description 2
- 208000015181 infectious disease Diseases 0.000 description 2
- 238000011901 isothermal amplification Methods 0.000 description 2
- 239000013641 positive control Substances 0.000 description 2
- 102000004169 proteins and genes Human genes 0.000 description 2
- 238000000746 purification Methods 0.000 description 2
- 238000013207 serial dilution Methods 0.000 description 2
- 210000002966 serum Anatomy 0.000 description 2
- 238000011895 specific detection Methods 0.000 description 2
- 238000010186 staining Methods 0.000 description 2
- 238000003786 synthesis reaction Methods 0.000 description 2
- 238000011144 upstream manufacturing Methods 0.000 description 2
- 239000000304 virulence factor Substances 0.000 description 2
- 230000007923 virulence factor Effects 0.000 description 2
- 238000012800 visualization Methods 0.000 description 2
- SGTNSNPWRIOYBX-UHFFFAOYSA-N 2-(3,4-dimethoxyphenyl)-5-{[2-(3,4-dimethoxyphenyl)ethyl](methyl)amino}-2-(propan-2-yl)pentanenitrile Chemical compound C1=C(OC)C(OC)=CC=C1CCN(C)CCCC(C#N)(C(C)C)C1=CC=C(OC)C(OC)=C1 SGTNSNPWRIOYBX-UHFFFAOYSA-N 0.000 description 1
- QKNYBSVHEMOAJP-UHFFFAOYSA-N 2-amino-2-(hydroxymethyl)propane-1,3-diol;hydron;chloride Chemical compound Cl.OCC(N)(CO)CO QKNYBSVHEMOAJP-UHFFFAOYSA-N 0.000 description 1
- 241001156739 Actinobacteria <phylum> Species 0.000 description 1
- 229920001817 Agar Polymers 0.000 description 1
- 239000012103 Alexa Fluor 488 Substances 0.000 description 1
- 241000304886 Bacilli Species 0.000 description 1
- 208000035143 Bacterial infection Diseases 0.000 description 1
- 241001478240 Coccus Species 0.000 description 1
- 108020004635 Complementary DNA Proteins 0.000 description 1
- 208000012353 Contagious Pleuropneumonia Diseases 0.000 description 1
- 208000001490 Dengue Diseases 0.000 description 1
- 206010012310 Dengue fever Diseases 0.000 description 1
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 1
- 208000032420 Latent Infection Diseases 0.000 description 1
- 241000204031 Mycoplasma Species 0.000 description 1
- 208000005119 Necrotizing Pneumonia Diseases 0.000 description 1
- 108091028043 Nucleic acid sequence Proteins 0.000 description 1
- 206010035664 Pneumonia Diseases 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 230000006819 RNA synthesis Effects 0.000 description 1
- 241001361634 Rhizoctonia Species 0.000 description 1
- 108091027544 Subgenomic mRNA Proteins 0.000 description 1
- GYDJEQRTZSCIOI-UHFFFAOYSA-N Tranexamic acid Chemical compound NCC1CCC(C(O)=O)CC1 GYDJEQRTZSCIOI-UHFFFAOYSA-N 0.000 description 1
- 101800005109 Triakontatetraneuropeptide Proteins 0.000 description 1
- 239000008272 agar Substances 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 244000037640 animal pathogen Species 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- 244000052616 bacterial pathogen Species 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 229960002685 biotin Drugs 0.000 description 1
- 235000020958 biotin Nutrition 0.000 description 1
- 239000011616 biotin Substances 0.000 description 1
- 210000004369 blood Anatomy 0.000 description 1
- 239000008280 blood Substances 0.000 description 1
- 238000010804 cDNA synthesis Methods 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 238000003759 clinical diagnosis Methods 0.000 description 1
- 239000002299 complementary DNA Substances 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 230000037029 cross reaction Effects 0.000 description 1
- 238000004925 denaturation Methods 0.000 description 1
- 230000036425 denaturation Effects 0.000 description 1
- 208000025729 dengue disease Diseases 0.000 description 1
- 208000037771 disease arising from reactivation of latent virus Diseases 0.000 description 1
- 238000001962 electrophoresis Methods 0.000 description 1
- 230000002255 enzymatic effect Effects 0.000 description 1
- 230000004992 fission Effects 0.000 description 1
- MHMNJMPURVTYEJ-UHFFFAOYSA-N fluorescein-5-isothiocyanate Chemical compound O1C(=O)C2=CC(N=C=S)=CC=C2C21C1=CC=C(O)C=C1OC1=CC(O)=CC=C21 MHMNJMPURVTYEJ-UHFFFAOYSA-N 0.000 description 1
- 238000001502 gel electrophoresis Methods 0.000 description 1
- 238000010362 genome editing Methods 0.000 description 1
- 239000008103 glucose Substances 0.000 description 1
- 230000002008 hemorrhagic effect Effects 0.000 description 1
- 230000006801 homologous recombination Effects 0.000 description 1
- 238000002744 homologous recombination Methods 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 238000011534 incubation Methods 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 238000012125 lateral flow test Methods 0.000 description 1
- 210000004072 lung Anatomy 0.000 description 1
- 229910001629 magnesium chloride Inorganic materials 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 244000000010 microbial pathogen Species 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000008506 pathogenesis Effects 0.000 description 1
- 230000001717 pathogenic effect Effects 0.000 description 1
- 230000007918 pathogenicity Effects 0.000 description 1
- 239000013612 plasmid Substances 0.000 description 1
- 208000008423 pleurisy Diseases 0.000 description 1
- 201000006509 pleuropneumonia Diseases 0.000 description 1
- 230000008092 positive effect Effects 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 230000006798 recombination Effects 0.000 description 1
- 238000005215 recombination Methods 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 230000010076 replication Effects 0.000 description 1
- 230000000241 respiratory effect Effects 0.000 description 1
- 208000023504 respiratory system disease Diseases 0.000 description 1
- 238000003757 reverse transcription PCR Methods 0.000 description 1
- 238000010206 sensitivity analysis Methods 0.000 description 1
- 230000000405 serological effect Effects 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 241000894007 species Species 0.000 description 1
- ABZLKHKQJHEPAX-UHFFFAOYSA-N tetramethylrhodamine Chemical compound C=12C=CC(N(C)C)=CC2=[O+]C2=CC(N(C)C)=CC=C2C=1C1=CC=CC=C1C([O-])=O ABZLKHKQJHEPAX-UHFFFAOYSA-N 0.000 description 1
- JGVWCANSWKRBCS-UHFFFAOYSA-N tetramethylrhodamine thiocyanate Chemical compound [Cl-].C=12C=CC(N(C)C)=CC2=[O+]C2=CC(N(C)C)=CC=C2C=1C1=CC=C(SC#N)C=C1C(O)=O JGVWCANSWKRBCS-UHFFFAOYSA-N 0.000 description 1
- MPLHNVLQVRSVEE-UHFFFAOYSA-N texas red Chemical compound [O-]S(=O)(=O)C1=CC(S(Cl)(=O)=O)=CC=C1C(C1=CC=2CCCN3CCCC(C=23)=C1O1)=C2C1=C(CCC1)C3=[N+]1CCCC3=C2 MPLHNVLQVRSVEE-UHFFFAOYSA-N 0.000 description 1
- NMEHNETUFHBYEG-IHKSMFQHSA-N tttn Chemical compound C([C@@H](C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](CC=1C=CC(O)=CC=1)C(=O)N[C@@H](CO)C(=O)N[C@@H](CC=1NC=NC=1)C(=O)N[C@@H](CC=1C=CC=CC=1)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](C)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](C(C)C)C(=O)NCC(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N1[C@@H](CCC1)C(=O)NCC(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCCCN)C(O)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CCSC)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](CC(O)=O)NC(=O)[C@@H](NC(=O)[C@H]1N(CCC1)C(=O)[C@H](CCC(N)=O)NC(=O)[C@@H](N)[C@@H](C)O)[C@@H](C)O)C1=CC=CC=C1 NMEHNETUFHBYEG-IHKSMFQHSA-N 0.000 description 1
- 238000007794 visualization technique Methods 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/68—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
- C12Q1/6876—Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
- C12Q1/6888—Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms
- C12Q1/689—Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms for bacteria
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/68—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
- C12Q1/6844—Nucleic acid amplification reactions
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Organic Chemistry (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- Analytical Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Biophysics (AREA)
- Immunology (AREA)
- Microbiology (AREA)
- Molecular Biology (AREA)
- Biotechnology (AREA)
- Physics & Mathematics (AREA)
- Biochemistry (AREA)
- Bioinformatics & Cheminformatics (AREA)
- General Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Genetics & Genomics (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
Abstract
Description
技术领域technical field
本发明涉及医学检测方法领域,具体涉及基于CRISPR-Cas12 a的胸膜肺炎放线杆菌快速可视化检测方法。The invention relates to the field of medical detection methods, in particular to a rapid visual detection method for Actinobacillus pleuropneumoniae based on CRISPR-Cas12a.
背景技术Background technique
猪传染性胸膜肺炎(Porcine Contagious pleuropneumonia,PCP)是由胸膜肺炎放线杆菌(Actinobacillus pleuropneumoniae,APP)感染引起的以出血性胸膜炎和坏死性肺炎为[1]为特征的一种呼吸道疾病。1957年,Pattison等首次在英国发现该病,1987年,哈尔滨兽医研究所首次报道该病在我国出现,此后在许多省市陆续发现该病。2006年,对洛阳地区规模化猪场进行血清学调查,阳性率为30.39%,2009年,对四川部分地区的非免疫猪血清进行检测,阳性率为18.5%。是世界公认的危害养猪业的三种重大呼吸道细菌病之一,急性感染的猪可在几小时内死亡,死亡率极高,但多数病例呈隐性感染。隐性感染猪是病原的携带者和传播者,适当条件下可成为病原的暴发源,给世界养猪业带来了严重的经济损失。因此,建立一种快速简便的检测方法对APP的预防与控制意义重大。Porcine Contagious pleuropneumonia (PCP) is a respiratory disease characterized by hemorrhagic pleuritis and necrotizing pneumonia [1] caused by Actinobacillus pleuropneumoniae (APP) infection. In 1957, Pattison et al. discovered the disease for the first time in the United Kingdom. In 1987, the Harbin Veterinary Research Institute reported that the disease appeared in my country for the first time. Since then, the disease has been discovered in many provinces and cities. In 2006, a serological survey was conducted on large-scale pig farms in Luoyang, and the positive rate was 30.39%. It is recognized as one of the three major respiratory bacterial diseases that endanger the pig industry in the world. Acutely infected pigs can die within a few hours, and the mortality rate is extremely high, but most cases are latent infection. Recessive infected pigs are the carriers and spreaders of pathogens, and can become the outbreak source of pathogens under appropriate conditions, which has brought serious economic losses to the world pig industry. Therefore, establishing a quick and easy detection method is of great significance to the prevention and control of APP.
APP属巴氏杆菌科放线杆菌属,革兰氏阴性小球杆菌,截止目前APP已经通过分型鉴定出18个血清型[2],根据其生长是否需要V因子可分为生物I型和生物II型,胸膜肺炎放线杆菌(APP)具有多个毒力因子,溶血素是APP致病的主要毒力因子之一,APP分泌Apx I、Apx II、Apx III、ApxIV共四种溶血素,每种溶血素都具有不同的致病性,其中ApxIV所有血清型都可分泌,已被证明具有物种特异性[3],因此,ApxIVA基因可做为APP感染临床诊断的检测靶点。APP belongs to Actinobacteriaceae of Pasteuraceae, Gram-negative coccus. Up to now, APP has identified 18 serotypes through typing [2]. According to whether its growth requires V factor, it can be divided into biological type I and Biological type II, Actinobacillus pleuropneumoniae (APP) has multiple virulence factors, and hemolysin is one of the main virulence factors of APP pathogenesis. APP secretes four hemolysins, Apx I, Apx II, Apx III, and ApxIV. , each hemolysin has different pathogenicity, of which ApxIV can be secreted by all serotypes, which has been proved to be species-specific [3]. Therefore, ApxIVA gene can be used as a detection target for clinical diagnosis of APP infection.
体外核酸扩增技术(NAA)自1983年聚合酶链式反应(PCR)出现[4]以来渗透到生命科学的各个领域。通过提供有利于核酸复制的温度,使核酸分子量得到指数级的扩增,从而更加有利于随后的核酸处理及检测。尽管PCR拥有前所未有的开拓性进展,但由于对PCR仪的高度依赖性而使其难于走出实验室的大门。等温扩增技术近年来发展迅速,其中环介导等温扩增(LAMP)技术已被开发用于动物病原体检测,LAMP检测灵敏度高但反应中的多对引物的加入使其可靠性降低,可能产生假阳性检测结果,同时需要相对较高的温度才能启动反应。重组酶聚合酶扩增技术(Recombinase Polymerase Amplification,RPA)是2006年由ASM科学有限公司Niall Armes开发的一种新型恒温扩增技术[5],可在37-42℃的恒温下实现特定核酸序列的扩增,并在10~40min内完成数十亿的DNA拷贝。RPA属于等温扩增技术,对仪器设备要求低,仅需要恒温水浴锅即可完成反应,无需精密仪器,近年来发展十分迅速。In vitro nucleic acid amplification (NAA) has penetrated into various fields of life sciences since the advent of polymerase chain reaction (PCR) in 1983 [4]. By providing a temperature favorable for nucleic acid replication, the molecular weight of nucleic acid is amplified exponentially, which is more favorable for subsequent nucleic acid processing and detection. Although PCR has unprecedented pioneering progress, it is difficult to get out of the laboratory because of its high dependence on the PCR machine. Isothermal amplification technology has developed rapidly in recent years, among which loop-mediated isothermal amplification (LAMP) technology has been developed for the detection of animal pathogens. LAMP detection has high sensitivity, but the addition of multiple pairs of primers in the reaction reduces its reliability, which may produce False positive test results while requiring relatively high temperatures to initiate the reaction. Recombinase Polymerase Amplification (RPA) is a new constant temperature amplification technology developed by Niall Armes of ASM Science Co., Ltd. in 2006 [5], which can achieve specific nucleic acid sequences at a constant temperature of 37-42 °C. The amplification, and completes billions of DNA copies within 10 ~ 40min. RPA is an isothermal amplification technology, which requires low equipment and equipment, and only needs a constant temperature water bath to complete the reaction without precision instruments. It has developed rapidly in recent years.
CRISPR-Cas技术是一种最新涌现的基因组编辑技术,具有很强的靶标特异性,其利用自身的RNA来和目标DNA进行序列配对,从而识别特异性序列。对于双链DNA来说,CRISPR系统需要额外识别目标DNA上的一个Protospacer Adjacent Motif(PAM)序列。Cas12a的PAM偏好于含有AT的序列,因此通过使用含有不同gRNA(guide RNA,其是指代sgRNA或者crRNA)的CRISPR系统就可识别带有PAM序列并和gRNA序列匹配的双链DNA。cas12a蛋白在识别靶标后,它的单链DNA的酶活性被激活,并对体系中任意单链DNA进行不加区别的切割,切割速度极快,达到大于1000个分子每秒,且可以持续数小时以上。利用此特性,可将发光分子通过单链DNA与一种阻止这种发光分子发光的抑制分子连接在一起(简称为报告序列)。当Cas12a被序列特异性的双链DNA激活后,它会切割将这种发光分子和这种抑制分子连接在一起的单链DNA,这就移除了发光抑制分子,让发光分子发光,从而检测到光信号。CRISPR-Cas technology is a newly emerging genome editing technology with strong target specificity. It uses its own RNA to pair with the target DNA to identify specific sequences. For double-stranded DNA, the CRISPR system requires additional recognition of a Protospacer Adjacent Motif (PAM) sequence on the target DNA. The PAM of Cas12a prefers AT-containing sequences, so by using a CRISPR system containing different gRNAs (guide RNA, which refers to sgRNA or crRNA), double-stranded DNA with a PAM sequence that matches the gRNA sequence can be recognized. After the cas12a protein recognizes the target, the enzymatic activity of its single-stranded DNA is activated, and indiscriminately cuts any single-stranded DNA in the system. The cutting speed is extremely fast, reaching more than 1000 molecules per second, and can last for several hours or more. Using this property, the light-emitting molecule can be linked by single-stranded DNA to an inhibitory molecule (referred to as a reporter sequence) that prevents the light-emitting molecule from emitting light. When Cas12a is activated by sequence-specific double-stranded DNA, it cleaves the single-stranded DNA that connects the light-emitting molecule and the inhibitory molecule, which removes the light-emitting inhibitory molecule and allows the light-emitting molecule to emit light, thereby detecting to the optical signal.
Doudna团队基于此建立了基于CRISPR的核酸检测方法DETECTR。张峰团队将CRISPR技术与横向流动试纸条结合,开发出SHERLOCK技术,可在2h之内检测出寨卡病毒(ZIKV)和登革热(DHF)。Based on this, the Doudna team established DETECTR, a CRISPR-based nucleic acid detection method. Zhang Feng's team combined CRISPR technology with lateral flow test strips to develop SHERLOCK technology, which can detect Zika virus (ZIKV) and dengue fever (DHF) within 2 hours.
发明内容SUMMARY OF THE INVENTION
本公开提供以下各项技术方案:The present disclosure provides the following technical solutions:
1.试剂盒,其包含一对针对apxIV的特异性引物对SEQ ID NO:14和15、SEQ ID NO:16和17、SEQ ID NO:18和19、SEQ ID NO:20和21,或SEQ ID NO:26和27(优选SEQ ID NO:26和27),以及针对上述引物扩增的产物的序列为SEQ ID NO:3、5、6或8(优选SEQ ID NO:8)的gRNA。1. A kit comprising a pair of specific primer pairs for apxIV of SEQ ID NO: 14 and 15, SEQ ID NO: 16 and 17, SEQ ID NO: 18 and 19, SEQ ID NO: 20 and 21, or SEQ ID NO: 16 and 17 ID NOs: 26 and 27 (preferably SEQ ID NOs: 26 and 27), and gRNAs with the sequence of SEQ ID NO: 3, 5, 6 or 8 (preferably SEQ ID NO: 8) for the products amplified by the above primers.
2.如项1所述的试剂盒,其还包括Cas12a蛋白。2. The kit of
3.如前述任一项所述的试剂盒,其中所述针对apxIV的特异性引物用于重组酶聚合物扩增技术。3. The kit of any of the preceding, wherein the specific primers for apxIV are used in recombinase polymer amplification technology.
4.如前述任一项所述的试剂盒,其中所述gRNA用于CRISPR-Cas技术。4. The kit of any of the foregoing, wherein the gRNA is used in CRISPR-Cas technology.
5.如前述任一项所述的试剂盒,其还包含针对后续荧光检测法的ssDNA报告分子,优选地,所述ssDNA报告分子的序列是SEQ ID NO:10。5. The kit according to any one of the preceding items, further comprising a ssDNA reporter molecule for subsequent fluorescence detection, preferably, the sequence of the ssDNA reporter molecule is SEQ ID NO:10.
6.如前述任一项所述的试剂盒,其还包含针对后续免疫层析检测法的ssDNA报告分子,优选地,所述ssDNA报告分子的序列是SEQ ID NO:11。6. The kit according to any one of the preceding items, further comprising a ssDNA reporter molecule for subsequent immunochromatographic detection, preferably, the sequence of the ssDNA reporter molecule is SEQ ID NO: 11.
7.如前述项5或6所述的试剂盒,其中ssDNA报告分子的浓度为500nM。7. The kit according to the preceding
8.如前述任一项所述的试剂盒,其中针对后续免疫层析检测法的gRNA的浓度为50nM。8. The kit of any one of the preceding items, wherein the concentration of the gRNA for subsequent immunochromatographic detection is 50 nM.
9.如前述任一项所述的试剂盒,其还包括针对后续免疫层析检测法的检测缓冲液,其中所述检测缓冲液为10%聚乙二醇。9. The kit of any preceding item, further comprising a detection buffer for subsequent immunochromatographic detection, wherein the detection buffer is 10% polyethylene glycol.
10.针对apxIV的特异性引物对SEQ ID NO:14和15、SEQ ID NO:16和17、SEQ IDNO:18和19、SEQ ID NO:20和21,或SEQ ID NO:26和27(优选SEQ ID NO:26和27),以及针对上述引物扩增的产物的序列为SEQ ID NO:3、5、6或8(优选SEQ ID NO:8)的gRNA在制备用于快速可视化检测胸膜肺炎放线杆菌的试剂盒中的用途。10. Specific primer pairs for apxIV of SEQ ID NO: 14 and 15, SEQ ID NO: 16 and 17, SEQ ID NO: 18 and 19, SEQ ID NO: 20 and 21, or SEQ ID NO: 26 and 27 (preferably SEQ ID NOs: 26 and 27), and a gRNA with a sequence of SEQ ID NO: 3, 5, 6 or 8 (preferably SEQ ID NO: 8) for the products amplified by the above primers are prepared for rapid visual detection of pleuropneumonia Use of Actinobacteria in a Kit.
如上所述的引物对和gRNA可以任意组合使用。The primer pairs and gRNAs described above can be used in any combination.
发明详述Detailed description of the invention
本公开基于重组酶聚合酶扩增(Recombinase Polymerase Amplification,RPA)及CRISPR/Cas12a系统,建立了一种可以应用于临床的快速检测猪胸膜肺炎放线杆菌(App)的检测方法。具体地,发明人选取App的特异性基因apxIVA的保守区,依据gRNA结合位点附近需带有PAM序列的特性,在保守区内设计并筛选CRISPR/Cas12a系统的探针gRNA,并根据该gRNA的结合位点设计并筛选特异性RPA引物,以实现RPA特异性靶基因扩增,以及CRISPR/Cas12a系统对报告基因的切割,建立可用于检测猪胸膜肺炎放线杆菌的方法,并对RPA体系和CRISPR/Cas12a反应体系进行优化,并对该方法的特异性,敏感性进行评价,并利用该方法对8份阳性临床样品及5份阴性样品进行检测,结果表明:该检测方法胸膜肺炎放线杆菌特异性良好,对副猪嗜血杆菌、猪链球菌、沙门氏菌、猪圆环病毒、猪伪狂犬病毒、猪流行性腹泻病毒均无交叉反应,敏感性为10copies/μl,最快可在30分钟时间内获得检测结果,并减少凝胶染色时产生的染料污染。The present disclosure establishes a rapid clinical detection method for Actinobacillus pleuropneumoniae (App) based on the recombinase polymerase amplification (Recombinase Polymerase Amplification, RPA) and the CRISPR/Cas12a system. Specifically, the inventors selected the conserved region of the specific gene apxIVA of the App, and designed and screened the probe gRNA of the CRISPR/Cas12a system in the conserved region according to the characteristics of the PAM sequence near the gRNA binding site, and based on the gRNA Design and screen specific RPA primers to achieve RPA-specific target gene amplification and CRISPR/Cas12a system cleavage of reporter genes, establish a method that can be used to detect Actinobacillus pleuropneumoniae, and analyze the RPA system The CRISPR/Cas12a reaction system was optimized, and the specificity and sensitivity of the method were evaluated, and 8 positive clinical samples and 5 negative samples were detected by this method. The bacilli have good specificity and have no cross-reaction to Haemophilus parasuis, Streptococcus suis, Salmonella, porcine circovirus, porcine pseudorabies virus, and porcine epidemic diarrhea virus. Get results in minutes and reduce dye contamination during gel staining.
本公开通过RPA增强Cas12a检测灵敏度,并利用CRISPR Cas12a的侧裂效应,针对保守的ApxIVA基因并结合免疫层析,对APP进行灵敏、特异、无需昂贵设备和可视化的检测。The present disclosure enhances the detection sensitivity of Cas12a through RPA, and utilizes the lateral fission effect of CRISPR Cas12a, targeting the conserved ApxIVA gene and combining immunochromatography, to detect APP sensitively, specifically, without expensive equipment and visualization.
该方法将RPA特异性扩增与gRNA特异性序列鉴定相结合,使增强的Cas12a检测更具特异性;并在37℃条件下进行检测,适合在缺乏PCR仪等仪器设备的实验室或现地使用;同时可以根据现有条件选取荧光法(通过蓝光激发肉眼观察)或免疫层析法(直接裸眼观察)This method combines RPA-specific amplification with gRNA-specific sequence identification to make the enhanced Cas12a detection more specific; and the detection is carried out at 37 °C, which is suitable for laboratories or on-site lack of equipment such as PCR machines. Use; at the same time, fluorescence method (observation with the naked eye through blue light excitation) or immunochromatography (direct naked eye observation) can be selected according to the existing conditions.
Cas12a检测胸膜肺炎放线杆菌有很高的特异性和灵敏度,检出极限为10copies/μl。新方法的灵敏度与RT-PCR相似。Cas12a检测可成功应用于临床样本中胸膜肺炎放线杆菌的快速检测。Cas12a has high specificity and sensitivity in the detection of Actinobacillus pleuropneumoniae, with a detection limit of 10 copies/μl. The sensitivity of the new method is similar to RT-PCR. The Cas12a assay can be successfully applied to the rapid detection of Actinobacillus pleuropneumoniae in clinical samples.
该方法有以下特点:This method has the following characteristics:
首先,增强的Cas12a检测不仅可以应用于荧光检测样品的分析,还可以与免疫层析检测相结合进行可视化,既可以应用于实验室,也可以应用于现场。First, the enhanced Cas12a detection can not only be applied to the analysis of fluorescence detection samples, but also can be combined with immunochromatographic detection for visualization, which can be applied both in the laboratory and in the field.
其次,增强的Cas12a检测具有稳定性。虽然RPA的效率是可变的,受到引物、模板的核苷酸序列等因素的影响,但是Cas12a的侧裂活性可以弥补RPA的低效率,使增强的Cas12a检测达到令人满意的反应活性。Second, the enhanced Cas12a detection is stable. Although the efficiency of RPA is variable and affected by factors such as the nucleotide sequence of primers and templates, the lateral cleavage activity of Cas12a can compensate for the low efficiency of RPA, enabling the enhanced Cas12a detection to achieve satisfactory reactivity.
第三,将RPA特异性扩增与gRNA特异性序列鉴定相结合,使增强的Cas12a检测更具特异性。Third, combining RPA-specific amplification with gRNA-specific sequence identification makes enhanced Cas12a detection more specific.
第四,在37℃条件下设计并实现了增强型Cas12a检测,使其易于在装备较差的实验室或现地使用。Fourth, an enhanced Cas12a assay was designed and implemented at 37 °C, making it easy to use in poorly equipped laboratories or in situ.
综上所述,本公开建立了一种基于CRISPR Cas12a的APP可视化核酸检测方法。这种新的方法可以提供一种检测APP的替代工具,对设备要求较低,特别适用于资源贫乏的地区。In conclusion, the present disclosure establishes a CRISPR Cas12a-based APP visual nucleic acid detection method. This new method could provide an alternative tool for detecting APPs with less equipment requirements, especially in resource-poor areas.
附图说明Description of drawings
图1显示针对靶序列保守区PCR产物gRNA序列筛选的荧光结果,其中图A为荧光检测结果,图B为免疫层析试剂条检测结果。Figure 1 shows the fluorescence results of gRNA sequence screening of PCR products in the conserved region of the target sequence, wherein Figure A is the fluorescence detection result, and Figure B is the detection result of the immunochromatographic reagent strip.
图2显示针对gRNA结合位点区域RPA引物筛选的荧光结果。Figure 2 shows the fluorescence results of RPA primer screening against the gRNA binding site region.
图3显示反应体系优化结果,其中图A为在免疫层析法中针对ssDNA报告分子浓度的优化结果,图B为荧光法中针对ssDNA报告分子浓度的优化结果;图C为在免疫层析法中针对gRNA浓度的优化结果,图D为免疫层析法中缓冲液优化结果。Figure 3 shows the optimization results of the reaction system, in which Figure A is the optimization result for the concentration of the ssDNA reporter molecule in the immunochromatography method, Figure B is the optimization result for the concentration of the ssDNA reporter molecule in the fluorescence method; Figure C is the optimization result of the immunochromatography method The optimization results for gRNA concentration in Figure D, and Figure D shows the buffer optimization results in immunochromatography.
图4显示CRISPR-Cas12a检测系统对几种家猪病原微生物的DNA样品与含APP基因组样品信号相比较的特异性检测结果,其中图A为免疫层析法检测结果,图B为荧光法检测结果(裸眼观察),图C为荧光法检测结果(动态检测)。Figure 4 shows the specific detection results of the CRISPR-Cas12a detection system comparing the signals of several domestic pig pathogenic microorganism DNA samples with those of APP-containing genome samples, in which Figure A is the detection result of immunochromatography, and Figure B is the detection result of fluorescence method (observed with naked eyes), Figure C is the result of fluorescence detection (dynamic detection).
图5显示CRISPR-Cas12a检测系统敏感性分析结果,其中图A为免疫层析法检测结果,图B为荧光法检测结果(裸眼观察),图C为荧光法检测结果(动态检测)。Figure 5 shows the results of sensitivity analysis of the CRISPR-Cas12a detection system, in which Figure A is the detection result of immunochromatography, Figure B is the detection result of fluorescence method (observed with naked eyes), and Figure C is the detection result of fluorescence method (dynamic detection).
图6显示在最优反应体系中阳性和阴性样品检测结果,其中图A为阳性样品免疫层析检测结果,图B为阳性样品荧光法检测结果(裸眼观察),图C为阳性样品荧光法检测结果(动态检测),图D为阴性样品免疫层析检测结果,图E为阴性样品荧光法检测结果(裸眼观察),图F为阴性样品荧光法检测结果(动态检测)。Figure 6 shows the detection results of positive and negative samples in the optimal reaction system, wherein Figure A is the immunochromatographic detection result of the positive sample, Figure B is the fluorescence detection result of the positive sample (observed with naked eyes), and Figure C is the fluorescence detection of the positive sample Results (dynamic detection), Figure D is the negative sample immunochromatographic detection result, Figure E is the negative sample fluorescence detection result (naked eye observation), and Figure F is the negative sample fluorescence detection result (dynamic detection).
具体实施方式Detailed ways
为使本发明的目的、技术方案和优点更加清楚明白,以下结合具体实施例,并参照附图,对本发明作进一步的详细说明。In order to make the objectives, technical solutions and advantages of the present invention more clearly understood, the present invention will be further described in detail below in conjunction with specific embodiments and with reference to the accompanying drawings.
实施例1:Example 1:
1材料和方法1 Materials and methods
本发明的实施例所用胸膜肺炎放线杆菌,副猪嗜血杆菌、猪链球菌、沙门氏菌菌株猪圆环病毒、猪伪狂犬病毒、猪流行性腹泻病毒基因组DNA由中国农业科学院哈尔滨兽医研究所提供。DNA提取试剂盒(北京天根P302)、RNA纯化回收试剂盒(北京天根,DP421)、Basic(英国TwistDx公司)、Hiscribe T7 Quick High Yield RNA SynthesisKit(New England Biolabs)、LbCas12a(New England Biolabs公司)、MileniaHybriDetect 1Dipstick(TwistDx)、离心机(eppendorf)、恒温水浴锅(精宏)、电泳仪(Bio-Rad)、涡旋仪(Vortex-Genie2)、及核酸检测成像系统(Bio-Rad)、Nanodrop(IMPLEN)、多功能酶标仪(Perkin Elmer ENSPIRE)、蓝光凝胶成像仪(上海生工)、引物及报告序列均由吉林省库美生物科技有限公司合成。Actinobacillus pleuropneumoniae, Haemophilus parasuis, Streptococcus suis, Salmonella strains porcine circovirus, porcine pseudorabies virus, and porcine epidemic diarrhea virus genomic DNA used in the examples of the present invention are provided by Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences . DNA extraction kit (Beijing Tiangen P302), RNA purification and recovery kit (Beijing Tiangen, DP421), Basic (TwistDx, UK), Hiscribe T7 Quick High Yield RNA SynthesisKit (New England Biolabs), LbCas12a (New England Biolabs), MileniaHybriDetect 1Dipstick (TwistDx), centrifuge (eppendorf), constant temperature water bath (Jinghong), electrophoresis apparatus (Bio-Rad), Vortex (Vortex-Genie2), Nucleic Acid Detection Imaging System (Bio-Rad), Nanodrop (IMPLEN), Multi-function Microplate Reader (Perkin Elmer ENSPIRE), Blue Gel Imager (Shanghai Bio-Rad) Worker), primers and reporter sequences were synthesized by Jilin Province Kumei Biotechnology Co., Ltd.
2.方法2. Method
2.1胸膜肺炎放线杆菌靶序列的选取和RPA扩增以及gRNA设计和扩增2.1 Selection of A. pleuropneumoniae target sequence and RPA amplification and gRNA design and amplification
1)靶标选择:ApxIVA蛋白已被证明对APP物种具有特异性,临床上常用于病原学检测的靶标,因此本方法选择ApxIVA基因中保守区的442bp,详见SEQ ID NO:1,作为靶标序列。1) Target selection: ApxIVA protein has been proved to be specific to APP species and is often used as a target for pathogenic detection in clinic. Therefore, this method selects 442bp in the conserved region of ApxIVA gene, see SEQ ID NO: 1 for details, as the target sequence .
2)gRNA设计:由于Lb Cas12a特异性切割双链DNA时需要在结合位点附近含有PAM序列(TTTN,N为任意一个核苷酸),所以,RPA扩增后的产物作为待检测模板时必须含有PAM序列,因此,在靶标序列中寻找含有PAM序列的最优区域(Cas12a可以切割的序列)至关重要。结合待检靶标需含有PAM序列和RPA扩增产物长度有更大调整范围(100-300bp)的特性,我们采取先优选gRNA靶向位点,再依据gRNA靶向位点所在区域优选RPA引物的策略。首先利用CRISPR RGEN Tools,以靶标(SEQ ID NO:1)为模板,设定参数:gRNA长度为20bp、score分值大于66,选取满足以上参数的8条gRNA序列作为候选gRNA序列,详见SEQ ID NO:2-9,这8条gRNA靶向保守区内不同位置的不同的PAM序列。依据荧光强度筛选出最优gRNA序列后,依据其结合位点所在区域再设计筛选出最优RPA引物。2) gRNA design: Since Lb Cas12a needs to contain a PAM sequence (TTTN, N is any nucleotide) near the binding site when it specifically cuts double-stranded DNA, the RPA-amplified product must be used as a template to be detected. Contains PAM sequence, therefore, it is very important to find the optimal region containing PAM sequence (the sequence that Cas12a can cut) in the target sequence. Combined with the characteristics that the target to be tested needs to contain the PAM sequence and the length of the RPA amplification product has a larger adjustment range (100-300bp), we first select the gRNA targeting site, and then select the RPA primer according to the region where the gRNA targeting site is located. Strategy. First, use CRISPR RGEN Tools, take the target (SEQ ID NO: 1) as the template, set the parameters: gRNA length is 20bp, score is greater than 66, select 8 gRNA sequences that meet the above parameters as candidate gRNA sequences, see SEQ ID for details ID NO: 2-9, these 8 gRNAs target different PAM sequences at different positions within the conserved region. After screening the optimal gRNA sequence according to the fluorescence intensity, the optimal RPA primer was then designed and screened according to the region of its binding site.
3)gRNA的制备:参照HiScribe T7 Quick High Yield RNA Synthesis Kit说明书,在gRNA互补的DNA序列(人工合成)前加入T7启动子序列作为体外转录的模板,加入试剂盒内提供的试剂后,在37℃孵育过夜,并用DNaseI消化掉DNA模板,用RNA纯化试剂盒回收生成的gRNA。用Nanodrop测定gRNA浓度,并将其分装、冻存于-80℃。3) Preparation of gRNA: Referring to the instructions of HiScribe T7 Quick High Yield RNA Synthesis Kit, add the T7 promoter sequence as the template for in vitro transcription before the complementary DNA sequence (artificial synthesis) of the gRNA, and after adding the reagents provided in the kit, at 37 Incubate overnight at °C, digest the DNA template with DNaseI, and recover the resulting gRNA with an RNA purification kit. The gRNA concentration was determined with Nanodrop, aliquoted, and frozen at -80°C.
4)ssDNA-reporter(ssDNA报告分子)合成4) Synthesis of ssDNA-reporter (ssDNA reporter molecule)
CRISPR-Cas12a蛋白在与靶标结合后可以激活其附属切割活性,即对体系内的任意单链DNA进行无差别切割的特点,被切割后的带有荧光基团的核苷酸序列可发出荧光,并可通过荧光检测设备对反应体系中的荧光值进行检测,或通过蓝光激发后通过肉眼直接观察、或通过试纸条进行免疫层析检测。分别合成5′端用FAM、FITC、RB200、TRITC、TET、PE、PI、AMCA、Att0425、PerCP、APC、Alexa Fluor 488、JOE、VIC、HEX、NED、Cy3、TAMRA、ROX、Texasred、Cy5、Quasar 670、Cy5.5和Cy7中的任意一种进行修饰且3′端用淬灭基团修饰的单链DNA序列用于荧光检测;或者5′端用FAM标记和3′端用Biotin修饰的单链DNA用于免疫层析检测。Cas12a的PAM是AT偏好,所述单链DNA报告序列含有TTATT、TTTTA、AAAAT、ATATAT中的至少一种。The CRISPR-Cas12a protein can activate its accessory cleavage activity after binding to the target, that is, it can cut any single-stranded DNA in the system indiscriminately, and the cut nucleotide sequence with a fluorescent group can emit fluorescence, The fluorescence value in the reaction system can be detected by a fluorescence detection device, or directly observed with the naked eye after being excited by blue light, or detected by immunochromatography with a test strip. The 5' end was synthesized with FAM, FITC, RB200, TRITC, TET, PE, PI, AMCA, Att0425, PerCP, APC, Alexa Fluor 488, JOE, VIC, HEX, NED, Cy3, TAMRA, ROX, Texasred, Cy5, Any one of Quasar 670, Cy5.5 and Cy7 modified single-stranded DNA sequence modified with a quencher group at the 3' end for fluorescence detection; or labeled with FAM at the 5' end and modified with Biotin at the 3' end Single-stranded DNA was used for immunochromatographic detection. The PAM of Cas12a is AT-biased, and the single-stranded DNA reporter sequence contains at least one of TTATT, TTTTA, AAAAT, ATATAT.
5)最优gRNA的确定5) Determination of optimal gRNA
gRNA的筛选以经PCR扩增后的靶标序列作为模板。在50μl PCR反应体系包含0.5μlAPP基因组DNA样品,经变性:95℃,15s;退火,55℃,15s;延伸:72℃,30s;循环数:30s,获得gRNA筛选用模板。PCR引物:正向引物:5′-TGGCACTGACGGTGATGATAATATC-3′(SEQ ID NO:12),反向引物:5′-GGCCATCGACTCAACCATCTTCTCC-3′(SEQ ID NO:13)。在20uL筛选gRNA体系中包含5ul target(即,上述PCR扩增出的靶基因产物),50nM gRNA(即,体外转录合成的不同gRNA),50nM Cas12a(购自New England Biolabs公司),500nM ssDNA-reporter,1×NEBuffer 2.1;37℃反应15-60min。通过荧光报告实验过程中能否激发出荧光并结合荧光强度初步筛选出一条特异性较强的gRNA及对应的检测区域。The screening of gRNA uses the target sequence amplified by PCR as the template. In a 50 μl PCR reaction system containing 0.5 μl APP genomic DNA sample, after denaturation: 95°C, 15s; annealing, 55°C, 15s; extension: 72°C, 30s; cycle number: 30s, a template for gRNA screening was obtained. PCR primers: forward primer: 5'-TGGCACTGACGGTGATGATAATATC-3' (SEQ ID NO: 12), reverse primer: 5'-GGCCATCGACTCAACCATCTTCTCC-3' (SEQ ID NO: 13). In the 20uL screening gRNA system, 5ul target (ie, the target gene product amplified by the above PCR), 50nM gRNA (ie, different gRNAs synthesized by in vitro transcription), 50nM Cas12a (purchased from New England Biolabs), 500nM ssDNA- reporter, 1×NEBuffer 2.1; react at 37°C for 15-60min. A specific gRNA and the corresponding detection area were preliminarily screened by whether the fluorescence could be excited during the fluorescent reporter experiment and combined with the fluorescence intensity.
6)RPA引物设计:参考上述筛选得到的最优gRNA序列的结合位点,在其上下游区域内,利用Primer Premier 5.0设计RPA引物,普通PCR引物虽然可以使用,但不是最优的,引物过短会降低重组率,影响扩增速度和检测灵敏度,因此,RPA引物比一般PCR引物长,但RPA反应的产物不能超过500bp。基于RPA扩增对引物要求,设定参数为:引物长度30-36bp之间,扩增产物长度在100-200bp之间,GC含量在30-70%之间,Tm>50℃。初步选取满足上述参数的8对RPA引物,并依据荧光强度选择最优RPA引物,详见SEQ ID NO:14-29。6) RPA primer design: with reference to the binding site of the optimal gRNA sequence obtained by the above screening, in its upstream and downstream regions, use Primer Premier 5.0 to design RPA primers. Although common PCR primers can be used, they are not optimal. Shorter ones will reduce the recombination rate and affect the amplification speed and detection sensitivity. Therefore, the RPA primers are longer than the general PCR primers, but the product of the RPA reaction cannot exceed 500bp. Based on the primer requirements for RPA amplification, the set parameters are: primer length between 30-36 bp, amplification product length between 100-200 bp, GC content between 30-70%, Tm>50°C. Eight pairs of RPA primers satisfying the above parameters were preliminarily selected, and the optimal RPA primers were selected according to the fluorescence intensity, see SEQ ID NOs: 14-29 for details.
7)RPA扩增体系及程序:依照Basic产品说明书,RPA反应体系50μL:其中包括RPA上游扩增引物0.48μM,RPA下游扩增引物0.48μM,1×Rehydration Buffer,14mM MgOAc,待检测样本基因组DNA 1μL,其余用水补足50μL。RPA扩增程序:恒温37-40℃反应15min。7) RPA amplification system and procedures: according to Basic product manual, RPA reaction system 50 μL: including RPA upstream amplification primer 0.48 μM, RPA downstream amplification primer 0.48 μM, 1× Rehydration Buffer, 14 mM MgOAc, 1 μL of genomic DNA of the sample to be tested, and the rest with water to make up 50 μL. RPA amplification procedure: reaction at constant temperature of 37-40°C for 15min.
2.2病原菌培养及基因组提取2.2 Pathogenic bacteria culture and genome extraction
取胸膜肺炎放线杆菌菌株S8(中国农业科学院哈尔滨兽医研究所提供)在TNA(含5%马血清、10μg/m L NAD的TSA)平板上划线,37℃培养过夜,挑取单菌落于TNB(含5%马血清、10μg/m L NAD的TSB)中培养12h,使用天根细菌基因组DNA提取试剂盒提取细菌基因组,使用Nanodrop为基因组进行定量。Take Actinobacillus pleuropneumoniae strain S8 (provided by Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences), streak on TNA (TSA containing 5% horse serum, 10 μg/mL NAD) plate, culture at 37 °C overnight, pick a single colony in The cells were cultured in TNB (TSB containing 5% horse serum and 10 μg/mL NAD) for 12 h, and the bacterial genome was extracted using a DNA extraction kit for bacterial genome of Rhizoctonia, and the genome was quantified using Nanodrop.
2.3临床样品基因组提取2.3 Genome extraction from clinical samples
依照血液和组织样品基因组DNA提取试剂盒(DP304-03)提取基因组,并使用Nanodrop为基因组进行定量。Genomes were extracted according to the Blood and Tissue Sample Genomic DNA Extraction Kit (DP304-03) and quantified using Nanodrop for genomes.
2.4 CRISPR-Cas12a结合RPA扩增进行荧光检测2.4 CRISPR-Cas12a combined with RPA amplification for fluorescence detection
取RPA扩增靶基因产物,加入CRISPR-Cas12a反应体系。20uL终体系中包含100ngtarget-ApxIVA(即,RPA扩增靶基因产物),50nM gRNA(即,针对RPA扩增靶基因产物的gRNA),50nM Cas12a(购自New England Biolabs公司),500nM ssDNA-reporter,1×NEBuffer,此处所述ssDNA-reporter所用的序列为5’-FAM-TTATT-TAMRA-3’(SEQ ID NO:10)。37℃条件下反应60min,通过多功能酶标仪(Perkin Elmer ENSPIRE)在485nm激发波长和535nm发射波长下,每间隔1min采集FAM荧光;或在反应15min后直接用蓝光凝胶成像仪直接通过肉眼观察。阴性对照设置为将target-ApxIVA换做去离子水。The RPA amplified target gene product was taken and added to the CRISPR-Cas12a reaction system. 20uL final system contains 100ng target-ApxIVA (ie, target gene product amplified by RPA), 50nM gRNA (ie, gRNA targeting gene product amplified by RPA), 50nM Cas12a (purchased from New England Biolabs), 500nM ssDNA-reporter , 1×NEBuffer, the sequence used in the ssDNA-reporter described here is 5'-FAM-TTATT-TAMRA-3' (SEQ ID NO: 10). The reaction was carried out at 37 °C for 60 min, and the FAM fluorescence was collected at 485 nm excitation wavelength and 535 nm emission wavelength by a multifunctional microplate reader (Perkin Elmer ENSPIRE) at 1 min intervals; or directly after the reaction for 15 min with a blue light gel imager. Observed. The negative control was set by replacing target-ApxIVA with deionized water.
2.5 CRISPR-Cas12a结合RPA扩增进行免疫层析检测2.5 CRISPR-Cas12a combined with RPA amplification for immunochromatographic detection
取RPA扩增产物,加入CRISPR-Cas12a反应体系。20uL终体系中包含100ng target-ApxIVA,100nM gRNA,50nM Cas12a,500nM ssDNA-reporter,1×NEBuffer,37℃条件下反应60min。此处所述ssDNA-reporter所用的序列为5’-FAM-TTATT-Biotin-3’(SEQ ID NO:11)。将上述20μl反应体系转移到80μl检测缓冲液中,然后将免疫层析试纸条(MileniaHybriDetect 1 Dipstick,TwistDx公司)放入溶液中,孵育5分钟后肉眼观察结果。阴性对照设置为将target-ApxIVA换做去离子水。Take the RPA amplification product and add it to the CRISPR-Cas12a reaction system. The 20uL final system contains 100ng target-ApxIVA, 100nM gRNA, 50nM Cas12a, 500nM ssDNA-reporter, 1×NEBuffer, and react at 37℃ for 60min. The sequence used for the ssDNA-reporter described here is 5'-FAM-TTATT-Biotin-3' (SEQ ID NO: 11). The above 20 μl reaction system was transferred to 80 μl detection buffer, and then immunochromatographic test strips (
2.6特异性实验2.6 Specificity experiments
利用本实施例已建立的检测方法,对包括胸膜肺炎放线杆菌、副猪嗜血杆菌、猪链球菌、沙门氏菌、猪圆环病毒、猪伪狂犬病毒、猪流行性腹泻病毒在内的常见细菌和病毒进行了检测,并设立水为阴性对照。根据检测结果判断该检测方法的特异性。Using the established detection method in this example, common bacteria including Actinobacillus pleuropneumoniae, Haemophilus parasuis, Streptococcus suis, Salmonella, porcine circovirus, porcine pseudorabies virus, and porcine epidemic diarrhea virus were detected. and viruses were tested, and water was set up as a negative control. The specificity of the detection method is judged according to the detection results.
2.7敏感性实验2.7 Sensitivity experiment
根据ApxIVA保守区设计扩增带有同源重组位点的PCR引物:PCR primers for amplification with homologous recombination sites were designed according to the conserved regions of ApxIVA:
P1:5′-GCTTGCATGCCTGCAGTGGCACTGACGGTGAT-3′(SEQ ID NO:30)P1: 5'-GCTTGCATGCCTGCAGTGGCACTGACGGTGAT-3' (SEQ ID NO: 30)
P2:5′-CTGAATTCGAGCTCGGTACCGGCCATCGACTCAACCAT-3′(SEQ ID NO:31),将扩增产物回收,并连接至puT18载体上以获得含有保守区的质粒,测定DNA浓度,计算其拷贝数,并对其进行10倍连续稀释,设立水为阴性对照,利用已建立的检测方法评价其敏感性。P2: 5'-CTGAATTCGAGCTCGGTACCGGCCATCGACTCAACCAT-3' (SEQ ID NO: 31), the amplified product was recovered, and ligated to the puT18 vector to obtain a plasmid containing the conserved region, the DNA concentration was determined, the copy number was calculated, and the 10-fold serial dilution, set up water as a negative control, and use the established detection method to evaluate its sensitivity.
2.8临床样品检验2.8 Clinical sample inspection
选取经常规PCR确认的8例胸膜肺炎放线杆菌阳性组织样本和5例阴性样本,利用已建立的PCR检测方法对其进行检测,以胸膜肺炎放线杆菌基因组作为阳性对照,水为阴性对照,对检出结果进行比较。常规PCR选取胸膜肺炎放线杆菌鉴定引物AP-IVF(5′-ATACGGTTA ATGGCGGTAATG G-3′)(SEQ ID NO:32),AP-IVR(5′-ACCTGAGTGCTCACCAACG-3′)(SEQ ID NO:33)进行扩增。8 cases of Actinobacillus pleuropneumoniae positive tissue samples and 5 cases of negative samples confirmed by conventional PCR were selected, and the established PCR detection methods were used to detect them. Compare the detection results. The identification primers of Actinobacillus pleuropneumoniae were selected by conventional PCR, AP-IVF (5'-ATACGGTTA ATGGCGGTAATG G-3') (SEQ ID NO: 32), AP-IVR (5'-ACCTGAGTGCTCACCAACG-3') (SEQ ID NO: 33) ) to expand.
实施例2:Example 2:
结果result
1.特异性gRNA序列筛选1. Screening of specific gRNA sequences
以经PCR扩增后的靶标序列保守区作为模板,在20uL筛选体系中包含5ul target(即,PCR扩增靶基因保守区产物),50nM gRNA(即,体外转录合成的不同gRNA),50nM Cas12a(购自New England Biolabs公司),500nM ssDNA-reporter,1×NEBuffer 2.1(其组分为50mM NaCl、10mM Tris-HCl、10mM MgCl2、100μg/ml BSA pH 7.9);37℃反应60min。通过荧光报告实验过程中能否激发出荧光并结合荧光强度初步筛选出一条特异性较强的gRNA及对应的检测区域。依据靶基因的保守区设计并合成8条候选gRNA的DNA序列,经体外转录生成gRNA(见表一),并通过荧光法(图1A)和免疫层析法(图1B)同时筛选最佳gRNA,荧光法结果表明:seq-1、seq-2、seq-3、seq-4、seq-5、seq-7均能在30min时间内达到峰值。免疫层析结果表明:seq-2、seq-4、seq-5、seq-6、seq-7、seq-8序列均可产生清晰的阳性条带。综合两种方法的结果,seq-7(SEQ ID NO:8)序列起峰最快并具有清晰的阳性条带,优选seq-7(SEQID NO:8)序列作为后续检测用gRNA,而seq-2(SEQ ID NO:3)、seq-4(SEQ ID NO:5)、seq-5(SEQ ID NO:6)也可作为备选gRNA。Using the conserved region of the target sequence amplified by PCR as a template, 5ul target (that is, the product of the conserved region of the target gene amplified by PCR), 50nM gRNA (that is, different gRNAs synthesized by in vitro transcription), 50nM Cas12a were included in the 20uL screening system (purchased from New England Biolabs), 500nM ssDNA-reporter, 1×NEBuffer 2.1 (its components are 50mM NaCl, 10mM Tris-HCl, 10mM MgCl2, 100μg/ml BSA pH 7.9); 37°C for 60min. A specific gRNA and the corresponding detection area were preliminarily screened by whether the fluorescence could be excited during the fluorescent reporter experiment and combined with the fluorescence intensity. The DNA sequences of 8 candidate gRNAs were designed and synthesized based on the conserved regions of the target genes, and the gRNAs were generated by in vitro transcription (see Table 1), and the optimal gRNAs were simultaneously screened by fluorescence method (Fig. , the fluorescence method results show that: seq-1, seq-2, seq-3, seq-4, seq-5, seq-7 can reach the peak within 30min. The results of immunochromatography showed that: seq-2, seq-4, seq-5, seq-6, seq-7, seq-8 sequences could produce clear positive bands. Combining the results of the two methods, the seq-7 (SEQ ID NO: 8) sequence peaked the fastest and had a clear positive band. The seq-7 (SEQ ID NO: 8) sequence was preferred as the gRNA for subsequent detection, while the seq- 2 (SEQ ID NO:3), seq-4 (SEQ ID NO:5), seq-5 (SEQ ID NO:6) can also be used as alternative gRNAs.
表一gRNA候选序列Table 1 gRNA candidate sequences
注:表中“起始位置”指PAM的第一个碱基在ApxIVA基因中保守区(SEQ ID NO:1)的位置Note: "Starting position" in the table refers to the position of the first base of PAM in the conserved region (SEQ ID NO: 1) of ApxIVA gene
2.RPA引物筛选2. RPA primer screening
依据筛选到最优gRNA(SEQ ID NO:8)的结合位点(保守区318-341bp位置),在满足RPA引物设计要求的情况下,设计合成8对候选RPA引物(见表二),并通过实施例1的RPA和CRISPER-Cas方法以及荧光法筛选最佳RPA引物,结果表明:序号1、2、3、4、7的引物组合均能通过肉眼观察到蓝色荧光产生,但序号7的引物组合荧光强度最强(见图2),因此,优选序号7组合185-FR(即185-F和185-R)这对引物,作为后续检测用RPA扩增用引物。According to the binding site of the optimal gRNA (SEQ ID NO: 8) (318-341 bp in the conserved region), 8 pairs of candidate RPA primers (see Table 2) were designed and synthesized under the condition that the design requirements of RPA primers were met. The best RPA primers were screened by the RPA and CRISPER-Cas methods and fluorescence method in Example 1. The results showed that the primer combinations of Nos. 1, 2, 3, 4, and 7 could all produce blue fluorescence by naked eyes, but No. 7 The primer combination of 185-FR (ie, 185-F and 185-R) has the strongest fluorescence intensity (see Figure 2). Therefore, the primer pair 185-FR (ie, 185-F and 185-R) is preferably used as the primer for RPA amplification for subsequent detection.
RPA引物的靶序列为SEQ ID NO:1。The target sequence of the RPA primer is SEQ ID NO:1.
表二RPA候选引物序列Table 2 RPA candidate primer sequences
注:从RPA产物的起始和终止位点可以看出序号1、2、3、4、7号引物对扩增出来的产物中涵盖了gRNA seq-2、4、5、7所结合的区域,所以本领域技术人员能够理解,这些序号1、2、3、4、7的RPA引物对和gRNA seq-2、4、5、7可以任意组合使用,用于荧光法和免疫层析。Note: From the start and end sites of the RPA product, it can be seen that the products amplified by primer pairs No. 1, 2, 3, 4, and 7 cover the regions bound by gRNA seq-2, 4, 5, and 7. , so those skilled in the art can understand that these RPA primer pairs and gRNA seq-2, 4, 5, and 7 can be used in any combination for fluorescence and immunochromatography.
3.反应体系优化3. Reaction system optimization
为获得更好的检测效果,我们对检测体系内的ssDNA报告分子浓度、gRNA浓度和检测缓冲液组分等方面进行了优化。结果表明免疫层析法在ssDNA报告分子浓度为500nM时,阴性样品的检测线最浅,假阳性效果最弱(图3A),荧光法在ssDNA报告分子浓度为500nM时,荧光强度最强(图3B);免疫层析法显示体系中gRNA浓度为50nM时仍可以达到理想的效果(图3C),免疫层析法在使用试剂条进行最后检测时,比较了购买试剂条时自带的缓冲液和10%聚乙二醇作为缓冲液的效果,结果表明:在使用10%聚乙二醇作为缓冲液时阴性样品检测线可以完全消失(图3D)。In order to obtain better detection effect, we optimized the ssDNA reporter concentration, gRNA concentration and detection buffer components in the detection system. The results showed that when the concentration of ssDNA reporter molecule was 500nM by immunochromatography, the detection line of negative samples was the shallowest and the false positive effect was the weakest (Figure 3A). 3B); immunochromatography showed that the ideal effect could still be achieved when the concentration of gRNA in the system was 50nM (Fig. 3C). When using the reagent strip for the final detection, the immunochromatography method compared the buffer that came with the reagent strip when purchased. and the effect of 10% polyethylene glycol as the buffer, the results show that the detection line of the negative sample can completely disappear when 10% polyethylene glycol is used as the buffer (Fig. 3D).
所以基于本发明的实施方案中的RPA及CRISPR/Cas12a结合检测胸膜肺炎放线杆菌的最佳CRISPR-Cas12 a反应体系为:Therefore, the optimal CRISPR-Cas12a reaction system for detecting A. pleuropneumoniae based on the combination of RPA and CRISPR/Cas12a in the embodiment of the present invention is:
荧光检测:20uL终体系中包含100ng target-ApxIVA,50nM gRNA,50nM Cas12a,500nM ssDNA-reporter,1×NEBuffer。Fluorescence detection: 20uL final system contains 100ng target-ApxIVA, 50nM gRNA, 50nM Cas12a, 500nM ssDNA-reporter, 1×NEBuffer.
免疫层析检测:20uL终体系中包含100ng targe-ApxIVA,50nM gRNA,50nMCas12a,500nM ssDNA-reporter,1×NEBuffer。Immunochromatographic detection: 20uL final system contains 100ng targe-ApxIVA, 50nM gRNA, 50nMCas12a, 500nM ssDNA-reporter, 1×NEBuffer.
免疫层析检测缓冲液为10%聚乙二醇。The immunochromatographic detection buffer was 10% polyethylene glycol.
4.特异性检测4. Specific detection
为了评估Cas12a免疫层析法和荧光法检测的特异性,我们对包括副猪嗜血杆菌、猪链球菌、沙门氏菌、猪圆环病毒、猪伪狂犬病毒、猪流行性腹泻病毒在内的多种细菌和病毒进行了检测。结果表明:通过免疫层析测定法,荧光法(肉眼法、荧光值统计)的显示方法对核酸样品检测,结果除胸膜肺炎放线杆菌外其它6种病原的免疫层析检测条带均为阴性(图4A-4C)。To evaluate the specificity of Cas12a immunochromatographic and fluorometric detection, we tested a variety of Bacteria and viruses were tested. The results showed that the nucleic acid samples were detected by immunochromatographic assay and fluorescence method (visual method, fluorescence value statistics), and the immunochromatographic detection bands of other 6 pathogens except Actinobacillus pleuropneumoniae were negative. (FIGS. 4A-4C).
5.敏感性检测5. Sensitivity testing
为了分析增强的Cas12a免疫层析检测的灵敏度,我们使用免疫层析测定法(图5A),荧光法(肉眼法,图5B;荧光值统计,图5C)测试了上述10倍连续稀释的含有保守区的质粒,结果表明:荧光法与免疫层析法的检测极限均为10copies/μl。To analyze the sensitivity of the enhanced Cas12a immunochromatographic detection, we tested the above-mentioned 10-fold serial dilutions containing conservative The results show that the detection limit of fluorescence method and immunochromatography method are both 10copies/μl.
6.临床样品检测6. Clinical sample detection
为进一步确认该可视化方法在临床样本中的应用效果,对来源于不同猪场的感染胸膜肺炎放线杆菌的肺脏组织样本(中国农业科学院哈尔滨兽医研究所)进行基因组提取,选取经常规PCR方法确认的8例胸膜肺炎放线杆菌阳性组织样本和5例阴性组织样本,利用实施例1的方法结合实施例2所述的最佳反应体系对其进行检测,免疫层析检测结果表明:阳性样品除阴性对照外,免疫层析检测条带均为阳性(图6A);阴性样本除阳性对照外其余免疫层析检测条带均为阴性(图6D)。肉眼法观察结果表明:除阴性对照外阳性样品均发绿色荧光(图6B),阴性样品均不发光(图6E)。荧光法检测结果表明:阳性样本荧光值均可达到12000以上,阴性对照值在2000以下(图6C),阴性样品中除阳性对照荧光值达12000以上,其余样本荧光值均在2000以下(图6F)。该方法的检测结果与PCR方法检测结果一致。In order to further confirm the application effect of this visualization method in clinical samples, genome extraction was performed on lung tissue samples (Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences) infected with Actinobacillus pleuropneumoniae from different pig farms, and the selection was confirmed by conventional PCR method. 8 cases of Actinobacillus pleuropneumoniae positive tissue samples and 5 cases of negative tissue samples were detected by the method of Example 1 combined with the best reaction system described in Example 2, and the results of immunochromatography showed that the positive samples were in addition to Except for the negative control, the immunochromatographic detection bands were all positive (Fig. 6A); except for the positive control, the remaining immunochromatographic detection bands of the negative samples were negative (Fig. 6D). The results of naked eye observation showed that, except for the negative control, the positive samples all showed green fluorescence (Fig. 6B), and the negative samples did not emit light (Fig. 6E). The fluorescence detection results showed that the fluorescence values of the positive samples were all above 12000, and the negative control values were below 2000 (Figure 6C). In the negative samples, except for the positive control fluorescence values above 12000, the fluorescence values of the remaining samples were all below 2000 (Figure 6F). ). The detection result of this method is consistent with the detection result of PCR method.
以上结果证明该检测方法可用于临床样品中胸膜肺炎放线杆菌的快速检测,结合现地的实验条件和检测样品的数量可以采取不同的检测方法,在以肉眼观察和使用荧光检测仪操作时,在实验室预先制备样品基因组条件下,可在30min中内完成检测过程,而在通过试剂条检测时亦可在75min之内获得检测结果,相对于实验室常规PCR检测方法(扩增60min,琼脂糖凝胶电泳检测30min),本发明的方法可以实现快速可视化检测,并减少凝胶染色时产生的染料污染。The above results prove that this detection method can be used for the rapid detection of Actinobacillus pleuropneumoniae in clinical samples. Different detection methods can be adopted in combination with the experimental conditions and the number of detection samples. Under the condition of pre-prepared sample genome in the laboratory, the detection process can be completed within 30 minutes, and the detection results can also be obtained within 75 minutes when detected by reagent strips. Compared with the laboratory conventional PCR detection method (
以上所述的具体实施例,对本发明的目的、技术方案和有益效果进行了进一步详细说明,应理解的是,以上所述仅为本发明的具体实施例而已,并不用于限制本发明,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。The specific embodiments described above further describe the purpose, technical solutions and beneficial effects of the present invention in detail. It should be understood that the above-mentioned specific embodiments are only specific embodiments of the present invention, and are not intended to limit the present invention. Within the spirit and principle of the present invention, any modifications, equivalent replacements, improvements, etc. made should be included within the protection scope of the present invention.
引用文献Citation
1郭坤,高晓娜,罗军荣,王天成,郭小叔,郭小权,胡国良,黑龙江畜牧兽医刘J:猪传染性胸膜肺炎放线杆菌的研究进展2017(2):59-621 Guo Kun, Gao Xiaona, Luo Junrong, Wang Tiancheng, Guo Xiaoshu, Guo Xiaoquan, Hu Guoliang, Heilongjiang Animal Husbandry and Veterinary Liu J: Research Progress on Actinobacillus pleuropneumoniae 2017(2): 59-62
2Bosse JT,Li Y,Fernandez Crespo R,Lacouture S,Gottschalk M,Sarkozi R,Fodor L,Casas Amoribieta M,Angen O,Nedbalcova K et al:Comparative sequenceanalysis of the capsular polysaccharide loci of Actinobacilluspleuropneumoniae serovars 1-18,and development of two multiplex PCRs forcomprehensive capsule typing.Vet Microbiol 2018,220:83-89.2Bosse JT, Li Y, Fernandez Crespo R, Lacouture S, Gottschalk M, Sarkozi R, Fodor L, Casas Amoribieta M, Angen O, Nedbalcova K et al: Comparative sequence analysis of the capsular polysaccharide loci of Actinobacillus pleuropneumoniae serovars 1-18, and development of two multiplex PCRs forcomprehensive capsule typing. Vet Microbiol 2018, 220: 83-89.
3黄红亮,周锐,陈美玲,刘建杰,徐晓娟,生物工程学报陈J:胸膜肺炎放线杆菌毒素apxIVA基因的克隆与表达及间接ELISA方法的建立2005,21(2):294-2993 Huang Hongliang, Zhou Rui, Chen Meiling, Liu Jianjie, Xu Xiaojuan, Chinese Journal of Biological Engineering Chen J: Cloning and expression of apxIVA gene of Actinobacillus pleuropneumoniae toxin and establishment of indirect ELISA method 2005, 21(2): 294-299
4Mullis K,Faloona F,Scharf S,Saiki R,Horn G,Erlich H:Specificenzymatic amplification of DNA in vitro:the polymerase chain reaction.ColdSpring Harb Symp Quant Biol 1986,51 Pt 1:263-273.4 Mullis K, Faloona F, Scharf S, Saiki R, Horn G, Erlich H: Specificenzymatic amplification of DNA in vitro: the polymerase chain reaction. ColdSpring Harb Symp Quant Biol 1986, 51 Pt 1:263-273.
5Piepenburg O,Williams CH,Stemple DL,Armes NA:DNA detection usingrecombination proteins.PLoS Biol 2006,4(7):e2045 Piepenburg O, Williams CH, Stemple DL, Armes NA: DNA detection using recombination proteins. PLoS Biol 2006, 4(7):e204
6Li SY,Cheng QX,Liu JK,Nie XQ,Zhao GP,Wang J:CRISPR-Cas12a has bothcis-and trans-cleavage activities on single-stranded DNA.Cell Res 2018,28(4):491-493.6Li SY, Cheng QX, Liu JK, Nie XQ, Zhao GP, Wang J: CRISPR-Cas12a has bothcis-and trans-cleavage activities on single-stranded DNA. Cell Res 2018, 28(4): 491-493.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011643292.2A CN114686608A (en) | 2020-12-30 | 2020-12-30 | A rapid visual detection method for Actinobacillus pleuropneumoniae based on CRISPR-Cas12a |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011643292.2A CN114686608A (en) | 2020-12-30 | 2020-12-30 | A rapid visual detection method for Actinobacillus pleuropneumoniae based on CRISPR-Cas12a |
Publications (1)
Publication Number | Publication Date |
---|---|
CN114686608A true CN114686608A (en) | 2022-07-01 |
Family
ID=82135449
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202011643292.2A Pending CN114686608A (en) | 2020-12-30 | 2020-12-30 | A rapid visual detection method for Actinobacillus pleuropneumoniae based on CRISPR-Cas12a |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114686608A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116004873A (en) * | 2023-02-01 | 2023-04-25 | 武汉轻工大学 | A rapid detection kit for Haemophilus parasuis and its preparation method and application |
CN116254352A (en) * | 2022-08-19 | 2023-06-13 | 河南农业大学 | CRISPR-based method and kit for detecting tigecycline drug-resistant high-virulence klebsiella pneumoniae |
CN119193869A (en) * | 2024-08-22 | 2024-12-27 | 中国农业大学 | A primer pair and probe set for detecting porcine Actinobacillus pleuropneumoniae |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0875574A2 (en) * | 1997-04-10 | 1998-11-04 | Akzo Nobel N.V. | Live attenuated bacteria of the species Actinobacillus pleuropneumoniae |
WO2006043349A1 (en) * | 2004-10-19 | 2006-04-27 | Nihon University | Method of detecting influenza bacillus, primer set for detection of influenza bacillus and kit for detection of influenza bacillus |
CN101949934A (en) * | 2010-09-04 | 2011-01-19 | 扬州大学 | Early infection detection kit of monoclonal antibody-mediated pig pleuropneumoniae |
CN106544353A (en) * | 2016-11-08 | 2017-03-29 | 宁夏医科大学总医院 | A kind of method that utilization CRISPR Cas9 remove Acinetobacter bauamnnii drug resistance gene |
CN108220479A (en) * | 2018-01-05 | 2018-06-29 | 浙江农林大学 | The multiple linking probe amplification identification reagent box of a variety of pig Sudden Death Syndrome cause of diseases can be detected |
CN110184329A (en) * | 2019-05-31 | 2019-08-30 | 华南理工大学 | A kind of one-step method nucleic acid detection method and kit based on CRISPR/Cas and constant-temperature amplification |
CN111187804A (en) * | 2020-02-20 | 2020-05-22 | 国家卫生健康委科学技术研究所 | Rapid detection kit and detection method for mycoplasma pneumoniae nucleic acid based on CRISPR/Cas12a |
CN111235232A (en) * | 2020-01-19 | 2020-06-05 | 华中农业大学 | Visual rapid nucleic acid detection method and application based on CRISPR-Cas12a system |
KR20200070498A (en) * | 2018-12-07 | 2020-06-18 | 서울대학교산학협력단 | Composition for diagnosing infection of Actinobacillus pleuropneumoniae containing recombinant antigen protein of ApxIVA |
CN111575394A (en) * | 2020-06-02 | 2020-08-25 | 厦门银祥集团有限公司 | LAMP (loop-mediated isothermal amplification) detection kit for actinobacillus pleuropneumoniae |
-
2020
- 2020-12-30 CN CN202011643292.2A patent/CN114686608A/en active Pending
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0875574A2 (en) * | 1997-04-10 | 1998-11-04 | Akzo Nobel N.V. | Live attenuated bacteria of the species Actinobacillus pleuropneumoniae |
WO2006043349A1 (en) * | 2004-10-19 | 2006-04-27 | Nihon University | Method of detecting influenza bacillus, primer set for detection of influenza bacillus and kit for detection of influenza bacillus |
CN101949934A (en) * | 2010-09-04 | 2011-01-19 | 扬州大学 | Early infection detection kit of monoclonal antibody-mediated pig pleuropneumoniae |
CN106544353A (en) * | 2016-11-08 | 2017-03-29 | 宁夏医科大学总医院 | A kind of method that utilization CRISPR Cas9 remove Acinetobacter bauamnnii drug resistance gene |
CN108220479A (en) * | 2018-01-05 | 2018-06-29 | 浙江农林大学 | The multiple linking probe amplification identification reagent box of a variety of pig Sudden Death Syndrome cause of diseases can be detected |
KR20200070498A (en) * | 2018-12-07 | 2020-06-18 | 서울대학교산학협력단 | Composition for diagnosing infection of Actinobacillus pleuropneumoniae containing recombinant antigen protein of ApxIVA |
CN110184329A (en) * | 2019-05-31 | 2019-08-30 | 华南理工大学 | A kind of one-step method nucleic acid detection method and kit based on CRISPR/Cas and constant-temperature amplification |
CN111235232A (en) * | 2020-01-19 | 2020-06-05 | 华中农业大学 | Visual rapid nucleic acid detection method and application based on CRISPR-Cas12a system |
CN111187804A (en) * | 2020-02-20 | 2020-05-22 | 国家卫生健康委科学技术研究所 | Rapid detection kit and detection method for mycoplasma pneumoniae nucleic acid based on CRISPR/Cas12a |
CN111575394A (en) * | 2020-06-02 | 2020-08-25 | 厦门银祥集团有限公司 | LAMP (loop-mediated isothermal amplification) detection kit for actinobacillus pleuropneumoniae |
Non-Patent Citations (3)
Title |
---|
RUIWEN LI等: "Direct detection of Actinobacillus pleuropneumoniae in swine lungs and tonsils by real-time recombinase polymerase amplification assay", MOLECULAR AND CELLULAR PROBES, vol. 45, pages 14 - 18 * |
TIAN LUAN等: "A CRISPR/Cas12a-assisted rapid detection platform by biosensing the apxIVA of Actinobacillus pleuropneumoniae", FRONTIERS IN MICROBIOLOGY, pages 1 - 11 * |
葛菲菲等: "胸膜肺炎放线杆菌PCR 检测方法的建立及临床应用", 动物医学进展, vol. 29, pages 18 - 20 * |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116254352A (en) * | 2022-08-19 | 2023-06-13 | 河南农业大学 | CRISPR-based method and kit for detecting tigecycline drug-resistant high-virulence klebsiella pneumoniae |
CN116004873A (en) * | 2023-02-01 | 2023-04-25 | 武汉轻工大学 | A rapid detection kit for Haemophilus parasuis and its preparation method and application |
CN119193869A (en) * | 2024-08-22 | 2024-12-27 | 中国农业大学 | A primer pair and probe set for detecting porcine Actinobacillus pleuropneumoniae |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN113621717A (en) | Streptococcus suis rapid visualization RPA detection kit based on CRISPR-Cas12a and application thereof | |
CN107299155B (en) | Primer and probe for real-time fluorescence quantitative PCR detection of goose astrovirus | |
JP7565643B2 (en) | Nucleic acid detection kit, method and application thereof | |
CN114686608A (en) | A rapid visual detection method for Actinobacillus pleuropneumoniae based on CRISPR-Cas12a | |
CN107043831B (en) | Duck adenovirus type A and type 2 Real time PCR detection primer, probe and kit | |
CN113046475B (en) | Primer composition and kit for rapidly detecting mutant novel coronavirus | |
JP2013500008A (en) | Sequences for the detection and characterization of E. coli O157: H7 and their use | |
CN110564881A (en) | Method for detecting vibrio parahaemolyticus by recombinase isothermal amplification technology | |
CN118207347B (en) | Rapid detection method for Haemophilus influenzae based on CRISPR-Cas12a system | |
US20090226895A1 (en) | Method of detecting vibrio parahaemolyticus via real-time PCR-hybridization | |
CN110578019A (en) | Dual fluorescent LAMP detection kit for distinguishing strong and weak Newcastle disease virus and its primer set | |
CN110699485B (en) | RPA primer pair, probe, kit and detection method for rapidly detecting Marek's disease virus | |
CN111471797A (en) | RT-RPA primer pair, probe, kit and detection method for detecting feline coronavirus | |
CN107365843A (en) | For detecting LAMP primer composition and its application of two kinds of main parasitic worms for causing calf diarrhea | |
CN107400736B (en) | Duck adenovirus type 2 loop-mediated isothermal amplification detection primer set and kit | |
Yu et al. | A rapid, ultrasensitive, and highly specific method for detecting fowl adenovirus serotype 4 based on the LAMP-CRISPR/Cas12a system | |
CN118166137B (en) | Panda source babesia detection primer combination, kit and application | |
CN118006739B (en) | Method for simultaneously detecting mycoplasma synoviae wild toxin and vaccine, product and application thereof | |
CN114015812A (en) | A LAMP primer combination and application for specific detection of African swine fever virus epidemic strains and gene deletion strains | |
CN100485045C (en) | Method and kit for detecting pine wood nematode, and special-purpose primer and probe for same | |
CN115369186B (en) | Gene I and II African swine fever virus identification detection primer and application thereof | |
CN111270015A (en) | A kind of primer composition, test kit and method for detecting CSFV and PRRSV | |
NL2031160B1 (en) | Primer Set, Probe and Application for Distinguishing Brucella S2 Vaccine Strain from Wild Strain | |
CA2920636A1 (en) | Sequences and their use for detection of salmonella enteritidis and/or salmonella typhimurium | |
CN112375834B (en) | Method and application of PCR detection of four major O-antigen serotypes of Yersinia enterocolitica |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |