[go: up one dir, main page]

CN114685635A - Gene FLO18 for regulating development and quality of endosperm - Google Patents

Gene FLO18 for regulating development and quality of endosperm Download PDF

Info

Publication number
CN114685635A
CN114685635A CN202011615007.6A CN202011615007A CN114685635A CN 114685635 A CN114685635 A CN 114685635A CN 202011615007 A CN202011615007 A CN 202011615007A CN 114685635 A CN114685635 A CN 114685635A
Authority
CN
China
Prior art keywords
flo18
protein
endosperm
expression
activity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202011615007.6A
Other languages
Chinese (zh)
Inventor
韩斌
胡遐
王子轩
刘晓辉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Center for Excellence in Molecular Plant Sciences of CAS
Original Assignee
Center for Excellence in Molecular Plant Sciences of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Center for Excellence in Molecular Plant Sciences of CAS filed Critical Center for Excellence in Molecular Plant Sciences of CAS
Priority to CN202011615007.6A priority Critical patent/CN114685635A/en
Publication of CN114685635A publication Critical patent/CN114685635A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/415Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from plants
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8216Methods for controlling, regulating or enhancing expression of transgenes in plant cells
    • C12N15/8218Antisense, co-suppression, viral induced gene silencing [VIGS], post-transcriptional induced gene silencing [PTGS]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8242Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits
    • C12N15/8243Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits involving biosynthetic or metabolic pathways, i.e. metabolic engineering, e.g. nicotine, caffeine
    • C12N15/8245Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits involving biosynthetic or metabolic pathways, i.e. metabolic engineering, e.g. nicotine, caffeine involving modified carbohydrate or sugar alcohol metabolism, e.g. starch biosynthesis
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • C12N15/8262Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield involving plant development
    • C12N15/8267Seed dormancy, germination or sprouting
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6888Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms
    • C12Q1/6895Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms for plants, fungi or algae
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/13Plant traits
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/158Expression markers

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Molecular Biology (AREA)
  • Biotechnology (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Biophysics (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Microbiology (AREA)
  • Physics & Mathematics (AREA)
  • Cell Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Plant Pathology (AREA)
  • Analytical Chemistry (AREA)
  • Nutrition Science (AREA)
  • Botany (AREA)
  • Mycology (AREA)
  • Physiology (AREA)
  • Immunology (AREA)
  • Virology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Medicinal Chemistry (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)

Abstract

本发明提供了一种调控胚乳发育及品质的基因FLO18。本发明人克隆获得一种新型的与调控植物产量性状或胚乳品质相关的基因FLO18,其为产量或胚乳品质的正调控基因,其功能缺失则会导致胚乳产生粉质胚乳表型,产量和品质下降,但是对于植物其他性状没有影响。本发明为植物的性状改良提供了新靶点。The present invention provides a gene FLO18 that regulates the development and quality of endosperm. The inventors cloned and obtained a novel gene FLO18 related to the regulation of plant yield traits or endosperm quality, which is a positive regulator of yield or endosperm quality. decreased, but had no effect on other plant traits. The present invention provides a new target for the improvement of plant traits.

Description

调控胚乳发育及品质的基因FLO18Gene FLO18 regulating endosperm development and quality

技术领域technical field

本发明属于生物技术和植物学领域,更具体地,本发明涉及调控胚乳发育及品质的基因FLO18。The present invention belongs to the fields of biotechnology and botany, and more particularly, the present invention relates to the gene FLO18 that regulates the development and quality of endosperm.

背景技术Background technique

被子植物的胚乳由一个精细胞和两个位于中央细胞的极核双受精后发育形成,是三倍体组织。植物胚乳的发育过程可分为核型胚乳、细胞型胚乳和沼生目型胚乳三种类型。The endosperm of angiosperms develops after double fertilization with one sperm cell and two polar nuclei located in the central cell, and is a triploid tissue. The developmental process of plant endosperm can be divided into three types: nuclear endosperm, cellular endosperm, and swamp endosperm.

禾本科植物水稻作为世界上最主要的粮食作物之一,拥有巨大的市场和需求。人们所消费的大米是水稻的胚乳部分,水稻胚乳占籽粒的70~80%。同时水稻胚乳在水稻胚的形成和种子萌发过程中起重要作用。探明胚乳遗传发育机制,揭示水稻胚乳发育与水稻产量品质的关系,对于提高水稻产量和品质具有重要的意义。Poaceae rice, as one of the most important food crops in the world, has a huge market and demand. Rice consumed by people is the endosperm part of rice, which accounts for 70-80% of the grain. Meanwhile, rice endosperm plays an important role in rice embryo formation and seed germination. Proving the genetic development mechanism of endosperm and revealing the relationship between rice endosperm development and rice yield and quality is of great significance for improving rice yield and quality.

水稻的胚乳发育过程属于核型胚乳类型。即在胚乳发育早期,只进行细胞核分裂不进行细胞质分裂,不形成细胞壁。当发育到一定程度时才进行细胞质分裂和细胞壁形成。The endosperm development process of rice belongs to the nuclear endosperm type. That is, in the early stage of endosperm development, only nuclear division is carried out without cytoplasmic division, and no cell wall is formed. Cytoplasmic division and cell wall formation occur only when development reaches a certain level.

水稻的胚乳的发育过程涉及有丝分裂,细胞化,细胞分化,贮藏物质积累,和程序化死亡过程,一般在受精后21~22天内完成整个发育。0~2DAP(授粉后天数,Days AfterPollination)时期主要是核分裂但是胞质不分裂,3~5DAP主要进行细胞化,6~21DAP主要进行胚乳细胞分化和贮藏物质的积累。8DAP开始细胞程序性死亡逐渐从胚乳中心蔓延到整个胚乳,到了21DAP的时候,只剩下糊粉层细胞具有活性。22~30DAP,水稻颖果的鲜重和干重不再增加。淀粉胚乳中随着单个淀粉粒边缘模糊形成了复合淀粉粒。在整个籽粒水平上,淀粉和贮藏的结晶导致了淀粉胚乳在成熟过程结束时形成半透明的淀粉胚乳。The development of rice endosperm involves mitosis, cellularization, cell differentiation, accumulation of storage substances, and programmed death, and the entire development is generally completed within 21 to 22 days after fertilization. The period of 0-2 DAP (Days After Pollination) is mainly for nuclear division but no cytokinesis, 3-5 DAP is mainly for cellularization, and 6-21 DAP is mainly for endosperm cell differentiation and accumulation of storage substances. At 8DAP, programmed cell death gradually spread from the center of the endosperm to the entire endosperm, and at 21DAP, only the aleurone cells remained active. From 22 to 30 DAP, the fresh weight and dry weight of rice caryopsis no longer increased. In the starch endosperm, complex starch granules were formed along with the blurring of the edges of individual starch granules. At the whole grain level, crystallization of starch and storage results in the formation of a translucent starchy endosperm at the end of the maturation process.

水稻胚乳完全成熟后,经过脱水所剩的干物质中,淀粉占80~90%,蛋白质占7~9%,脂质占0.3~0.5%,还含有钾、镁、钙、锌等无机物。After the rice endosperm is fully mature, the remaining dry matter after dehydration is 80-90% starch, 7-9% protein, 0.3-0.5% lipid, and also contains potassium, magnesium, calcium, zinc and other inorganic substances.

淀粉有两种类型——直链淀粉和支链淀粉。直链淀粉以α(1-4)糖苷键相连,每个分子中有200个左右葡萄糖;支链淀粉除α(1-4)糖苷键外还有以α(1-6)糖苷键链接的分支结构;经常以碘液染色区分支链和直链淀粉,直链淀粉遇碘呈蓝色,支链淀粉则为红色。一般品种的水稻胚乳中的淀粉由20~30%的直链淀粉和70~80%的支链淀粉组成。There are two types of starch - amylose and amylopectin. Amylose is linked by α(1-4) glycosidic bonds, and there are about 200 glucoses in each molecule; in addition to α(1-4) glycosidic bonds, amylopectin is also linked by α(1-6) glycosidic bonds. Branched structure; branched chains and amylose are often stained with iodine solution, amylose is blue in the presence of iodine, and amylopectin is red. The starch in the endosperm of general varieties of rice consists of 20-30% amylose and 70-80% amylopectin.

水稻中,淀粉主要是由四类酶协同作用合成:腺苷二磷酸葡萄糖焦磷酸化酶(ADP-glucose pyrophosphorylase,AGPase),淀粉合成酶(Starch synthases,SS),颗粒结合淀粉合成酶(granule bound SS,GBSS),淀粉分支酶(Starch branching enzymes,SBE),淀粉去分支酶(Starch debranching enzymes,DBE)。In rice, starch is mainly synthesized by four types of enzymes: adenosine diphosphate glucose pyrophosphorylase (ADP-glucose pyrophosphorylase, AGPase), starch synthase (Starch synthases, SS), granule bound starch synthase (granule bound starch synthase) SS, GBSS), Starch branching enzymes (SBE), Starch debranching enzymes (DBE).

胚乳中,细胞质基质中的AGPase催化glucose-1-phosphate和ATP形成ADP-glucose,释放PPi;ADP-glucose是淀粉合成的原料,这是淀粉合成的第一个关键步骤反应。淀粉合成酶SS催化ADP-glucose的葡萄糖基转移到之前存在的以α(1-4)糖苷键连接的葡聚糖引物的非还原端,形成直链淀粉和支链淀粉。淀粉分支酶SBE主要作用是裂解α-(1-4)糖苷键,将释放的还原端转移到C6羟基端生成α-(1-6)糖苷键,形成支链淀粉分子的分支结构。淀粉去分支酶DBE主要用于水解支链淀粉中不正常分支的α-(1-6)糖苷键,用于调整支链淀粉的分支,维持支链淀粉的结晶度。除此之外,歧化酶(disproportionating enzyme,DPE)和淀粉磷酸化酶(phosphorylase,PHO)在淀粉多聚体的起始和延长中起着重要作用。In the endosperm, AGPase in the cytoplasmic matrix catalyzes the formation of ADP-glucose from glucose-1-phosphate and ATP, releasing PPi; ADP-glucose is the raw material for starch synthesis, which is the first key step in starch synthesis. Starch synthase SS catalyzes the transfer of the glucosyl group of ADP-glucose to the non-reducing end of the preexisting α(1-4) glycosidic linkage-linked glucan primer to form amylose and amylopectin. The main function of starch branching enzyme SBE is to cleave α-(1-4) glycosidic bond, transfer the released reducing end to C6 hydroxyl end to generate α-(1-6) glycosidic bond, and form branched structure of amylopectin molecule. Starch debranching enzyme DBE is mainly used to hydrolyze abnormally branched α-(1-6) glycosidic bonds in amylopectin, to adjust the branching of amylopectin and maintain the crystallinity of amylopectin. In addition, disproportionating enzyme (DPE) and starch phosphorylase (phosphorylase, PHO) play important roles in the initiation and elongation of starch multimers.

这几类酶协同作用合成水稻中的淀粉,水解不正常的淀粉结构,使淀粉在淀粉体中形成淀粉颗粒,最终形成结构紧密多面体的淀粉晶体结构,这些酶中的任意一个酶发生变化,或者调控这些酶的相关基因发生变化,都会对淀粉的合成与积累产生影响,影响水稻籽粒品质These types of enzymes synergize to synthesize starch in rice, hydrolyze abnormal starch structure, form starch granules in starch body, and finally form starch crystal structure with compact polyhedron structure, any one of these enzymes changes, or Changes in the related genes that regulate these enzymes will affect the synthesis and accumulation of starch and affect the quality of rice grains.

例如:编码AGPase亚基的基因发生改变会导致水稻胚乳中的淀粉颗粒不正常,淀粉含量下降。GBSSI基因的改变则会影响淀粉的合成,产生waxy胚乳。OsSSIIIa的突变会导致白心粉质胚乳,影响胚乳中淀粉的理化性质。此外淀粉合成酶和淀粉分支酶的不同亚家族的基因发生突变如:OsSSI,OsBEI,OsBEIIb都产生了粉质胚乳性状。For example, changes in the gene encoding the AGPase subunit lead to abnormal starch granules in the rice endosperm and a decrease in starch content. Alterations in the GBSSI gene affect starch synthesis, producing waxy endosperm. Mutation of OsSSIIIa results in a white-hearted endosperm, which affects the physicochemical properties of starch in the endosperm. In addition, mutations in different subfamilies of starch synthase and starch branching enzymes, such as OsSSI, OsBEI, and OsBEIIb, all resulted in the silty endosperm trait.

除了涉及淀粉合成的酶,涉及其他代谢途径基因发生改变也会间接影响淀粉的合成,导致不正常的胚乳。OsPK2,OsPKα1都编码一个质体丙酮酸激酶,OsPPDK编码一个丙酮酸磷酸二激酶,二者都属于糖酵解途径,但是影响淀粉颗粒的形成和籽粒灌浆。Du1编码一个mRNA前体加工蛋白家族成员,主要在水稻穗部表达,通过特异的影响Wxb基因的沉默来调控调控淀粉的合成。Wx基因是水稻中控制直链淀粉含量的一个主效QTL位点。PFP1编码一个焦磷酸果糖6-磷酸1-磷酸转移酶的β亚基,在糖酵解途径中焦磷酸果糖6-磷酸1-磷酸转移酶将果糖6-磷酸和焦磷酸转换成果糖1,6二磷酸,PFP1以异四聚体的形式,可逆的调控胚乳的代谢流,调控淀粉合成和籽粒发育。FLO15编码一个质体乙二醛酶(OsGLYI),主要参与甲基乙二醛解毒过程,OsGLYI的改变会导致淀粉合成相关基因表达改变,产生白心粉质胚乳。FLO11编码一个质体热激蛋白(OsHsp70cp-2)其突变会导致水稻籽粒白心粉质和外周粉质;该基因在发育中的胚乳上大量表达,OsHsp70cp-2与Tic复合体作用调控蛋白进淀粉体的运输。FLO16编码一个NAD依赖的胞质苹果酸脱氢酶,其主要功能是控制水稻胚乳中的氧化还原稳态,而氧化还原稳态对淀粉颗粒的形成和后续的淀粉合成都十分重要。过表达FLO16水稻籽粒的千粒重显著的增加。In addition to enzymes involved in starch synthesis, changes in genes involved in other metabolic pathways also indirectly affect starch synthesis, resulting in abnormal endosperm. Both OsPK2 and OsPKα1 encode a plastid pyruvate kinase, and OsPPDK encodes a pyruvate phospho-dikinase, both of which belong to the glycolytic pathway, but affect the formation of starch granules and grain filling. Du1 encodes a member of the pre-mRNA processing protein family, which is mainly expressed in rice panicle and regulates starch synthesis by specifically affecting the silencing of Wxb gene. Wx gene is a major QTL locus controlling amylose content in rice. PFP1 encodes a beta subunit of fructose pyrophosphate 6-phosphate 1-phosphotransferase, which converts fructose 6-phosphate and pyrophosphate to fructose 1,6 in the glycolytic pathway Diphosphate, PFP1, in the form of a heterotetramer, reversibly regulates the metabolic flux of endosperm, and regulates starch synthesis and grain development. FLO15 encodes a plastid glyoxalase (OsGLYI), which is mainly involved in the detoxification process of methylglyoxal. Changes in OsGLYI can lead to changes in the expression of genes related to starch synthesis, resulting in the production of fenugreek endosperm. FLO11 encodes a plastid heat shock protein (OsHsp70cp-2) whose mutation results in white heart and peripheral farin of rice grains; this gene is abundantly expressed in the developing endosperm, and OsHsp70cp-2 interacts with the Tic complex to regulate the protein Transport of amyloplasts. FLO16 encodes an NAD-dependent cytosolic malate dehydrogenase whose primary function is to control redox homeostasis in rice endosperm, which is important for both starch granule formation and subsequent starch synthesis. Thousand kernel weight was significantly increased in rice overexpressing FLO16.

有一些间接影响淀粉合成的基因编码的蛋白则具有特定结构。核定位的基因FLO2,具有TPR结合位点结构,通过与具有basic helix-loop-helix(bHLH)结构的转录因子结合,正向调控淀粉合成基因的表达。FLO6是一个具有carbohydrate-binding domain(CBM)的蛋白,通过与淀粉异构酶(ISA1)相互作用调控淀粉的合成与淀粉颗粒的形成。OsNPPR1是一个核定位的三角状五肽重复结构蛋白(pentatricopeptie repeat protein,PPR),编码的蛋白与CUCACmotif结合,调控特定内含子的剪接,影响胚乳中线粒体的发育,继而影响胚乳的发育。FLO10同样编码一个三角状五肽重复结构蛋白(pentatricopeptierepeat protein,PPR),该蛋白由核基因编码定位于线粒体上,主要参与线粒体nad1第一个内含子的反式沉默,由于nad1编码线粒体中NADH电子传递链的复合体I的核心成分,FLO10的变化,影响了nad1的正确剪接,影响胚乳的发育,形成粉质胚乳。此外还有OsNDUFA9,OsAlAT1,OsBT1等基因通过调控淀粉合成酶间接调控胚乳中淀粉合成。Some genes that indirectly affect starch synthesis encode proteins with specific structures. The nuclear-localized gene FLO2 has a TPR binding site structure and positively regulates the expression of starch synthesis genes by binding to a transcription factor with a basic helix-loop-helix (bHLH) structure. FLO6 is a protein with a carbohydrate-binding domain (CBM) that regulates starch synthesis and starch granule formation by interacting with starch isomerase (ISA1). OsNPPR1 is a nuclear-localized pentatricopeptie repeat protein (PPR), which encodes a protein that binds to CUCACmotif, regulates the splicing of specific introns, and affects mitochondrial development in endosperm, which in turn affects endosperm development. FLO10 also encodes a triangular-shaped pentapeptide repeat protein (pentatricopeptierepeat protein, PPR), which is encoded by nuclear genes and localized to mitochondria, and is mainly involved in the trans-silencing of the first intron of mitochondrial nad1, because nad1 encodes NADH in mitochondria Changes in FLO10, a core component of complex I of the electron transport chain, affect the correct splicing of nad1 and affect endosperm development to form a silty endosperm. In addition, OsNDUFA9, OsAlAT1, OsBT1 and other genes indirectly regulate starch synthesis in endosperm by regulating starch synthase.

水稻胚乳中的蛋白质主要由醇溶蛋白,球蛋白,谷蛋白,白蛋白组成,其中谷蛋白约占贮藏蛋白的80%左右。主要储存在胚乳中的蛋白体I(protein body I,PBI)和蛋白体II(protein body II,PBII)。蛋白合成后谷蛋白和球蛋白以及白蛋白通过液泡分选途径储存在液泡中,最后发育成PBII,PBII没有固定形状;醇溶蛋白通过内质网驻留途径储存在内质网中,最后发育成PBI,PBI为球形囊泡状。The protein in rice endosperm is mainly composed of gliadin, globulin, glutenin and albumin, among which glutenin accounts for about 80% of the storage protein. Protein body I (PBI) and protein body II (PBII) are mainly stored in the endosperm. After protein synthesis, gluten, globulin and albumin are stored in vacuoles through the vacuolar sorting pathway, and finally develop into PBII, which has no fixed shape; gliadin is stored in the endoplasmic reticulum through the endoplasmic reticulum residency pathway, and finally develops Into PBI, PBI is spherical vesicle.

现有的研究中对谷蛋白的运输调控已经有一些进展,谷蛋白前体在粗面内质网合成后通过致密囊泡介导的后高尔基体运输途径或者内质网衍生的前体积累腔转移到PBII。谷蛋白前体的不正常积累会导致水稻胚乳出现粉质胚乳影响稻米品质。例如:GOT1B编码一个一个高尔基体转运蛋白,作为一个COPII的一个组分,调控蛋白从内质网到高尔基体的运输。GPA3编码的蛋白作用类似于一个支架,招募鸟嘌呤核苷酸交换因子OsVPS9A。VPS9A继而激活小G蛋白OsRab5a。GPA3,OsVPS9A,OsRab5a在致密囊泡上组合形成一个复合体调控谷蛋白前体的液泡运输。PDIL1-1编码一个类二硫异构酶,定位于粗面内质网,调控内质网内的二硫键的形成。Glup3编码一个液泡加工蛋白,主要作用是在PBII中将谷蛋白前体加工成酸性和碱性亚基。OsNHX5编码一个Na+/H+反向转运蛋白,定位在高尔基体,反面网状结构,主要在前液泡腔内维持pH稳态,对由致密囊泡介导的谷蛋白运输具有非常重要的作用。There has been some progress in the regulation of gluten trafficking in existing studies, and gluten precursors are synthesized in the rough endoplasmic reticulum via a dense vesicle-mediated post-Golgi transport pathway or an endoplasmic reticulum-derived precursor accumulation lumen. Transfer to PBII. The abnormal accumulation of gluten precursors can lead to the appearance of powdery endosperm in rice endosperm and affect rice quality. For example: GOT1B encodes a Golgi transporter protein that, as a component of COPII, regulates the transport of proteins from the endoplasmic reticulum to the Golgi apparatus. The protein encoded by GPA3 acts like a scaffold, recruiting the guanine nucleotide exchange factor OsVPS9A. VPS9A in turn activates the small G protein OsRab5a. GPA3, OsVPS9A, and OsRab5a combine to form a complex on dense vesicles to regulate vacuolar trafficking of gluten precursors. PDIL1-1 encodes a disulfide isomerase-like enzyme that localizes to the rough endoplasmic reticulum and regulates the formation of disulfide bonds within the endoplasmic reticulum. Gup3 encodes a vacuolar processing protein that primarily functions to process gluten precursors into acidic and basic subunits in PBII. OsNHX5 encodes a Na+/H+ antiporter, localized in the Golgi apparatus, trans-reticular, and maintains pH homeostasis mainly in the prevacuolar lumen, and plays a very important role in gluten transport mediated by dense vesicles.

成熟的水稻胚乳中,脂质只占胚乳极少部分。但是脂质的变化却会对胚乳额外观和品质造成影响。例如:FSE1(floury shrunken endosperm1)编码一个磷脂酶样的蛋白,定位于细胞质基质和胞内膜,当FSE1突变时水稻胚乳中淀粉粒不正常发育,总淀粉和支链淀粉含量下降,脂质和总蛋白含量上升。研究表明FSE1主要控制水稻胚乳中半乳糖脂的合成,同时也是脂质代谢和淀粉合成之间的联系。OsLTPL36编码一个脂质转运蛋白,在发育的种皮和糊粉层中特异表达。下调OsLTPL36的表达量会导致水稻结实率降低,千粒重下降。OsLTPL36表达抑制以后不仅会导致脂肪含量降低,还会导致水稻胚的发育迟缓。In mature rice endosperm, lipids only account for a very small part of the endosperm. However, lipid changes can affect the appearance and quality of endosperm. For example: FSE1 (floury shrunken endosperm1) encodes a phospholipase-like protein, which is localized in the cytoplasmic matrix and intracellular membrane. When FSE1 is mutated, starch granules in rice endosperm develop abnormally, the content of total starch and amylopectin decreases, lipid and The total protein content increased. Studies have shown that FSE1 mainly controls the synthesis of galactolipids in rice endosperm, and is also the link between lipid metabolism and starch synthesis. OsLTPL36 encodes a lipid transporter that is specifically expressed in the developing seed coat and aleurone. Down-regulation of OsLTPL36 expression resulted in decreased rice seed setting rate and 1000-grain weight. Inhibition of OsLTPL36 expression not only leads to a decrease in fat content, but also leads to delayed development of rice embryos.

在胚乳的细胞分裂和分化以及物质积累过程中,细胞骨架发挥了重要作用。细胞骨架中的微观及相关的微观结合蛋白结构和功能发生改变都会对水稻的粒型和胚乳品质造成影响。例如水稻MT定位蛋白OsIQ67-DOMAIN14(OsIQD14),在水稻种子壳细胞中高度表达。当OsIQD14缺乏时,种子短而宽,总产量增加,过度表达却导致种子窄而长,OsIQD14通过影响MT动力学来调控介导的MT重排序,从而调控水稻籽粒的局部细胞形态,改变水稻产量性状。The cytoskeleton plays an important role in the cell division and differentiation of the endosperm and the accumulation of substances. Changes in the structure and function of microscopic and related microscopic binding proteins in the cytoskeleton will affect the grain shape and endosperm quality of rice. For example, the rice MT localization protein OsIQ67-DOMAIN14 (OsIQD14) is highly expressed in rice seed husk cells. When OsIQD14 is deficient, seeds are short and wide, resulting in increased overall yield, whereas overexpression results in narrow and long seeds. OsIQD14 regulates mediated MT reordering by affecting MT dynamics, thereby regulating local cell morphology in rice grains and altering rice yield traits.

在玉米中Vks1编码ZmKIN11,属于kinesin-14亚家族,主要在胚乳发育早期表达。VKS1动态定位于细胞核和微管,在细胞的迁移过程中起关键作用在有丝分裂早期的有丝分裂和胞质分裂中的游离核。缺少VKS1不会致死,但会导致纺锤体组装、姐妹染色单体分离和隔膜形成等畸形导致细胞增殖减少,从而导致不同的种子大小。In maize, Vks1 encodes ZmKIN11, which belongs to the kinesin-14 subfamily and is mainly expressed in the early endosperm development. VKS1 is dynamically localized to the nucleus and microtubules and plays a key role in the migration of cells to free nuclei during early mitosis and cytokinesis. Absence of VKS1 is not lethal, but causes malformations such as spindle assembly, sister chromatid segregation, and septum formation resulting in decreased cell proliferation and thus different seed sizes.

尽管本领域对于植物的胚乳发育已有较多的研究和关注,但鉴于水稻等植物为重要粮食作物,本领域亟待找到很多的影响植物胚乳发育的基因,以利于植物的进一步育种改良。Although there has been much research and attention on the endosperm development of plants in the art, since rice and other plants are important food crops, it is urgent in the art to find many genes that affect the endosperm development of plants, so as to facilitate further plant breeding and improvement.

发明内容SUMMARY OF THE INVENTION

本发明的目的在于提供一种控制胚乳发育及品质的新型基因FLO18。The purpose of the present invention is to provide a novel gene FLO18 that controls the development and quality of endosperm.

在本发明的第一方面,提供一种FLO18蛋白或其调节分子的用途,用于调节禾本科植物的产量性状、胚乳性状或淀粉发育性状。In the first aspect of the present invention, there is provided the use of a FLO18 protein or a regulatory molecule thereof for regulating the yield traits, endosperm traits or starch development traits of Poaceae.

在一个优选例中,所述的FLO18蛋白包括其同源物。In a preferred embodiment, the FLO18 protein includes its homologue.

在另一优选例中,所述调节分子为上调分子,所述FLO18蛋白或其上调分子的用途包括选自:(i)提高产量;较佳地包括增加籽粒的粒宽或粒厚,或促进籽粒灌浆;(ii)提高胚乳品质;较佳地包括促进胚乳发育时细胞均等分裂,或促进形成角质胚乳;(iii)促进淀粉发育;较佳地包括增加淀粉颗粒直径。In another preferred embodiment, the regulatory molecule is an up-regulated molecule, and the use of the FLO18 protein or its up-regulated molecule includes selected from: (i) increasing yield; preferably including increasing the grain width or grain thickness of grains, or promoting Grain filling; (ii) improving endosperm quality; preferably including promoting equal division of cells during endosperm development, or promoting the formation of horny endosperm; (iii) promoting starch development; preferably including increasing starch granule diameter.

在另一优选例中,所述的上调分子包括:过表达所述FLO18蛋白的表达盒或表达构建物(包括表达载体);或,提高所述FLO18蛋白翻译效率的表达盒或表达构建物;或,与所述FLO18蛋白相互作用、从而提高其表达或活性的上调分子。In another preferred embodiment, the up-regulated molecule comprises: an expression cassette or an expression construct (including an expression vector) that overexpresses the FLO18 protein; or, an expression cassette or an expression construct that improves the translation efficiency of the FLO18 protein; Or, an up-regulated molecule that interacts with the FLO18 protein to increase its expression or activity.

在另一优选例中,所述的调节分子为下调分子,其用途包括选自:(i)降低产量;较佳地包括降低籽粒的粒宽或粒厚,或减少籽粒灌浆;(ii)降低胚乳品质;较佳地包括抑制胚乳发育时细胞均等分裂,或促进形成粉质胚乳;(iii)干扰淀粉发育;较佳地包括降低淀粉颗粒直径。In another preferred embodiment, the regulatory molecule is a down-regulating molecule, and its uses include: (i) reducing yield; preferably reducing grain width or grain thickness, or reducing grain filling; (ii) reducing Endosperm quality; preferably includes inhibiting the equal division of cells during endosperm development, or promotes the formation of powdery endosperm; (iii) interferes with starch development; preferably includes reducing the diameter of starch granules.

在另一优选例中,所述下调分子包括:敲除或沉默FLO18蛋白的编码基因的试剂,抑制FLO18蛋白活性的试剂;较佳地,所述下调分子包括:针对所述FLO18蛋白的编码基因的基因编辑试剂、同源重组试剂或定点突变试剂,所述试剂将FLO18蛋白进行功能丧失性突变;或,特异性干扰FLO18蛋白的编码基因表达的干扰分子。In another preferred embodiment, the down-regulated molecule includes: an agent for knocking out or silencing the gene encoding FLO18 protein, and an agent for inhibiting the activity of FLO18 protein; preferably, the down-regulated molecule includes: a gene encoding the FLO18 protein A gene editing reagent, a homologous recombination reagent or a site-directed mutagenesis reagent, the reagent performs loss-of-function mutation on the FLO18 protein; or, an interfering molecule that specifically interferes with the expression of the gene encoding the FLO18 protein.

在本发明的另一方面,提供一种调控禾本科植物的产量性状、胚乳性状或淀粉发育性状的方法,包括:在植物中调控FLO18蛋白的表达或活性。In another aspect of the present invention, there is provided a method for regulating yield traits, endosperm traits or starch development traits of grasses, comprising: regulating the expression or activity of FLO18 protein in plants.

在一个优选例中,所述调控为提高产量、提高胚乳品质或促进淀粉发育;所述方法包括:在植物中上调FLO18蛋白的表达或活性。In a preferred example, the regulation is to increase yield, improve endosperm quality or promote starch development; the method includes: up-regulating the expression or activity of FLO18 protein in plants.

在另一优选例中,所述调控为降低产量、降低胚乳品质或干扰淀粉发育;所述方法包括:在植物中下调FLO18蛋白的表达或活性。In another preferred embodiment, the regulation is to reduce yield, reduce endosperm quality or interfere with starch development; the method comprises: down-regulating the expression or activity of FLO18 protein in plants.

在另一优选例中,所述在植物中上调FLO18蛋白的表达或活性包括:在植物中过表达FLO18蛋白;或,以与FLO18蛋白相互作用的上调分子进行调控,从而提高FLO18蛋白的表达或活性。In another preferred embodiment, the up-regulating expression or activity of FLO18 protein in plants comprises: overexpressing FLO18 protein in plants; or, regulating with an up-regulated molecule that interacts with FLO18 protein, thereby increasing the expression of FLO18 protein or active.

在另一优选例中,所述在植物中下调FLO18蛋白的表达或活性包括:在植物中敲除或沉默FLO18蛋白的编码基因,或抑制FLO18蛋白的活性;较佳地包括:以CRISPR系统进行基因编辑从而敲除FLO18蛋白的编码基因;以同源重组的方法敲除FLO18蛋白的编码基因;以特异性干扰FLO18蛋白编码基因表达的干扰分子来沉默;或将FLO18蛋白进行功能丧失性突变。In another preferred embodiment, the down-regulation of the expression or activity of FLO18 protein in plants includes: knocking out or silencing the gene encoding FLO18 protein in plants, or inhibiting the activity of FLO18 protein; preferably, it includes: using a CRISPR system to perform Gene editing to knock out the gene encoding the FLO18 protein; knock out the gene encoding the FLO18 protein by homologous recombination; silence with an interfering molecule that specifically interferes with the expression of the gene encoding the FLO18 protein; or mutate the FLO18 protein with loss of function.

在另一优选例中,所述禾本科植物为表达FLO18蛋白或其同源物的植物;较佳地,所述禾本科植物包括选自(但不限于):水稻,大麦、小麦、燕麦、黑麦、玉米、高粱、二穗短柄草。In another preferred embodiment, the gramineous plant is a plant expressing FLO18 protein or its homologue; preferably, the gramineous plant is selected from (but not limited to): rice, barley, wheat, oat, Rye, corn, sorghum, Brachypodium.

在另一优选例中,所述的禾本科植物是FLO18蛋白相对低表达(如显著低于该种植物的该基因的表达水平)或不表达的植物,其通过提高FLO18蛋白的表达或活性,提高产量、增加籽粒的粒宽或粒厚,促进灌浆、促进淀粉发育、增加淀粉颗粒直径、促进形成角质胚乳,或促进胚乳发育时细胞均等分裂。In another preferred embodiment, the grasses are plants with relatively low expression of FLO18 protein (such as significantly lower than the expression level of the gene in this plant) or no expression, which can improve the expression or activity of FLO18 protein by increasing the expression or activity of FLO18 protein. Increase yield, increase grain width or grain thickness, promote grain filling, promote starch development, increase starch granule diameter, promote the formation of horny endosperm, or promote equal cell division during endosperm development.

在另一优选例中,所述的FLO18的多肽的氨基酸序列选自下组:(i)具有SEQ IDNO:2所示氨基酸序列的多肽;(ii)将如SEQ ID NO:2所示的氨基酸序列经过一个或几个(如1-20个,1-10个,1-5个,1-3个)氨基酸残基的取代、缺失或添加而形成的,具有(i)多肽功能的、由(i)衍生的多肽;(iii)氨基酸序列与SEQ ID NO:2所示氨基酸序列的同源性≥85%(较佳地≥90%,≥95%、≥98%或≥99%),具有所述调控性状功能的多肽;(iv)SEQ IDNO:2所示氨基酸序列的多肽的活性片段;或(v)在SEQ ID NO:2所示氨基酸序列的多肽的N或C末端添加标签序列或酶切位点序列,或在其N末端添加信号肽序列后形成的多肽。In another preferred embodiment, the amino acid sequence of the polypeptide of FLO18 is selected from the following group: (i) a polypeptide having the amino acid sequence shown in SEQ ID NO:2; (ii) the amino acid sequence shown in SEQ ID NO:2 The sequence is formed by the substitution, deletion or addition of one or several (such as 1-20, 1-10, 1-5, 1-3) amino acid residues, and has (i) polypeptide function and is composed of (i) a derived polypeptide; (iii) the homology of the amino acid sequence to the amino acid sequence shown in SEQ ID NO: 2 is ≥85% (preferably ≥90%, ≥95%, ≥98% or ≥99%), A polypeptide having the function of regulating properties; (iv) an active fragment of the polypeptide having the amino acid sequence shown in SEQ ID NO: 2; or (v) adding a tag sequence to the N or C terminus of the polypeptide having the amino acid sequence shown in SEQ ID NO: 2 Or an enzyme cleavage site sequence, or a polypeptide formed by adding a signal peptide sequence to its N-terminus.

在本发明的另一方面,提供FLO18蛋白或其编码基因的用途,用作鉴定禾本科植物性状的分子标记物;所述性状包括:产量性状、胚乳性状或淀粉发育性状。In another aspect of the present invention, the use of FLO18 protein or its encoding gene is provided as a molecular marker for identifying traits of grasses; the traits include: yield traits, endosperm traits or starch development traits.

在本发明的另一方面,提供一种定向选择或鉴定产量高、胚乳品质高或淀粉发育好的禾本科植物的方法,包括:鉴定测试植物体内FLO18蛋白的表达或活性,若该测试植物中FLO18蛋白的表达或活性高于或等于该类植物(对照植物)中FLO18蛋白的表达或活性的平均值,则其为产量高、胚乳品质高或淀粉发育好(如籽粒饱满、灌浆好、淀粉发育好、淀粉颗粒直径大或能形成角质胚乳)的禾本科植物。In another aspect of the present invention, there is provided a method for directional selection or identification of grasses with high yield, high endosperm quality or good starch development, comprising: identifying the expression or activity of FLO18 protein in the test plant, if the test plant is The expression or activity of FLO18 protein is higher than or equal to the average value of FLO18 protein expression or activity in this type of plant (control plant), then it is high yield, high endosperm quality or good starch development (such as full grain, good grain filling, starchy Well-developed grasses with large diameter of starch granules or capable of forming horny endosperm).

在一个优选例中,所述高表达或高活性,是指与同类或同种植物的表达或活性的平均值相比,表达或活性具有统计学意义的提高,如提高10%、20%、40%、60%、80%、90%或更高。In a preferred example, the high expression or high activity refers to a statistically significant increase in the expression or activity compared with the average value of the expression or activity of the same or the same plant, such as an increase of 10%, 20%, 40%, 60%, 80%, 90% or higher.

在另一优选例中,所述低表达或低活性,是指与同类或同种植物的表达或活性的平均值相比,表达或活性具有统计学意义的降低,如降低10%、20%、40%、60%、80%、90%或更低。In another preferred embodiment, the low expression or low activity refers to a statistically significant decrease in expression or activity compared with the average value of the expression or activity of the same or the same plant, such as a decrease of 10%, 20% , 40%, 60%, 80%, 90% or less.

在另一优选例中,所述“量高”/“品质高(或好)”是指与同类或同种植物的量相比,有统计学意义的高,如高10%、20%、40%、60%、80%、90%或更高。In another preferred example, the "high amount"/"high quality (or good)" refers to a statistically significant higher amount compared with the amount of the same or the same plant, such as 10%, 20%, 40%, 60%, 80%, 90% or higher.

在另一优选例中,所述量低是指与同类或同种植物的量相比,有统计学意义的低,如低10%、20%、40%、60%、80%、90%或更低。In another preferred embodiment, the low amount refers to a statistically significant lower amount compared with the amount of the same or the same plant, such as 10%, 20%, 40%, 60%, 80%, 90% lower or lower.

在本发明的另一方面,提供一种筛选促进禾本科植物性状改良的物质(潜在物质)的方法,所述性状改良包括:产量高、胚乳品质高或淀粉发育好;所述方法包括:(1)将候选物质加入到表达FLO18蛋白的体系中;(2)检测所述体系,观测其中FLO18蛋白的表达或活性,若其表达或活性提高(显著提高,如提高10%、20%、40%、60%、80%、90%或更高),则表明该候选物质为促进禾本科植物性状改良的物质。In another aspect of the present invention, there is provided a method for screening substances (potential substances) that promote the improvement of grass plant traits, the trait improvement comprising: high yield, high endosperm quality or good starch development; the method includes: ( 1) Add the candidate substance to the system expressing the FLO18 protein; (2) Detect the system, and observe the expression or activity of the FLO18 protein. %, 60%, 80%, 90% or higher), it indicates that the candidate substance is a substance that promotes the improvement of grass plant traits.

在一个优选例中,所述方法还包括:设置不添加所述候选物质的对照组,从而明确分辨测试组中所述FLO18蛋白表达或活性与对照组的差异。In a preferred example, the method further includes: setting a control group without adding the candidate substance, so as to clearly distinguish the difference between the expression or activity of the FLO18 protein in the test group and the control group.

在另一优选例中,所述的候选物质包括(但不限于):针对所述FLO18蛋白或其编码基因或其上游或下游蛋白或基因设计的调控分子(如上调剂、小分子化合物基因编辑构建物等。In another preferred example, the candidate substances include (but are not limited to): regulatory molecules (such as up-regulators, small-molecule compounds, gene editing constructs) designed for the FLO18 protein or its encoding gene or its upstream or downstream proteins or genes. things etc.

在本发明的另一方面,提供一种禾本科植物细胞、组织或器官,其中含有外源的FLO18蛋白的上调分子,所述上调分子包括选自:过表达所述FLO18蛋白的表达盒或表达构建物(包括表达载体);或提高所述FLO18蛋白翻译效率的表达盒或表达构建物;或与所述FLO18蛋白相互作用、从而提高其表达或活性的上调分子。In another aspect of the present invention, there is provided a Gramineae cell, tissue or organ, which contains an exogenous FLO18 protein up-regulated molecule, wherein the up-regulated molecule includes an expression cassette or an expression cassette that overexpresses the FLO18 protein. constructs (including expression vectors); or expression cassettes or expression constructs that increase the translation efficiency of the FLO18 protein; or up-regulated molecules that interact with the FLO18 protein to increase its expression or activity.

在一个优选例中,所述的植物细胞、组织或器官不具有繁殖能力。In a preferred example, the plant cells, tissues or organs do not have the ability to reproduce.

本发明的其它方面由于本文的公开内容,对本领域的技术人员而言是显而易见的。Other aspects of the invention will be apparent to those skilled in the art from the disclosure herein.

附图说明Description of drawings

图1a、突变体材料XA80与9311杂交,构建定位群体的流程示意图。Figure 1a, a schematic diagram of the process of hybridizing mutant material XA80 with 9311 to construct a targeting population.

图1b、突变体与野生型相比的突变位点的确定。Figure 1b. Determination of mutation sites in mutants compared to wild type.

图1c、Neightbor-joining法构建的系统进化树。Fig. 1c, Phylogenetic tree constructed by Neightbor-joining method.

图2a、突变体与野生型植株的表型考察,左边为野生型,右边为突变体bar=20cm。Figure 2a. Phenotypic investigation of mutant and wild-type plants, the left side is the wild type, and the right side is the mutant bar=20cm.

图2b、获取突变体与野生型植株的籽粒,脱去颖壳后进行外观比较(左图)以及在体式镜下观察(右图)。bar=1cm。Figure 2b. The grains of the mutant and wild-type plants were obtained, and the appearance was compared after the glumes were removed (left picture) and observed under a stereomicroscope (right picture). bar=1 cm.

图2c、突变体与野生型植株的籽粒的千粒重(左图)和灌浆速率(右图)。Figure 2c. Thousand kernel weight (left panel) and grain filling rate (right panel) of mutant and wild-type plants.

图2d、突变体与野生型植株的籽粒的粒宽比较(上图)、粒厚比较(下图)。Figure 2d. Comparison of grain width (upper panel) and kernel thickness (lower panel) of mutant and wild-type plants.

图2e、突变体(下图)与野生型(上图)植株的籽粒的整粒、横断面以及淀粉粒状态的扫描电镜照片。Fig. 2e, SEM images of whole grain, cross-section and starch granule state of mutant (lower panel) and wild-type (upper panel) plants.

图2f~g、光学显微镜(f)和透射电镜(g)下胚乳的细胞结构照片。Figures 2f~g, photos of cellular structure of endosperm under optical microscope (f) and transmission electron microscope (g).

图3a、授粉后6天的胚乳中,突变体与野生型植株的维管束周围细胞中细胞核情况。Figure 3a. Nuclei in the perivascular cells of mutant and wild-type plants in endosperm 6 days after pollination.

图3b、Zeiss LSM880激光共聚焦显微镜下观察FLO18在细胞中的表达位置。Figure 3b. The expression position of FLO18 in cells was observed under Zeiss LSM880 laser confocal microscope.

图3c、FLO18与TUB6的共转实验。Figure 3c, Co-transfection experiment of FLO18 and TUB6.

具体实施方式Detailed ways

本发明人经过广泛的研究,克隆获得了一种新型的与调控植物产量性状或胚乳品质相关的基因FLO18,其为产量或胚乳品质的正调控基因,其功能缺失则会导致胚乳产生粉质胚乳表型,产量和品质下降,但是对于植物其他性状没有影响。本发明为植物的性状改良提供了新靶点。After extensive research, the inventors cloned and obtained a novel gene FLO18, which is related to the regulation of plant yield traits or endosperm quality. Phenotype, yield and quality decreased, but no effect on other plant traits. The present invention provides a new target for the improvement of plant traits.

术语the term

如本文所用,所述的“植物”包括表达FLO18或包含FLO18及其所参与的信号通路的植物。根据本领域的知识,表达FLO18的植物,其内在存在如本发明所主张的作用机制,可以实现如本发明所主张的技术效果。在一些优选方式中,所述的植物为作物,较佳地为禾谷类作物,所述禾谷类作物为具有籽粒(穗粒)的作物。所述的“禾谷类作物”可以是禾本科植物。较佳地,所述的禾本科植物包括:水稻,大麦、小麦、燕麦、黑麦、玉米、高粱、二穗短柄草等。As used herein, "plant" includes plants expressing or comprising FLO18 and the signaling pathways in which it is involved. According to the knowledge in the art, plants expressing FLO18, which have the mechanism of action as claimed in the present invention, can achieve the technical effects as claimed in the present invention. In some preferred modes, the plant is a crop, preferably a cereal crop, and the cereal crop is a crop with grain (ear grain). The "grain crops" may be grasses. Preferably, the grasses include: rice, barley, wheat, oats, rye, corn, sorghum, Brachypodium and the like.

如本文所用,术语“提高”、“改良”或“增强”是相互可以交换的并且在应用含义上应当意指与本文中定义的对照植物相比较,至少2%、3%、4%、5%、6%、7%、8%、9%或10%、优选的至少15%或20%、更优选25%、30%更高的调节。As used herein, the terms "improve", "improvement" or "enhancement" are interchangeable with each other and shall in the applied sense mean at least 2%, 3%, 4%, 5%, as compared to a control plant as defined herein %, 6%, 7%, 8%, 9% or 10%, preferably at least 15% or 20%, more preferably 25%, 30% higher adjustment.

关于“对照植物”,选择合适的对照植物是实验设计的例行部分,可以包括对应的野生型植物或无目的基因的相应转基因植物。对照植物一般是相同的植物物种或甚至是与待评估植物相同或属于同一类的品种。对照植物也可以是因分离而丢失转基因植物的个体。如本文所用的对照植物不仅指完整植物,也指植物部分,包括种子和种子部分。With regard to "control plants", selection of appropriate control plants is a routine part of experimental design and can include corresponding wild-type plants or corresponding transgenic plants without the gene of interest. Control plants are generally the same plant species or even varieties of the same or the same class as the plants to be evaluated. Control plants can also be individuals that have lost the transgenic plant by segregation. Control plants as used herein refer not only to whole plants, but also to plant parts, including seeds and seed parts.

如本发明所用,所述的“籽粒”是指植物的果实或种子,在水稻、玉米、小麦、大麦等作物中也称为穗粒。As used in the present invention, the "grain" refers to the fruit or seed of a plant, and is also called ear grain in crops such as rice, corn, wheat, and barley.

FLO18基因及其所编码的蛋白FLO18 gene and its encoded protein

在本发明中,除非特别说明,所述FLO18蛋白包括了其同源物(同源蛋白)。所述FLO18为具有SEQ ID NO:2所示氨基酸序列的多肽(蛋白)。本发明还包括具有与FLO18蛋白相同功能的序列变异形式。In the present invention, unless otherwise specified, the FLO18 protein includes its homologue (homologous protein). The FLO18 is a polypeptide (protein) with the amino acid sequence shown in SEQ ID NO:2. The present invention also includes sequence variant forms that have the same function as the FLO18 protein.

所述的变异形式包括(但并不限于):若干个(通常为1-50个,较佳地1-30个,更佳地1-20个,最佳地1-10个,还更佳如1-8个、1-5个)氨基酸的缺失、插入和/或取代,以及在C末端和/或N末端添加或缺失一个或数个(通常为20个以内,较佳地为10个以内,更佳地为5个以内)氨基酸。任何与所述的FLO18蛋白同源性高(比如与SEQ ID NO:2所示的多肽序列的同源性为70%或更高;优选地同源性为80%或更高;更优选地同源性为90%或更高,如同源性95%,98%或99%)的、且具有所述FLO18蛋白相同功能的蛋白也包括在本发明内。The variant forms include (but are not limited to): several (usually 1-50, preferably 1-30, more preferably 1-20, most preferably 1-10, still better Deletion, insertion and/or substitution of amino acids such as 1-8, 1-5), and addition or deletion of one or several (usually within 20, preferably 10) C-terminal and/or N-terminal within, more preferably within 5) amino acids. Any high homology with the FLO18 protein (for example, the homology with the polypeptide sequence shown in SEQ ID NO: 2 is 70% or higher; preferably the homology is 80% or higher; more preferably Proteins having a homology of 90% or more, such as 95%, 98% or 99% homology) and having the same function as the FLO18 protein are also included in the present invention.

来源于水稻以外其它物种的与SEQ ID NO:2所示序列的多肽序列的同源性较高、或在同样或相近的信号通路中发挥同样或相近作用的多肽也包括在本发明中。Polypeptides derived from species other than rice that have higher homology to the polypeptide sequence of the sequence shown in SEQ ID NO: 2, or play the same or similar roles in the same or similar signaling pathways are also included in the present invention.

本发明中,所述的“FLO18蛋白”也包括它们的同源物。应理解,虽然本发明中优选研究了获自特定物种的FLO18蛋白,但是获自其它物种、特别是禾本科植物的与所述FLO18蛋白高度同源(如具有70%以上,更特别80%,85%、90%、95%、甚至98%以上序列相同性)的其它多肽或基因也在本发明考虑的范围之内。In the present invention, the "FLO18 protein" also includes their homologues. It should be understood that although FLO18 proteins obtained from a specific species are preferably studied in the present invention, those obtained from other species, especially grasses, are highly homologous to said FLO18 protein (such as having more than 70%, more particularly 80%, Other polypeptides or genes with 85%, 90%, 95%, or even more than 98% sequence identity) are also within the scope of the present invention.

本发明还提供了分离的蛋白,其是FLO18蛋白的片段或在两端添加其它蛋白或标签等形成的。The present invention also provides an isolated protein, which is formed by a fragment of the FLO18 protein or by adding other proteins or tags at both ends.

本发明还涉及编码本发明的FLO18蛋白或其序列变异形式的多核苷酸序列。所述的多核苷酸可以是DNA形式或RNA形式。DNA形式包括cDNA、基因组DNA或人工合成的DNA。DNA可以是单链的或是双链的。DNA可以是编码链或非编码链。编码成熟多肽的编码区序列可以与SEQ ID NO:1所示的编码区序列相同或者是简并的变异体。如本文所用,“简并的变异体”在本发明中是指编码具有SEQ ID NO:2序列的多肽,但与SEQ ID NO:3所示的基因组序列或SEQ ID NO:1所示的编码区序列有差别的核酸序列。本发明还涉及上述多核苷酸的变异体(变体),其编码与本发明有相同的氨基酸序列的多肽或多肽的片段、类似物和衍生物。The present invention also relates to a polynucleotide sequence encoding the FLO18 protein of the present invention or a sequence variant thereof. The polynucleotide may be in DNA form or RNA form. DNA forms include cDNA, genomic DNA or synthetic DNA. DNA can be single-stranded or double-stranded. DNA can be the coding or non-coding strand. The coding region sequence encoding the mature polypeptide can be identical to the coding region sequence shown in SEQ ID NO: 1 or a degenerate variant. As used herein, a "degenerate variant" in the present invention refers to a polypeptide encoding a polypeptide having the sequence of SEQ ID NO:2, but differing from the genomic sequence shown in SEQ ID NO:3 or the encoding shown in SEQ ID NO:1 A nucleic acid sequence that differs in region sequence. The present invention also relates to variants (variants) of the above-mentioned polynucleotides, which encode polypeptides or fragments, analogs and derivatives of polypeptides having the same amino acid sequence as the present invention.

本发明也涉及包含所述的多核苷酸的载体,以及用所述的载体或多肽编码核酸经基因工程产生的宿主细胞。The present invention also relates to vectors comprising said polynucleotides, and host cells genetically engineered with said vectors or polypeptide-encoding nucleic acids.

本发明中,编码本发明的多肽的多核苷酸序列可插入到重组表达载体中。术语“重组表达载体”指本领域熟知的细菌质粒、噬菌体、酵母质粒、植物细胞病毒、哺乳动物细胞病毒或其他载体。总之,只要能在宿主体内复制和稳定,任何质粒和载体都可以用。表达载体的一个重要特征是通常含有复制起点、启动子、标记基因和翻译控制元件。较佳地,所述表达载体还可选择性地加入抗性元件、筛选(选择)元件或报告基因元件,如Bar、GUS。In the present invention, the polynucleotide sequence encoding the polypeptide of the present invention can be inserted into a recombinant expression vector. The term "recombinant expression vector" refers to bacterial plasmids, bacteriophages, yeast plasmids, plant cell viruses, mammalian cell viruses or other vectors well known in the art. In short, any plasmid and vector can be used as long as it is replicable and stable in the host. An important feature of expression vectors is that they typically contain an origin of replication, a promoter, marker genes and translational control elements. Preferably, resistance elements, screening (selection) elements or reporter gene elements, such as Bar and GUS, can also be selectively added to the expression vector.

所述的多核苷酸在高等真核细胞中表达时,如果在载体中插入增强子序列时将会使转录得到增强。增强子是DNA的顺式作用因子,通常大约有10到300个碱基对,作用于启动子以增强基因的转录。When the polynucleotide is expressed in higher eukaryotic cells, transcription will be enhanced if an enhancer sequence is inserted into the vector. Enhancers are cis-acting elements of DNA, usually about 10 to 300 base pairs in length, that act on a promoter to enhance transcription of a gene.

用重组DNA转化宿主细胞可用本领域技术人员熟知的常规技术进行。转化植物可使用农杆菌转化或基因枪转化等方法,例如喷洒法、叶盘法、水稻幼胚转化法等。Transformation of host cells with recombinant DNA can be performed using conventional techniques well known to those skilled in the art. Agrobacterium transformation or biolistic transformation and other methods can be used to transform plants, such as spraying method, leaf disk method, rice immature embryo transformation method, and the like.

植物改造plant modification

本发明人通过大量的系统性研究,克隆获得FLO18的全长序列并鉴定了其生物学功能,该基因在水稻胚乳发育过程中发挥了重要作用,具有通过控制胚乳细胞分裂和发育,影响胚乳整个结构的发育,进一步影响贮藏物质的积累从而影响胚乳品质。FLO18突变体产量降低但是却对每穗粒数,穗长,穗型没有显著影响。有利于更深入地理解和解析细胞骨架在胚乳发育过程中的作用。Through a large number of systematic studies, the inventors cloned the full-length sequence of FLO18 and identified its biological function. This gene plays an important role in the development of rice endosperm. The development of the structure further affects the accumulation of storage substances and thus the quality of the endosperm. The yield of the FLO18 mutant was reduced but had no significant effect on the number of grains per panicle, panicle length and panicle shape. It is conducive to a deeper understanding and analysis of the role of the cytoskeleton in the development of endosperm.

在具体的实施例中,本发明人通过基因定位群体构建及表型考察,发现FLO18的突变体千粒重显著低于野生型千粒重、粒宽显著小于野生型粒宽、粒厚显著小于野生型粒厚。突变体的灌浆速率前3天与正常个体相比并没有明显,第6天开始干物质积累逐渐减缓;最终成熟后干重明显低于野生型。突变体淀粉发育不完全,淀粉颗粒明显偏小,淀粉粒呈小球状,淀粉粒之间空隙较大。并且,突变体的淀粉体发育明显慢于野生型,而且晶体结构疏松,颗粒小,很少能观察到蛋白体的存在。In a specific example, the inventors found that the 1000-grain weight of the mutant FLO18 was significantly lower than the wild-type 1000-grain weight, the grain width was significantly smaller than the wild-type grain width, and the grain thickness was significantly smaller than the wild-type grain thickness through gene mapping population construction and phenotypic investigation. . Compared with the normal individuals, the grain filling rate of the mutant was not obvious in the first 3 days, and the dry matter accumulation gradually slowed down from the 6th day; the dry weight after the final maturity was significantly lower than that of the wild type. The mutant starch was not fully developed, the starch granules were obviously smaller, the starch granules were spherical, and the space between the starch granules was larger. In addition, the development of amyloid in the mutant was significantly slower than that in the wild type, and the crystal structure was loose and the granules were small, and the existence of protein bodies was rarely observed.

在具体的实施例中,本发明人通过回补实验发现,FLO18回补的XA80突变体呈现粳稻IL-9野生型的表型,其粒形饱满光滑,横断面透明晶莹紧致;其千粒重也与野生型植株的千粒重、粒宽和粒厚基本相同。In a specific example, the inventors found that the XA80 mutant complemented by FLO18 showed the phenotype of the wild-type japonica IL-9 through the replenishment experiment, and its grain shape was plump and smooth, and its cross-section was transparent and compact; its thousand-grain weight was also Thousand-grain weight, grain width and grain thickness were basically the same as those of wild-type plants.

在具体的实施例中,本发明人还发现,在胚乳发育过程中,突变体存在细胞核不均等分裂,从而确定FLO18与细胞分裂相关进而调控胚乳品质。In a specific example, the inventors also found that in the process of endosperm development, the mutants have uneven division of nuclei, thus confirming that FLO18 is related to cell division and thus regulates endosperm quality.

基于本发明人的新发现,提供了一种FLO18蛋白或其调节分子的用途,用于:调节禾本科植物的产量性状、胚乳性状或淀粉发育性状。Based on the new discovery of the present inventors, the use of a FLO18 protein or a regulatory molecule thereof is provided for: regulating the yield traits, endosperm traits or starch development traits of grasses.

同时,本发明也提供了一种调控禾本科植物的产量性状、胚乳性状或淀粉发育性状的方法,包括:在植物中调控FLO18蛋白的表达或活性;其中,所述的FLO18蛋白包括其同源物。At the same time, the present invention also provides a method for regulating the yield traits, endosperm traits or starch development traits of gramineous plants, comprising: regulating the expression or activity of FLO18 protein in plants; wherein, the FLO18 protein includes its homology thing.

应理解,在得知了所述FLO18蛋白在禾本科植物的产量性状、胚乳性状或淀粉发育性状调控中的作用后,可以根据实际所需,采用本领域人员熟知的多种方法来调节所述的FLO18蛋白的表达或活性,这些方法均被包含在本发明中。It should be understood that, after knowing the role of the FLO18 protein in the regulation of the yield traits, endosperm traits or starch development traits of grasses, the various methods well known to those in the art can be used to adjust the The expression or activity of the FLO18 protein, these methods are all included in the present invention.

可以利用FLO18蛋白的表达或活性的上调剂来上调FLO18蛋白的活性。所述的FLO18蛋白的表达或活性的上调剂包括了促进剂、激动剂、激活剂。所述的“上调”、“促进”包括了蛋白活性的“上调”、“促进”或蛋白表达的“上调”、“促进”。任何可提高FLO18蛋白的活性、提高FLO18蛋白基因或蛋白的稳定性、上调FLO18蛋白基因的表达、增加FLO18蛋白的有效作用时间的物质,这些物质均可用于本发明,作为对于上调FLO18蛋白或其编码的蛋白有用的物质。它们可以是化合物、化学小分子、生物分子。所述的生物分子可以是核酸水平(包括DNA、RNA)的,也可以是蛋白水平的。The activity of the FLO18 protein can be up-regulated using an up-regulator of the expression or activity of the FLO18 protein. The up-regulators of FLO18 protein expression or activity include promoters, agonists, and activators. The "up-regulation" and "promotion" include "up-regulation" and "promotion" of protein activity or "up-regulation" and "promotion" of protein expression. Any substance that can increase the activity of FLO18 protein, improve the stability of FLO18 protein gene or protein, up-regulate the expression of FLO18 protein gene, and increase the effective action time of FLO18 protein, these substances can be used in the present invention, as for up-regulating FLO18 protein or its substances. A useful substance for the encoded protein. They can be chemical compounds, small chemical molecules, biomolecules. The biomolecules can be at the nucleic acid level (including DNA, RNA) or at the protein level.

作为一种优选的实施方式,提供一种上调植物中FLO18蛋白的表达的方法,所述的方法包括:将FLO18蛋白或其编码的蛋白的表达构建物或载体转入植物中。As a preferred embodiment, a method for up-regulating the expression of FLO18 protein in plants is provided, the method comprising: transforming the expression construct or vector of FLO18 protein or the protein encoded by it into plants.

优选地,提供了一种制备转基因植物的方法,包括:Preferably, a method for preparing a transgenic plant is provided, comprising:

(1)将外源的本发明的多肽的编码核酸转入植物器官或组织,获得转化入所述多肽的编码核酸的植物组织或器官;和(1) transforming an exogenous nucleic acid encoding the polypeptide of the present invention into a plant organ or tissue to obtain a plant tissue or organ transformed into the nucleic acid encoding the polypeptide; and

(2)将步骤(1)获得的转入了外源的本发明的多肽的编码核酸的植物组织或器官再生成植物植株。(2) Regenerating the plant tissue or organ obtained in step (1) into which the exogenous nucleic acid encoding the polypeptide of the present invention has been transferred into a plant plant.

作为一种优选的实例,所述的方法包括步骤:As a preferred example, the method includes the steps:

(s1)提供携带表达载体的农杆菌,所述的表达载体含有本发明的FLO18蛋白的编码核酸;(s1) Agrobacterium carrying an expression vector is provided, and the expression vector contains the nucleic acid encoding the FLO18 protein of the present invention;

(s2)将植物组织或器官与步骤(s1)中的农杆菌接触,从而使所述多肽的编码核酸转入并且整合到植物细胞的染色体上;(s2) contacting the plant tissue or organ with the Agrobacterium in step (s1), so that the nucleic acid encoding the polypeptide is transferred and integrated into the chromosome of the plant cell;

(s3)选择出转入所述FLO18蛋白的编码核酸的植物组织或器官;以及(s3) selecting the plant tissue or organ into which the nucleic acid encoding the FLO18 protein is transferred; and

(s4)将步骤(s3)中的植物组织或器官再生成植物。(s4) Regenerating the plant tissue or organ in step (s3) into a plant.

本发明还包括利用前述任一种方法获得的植物,所述的植物包括:转入了所述多肽的编码核酸的转基因植物。The present invention also includes plants obtained by any one of the aforementioned methods, and the plants include: transgenic plants into which the nucleic acid encoding the polypeptide has been transformed.

作为一种可选择的方式,敲除所述FLO18基因的5’UTR上的上游开放阅读框(upstream open reading frame;uORF),提高所述FLO18基因翻译效率的表达盒或表达构建物。uORF广泛存在于真核生物mRNA中,其为一种翻译调控元件。通常,uORF的翻译优先于mORF(主要开放阅读框),导致mORF翻译受阻。本发明中,靶向敲除所述FLO18基因的5’UTR上的uORF,从而可有效提高所述FLO18蛋白翻译效率,提高其表达。As an alternative way, the upstream open reading frame (upstream open reading frame; uORF) on the 5'UTR of the FLO18 gene is knocked out to improve the expression cassette or expression construct of the translation efficiency of the FLO18 gene. uORF is widely present in eukaryotic mRNA, which is a translational regulatory element. Typically, translation of uORFs takes precedence over mORFs (major open reading frames), resulting in blocked mORF translation. In the present invention, targeted knockout of the uORF on the 5'UTR of the FLO18 gene can effectively improve the translation efficiency of the FLO18 protein and improve its expression.

本发明中,所述的FLO18蛋白或其编码基因的下调剂是指任何可降低FLO18蛋白的活性、降低FLO18蛋白或其编码基因的稳定性、下调FLO18蛋白的表达、减少FLO18蛋白有效作用时间、抑制FLO18基因的转录和翻译的物质、或降低蛋白的磷酸化/激活水平,这些物质均可用于本发明,作为对于下调FLO18蛋白有用的物质。它们可以是化合物、化学小分子、生物分子。所述的生物分子可以是核酸水平(包括DNA、RNA)的,也可以是蛋白水平的。例如,所述的下调剂是:特异性干扰FLO18蛋白或其它信号通路基因表达的干扰RNA分子或反义核苷酸;或是特异性编辑FLO18基因的基因编辑试剂,等等。In the present invention, the down-regulating agent of FLO18 protein or its encoded gene refers to any agent that can reduce the activity of FLO18 protein, reduce the stability of FLO18 protein or its encoded gene, down-regulate the expression of FLO18 protein, reduce the effective action time of FLO18 protein, Substances that inhibit the transcription and translation of the FLO18 gene, or reduce the phosphorylation/activation level of the protein, can be used in the present invention as useful substances for down-regulating the FLO18 protein. They can be chemical compounds, small chemical molecules, biomolecules. The biomolecules can be at the nucleic acid level (including DNA, RNA) or at the protein level. For example, the down-regulating agents are: interfering RNA molecules or antisense nucleotides that specifically interfere with the expression of FLO18 protein or other signaling pathway genes; or gene editing reagents that specifically edit the FLO18 gene, and the like.

作为本发明的一种优选方式,提供一种下调植物中FLO18蛋白的方法,包括对FLO18蛋白进行靶向性地突变、基因编辑或基因重组,从而实现下调。作为一种更为具体的实施例方式,藉由上述任一的方法,使FLO18蛋白转变为其突变体,从而使其不再发挥作用。作为一种更为具体的实施例方式,采用CRISPR/Cas9系统进行基因编辑。合适的sgRNA靶位点,会带来更高的基因编辑效率,所以在着手进行基因编辑前,可以设计并找到合适的靶位点。在设计特异性靶位点后,还需要进行体外细胞活性筛选,以获得有效的靶位点用于后续实验。本发明的实施例中提供了优选的基因编辑试剂。As a preferred mode of the present invention, there is provided a method for down-regulating FLO18 protein in plants, which comprises targeted mutation, gene editing or gene recombination of FLO18 protein to achieve down-regulation. As a more specific embodiment, by any of the above methods, the FLO18 protein is converted into its mutant, so that it no longer functions. As a more specific embodiment, the CRISPR/Cas9 system is used for gene editing. Appropriate sgRNA target sites will bring higher gene editing efficiency, so before proceeding with gene editing, suitable target sites can be designed and found. After designing specific target sites, in vitro cell activity screening is also required to obtain effective target sites for subsequent experiments. Preferred gene editing reagents are provided in the examples of the present invention.

作为其它可选的方式,所述下调植物中FLO18蛋白的表达的方法可包括:(1)将干扰FLO18基因表达的干扰分子转入植物细胞、组织、器官或种子,获得转化入所述干扰分子的植物细胞、组织、器官或种子;(2)将步骤(1)获得的转入了所述干扰分子的植物细胞、组织、器官或种子再生成植物。较佳地,所述方法还包括:(3)选择出转入了所述载体的植物细胞、组织或器官;和(4)将步骤(3)中的植物细胞、组织或器官再生成植物。As another alternative, the method for down-regulating the expression of FLO18 protein in plants may include: (1) transferring an interfering molecule that interferes with FLO18 gene expression into plant cells, tissues, organs or seeds, and obtaining the interfering molecule transformed into the interfering molecule. (2) regenerate the plant cell, tissue, organ or seed obtained in step (1) into the interfering molecule into a plant. Preferably, the method further comprises: (3) selecting the plant cells, tissues or organs into which the vector has been transferred; and (4) regenerating the plant cells, tissues or organs in step (3) into plants.

可采用任何适当的常规手段,包括试剂、温度、压力条件等来实施所述的方法。The methods can be carried out using any suitable conventional means, including reagents, temperature, pressure conditions, and the like.

植物定向筛选及分子标记Plant-directed screening and molecular markers

基于本发明人的新发现,本发明提供了适用于鉴定产量高、胚乳品质高或淀粉发育好的植物的分子标记,即FLO18基因。本发明还涉及针对所述FLO18基因设计的特异性分子标记,以及鉴定策略。Based on the new findings of the present inventors, the present invention provides a molecular marker suitable for identifying plants with high yield, high endosperm quality or good starch development, namely the FLO18 gene. The present invention also relates to specific molecular markers designed for the FLO18 gene, and identification strategies.

因此,本发明提供了一种定向选择或鉴定农艺性状被调节的植物的方法,包括:鉴定测试植物体内FLO18蛋白的表达或活性,若该测试植物中FLO18蛋白的表达或活性高于该类植物(对照植物)中FLO18蛋白的表达或活性的平均值,则其为产量高,籽粒饱满、灌浆好、淀粉发育好、淀粉颗粒直径大或能形成角质胚乳的禾本科植物;或,若该测试植物中FLO18蛋白的表达或活性低于该类植物(对照植物)中FLO18蛋白的表达或活性的平均值,则其为产量低,籽粒不饱满、灌浆不理想、淀粉发育不理想好、淀粉颗粒直径小或能形成粉质胚乳的禾本科植物。Therefore, the present invention provides a method for targeted selection or identification of plants whose agronomic traits are regulated, comprising: identifying the expression or activity of FLO18 protein in a test plant, if the expression or activity of FLO18 protein in the test plant is higher than that in this type of plant The average value of FLO18 protein expression or activity in (control plants), then it is a grass plant with high yield, full grain, good grain filling, good starch development, large starch granule diameter, or capable of forming horny endosperm; or, if the test The expression or activity of FLO18 protein in the plant is lower than the average value of the expression or activity of FLO18 protein in this type of plant (control plant), which means that the yield is low, the grain is not full, the grain filling is not ideal, the starch development is not ideal, and the starch granule is not good. A grassy plant with a small diameter or capable of forming a silty endosperm.

根据本发明的新发现,本领域技术人员可以采用任何本领域公知的或正在发展的多种技术来进行核酸序列的分析,这些技术均可被包含在本发明中。所述的方法例如包括但不限于:测序法,PCR扩增法,探针法,杂交法,限制性酶切分析法,等位基因多态性分析法(如溶解曲线法)进行核酸序列的鉴定,等等。According to the new findings of the present invention, those skilled in the art can use any of the various techniques known in the art or being developed to analyze nucleic acid sequences, and these techniques can all be included in the present invention. Said methods include, but are not limited to, sequencing, PCR amplification, probe methods, hybridization methods, restriction enzyme digestion analysis methods, and allelic polymorphism analysis methods (such as melting curve methods) for nucleic acid sequence analysis. identification, etc.

本发明的鉴定方法,只需进行PCR反应和/或琼脂糖凝胶电泳,并通过判断相应的PCR产物的长度,就可以准确、快速地判断待测样品的表型或产量,成本低廉,适合于大规模鉴定,而且所需的样品量很少。如果需要,本领域技术人员能够设计出鉴定所述分子标记的引物。The identification method of the present invention only needs to perform PCR reaction and/or agarose gel electrophoresis, and by judging the length of the corresponding PCR product, the phenotype or yield of the sample to be tested can be accurately and rapidly judged, the cost is low, and it is suitable for It is suitable for large-scale identification, and the required sample size is small. If desired, one skilled in the art can design primers that identify the molecular markers.

获取待测样品的DNA的方法是本领域技术人员所熟知的技术,例如可采取传统的酚/氯仿/异戊醇法,或者可采用一些商购的DNA提取试剂盒,这类试剂盒是本领域技术人员熟知的。聚合酶链反应(PCR)技术是本领域技术人员熟知的技术,其基本原理是体外酶促合成特异DNA片段的方法。本发明的方法可采用常规的PCR技术进行。The method for obtaining the DNA of the sample to be tested is a technique well known to those skilled in the art, such as the traditional phenol/chloroform/isoamyl alcohol method, or some commercially available DNA extraction kits, which are the well known to those skilled in the art. The polymerase chain reaction (PCR) technology is well known to those skilled in the art, and its basic principle is a method of enzymatically synthesizing specific DNA fragments in vitro. The methods of the present invention can be carried out using conventional PCR techniques.

本发明在分子设计育种及利用基因工程技术进行农作物品种改良等方面具有良好的应用前景。The invention has a good application prospect in the aspects of molecular design breeding and using genetic engineering technology to improve crop varieties.

在得知了FLO18基因的功能以后,可以以其为分子标记物,来进行植物的定向筛选。也可基于该新发现来筛选通过调节这一机制,从而定向调控产量、胚乳品质或淀粉发育的物质或潜在物质。After knowing the function of the FLO18 gene, it can be used as a molecular marker to conduct targeted screening of plants. Substances or potential substances that regulate yield, endosperm quality or starch development by modulating this mechanism can also be screened based on this new finding.

本发明提供了一种筛选促进禾本科植物性状改良的物质(潜在物质)的方法,所述性状改良包括:产量高、胚乳品质高或淀粉发育好;该方法包括:(1)将候选物质加入到表达FLO18蛋白的体系中;(2)检测所述体系,观测其中FLO18蛋白的表达或活性,若其表达或活性提高,则表明该候选物质为促进禾本科植物性状改良的物质。The present invention provides a method for screening substances (potential substances) that promote the improvement of grass plant traits. The trait improvement includes: high yield, high endosperm quality or good starch development; the method includes: (1) adding candidate substances into into a system expressing FLO18 protein; (2) testing the system to observe the expression or activity of FLO18 protein, if its expression or activity is increased, it indicates that the candidate substance is a substance that promotes the improvement of grass plant traits.

以蛋白或基因或其上特定的区域作为靶点,来筛选作用于该靶点的物质的方法是本领域人员所熟知的,这些方法均可用于本发明。所述的候选物质可以选自:肽、聚合肽、拟肽、非肽化合物、碳水化合物、脂、抗体或抗体片段、配体、有机小分子、无机小分子和核酸序列等。根据待筛选的物质的种类,本领域人员清楚如何选择适用的筛选方法。The methods for screening substances acting on the target by taking a protein or gene or a specific region on it as a target are well known to those skilled in the art, and these methods can be used in the present invention. The candidate substances can be selected from: peptides, polymeric peptides, peptidomimetics, non-peptide compounds, carbohydrates, lipids, antibodies or antibody fragments, ligands, small organic molecules, small inorganic molecules, nucleic acid sequences, and the like. Depending on the type of substances to be screened, it is clear to those skilled in the art how to select a suitable screening method.

检测蛋白与蛋白之间相互作用以及相互作用的强弱可采用多种本领域技术人员熟知的技术,比如GST沉降技术(GST-Pull Down)、双分子荧光互补实验、酵母双杂交系统或免疫共沉淀技术等。The detection of protein-protein interactions and the strength of the interactions can be performed using a variety of techniques well known to those skilled in the art, such as GST sedimentation technology (GST-Pull Down), bimolecular fluorescence complementation assay, yeast two-hybrid system or immunocoagulation. Precipitation technology, etc.

经过大规模的筛选,可以获得一类特异性作用于FLO18蛋白或其编码基因,对禾本科植物性状改良有调控作用的物质。After large-scale screening, a class of substances that specifically act on the FLO18 protein or its encoding gene and have a regulatory effect on the improvement of grass plant traits can be obtained.

下面结合具体实施例,进一步阐述本发明。应理解,这些实施例仅用于说明本发明而不用于限制本发明的范围。下列实施例中未注明具体条件的实验方法,通常按照常规条件如J.萨姆布鲁克等编著,分子克隆实验指南,第三版,科学出版社,2002中所述的条件,或按照制造厂商所建议的条件。The present invention will be further described below in conjunction with specific embodiments. It should be understood that these examples are only used to illustrate the present invention and not to limit the scope of the present invention. The experimental methods that do not indicate specific conditions in the following examples are usually in accordance with conventional conditions such as those described in J. Sambrook et al., Molecular Cloning Experiment Guide, 3rd Edition, Science Press, 2002, or according to the conditions described by the manufacturer. the proposed conditions.

材料和方法Materials and methods

1、突变体材料XA80的获取和考察1. Acquisition and investigation of mutant material XA80

对突变体材料XA80,收获种子后进行水稻籽粒脱壳处理。日本SATAKE种子判别仪器和万深种子考察系统测量水稻粒长,粒宽,和粒厚,进行统计分析。For the mutant material XA80, the rice grains were dehulled after the seeds were harvested. The Japanese SATAKE seed discriminating instrument and the Wanshen seed inspection system measured the grain length, grain width, and grain thickness of rice for statistical analysis.

2、扫描电镜观察种子表面2. Scanning electron microscope to observe the surface of seeds

样品准备:随机选取完全成熟的水稻籽粒在纯水中超声波处理10分钟,42℃烘箱中干燥三天。Sample preparation: Randomly selected fully mature rice grains were sonicated in pure water for 10 minutes, and dried in an oven at 42°C for three days.

样品固定:将双面胶黏贴在铜台的合适位置上,用镊子夹取样品,确保观察面向上并粘在铜台的胶上。涂上导电胶,确保观察面干净。Sample fixation: stick the double-sided tape on the appropriate position of the copper table, pick up the sample with tweezers, make sure that the observation side is up and stick to the glue on the copper table. Apply conductive glue to make sure the viewing surface is clean.

镀膜:样品处理好后进行真空喷金镀膜。Coating: After the sample is processed, vacuum spray gold coating is carried out.

观察:样品制备好后,使用日本岛津JSM-6360LV型扫描电子显微镜进行观察。Observation: After the samples were prepared, they were observed using a scanning electron microscope of Shimadzu JSM-6360LV type.

3、半薄切片3. Semi-thin slices

将用于组织学观察的材料放入装有FAA固定液的离心管。将离心管置于冰上抽真空,将固定液充分渗入组织中,固定材料内部结构。待所有组织都沉没于固定液后将FAA固定液重新换一次,4℃保存。在使用梯度浓度的乙醇脱水后,将材料包埋在环氧树脂中进行半薄切片。Place the material for histological observation into a centrifuge tube containing FAA fixative. Put the centrifuge tube on ice and vacuumize, fully infiltrate the fixative solution into the tissue, and fix the internal structure of the material. After all the tissues were submerged in the fixative, the FAA fixative was replaced again and stored at 4°C. After dehydration using graded concentrations of ethanol, the material was embedded in epoxy resin for semi-thin sectioning.

4、大肠杆菌转化和农杆菌转化4. Escherichia coli transformation and Agrobacterium transformation

大肠杆菌转化:将保存于-80℃冰箱的的感受态DH5α大肠杆菌感受态细胞置于冰上5min。将适量质粒加入处于冰水混合态的感受态细胞中,轻轻拨动管底,于冰上静置15min。42℃热激40s后迅速将感受态细胞置于冰上。2分钟后加入500微升的无抗LB液体培养基。将感受态细胞置于37℃培养箱孵育1小时,把菌液涂于含有相应抗性的LB固体培养基上。37℃培养过夜。E. coli transformation: The competent DH5α E. coli competent cells stored in a -80°C refrigerator were placed on ice for 5 min. An appropriate amount of plasmid was added to the competent cells in a mixed state of ice and water, the bottom of the tube was gently poked, and it was allowed to stand on ice for 15 minutes. The competent cells were immediately placed on ice after heat shock at 42°C for 40 s. After 2 minutes, 500 μl of anti-LB liquid medium was added. The competent cells were incubated in a 37°C incubator for 1 hour, and the bacterial solution was spread on the LB solid medium containing the corresponding resistance. Incubate overnight at 37°C.

农杆菌转化:将农杆菌感受态细胞EHA105从-80℃冰箱中取出,置于冰上解冻。在感受态细胞中加入0.01~1微克的质粒,拨动管底混匀。按照冰上5min,液氮中5min,37℃5min,冰上5min的顺序操作。加入500微升无抗YEP液体培养基,28℃孵育2~3小时。5000rpm,1min离心富集菌落,管中留有100微升作用的菌液。将富集后的菌液涂于相应抗性的YEP固体培养基上。28℃培养箱培养2天。Agrobacterium transformation: The Agrobacterium competent cell EHA105 was taken out from the -80°C refrigerator and thawed on ice. Add 0.01-1 μg of plasmid to the competent cells, stir the bottom of the tube to mix. Follow the sequence of 5 min on ice, 5 min in liquid nitrogen, 5 min at 37°C, and 5 min on ice. Add 500 microliters of anti-YEP-free liquid medium and incubate at 28°C for 2 to 3 hours. 5000rpm, 1min centrifugation to enrich the colony, leaving 100 microliters of bacterial solution in the tube. The enriched bacterial solution was spread on the corresponding resistant YEP solid medium. 28°C incubator for 2 days.

5、FLO18的亚细胞定位5. Subcellular localization of FLO18

(1)FLO18-GFP融合蛋白构建(1) Construction of FLO18-GFP fusion protein

为了观察GLW7的细胞亚定位,本发明人构建了FLO18-GFP融合蛋白。经测序验证正确后,化学方法转化原生质体。In order to observe the cellular sublocalization of GLW7, the present inventors constructed a FLO18-GFP fusion protein. Protoplasts were chemically transformed after sequencing was verified to be correct.

水稻原生质体的培养:水稻种子消毒在超净台中晾干后,将种子播于1/2MS培养基上30℃培养7~10天。将水稻幼苗剪去根和叶子,使用茎和叶鞘的绿色组织。用刀片切成0.5mm的小段将切下的小段立刻转移至20~30ml的0.6M D-甘露醇的50ml离心管(锡箔纸包裹好)中黑暗10min。Cultivation of rice protoplasts: After the rice seeds were sterilized and dried in the ultra-clean bench, the seeds were sown on 1/2 MS medium and cultivated at 30°C for 7-10 days. Cut off the roots and leaves from the rice seedlings, using the green tissue of the stems and leaf sheaths. Cut into 0.5mm pieces with a blade, and immediately transfer the cut pieces to 20-30ml of 0.6M D-mannitol in a 50ml centrifuge tube (wrapped in tin foil) in the dark for 10min.

配制酶解液,配方如表1。The enzymatic hydrolysis solution was prepared, and the formula is shown in Table 1.

表1Table 1

Figure BDA0002876328110000141
Figure BDA0002876328110000141

Figure BDA0002876328110000151
Figure BDA0002876328110000151

酶解液配制过程如下(以20ml为例,具体用量以样品量为参照):取1ml 0.2M MES(pH5.7)溶液加热到70℃,3~5分钟;分别加入0.3g Cellulase RS,0.15g Macerozyme R-10,15ml 0.8M甘露醇,溶液55℃,10min;冷却至室温(25℃),分别加入200ul 1M CaCl2和200ul 100mg/ml BSA,加水补齐至20ml;用40um的注射器和0.45um的滤头将酶液过滤到另一个50ml离心管中。The preparation process of the enzymatic hydrolyzate solution is as follows (take 20ml as an example, the specific dosage is based on the sample amount): take 1ml of 0.2M MES (pH5.7) solution and heat it to 70°C for 3-5 minutes; add 0.3g Cellulase RS, 0.15 g Macerozyme R-10, 15ml of 0.8M mannitol, solution at 55°C, 10min; cooled to room temperature (25°C), added 200ul 1M CaCl 2 and 200ul 100mg/ml BSA respectively, added water to make up to 20ml; use a 40um syringe and Filter the enzyme solution into another 50ml centrifuge tube with a 0.45um filter.

准备一个用锡箔纸包住的小锥形瓶,除去步骤4中甘露醇,将小段浸在酶液中。可将锥形瓶真空抽滤25min,以达到使酶解液充分浸润水稻材料。放在室温为25℃的摇床上,转速为60,放置4小时。向消化后的锥形瓶中加入20ml的W5(与酶解液同体积),手中剧烈震荡10s。W5的配制如表2。Prepare a small Erlenmeyer flask wrapped in tin foil, remove the mannitol from step 4, and immerse the small segment in the enzyme solution. The conical flask can be vacuum filtered for 25min to fully infiltrate the rice material with the enzymatic hydrolyzate. Place on a shaker at room temperature of 25°C with a rotational speed of 60 for 4 hours. Add 20ml of W5 (the same volume as the enzymatic hydrolysis solution) into the digested conical flask, and shake vigorously for 10s. The preparation of W5 is shown in Table 2.

表2Table 2

终浓度Final concentration 母液浓度Mother liquor concentration 100ml100ml 200ml200ml NaClNaCl 154mM(0.9%)154mM (0.9%) 0.9g0.9g 1.8g1.8g CaCl<sub>2</sub>CaCl<sub>2</sub> 125mM(1.84%)125mM (1.84%) 1M1M 12.5ml12.5ml 25ml25ml 无水葡萄糖anhydrous dextrose 5mM(0.1%)5mM (0.1%) 0.090.09 0.18g0.18g KClKCl 5mM5mM 1M1M 500ul500ul 1ml1ml MES(pH5.7)MES(pH5.7) 2mM2mM 0.2M0.2M 1ml1ml 2ml2ml

用40um尼龙网过滤原生质体入50ml离心管中,用W52溶液将锥形瓶冲洗干净,平衡离心,100XG,(ACC 8;DEC 5),离心两分钟,吸掉上清。加入10ml W5,温和混匀,100XG,(ACC8;DEC 5),离心两分钟,吸掉上清。用1ml的MMG重悬,将离心管中的原生质体转移至2mL EP管,血球计数板计数。MMG配方如表3。Filter the protoplasts with a 40um nylon mesh into a 50ml centrifuge tube, rinse the conical flask with W52 solution, equilibrate and centrifuge at 100×G, (ACC 8; DEC 5), centrifuge for two minutes, and aspirate the supernatant. Add 10ml of W5, mix gently, 100XG, (ACC8; DEC 5), centrifuge for two minutes, and aspirate the supernatant. Resuspend with 1 ml of MMG, transfer the protoplasts in the centrifuge tube to a 2 mL EP tube, and count on a hemocytometer. The MMG formula is shown in Table 3.

表3table 3

母液浓度Mother liquor concentration 终浓度Final concentration 2ml2ml 5ml5ml 8ml8ml 10ml10ml 甘露醇Mannitol 0.8M0.8M 0.5M0.5M 1250ul1250ul 3.125ml3.125ml 5ml5ml 6.25ml6.25ml MgCl<sub>2</sub>MgCl<sub>2</sub> 1M1M 15mM15mM 30ul30ul 75ul75ul 120ul120ul 150ul150ul MES(pH5.7)MES(pH5.7) 0.2M0.2M 4mM4mM 40ul40ul 100ul100ul 160ul160ul 200ul200ul

100XG,(ACC 8;DEC 5),离心两分钟,吸掉上清,根据之前镜检的情况加入相应体积的MMG重悬原生质体。100×G, (ACC 8; DEC 5), centrifuge for two minutes, aspirate the supernatant, and add the corresponding volume of MMG to resuspend the protoplasts according to the previous microscopic examination.

(2)PEG介导的转染(2) PEG-mediated transfection

PEG溶液的配方如表4。The formula of PEG solution is shown in Table 4.

表4Table 4

母液浓度Mother liquor concentration 终浓度Final concentration 5ml5ml PEG4000PEG4000 40%(W/V)40%(W/V) 2g2g 甘露醇Mannitol 0.8M0.8M 0.2M0.2M 1.25ml1.25ml

PEG溶液配好后,应放于65℃烘箱使其融化,使用时冷却至室温即可。After the PEG solution is prepared, it should be placed in an oven at 65 °C to melt it, and it can be cooled to room temperature during use.

转染步骤:①准备2ML离心管,将之前准备好的10ugDNA加到管底(一般100μL的原生质体加10ugDNA,对于BiFC或共表达系统DNA含量可达10ug和15ug),加入100uL的原生质体,暂时不要混匀。②加入110ul新配的PEG溶液,加PEG溶液时,将PE管稍微平一点放,然后顺着管壁,缓慢加入,PEG加完一个样,就立即温和混匀。③室温黑暗放置10-20min。④缓慢加入440ul W5溶液,终止反应,100XG,升8降5(ACC 8;DEC 5),离心两分钟;弃上清。⑤重复步骤④。⑥500ul W5溶液重悬。⑦平放在纸盒中,放入26℃培养箱,培养6-16小时。Transfection steps: ① Prepare a 2ML centrifuge tube, add 10ug DNA prepared before to the bottom of the tube (generally 100μL of protoplast plus 10ugDNA, for BiFC or co-expression system DNA content can reach 10ug and 15ug), add 100uL of protoplast, Do not mix for now. ②Add 110ul of the newly prepared PEG solution. When adding the PEG solution, put the PE tube slightly flat, and then slowly add it along the tube wall. After adding a sample of PEG, mix it gently immediately. ③ Place in the dark at room temperature for 10-20min. ④ Slowly add 440ul of W5 solution to stop the reaction, 100×G, increase 8 to 5 (ACC 8; DEC 5), centrifuge for 2 minutes; discard the supernatant. ⑤ Repeat step ④. ⑥Resuspend in 500ul W5 solution. ⑦Put it in a carton, put it in a 26℃ incubator, and cultivate for 6-16 hours.

6、序列信息6. Sequence information

FLO18基因序列,第1~126位碱基为5’UTR,第4716~5171位为3’UTR,黄色为蛋白编码区。In the FLO18 gene sequence, bases 1 to 126 are 5'UTRs, positions 4716 to 5171 are 3'UTRs, and the yellow is the protein coding region.

OsFLO18(LOC_Os07g32390)基因序列(SEQ ID NO:3):OsFLO18 (LOC_Os07g32390) gene sequence (SEQ ID NO: 3):

GATCCAACCACCACCACCTTCTTCTCCTCCTCTTCCGCTCGACGCCATCACCACGCACTTGAGAGAGAGAGAGAGAGAGAGAGAGAGAGAAACCCTAAGCCTCGCCCGCTATCCAGCCAAGCACCGATGGCGACGGACGCGAACCC GGAGGCGGCGGCGCCGCCGCCGCAGTTACTGGTGGACGAGGGCTACGAGTTCTGCGCGCCCAAGTTCTTCGACTTCG TCTGCGACGAGACGGAGGAGGAAATCCGCGCCGCCGAGCGCTGGTTCGAGGCCTCCGCCAGCCACGCCCCTTCCCGTACGCTCCCCAATCCCCACCCCGCCGCCTCGATCATCCCCCCCTCTCCCGTGTTTTGCTTTTTTTGCGCTGATTAGGGCTCTTCTTCTTTTACCTGCTTGCAGCGTTCGCTCCGAGGATCAAGGAGTCGAGGGCGGAGGTCAAGATCGAGAGCCT CTGCGACTTCACCGACGCGGAGCCGATTCCGAAGGTACGAAGCAGAAAGCTGCGGGAATAACCCCCCAATTTTGCCCTAATTTCTGTAAATCTCCCCCCTTCTTATTGTCCGTTGGCCTCTGCGTTCGTCATGATAGGAGGTAGCAGTGGAGGA GGCAGCAGGAAGCGCCGCCAATCCCTCGCAGAATTCTGATGGGTAAGAGTTGGAGAACTAAAGAAATTGTTTATGATGATTCGTTGTGATCTGATGAAGTTAATCGATTTCTCGTGTGTTTTTCATCTTCACTTTTGGATGTTCAGGAATGTGC AACAGAATAAGGACGGCTCCATCAAACTTGTACGTGATTTCTTGATGTTTTCATGTTTTCTATGTTCTCAGTTTCAGTAAGTACTAGTGTTGGGTTTCTAGCAGCTCACATCCTGAATTCTTCAGGTCCATGAAGCAAATCCCAGTGAAAATTG TGTCACTGACGGCGATCATAAGCACCAAGAAAGGTGCATTTCAAGACCTCAATTTGTTGGTTCATTCCGTTTCTTGCTGGTTTTGGCATGTGAATGACTAATTGGTTGTTTTGGGCAGTGATGCAATGTTGGAGTCGCCACCAGCAGAGGAGGA TGAGAAGGAATCGCCAAAATCCTTCGAGTTTGTCCCTTCCAATGCAAAATGTAAGTTGCTAGTTATATATGAGCAATGGCAGTGGGGAAGAACTCTGATCCCTGGATTTTGATATCAATGTTGCATGGCTTTAGCAGCAGATGTTGCTTCTAGC ACACCGAAGATTCAGAGGCCTCCACCCGTCAAAGCTGTCACTACGGTGCCTACCTGTCCCAAGCTGACAGTGAAGAC AGAAGCCTTCACTCCGAAGGTGCAGGCAACGAACTCCTCCAGAGGTCTTGCACCCTTGACTGGCTCAAGGGCACATC CATCTGCTTTGAAGCAGTCGATGAGCGTCAAGAGGAGTGTGATCAAGTAAGAGTCATGCTCACTCATAAAAAAATATATTAATCTGGAGATTATTTTCTTACTAATGTCTGAATTGTTGGTTTTTCAGATGCCCTCGTGAGTTGCTGGCTGGGA AGGCCGCTACTGCTGCGAATGAAATCGCACAAGAAAATCAAGCTGTCAAGAGACAGAAGCTTGATGATGGGAGGACA AGACAGGTAATACTGGGATGAGATTAAAGATGGCACTTCAAATACATGTGTTTGCGTTGCGCGAGATTTCTGAGAAACATTGTGTTTGCCGTCGTGGTTAGATACTGAACGTGAAGACAAGGACCCTGCCTCACAAGGGGAGAGGAGGTGGTCT AGCAGGAAGCACCGAGATGAGCCTGTCGGCCATGAGGAAGCACCGTGACGATTCACACTCTCTCAAGGTAGCTCCCAAGTTGCTCTTCTGACTCTTAAATGATAGACTTAATTGTAATGTTTCTTGTGAGAATGCAAGTATAATGTGATTTTGTTATTGTGAGCTTGGCACTTAGCAACTTTTGTTTCTGCCATGTGCAGGAAGTGACTCACTATATATCGGCAGCAGAGA TGGTAAAGAAGTTCGAGTCTGGGACTAGAGAGTTGGCCATCCCTCACAACAGATCGCTTTCTCATGTTAGCACTCATGTGCCCTTTATTATTAATTTTAAATTGTGTGCATTTCTCCAATTTTATTAATATACATGTCTTCTCAGTCTTGTTGTGGGTATTTGGTTCCATACAAAGACCGATGTCCTTTTTGTGATACTGATATCTGCATATCAAATATTGCACAGTTATTACATCTGAACCGTTGACGACGAAATCATTATTGGTACTAAGAATTTTGACATATTGCAATTTGTGCACAATGCAGGA GGATGCAGCAACCGCATTACAAAGAAGAACAAAGCTGATGCTAACAAGGCCAAAGGAACCTGAGTTCCAGACCTCCC ACAGGGTCCGTGCTGTCAGAGTGAAAAGCTCTGCTGAGCTAGAGGAGGAGATGCTAGCCAAAATTCCGAAGTTCAGA GCACGGCCGTTTAACAAAAAAGTGAGAAATTTGTTTGCTTTGGTTTTGATTATACTAACTACTCAATCCAGGATCTGAAGACTAACTATTTGTTTGCTTCTCCTTTCAGATTGCGGAGGCCCCTTCATTTCCTCCTCTTCCAAGGAAAGCTCCA CAGCTTCCTGAATTTAATGTACGTCTTGTTTGGCTGATTCAGAAATTTATGAGCTCCACAGCTTTGTTTGGCTGATTCAGTTATTCCTTTCCAACACCTACAGGAGTTTCATCTTAAAACGATGGAGAGAGCTACACGACATGCAGACACCTGT TCCGAAGCTTCTTCCGTGGGGACTATCAGGGTAAGCTCCCTTCACTTAACCTGGTTGCTAATATCAGTATGTAAATTCTTCTTCTTATTAGTCTCCTAAAAATTAAAATTCTTGGCATTACTGAAAGTTTAATCAAATCTTGCAGAGTCAGAGC AGTAAGCCACTGACCTTGACAGCGCCAAAACCACCCCAACTTGAGACAGCATTACGAGCTAGACCACCAAGGTTTCCCTTTGCCACTTGCATCATTCAGAAAACAAGCCATTTTATGTTATTGATTATTTTCGATTACTCTAACATCATCTTTCTGCAGGGTGAAAAGTTCTCAGGAATTGGAACTAGAAGAATTAGAAAAGGCTCCCAAGTTCAAGGCAAAGCCACTGAA CAAAAAGGTCTCCTTATCTTCTTGAAGCTTGTACATTTGATACATTGATTGCATTGTGCTTCAAAACATCCAGTCTGAACATCATTTCTTGCAGATTCTCGAGAGCAAGGGTGATATTGGTGTGTTTCCACATCTAAAGGCTCAACCAACAGCC CCCAAGGAATTCCATTTCTCTACCGATGATCGCTTGGGTCCTCCTGCAGTTGTGGATCTATTTGATAAGGTGAGGGTTCTAAGTCATGCTAGTAAGCTCATTATTTTTTTTCCAGAAACCTTTCTTCTAAGTCCTTTTCTATTTTGTAGCTCTC TCTTTGCTCAGAATCTTCATATCATAGCAAGAAAGATGTGCCCAGATTGACAATACCAAACCCCTTCAATTTACATA CAGATGTAAGCAGTATGAAAGTTATTTGTTTTCCCAACACATTGCATTTACCTATCTGTTGCAGGCAAATAACTTTGTTATCCATGTTACAGGAAAGAGGGCATGAGAAAGAGAGGCAGCTAGCTGCACAACTGCTGCAAAAGCAATTACAGGA AGAGAAAGCCAGGATTCCGAAGGCTAATCCTTATCCCTACACAACTGACTATCCAGTGGTACGTGCAAAGTAACATACCGAATATTACATGTCCTGGTTGCTGACCATCTCATATTCTGCTAGCCTTAACATTTTCTCTCTCTTCAGATACCAC CGAAGCCTGAACCAAAACCATGCACGAGGCCAGAAGGCTTTCAGTTAGAGAGTTTGGTGAGGCATGAGATGGAGCAA CAGAGGATAATGGAAGAAAGAGAGAGGATGGAGAGGGAAGAGGCCCAGAGGAGAGTAGTGAAGGCACACCCCATAAT GAAAGAGTAAGCCTTCACATTACGGTTTCTCTTGTCCCAACAGTTCCTGGTTTCCCTTATAAGATGCATATTAATACTGTTAATTTTGTTGCAGGGATCCCATTCCTCTTCCAGAGAAAGAGAGGAAGCCTCTCACTGAAGTTCAACCACTTAA GTTACATGTTGATGAAAGGGCGGTCCAAAGATCAGAATTTGACAATATGGTCAGCAAAGCAAGCTTGTTCTATTATCTGGTTTGGAGGAGCCTGCCAAATTGGCTGAATTTACTGAGCAATTCGTTGTCGTGCAGGTGAAGGAAAAGGAAATAA CTTACAAGAGATTGCGAGAGGAAAATGAATTCGCACAAAAGGTTATTATTTTCTTATGCCTTCTTCTCAAAATCCCTACATTGTTGGATGCATTTTCATCTGTTCTGGCAACTAACTTGCTGTGATCTTTTCATGTGAAGATTGAGGAAGAGAA AGCGTTGAAGCAGCTCAGGAGGACCTTGGTGCCACAAGCACGGCCTCTCCCGAAGTTTGACAGACCATTTCGTCCCC AGAGGTAAGAGCAGAAACGGCCAAGATTTTTGCCTACAATGTCATCGACCTTTCCGTTTCATCTCACAAACGTGAACTCGTTGTTTCGCACACAGATCAACCAAGCAGGTGACGAGGCCGAAGTCCCCACAGCTTCAGGTCGACCAAAGAGGGG CAAGAAGGCACGCCTTCATCAGATGATCCAACTCTCCGGCTCATCTTGTTGTCGTCTATCGGTTACCCACTGGCTGCTGCTGTTTTCTCTTCTGTTCTTGACGTCAAGATCATCCCCAATTCTCGCAGCGATTCTTTCTGACCAATACATAAATAGGCCGATCCAATCCTGTTATATAGTCAGTCAACACAGCTGACGGCGTGTGTATGCTCCTTTAGGGTTCTGCTGATGCTTGACTGCATTATTGTAAATTCAGTTTGTGTGCTGTGTGTGTGTGCTGTTCGATGAACGACAATAGGATGACACCCTGTCAGTGTCCTCCTCGTCTGTTTCGACGAATGCAAGTTGTATTCATTATTTGTTTATCATCTCTGAACTATCCTGGAGTTCTGTCGATGTTGAATAATCTAATTCATATCTCGGCACTTGGAAAACTCTCGTGAGAAACATATGTACCAAGAAAAACTGATTCATGTCAACAAGATCCAACCACCACCACCTTCTTCTCCTCCTCTTCCGCTCGACGCCATCACCACGCACTTGAGAGAGAGAGAGAGAGAGAGAGAGAGAGAAACCCTAAGCCTCGCCCGCTATCCAGCCAAGCACCG ATGGCGACGGACGCGAACCC GGAGGCGGCGGCGCCGCCGCCGCAGTTACTGGTGGACGAGGGCTACGAGTTCTGCGCGCCCAAGTTCTTCGACTTCG TCTGCGACGAGACGGAGGAGGAAATCCGCGCCGCCGAGCGCTGGTTCGAGGCCTCCGCCAGCCACGCCCCTTCCC GTACGCTCCCCAATCCCCACCCCGCCGCCTCGATCATCCCCCCCTCTCCCGTGTTTTGCTTTTTTTGCGCTGATTAGGGCTCTTCTTCTTTTACCTGCTTGCAG CGTTCGCTCCGAGGATCAAGGAGTCGAGGGCGGAGGTCAAGATCGAGAGCCT CTGCGACTTCACCGACGCGGAGCCGATTCCGAAGG TACGAAGCAGAAAGCTGCGGGAATAACCCCCCAATTTTGCCCTAATTTCTGTAAATCTCCCCCCTTCTTATTGTCCGTTGGCCTCTGCGTTCGTCATGAT AGGAGGTAGCAGTGGAGGA GGCAGCAGGAAGCGCCGCCAATCCCTCGCAGAATTCTGATGGG TAAGAGTTGGAGAACTAAAGAAATTGTTTATGATGATTCGTTGTGATCTGATGAAGTTAATCGATTTCTCGTGTGTTTTTCATCTTCACTTTTGGATGTTCA GGAATGTGC AACAGAATAAGGACGGCTCCATCAAACTTGT ACGTGATTTCTTGATGTTTTCATGTTTTCTATGTTCTCAGTTTCAGTAAGTACTAGTGTTGGGTTTCTAGCAGCTCACATCCTGAATTCTTCAGGT CCATGAAGCAAATCCCAGTGAAAATTG TGTCACTGACGGCGATCATAAGCACCAAGAAAG GTGCATTTCAAGACCTCAATTTGTTGGTTCATTCC GTTTCTTGCTGGTTTTGGCATGTGAATGACTAATTGGTTGTTTTGGGCAG TGATGCAATGTTGGAGTCGCCACCAGCAGAGGAGGA TGAGAAGGAATCGCCAAAATCCTTCGAGTTTGTCCCTTCCAATGCAAAAT GTAAGTTGCTAGTTATATATGAGCAATGGCAGTGGGGAAGAACTCTGATCCCTGGATTTTGATATCAATGTTGCATGGCTTTAG CAGCAGATGTTGCTTCTAGC ACACCGAAGATTCAGAGGCCTCCACCCGTCAAAGCTGTCACTACGGTGCCTACCTGTCCCAAGCTGACAGTGAAGAC AGAAGCCTTCACTCCGAAGGTGCAGGCAACGAACTCCTCCAGAGGTCTTGCACCCTTGACTGGCTCAAGGGCACATC CATCTGCTTTGAAGCAGTCGATGAGCGTCAAGAGGAGTGTGATCAA GTAAGAGTCATGCTCACTCATAAAAAAATATATTAATCTGGAGATTATTTTCTTACTAATGTCTGAATTGTTGGTTTTTCAG ATGCCCTCGTGAGTTGCTGGCTGGGA AGGCCGCTACTGCTGCGAATGAAATCGCACAAGAAAATCAAGCTGTCAAGAGACAGAAGCTTGATGATGGGAGGACA AGACAG GTAATACTGGGATGAGATTAAAGATGGCACTTCAAATACATGTGTTTGCGTTGCGCGAGATTTCTGAGAAACATTGTGTTTGCCGTCGTGGTTAG ATACTGAACGTGAAGACAAGGACCCTGCCTCACAAGGGGAGAGGAGGTGGTCT AGCAGGAAGCACCGAGATGAGCCTGTCGGCCATGAGGAAGCACCGTGACGATTCACACTCTCTCAAGG TAGCTCCCAAGTTGCTCTTCTGACTCTTAAATGATAGACTTAATTGTAATGTTTCTTGTGAGAATGCAAGTATAATGTGATTTTGTTATTGTGAGCTTGGCACTTAGCAACTTTTGTTTCTGCCATGTGCAGG AAGT GACTCACTATATATCGGCAGCAGAGA TGGTAAAGAAGTTCGAGTCTGGGACTAGAGAGTTGGCCATCCCTCACAACAGATCGCTTTCTCATG TTAGCACTCATGTGCCCTTTATTATTAATTTTAAATTGTGTGCATTTCTCCAATTTTATTAATATACATGTCTTCTCAGTCTTGTTGTGGGTATTTGGTTCCATACAAAGACCGATGTCCTTTTTGTGATACTGATATCTGCATATCAAATATTGCACAGTTATTACATCTGAACCGTTGACGACGAAATCATTATTGGTACTAAGAATTTTGACATATTGCAATTTGTGCACAATGCAGG A GGATGCAGCAACCGCATTACAAAGAAGAACAAAGCTGATGCTAACAAGGCCAAAGGAACCTGAGTTCCAGACCTCCC ACAGGGTCCGTGCTGTCAGAGTGAAAAGCTCTGCTGAGCTAGAGGAGGAGATGCTAGCCAAAATTCCGAAGTTCAGA GCACGGCCGTTTAACAAAAAA GTGAGAAATTTGTTTGCTTTGGTTTTGATTATACTAACTACTCAATCCAGGATCTGAAGACTAACTATTTGTTTGCTTCTCCTTTCAG ATTGCGGAGGCCCCTTCATTTCCTCCTCTTCCAAGGAAAGCTCCA CAGCTTCCTGAATTTAATG TACGTCTTGTTTGGCTGATTCAGAAATTTATGAGCTCCACAGCTTTGTTTGGCTGATTCAGTTATTCCTTTCCAACACCTACAGG AGTTTCATCTTAAAACGATGGAGAGAGCTACACGACATGCAGACACCTGT TCCGAAGCTTCTTCCGTGGGGACTATCAGG GTAAGCTCCCTTCACTTAACCTGGTTGCTAATATCAGTATGTAAATTCTTCTTCTTATTAGTCTCCTAAAAATTAAAATTCTTGGCATTACTGAAAGTTTAATCAAATCTTGCAG AGTCAGAGC AGTAAGCCACTGACCTTGACAGCGCCAAAACCACC CCAACTTGAGACAGCATTACGAGCTAGACCACCAAGG TTTCCCTTTGCCACTTGCATCATTCAGAAAACAAGCCATTTTATGTTATTGATTATTTTCGATTACTCTAACATCATCTTTCTGCAGG GTGAAAAGTTCTCAGGAATTGGAACTAGAAGAATTAGAAAAGGCTCCCAAGTTCAAGGCAAAGCCACTGAA CAAAAAG GTCTCCTTATCTTCTTGAAGCTTGTACATTTGATACATTGATTGCATTGTGCTTCAAAACATCCAGTCTGAACATCATTTCTTGCAG ATTCTCGAGAGCAAGGGTGATATTGGTGTGTTTCCACATCTAAAGGCTCAACCAACAGCC CCCAAGGAATTCCATTTCTCTACCGATGATCGCTTGGGTCCTCCTGCAGTTGTGGATCTATTTGATAAG GTGAGGGTTCTAAGTCATGCTAGTAAGCTCATTATTTTTTTTCCAGAAACCTTTCTTCTAAGTCCTTTTCTATTTTGTAG CTCTC TCTTTGCTCAGAATCTTCATATCATAGCAAGAAAGATGTGCCCAGATTGACAATACCAAACCCCTTCAATTTACATA CAGAT GTAAGCAGTATGAAAGTTATTTGTTTTCCCAACACATTGCATTTACCTATCTGTTGCAGGCAAATAACTTTGTTATCCATGTTACAG GAAAGAGGGCATGAGAAAGAGAGGCAGCTAGCTGCACAACTGCTGCAAAAGCAATTACAGGA AGAGAAAGCCAGGATTCCGAAGGCTAATCCTTATCCCTACACAACTGACTATCCAGT GGTACGTGCAAAGTAACATACCGAATATTACATGTCCTGGTTGCTGACCATCTCATATTCTGCTAGCCTTAACATTTTCTCTCTCTTCA GATACCAC CGAAGCCTGAACCAAAACCATGCACGAGGCCAGAAGGCTTTCAGTTAGAGAGTTTGGTGAGGCATGAGATGGAGCAA CAGAGGATAATGGAAGA AAGAGAGAGGATGGAGAGGGAAGAGGCCCAGAGGAGAGTAGTGAAGGCACACCCCATAAT GAAAGAG TAAGCCTTCACATTACGGTTTCTCTTGTCCCAACAGTTCCTGGTTTCCCTTATAAGATGCATATTAATACTGTTAATTTTGTTGCAG GGATCCCATTCCTCTTCCAGAGAAAGAGAGGAAGCCTCTCACTGAAGTTCAACCACTTAA GTTACATGTTGATGAAAGGGCGGTCCAAAGATCAGAATTTGACAATATGGT CAGCAAAGCAAGCTTGTTCTATTATCTGGTTTGGAGGAGCCTGCCAAATTGGCTGAATTTACTGAGCAATTCGTTGTCGTGCAGGT GAAGGAAAAGGAAATAA CTTACAAGAGATTGCGAGAGGAAAATGAATTCGCACAAAAG GTTATTATTTTCTTATGCCTTCTTCTCAAAATCCCTACATTGTTGGATGCATTTTCATCTGTTCTGGCAACTAACTTGCTGTGATCTTTTCATGTGAAG ATTGAGGAAGAGAA AGCGTTGAAGCAGCTCAGGAGGACCTTGGTGCCACAAGCACGGCCTCTCCCGAAGTTTGACAGACCATTTCGTCCCC AGAG GTAAGAGCAGAAACGGCCAAGATTTTTGCCTACAATGTCATCGACCTTTCCGTTTCATCTCACAAACGTGAACTCGTTGTTTCGCACACAG ATCAACCAAGCAGGTGACGAGGCCGAAGTCCCCACAGCTTCAGGTCGACCAAAGAGGGG CAAGAAGGCACGCCTTCATCAGATGA TCCAACTCTCCGGCTCATCTTGTTGTCGTCTATCGGTTACCCACTGGCTGCTGCTGTTTTCTCTTCTGTTCTTGACGTCAAGATCATCCCCAATTCTCGCAGCGATTCTTTCTGACCAATACATAAATAGGCCGATCCAATCCTGTTATATAGTCAGTCAACACAGCTGACGGCGTGTGTATGCTCCTTTAGGGTTCTGCTGATGC TTGACTGCATTATTGTAAATTCAGTTTGTGTGCTGTGTGTGTGTGCTGTTCGATGAACGACAATAGGATGACACCCTGTCAGTGTCCTCCTCGTCTGTTTCGACGAATGCAAGTTGTATTCATTATTTGTTTATCATCTCTGAACTATCCTGGAGTTCTGTCGATGTTGAATAATCTAATTCATATCTCGGCACTTGGAAAACTCTCGTGAGAAACATATGTACCAAGAAAAACTGATTCATGTCAACAA

OsFLO18 CDS序列(SEQ ID NO:1):OsFLO18 CDS sequence (SEQ ID NO: 1):

ATGGCGACGGACGCGAACCCGGAGGCGGCGGCGCCGCCGCCGCAGTTACTGGTGGACGAGGGCTACGAGTTCTGCGCGCCCAAGTTCTTCGACTTCGTCTGCGACGAGACGGAGGAGGAAATCCGCGCCGCCGAGCGCTGGTTCGAGGCCTCCGCCAGCCACGCCCCTTCCCCGTTCGCTCCGAGGATCAAGGAGTCGAGGGCGGAGGTCAAGATCGAGAGCCTCTGCGACTTCACCGACGCGGAGCCGATTCCGAAGGAGGTAGCAGTGGAGGAGGCAGCAGGAAGCGCCGCCAATCCCTCGCAGAATTCTGATGGGAATGTGCAACAGAATAAGGACGGCTCCATCAAACTTGTCCATGAAGCAAATCCCAGTGAAAATTGTGTCACTGACGGCGATCATAAGCACCAAGAAAGTGATGCAATGTTGGAGTCGCCACCAGCAGAGGAGGATGAGAAGGAATCGCCAAAATCCTTCGAGTTTGTCCCTTCCAATGCAAAATCAGCAGATGTTGCTTCTAGCACACCGAAGATTCAGAGGCCTCCACCCGTCAAAGCTGTCACTACGGTGCCTACCTGTCCCAAGCTGACAGTGAAGACAGAAGCCTTCACTCCGAAGGTGCAGGCAACGAACTCCTCCAGAGGTCTTGCACCCTTGACTGGCTCAAGGGCACATCCATCTGCTTTGAAGCAGTCGATGAGCGTCAAGAGGAGTGTGATCAAATGCCCTCGTGAGTTGCTGGCTGGGAAGGCCGCTACTGCTGCGAATGAAATCGCACAAGAAAATCAAGCTGTCAAGAGACAGAAGCTTGATGATGGGAGGACAAGACAGATACTGAACGTGAAGACAAGGACCCTGCCTCACAAGGGGAGAGGAGGTGGTCTAGCAGGAAGCACCGAGATGAGCCTGTCGGCCATGAGGAAGCACCGTGACGATTCACACTCTCTCAAGGAAGTGACTCACTATATATCGGCAGCAGAGATGGTAAAGAAGTTCGAGTCTGGGACTAGAGAGTTGGCCATCCCTCACAACAGATCGCTTTCTCATGAGGATGCAGCAACCGCATTACAAAGAAGAACAAAGCTGATGCTAACAAGGCCAAAGGAACCTGAGTTCCAGACCTCCCACAGGGTCCGTGCTGTCAGAGTGAAAAGCTCTGCTGAGCTAGAGGAGGAGATGCTAGCCAAAATTCCGAAGTTCAGAGCACGGCCGTTTAACAAAAAAATTGCGGAGGCCCCTTCATTTCCTCCTCTTCCAAGGAAAGCTCCACAGCTTCCTGAATTTAATGAGTTTCATCTTAAAACGATGGAGAGAGCTACACGACATGCAGACACCTGTTCCGAAGCTTCTTCCGTGGGGACTATCAGGAGTCAGAGCAGTAAGCCACTGACCTTGACAGCGCCAAAACCACCCCAACTTGAGACAGCATTACGAGCTAGACCACCAAGGGTGAAAAGTTCTCAGGAATTGGAACTAGAAGAATTAGAAAAGGCTCCCAAGTTCAAGGCAAAGCCACTGAACAAAAAGATTCTCGAGAGCAAGGGTGATATTGGTGTGTTTCCACATCTAAAGGCTCAACCAACAGCCCCCAAGGAATTCCATTTCTCTACCGATGATCGCTTGGGTCCTCCTGCAGTTGTGGATCTATTTGATAAGCTCTCTCTTTGCTCAGAATCTTCATATCATAGCAAGAAAGATGTGCCCAGATTGACAATACCAAACCCCTTCAATTTACATACAGATGAAAGAGGGCATGAGAAAGAGAGGCAGCTAGCTGCACAACTGCTGCAAAAGCAATTACAGGAAGAGAAAGCCAGGATTCCGAAGGCTAATCCTTATCCCTACACAACTGACTATCCAGTGATACCACCGAAGCCTGAACCAAAACCATGCACGAGGCCAGAAGGCTTTCAGTTAGAGAGTTTGGTGAGGCATGAGATGGAGCAACAGAGGATAATGGAAGAAAGAGAGAGGATGGAGAGGGAAGAGGCCCAGAGGAGAGTAGTGAAGGCACACCCCATAATGAAAGAGGATCCCATTCCTCTTCCAGAGAAAGAGAGGAAGCCTCTCACTGAAGTTCAACCACTTAAGTTACATGTTGATGAAAGGGCGGTCCAAAGATCAGAATTTGACAATATGGTGAAGGAAAAGGAAATAACTTACAAGAGATTGCGAGAGGAAAATGAATTCGCACAAAAGATTGAGGAAGAGAAAGCGTTGAAGCAGCTCAGGAGGACCTTGGTGCCACAAGCACGGCCTCTCCCGAAGTTTGACAGACCATTTCGTCCCCAGAGATCAACCAAGCAGGTGACGAGGCCGAAGTCCCCACAGCTTCAGGTCGACCAAAGAGGGGCAAGAAGGCACGCCTTCATCAGATGAATGGCGACGGACGCGAACCCGGAGGCGGCGGCGCCGCCGCCGCAGTTACTGGTGGACGAGGGCTACGAGTTCTGCGCGCCCAAGTTCTTCGACTTCGTCTGCGACGAGACGGAGGAGGAAATCCGCGCCGCCGAGCGCTGGTTCGAGGCCTCCGCCAGCCACGCCCCTTCCCCGTTCGCTCCGAGGATCAAGGAGTCGAGGGCGGAGGTCAAGATCGAGAGCCTCTGCGACTTCACCGACGCGGAGCCGATTCCGAAGGAGGTAGCAGTGGAGGAGGCAGCAGGAAGCGCCGCCAATCCCTCGCAGAATTCTGATGGGAATGTGCAACAGAATAAGGACGGCTCCATCAAACTTGTCCATGAAGCAAATCCCAGTGAAAATTGTGTCACTGACGGCGATCATAAGCACCAAGAAAGTGATGCAATGTTGGAGTCGCCACCAGCAGAGGAGGATGAGAAGGAATCGCCAAAATCCTTCGAGTTTGTCCCTTCCAATGCAAAATCAGCAGATGTTGCTTCTAGCACACCGAAGATTCAGAGGCCTCCACCCGTCAAAGCTGTCACTACGGTGCCTACCTGTCCCAAGCTGACAGTGAAGACAGAAGCCTTCACTCCGAAGGTGCAGGCAACGAACTCCTCCAGAGGTCTTGCACCCTTGACTGGCTCAAGGGCACATCCATCTGCTTTGAAGCAGTCGATGAGCGTCAAGAGGAGTGTGATCAAATGCCCTCGTGAGTTGCTGGCTGGGAAGGCCGCTACTGCTGCGAATGAAATCGCACAAGAAAATCAAGCTGTCAAGAGACAGAAGCTTGATGATGGGAGGACAAGACAGATACTGAACGTGAAGACAAGGACCCTGCCTCACAAGGGGAGAGGAGGTGGTCTAGCAGGAAGCACCGAGATGAGCCTGTCGGCCATGAGGAAGCACCGTGACGATTCACACTCTCTCAAGGAAGTGACTCACTATATATCGGCAGCAGAGATGGTAAAGAAGTTCGAGT CTGGGACTAGAGAGTTGGCCATCCCTCACAACAGATCGCTTTCTCATGAGGATGCAGCAACCGCATTACAAAGAAGAACAAAGCTGATGCTAACAAGGCCAAAGGAACCTGAGTTCCAGACCTCCCACAGGGTCCGTGCTGTCAGAGTGAAAAGCTCTGCTGAGCTAGAGGAGGAGATGCTAGCCAAAATTCCGAAGTTCAGAGCACGGCCGTTTAACAAAAAAATTGCGGAGGCCCCTTCATTTCCTCCTCTTCCAAGGAAAGCTCCACAGCTTCCTGAATTTAATGAGTTTCATCTTAAAACGATGGAGAGAGCTACACGACATGCAGACACCTGTTCCGAAGCTTCTTCCGTGGGGACTATCAGGAGTCAGAGCAGTAAGCCACTGACCTTGACAGCGCCAAAACCACCCCAACTTGAGACAGCATTACGAGCTAGACCACCAAGGGTGAAAAGTTCTCAGGAATTGGAACTAGAAGAATTAGAAAAGGCTCCCAAGTTCAAGGCAAAGCCACTGAACAAAAAGATTCTCGAGAGCAAGGGTGATATTGGTGTGTTTCCACATCTAAAGGCTCAACCAACAGCCCCCAAGGAATTCCATTTCTCTACCGATGATCGCTTGGGTCCTCCTGCAGTTGTGGATCTATTTGATAAGCTCTCTCTTTGCTCAGAATCTTCATATCATAGCAAGAAAGATGTGCCCAGATTGACAATACCAAACCCCTTCAATTTACATACAGATGAAAGAGGGCATGAGAAAGAGAGGCAGCTAGCTGCACAACTGCTGCAAAAGCAATTACAGGAAGAGAAAGCCAGGATTCCGAAGGCTAATCCTTATCCCTACACAACTGACTATCCAGTGATACCACCGAAGCCTGAACCAAAACCATGCACGAGGCCAGAAGGCTTTCAGTTAGAGAGTTTGGTGAGGCATGAGATGGAGCAACAGAGGATAATGGAAGAAAGAGAGAGGATGGAGAGGGAAGAGGCCCAGAGGAG AGTAGTGAAGGCACACCCCATAATGAAAGAGGATCCCATTCCTCTTCCAGAGAAAGAGAGGAAGCCTCTCACTGAAGTTCAACCACTTAAGTTACATGTTGATGAAAGGGCGGTCCAAAGATCAGAATTTGACAATATGGTGAAGGAAAAGGAAATAACTTACAAGAGATTGCGAGAGGAAAATGAATTCGCACAAAAGATTGAGGAAGAGAAAGCGTTGAAGCAGCTCAGGAGGACCTTGGTGCCACAAGCACGGCCTCTCCCGAAGTTTGACAGACCATTTCGTCCCCAGAGATCAACCAAGCAGGTGACGAGGCCGAAGTCCCCACAGCTTCAGGTCGACCAAAGAGGGGCAAGAAGGCACGCCTTCATCAGATGA

OsFLO18蛋白序列(SEQ ID NO:2)OsFLO18 protein sequence (SEQ ID NO:2)

MATDANPEAAAPPPQLLVDEGYEFCAPKFFDFVCDETEEEIRAAERWFEASASHAPSPFAPRIKESRAEVKIESLCDFTDAEPIPKEVAVEEAAGSAANPSQNSDGNVQQNKDGSIKLVHEANPSENCVTDGDHKHQESDAMLESPPAEEDEKESPKSFEFVPSNAKSADVASSTPKIQRPPPVKAVTTVPTCPKLTVKTEAFTPKVQATNSSRGLAPLTGSRAHPSALKQSMSVKRSVIKCPRELLAGKAATAANEIAQENQAVKRQKLDDGRTRQILNVKTRTLPHKGRGGGLAGSTEMSLSAMRKHRDDSHSLKEVTHYISAAEMVKKFESGTRELAIPHNRSLSHEDAATALQRRTKLMLTRPKEPEFQTSHRVRAVRVKSSAELEEEMLAKIPKFRARPFNKKIAEAPSFPPLPRKAPQLPEFNEFHLKTMERATRHADTCSEASSVGTIRSQSSKPLTLTAPKPPQLETALRARPPRVKSSQELELEELEKAPKFKAKPLNKKILESKGDIGVFPHLKAQPTAPKEFHFSTDDRLGPPAVVDLFDKLSLCSESSYHSKKDVPRLTIPNPFNLHTDERGHEKERQLAAQLLQKQLQEEKARIPKANPYPYTTDYPVIPPKPEPKPCTRPEGFQLESLVRHEMEQQRIMEERERMEREEAQRRVVKAHPIMKEDPIPLPEKERKPLTEVQPLKLHVDERAVQRSEFDNMVKEKEITYKRLREENEFAQKIEEEKALKQLRRTLVPQARPLPKFDRPFRPQRSTKQVTRPKSPQLQVDQRGARRHAFIRMATDANPEAAAPPPQLLVDEGYEFCAPKFFDFVCDETEEEIRAAERWFEASASHAPSPFAPRIKESRAEVKIESLCDFTDAEPIPKEVAVEEAAGSAANPSQNSDGNVQQNKDGSIKLVHEANPSENCVTDGDHKHQESDAMLESPPAEEDEKESPKSFEFVPSNAKSADVASSTPKIQRPPPVKAVTTVPTCPKLTVKTEAFTPKVQATNSSRGLAPLTGSRAHPSALKQSMSVKRSVIKCPRELLAGKAATAANEIAQENQAVKRQKLDDGRTRQILNVKTRTLPHKGRGGGLAGSTEMSLSAMRKHRDDSHSLKEVTHYISAAEMVKKFESGTRELAIPHNRSLSHEDAATALQRRTKLMLTRPKEPEFQTSHRVRAVRVKSSAELEEEMLAKIPKFRARPFNKKIAEAPSFPPLPRKAPQLPEFNEFHLKTMERATRHADTCSEASSVGTIRSQSSKPLTLTAPKPPQLETALRARPPRVKSSQELELEELEKAPKFKAKPLNKKILESKGDIGVFPHLKAQPTAPKEFHFSTDDRLGPPAVVDLFDKLSLCSESSYHSKKDVPRLTIPNPFNLHTDERGHEKERQLAAQLLQKQLQEEKARIPKANPYPYTTDYPVIPPKPEPKPCTRPEGFQLESLVRHEMEQQRIMEERERMEREEAQRRVVKAHPIMKEDPIPLPEKERKPLTEVQPLKLHVDERAVQRSEFDNMVKEKEITYKRLREENEFAQKIEEEKALKQLRRTLVPQARPLPKFDRPFRPQRSTKQVTRPKSPQLQVDQRGARRHAFIR

用于扩增OsFLO18全长基因的扩增引物:Amplification primers used to amplify the full-length OsFLO18 gene:

PrimerF:GATCCAACCACCACCACCTTCTTCTCCTCCT(SEQ ID NO:4);PrimerF: GATCCAACCACCACCACCTTCTTCTCCTCCT (SEQ ID NO: 4);

PrimerR:TTGTTGACATGAATCAGTTTTTCTTGGTAC(SEQ ID NO:5)。PrimerR: TTGTTGACATGAATCAGTTTTTCTTGGTAC (SEQ ID NO: 5).

实施例1、候选基因分析Example 1. Candidate gene analysis

本发明人利用γ射线诱变的粳稻IL-9(Tohoku IL9),获得了稳定遗传的粉质胚乳突变体株系,本发明人将其命名为XA80。The inventors obtained a stably inherited farinaceous endosperm mutant line using japonica IL-9 (Tohoku IL9) mutagenized by γ-rays, which the inventors named XA80.

本发明人利用突变体材料XA80,通过与9311杂交,构建定位群体(图1a)。通过图位克隆将基因定位在水稻7号染色体19.25M至19.26M范围内,通过RAP-DB数据库检索相应位置的日本晴序列,设计引物扩增覆盖式片段,利用一代测序仪测序将突变体和野生型这一区域内的序列测通,本发明人发现,在突变体序列上有一个T到A的单碱基突变(图1b)。该突变正好位于LOC_Os07g32390的第18个外显子上。本发明人将LOC_Os07g32390基因定为候选基因,称为FLO18基因。The inventors used the mutant material XA80 to construct a targeting population by crossing with 9311 (Fig. 1a). The gene was located in the range of 19.25M to 19.26M on rice chromosome 7 by map-based cloning, the Nipponbare sequence at the corresponding position was searched through the RAP-DB database, primers were designed to amplify the covering fragment, and the mutant and wild Through the sequence detection in this region, the inventors found that there is a single-base mutation from T to A in the mutant sequence (Fig. 1b). This mutation is located exactly on exon 18 of LOC_Os07g32390. The inventors identified the LOC_Os07g32390 gene as a candidate gene, named as the FLO18 gene.

FLO18基因编码一个微管结合蛋白FLO18。全长5171个碱基。在突变体植株(XA80)中,第18个外显子上碱基T到A的突变使其氨基酸编码赖氨酸(AAG)变成了终止密码子(TAG),导致195个氨基酸的缺失,基因功能缺失。在RiceXPro(https://ricexpro.dna.affrc.go.jp/)数据库中对FLO18的基因时空表达谱进行比对,发现FLO18基因在水稻生殖生长阶段有特异表达,与植株表型相吻合。The FLO18 gene encodes a microtubule-binding protein, FLO18. The full length is 5171 bases. In the mutant plant (XA80), the mutation of the base T to A in exon 18 changes the amino acid encoding lysine (AAG) into a stop codon (TAG), resulting in a deletion of 195 amino acids, Loss of gene function. The gene spatiotemporal expression profiles of FLO18 were compared in the RiceXPro (https://ricexpro.dna.affrc.go.jp/) database, and it was found that the FLO18 gene was specifically expressed during the reproductive growth stage of rice, which was consistent with the plant phenotype.

针对FLO18基因,本发明人进行了在水稻中的同源性分析,利用FLO18蛋白序列在MSU网站数据库上获取拥有与FLO18相同结构功能域一共9个基因的蛋白序列,属于TPX2蛋白家族,该家族有的基因拥有多个转录本翻译成多个蛋白。随后用MEGA做聚类分析,采用Neightbor-joining法构建系统进化树。Bootstrap值设置为2000(如图1c),从结果中可以看出TPX2蛋白在水稻中分为两支,TPX2家族具有一定的功能保守性。For the FLO18 gene, the inventors conducted a homology analysis in rice, and used the FLO18 protein sequence to obtain the protein sequence of 9 genes with the same structural and functional domain as FLO18 on the MSU website database, belonging to the TPX2 protein family. Some genes have multiple transcripts translated into multiple proteins. Subsequently, MEGA was used for cluster analysis, and the Neightbor-joining method was used to construct a phylogenetic tree. The Bootstrap value was set to 2000 (as shown in Figure 1c). It can be seen from the results that the TPX2 protein is divided into two branches in rice, and the TPX2 family has certain functional conservation.

实施例2、基因定位群体构建及表型考察Example 2. Gene mapping population construction and phenotypic investigation

本实施例中,本发明人对XA80进行表型考察,将之与野生型植株进行比较。In this example, the inventors conducted a phenotypic investigation on XA80 and compared it with wild-type plants.

通过表型考察,本发明人发现,突变体与野生型植株相比,株高、株型、抽穗期无明显差异。代表性的植株的表型照片如图2a,左边为野生型,右边为突变体。Through phenotypic investigation, the inventors found that compared with the wild-type plant, the mutant has no significant difference in plant height, plant type and heading stage. Phenotypic photographs of representative plants are shown in Figure 2a, with the wild type on the left and the mutant on the right.

本发明人获取突变体与野生型植株的籽粒,脱去颖壳后进行比较。结果显示,大小籽粒差异明显,野生型籽粒透明均一(图2b的左上图),而突变体则是胚乳不透明(图2b的左下图),籽粒偏小。在体式镜下观察的突变体和野生型籽粒,野生型粒形饱满光滑,横断面透明晶莹紧致(图2b的右上图),为角质胚乳;突变体粒形皱缩、形状偏小,横断面粗糙疏松呈粉白色,为粉质胚乳(图2b的右下图)。The inventors obtained the grains of the mutant and wild-type plants, and compared them after removing the glumes. The results showed that there were obvious differences in the size of grains. The wild-type grains were transparent and uniform (the upper left panel of Fig. 2b), while the mutants had opaque endosperm (the lower left panel of Fig. 2b), and the kernels were smaller. The mutant and wild-type grains observed under the asana microscope, the wild-type grains are plump and smooth, the cross-section is transparent and crystal-clear and compact (the upper right picture of Figure 2b), which is horny endosperm; the mutant grains are shrunken and small in shape. The surface is rough, loose and powdery white, and is a silty endosperm (bottom right of Figure 2b).

通过万深种子扫描系统测量,野生型千粒重为19.6835±0.211克,突变体千粒重为15.9428±1.551克,突变体千粒重小于野生型19%,p-Value=0.004147,突变体千粒重显著低于野生型千粒重(图2c,左图)。The thousand-kernel weight of the wild type was 19.6835±0.211 g, and the thousand-kernel weight of the mutant was 15.9428±1.551 g. The thousand-kernel weight of the mutant was 19% less than that of the wild type, p-Value=0.004147, and the thousand-kernel weight of the mutant was significantly lower than that of the wild type. (Fig. 2c, left panel).

在水稻开花后,从第一天开始每隔3天,测定野生型与突变体水稻籽粒带颖壳的干重,绘制水稻灌浆速率(图2c,右图)。从结果可以看出,突变体的灌浆速率前3天与正常个体相比并没有明显,第6天开始干物质积累逐渐减缓(即:灌浆速率降低)。最终成熟后干重明显低于野生型。After rice flowering, every 3 days from the first day, the dry weight of grains with glumes in wild-type and mutant rice was measured, and the rice grain filling rate was plotted (Fig. 2c, right panel). It can be seen from the results that the grain filling rate of the mutants was not significant compared with the normal individuals in the first 3 days, and the dry matter accumulation gradually slowed down from the 6th day (ie: the grain filling rate decreased). The dry weight after final maturity was significantly lower than that of the wild type.

将脱壳后的籽粒进行统计和粒型的比较(图2d)。脱壳后的野生型粒长为4.8614±0.044cm,脱壳后突变体粒长为4.8771±0.040cm,p-Value=0.7625,二者没有区别。脱壳后野生型粒宽为2.4604±0.027cm,突变体粒宽为2.3099±0.040cm,p-Value=3.716e-11,突变体粒宽显著小于野生型粒宽。脱壳后的野生型粒厚为1.8923±0.016cm,脱壳后突变体粒厚为1.5811±0.038cm,p-Value<2.2e-16,突变体粒厚显著小于野生型粒厚。The dehulled grains were compared for statistics and grain shape (Fig. 2d). The grain length of the wild type after shelling was 4.8614±0.044cm, and the grain length of the mutant after shelling was 4.8771±0.040cm, p-Value=0.7625, there was no difference between the two. After shelling, the grain width of the wild type was 2.4604±0.027cm, and that of the mutant was 2.3099±0.040cm, p-Value=3.716e-11, and the grain width of the mutant was significantly smaller than that of the wild type. The grain thickness of the wild type after shelling was 1.8923±0.016cm, and the grain thickness of the mutant after shelling was 1.5811±0.038cm, p-Value<2.2e-16, and the grain thickness of the mutant was significantly smaller than that of the wild type.

在扫描电镜下对种子进行观察,从整粒种子来看,突变体种子干瘪,除纵轴方向的棱以外,在横轴方向也出现棱,从横断面看,野生型灌浆饱满,断裂面整齐。突变体灌浆不完全,断裂面粗糙,种皮和胚乳间存在空隙。从淀粉粒状态看,野生型淀粉粒发育完好,呈规则的结晶状,淀粉粒之间紧密排列。突变体淀粉发育不完全,淀粉颗粒明显偏小,淀粉粒呈小球状,淀粉粒之间空隙较大(图2e)。The seeds were observed under a scanning electron microscope. From the perspective of the whole seed, the mutant seeds were shriveled. In addition to the edges along the vertical axis, there were also edges along the horizontal axis. From the cross section, the wild type was full of filling and the fracture surface was neat. . The mutants had incomplete grain filling, rough fracture surfaces, and gaps between the seed coat and the endosperm. Judging from the state of starch granules, the wild-type starch granules were well developed and were regular crystalline, and the starch granules were closely arranged. The starch in the mutant was not fully developed, and the starch granules were obviously smaller, and the starch granules were spherical, and the space between the starch granules was larger (Fig. 2e).

通过对开花后2天(2DAF),4DAF,6DAF,8DAF,10DAF,12DAF进行取样,在光学显微镜和透射电镜下观察胚乳的细胞结构。通过半薄切片本发明人并没有观察到突变体与野生型相比明显的细胞结构差异,但是发现其染色的深浅存在一定的差别。在透射电镜下观察发现,突变体的淀粉体发育明显慢于野生型,而且晶体结构疏松,颗粒小;并且很少能观察到蛋白体的存在(图2f,g)。The cellular structure of endosperm was observed under light microscope and transmission electron microscope by sampling 2 days after flowering (2DAF), 4DAF, 6DAF, 8DAF, 10DAF, 12DAF. Through semi-thin sectioning, the inventors did not observe obvious difference in cell structure between the mutant and the wild type, but found that there was a certain difference in the depth of staining. Observation under transmission electron microscope showed that the development of amyloid in the mutant was significantly slower than that of the wild type, and the crystal structure was loose and the granules were small; and the existence of protein bodies was rarely observed (Fig. 2f, g).

实施例3、回补植株的建立Example 3. Establishment of replenishing plants

本发明人以IL9野生型植物的基因组为模板,以下述基因互补序列扩增引物进行扩增,获得含有FLO18基因、其启动子以及上下游部分区域(不含编码区)的序列(8619bp),将之克隆到pCAMBIA1300载体骨架上,构建获得互补载体FLO18-Complementary(FLO18-CP)。之后,本发明人通过诱导突变体XA80成熟胚分化成愈伤组织,采用农杆菌转化的方法,将目标载体进行转化,通过共培养、筛选、预分化、分化、生根一系列步骤,获得转基因植株。利用潮霉素引物和突变位点特异引物对转基因植株进行检测,筛选到转基因阳性植株。在T0和T1代对表型进行确认。The inventors used the genome of the IL9 wild-type plant as a template, and amplified with the following gene complementary sequence amplification primers to obtain a sequence (8619bp) containing the FLO18 gene, its promoter and upstream and downstream partial regions (excluding coding regions), It was cloned into the pCAMBIA1300 vector backbone to construct a complementary vector FLO18-Complementary (FLO18-CP). After that, the inventors transformed the target vector by inducing the mature embryos of the mutant XA80 to differentiate into callus, using the method of Agrobacterium transformation, and obtained transgenic plants through a series of steps of co-cultivation, screening, pre-differentiation, differentiation and rooting . The transgenic plants were detected using hygromycin primers and mutation site-specific primers, and transgenic positive plants were screened. Phenotypes were confirmed at T0 and T1 generations.

基因互补序列扩增引物:Gene complementary sequence amplification primers:

PrimerF:ATGTGTTCTTAATTGTGGGGATCAGAATTT(SEQ ID NO:6);PrimerF: ATGTGTTCTTAATTGTGGGGATCAGAATTT (SEQ ID NO: 6);

PrimerR:TTAGAAATCTCTTTGTTGCTAGCTGTTCTC(SEQ ID NO:7)。PrimerR: TTAGAAATCTCTTTGTTGCTAGCTGTTCTC (SEQ ID NO: 7).

对获得的T1回补植株的表型进行观测。结果显示,FLO18回补的XA80突变体呈现粳稻IL-9野生型的表型,其粒形饱满光滑,横断面透明晶莹紧致;其千粒重也与野生型植株的千粒重、粒宽和粒厚基本相同。The phenotype of the obtained T1 complemented plants was observed. The results showed that the XA80 mutant complemented by FLO18 showed the phenotype of japonica IL-9 wild-type, with plump and smooth grain shape, transparent and crystal-clear cross-section; its thousand-grain weight was also similar to that of wild-type plants. same.

实施例4、FLO18与细胞分裂相关进而调控胚乳品质Example 4. FLO18 is related to cell division and regulates endosperm quality

根据前述分析,本发明人考虑FLO18的功能缺失导致突变体植株的胚乳在细胞分裂时,细胞或者染色体不均等分裂。According to the aforementioned analysis, the present inventors considered that the loss of function of FLO18 resulted in unequal division of cells or chromosomes in the endosperm of mutant plants during cell division.

为了观察是否存在这一现象,本发明人选取XA80与IL9不同受精天数的胚乳。将材料固定后通过超薄切片在透射电镜下观察。本发明人发现在水稻6DAP(授粉后6天)的胚乳中,维管束周围的细胞中可以观察到细胞核。图中左边为正常个体,右边为突变体(如图3a),圆圈内为标识的细胞核。正常个体中的胚乳细胞核为深灰色,大小均一;而突变体个体的胚乳细胞核大小不一,有的和正常个体大小相差不大,有的则明显小得多。说明在胚乳发育过程中,突变体的确存在细胞核不均等分裂。In order to observe whether this phenomenon exists, the inventors selected the endosperm of XA80 and IL9 with different fertilization days. The material was fixed and observed under a transmission electron microscope by ultrathin sectioning. The present inventors found that in the endosperm of rice 6DAP (6 days after pollination), nuclei were observed in cells surrounding vascular bundles. The left side of the figure is the normal individual, the right side is the mutant (as shown in Figure 3a), and the circles are the marked nuclei. The endosperm nuclei in normal individuals are dark gray and uniform in size; however, the endosperm nuclei in mutants vary in size, some of which are similar in size to normal individuals, while others are significantly smaller. This indicated that during the development of endosperm, the mutant did have uneven division of nuclei.

因此,FLO18与细胞分裂相关进而调控胚乳品质。Therefore, FLO18 is associated with cell division and thus regulates endosperm quality.

实施例5、FLO18的亚细胞定位Example 5. Subcellular localization of FLO18

扩增FLO18全长CDS接在PA7-GFP载体的上游,构建PA7-GFP融合蛋白,将该融合蛋白转化水稻原生质体瞬时表达,同时共同转化mcherry-TUB6载体。在Zeiss LSM880激光共聚焦显微镜下观察。结果显示,FLO18主要在细胞质中大量表达,细胞膜和中央大液泡上没有表达(图3b)。The full-length CDS of FLO18 was amplified and connected upstream of the PA7-GFP vector to construct a PA7-GFP fusion protein. The fusion protein was transformed into rice protoplasts for transient expression and co-transformed into the mcherry-TUB6 vector. Observed under a Zeiss LSM880 laser confocal microscope. The results showed that FLO18 was abundantly expressed mainly in the cytoplasm, with no expression on the cell membrane and large central vacuole (Fig. 3b).

mcherry-TUB6主要用于标记微管蛋白,通过共转实验发现FLO18与TUB6存在共定位现象,说明FLO18与微管蛋白存在互作(图3c)。mcherry-TUB6 is mainly used to label tubulin, and the co-localization of FLO18 and TUB6 was found by co-transformation experiments, indicating that FLO18 interacts with tubulin (Figure 3c).

总结Summarize

本发明人克隆到基因FLO18,该基因在水稻胚乳发育过程中发挥了重要作用,具有通过控制胚乳细胞分裂和发育,影响胚乳整个结构的发育,进一步影响贮藏物质的积累从而影响胚乳品质。FLO18突变体产量降低但是却对每穗粒数,穗长,穗型没有显著影响。传统的品质育种中,随着品质的提升,产量会不可避免的下降。针对该基因的研究有利于本领域人员更深入地理解和解析细胞骨架在胚乳发育过程中的作用,为水稻等植物的高产优质育种提供了新的途径。The inventors cloned the gene FLO18, which plays an important role in the development of rice endosperm. It can control the division and development of endosperm cells, affect the development of the entire endosperm structure, and further affect the accumulation of storage substances, thereby affecting the quality of the endosperm. The yield of the FLO18 mutant was reduced but had no significant effect on the number of grains per panicle, panicle length and panicle shape. In traditional quality breeding, with the improvement of quality, the yield will inevitably decline. The research on this gene will help those in the art to better understand and analyze the role of the cytoskeleton in the development of endosperm, and provide a new way for high-yield and high-quality breeding of rice and other plants.

在本发明提及的所有文献都在本申请中引用作为参考,就如同每一篇文献被单独引用作为参考那样。此外应理解,在阅读了本发明的上述讲授内容之后,本领域技术人员可以对本发明作各种改动或修改,这些等价形式同样落于本申请所附权利要求书所限定的范围。All documents mentioned herein are incorporated by reference in this application as if each document were individually incorporated by reference. In addition, it should be understood that after reading the above teaching content of the present invention, those skilled in the art can make various changes or modifications to the present invention, and these equivalent forms also fall within the scope defined by the appended claims of the present application.

序列表sequence listing

<110> 中国科学院分子植物科学卓越创新中心<110> Center for Excellence and Innovation in Molecular Plant Science, Chinese Academy of Sciences

<120> 调控胚乳发育及品质的基因FLO18<120> Gene FLO18 regulating endosperm development and quality

<130> 20A634<130> 20A634

<160> 7<160> 7

<170> SIPOSequenceListing 1.0<170> SIPOSequenceListing 1.0

<210> 1<210> 1

<211> 2379<211> 2379

<212> DNA<212> DNA

<213> Oryza sativa L<213> Oryza sativa L

<400> 1<400> 1

atggcgacgg acgcgaaccc ggaggcggcg gcgccgccgc cgcagttact ggtggacgag 60atggcgacgg acgcgaaccc ggaggcggcg gcgccgccgc cgcagttact ggtggacgag 60

ggctacgagt tctgcgcgcc caagttcttc gacttcgtct gcgacgagac ggaggaggaa 120ggctacgagt tctgcgcgcc caagttcttc gacttcgtct gcgacgagac ggaggaggaa 120

atccgcgccg ccgagcgctg gttcgaggcc tccgccagcc acgccccttc cccgttcgct 180atccgcgccg ccgagcgctg gttcgaggcc tccgccagcc acgccccttc cccgttcgct 180

ccgaggatca aggagtcgag ggcggaggtc aagatcgaga gcctctgcga cttcaccgac 240ccgaggatca aggagtcgag ggcggaggtc aagatcgaga gcctctgcga cttcaccgac 240

gcggagccga ttccgaagga ggtagcagtg gaggaggcag caggaagcgc cgccaatccc 300gcggagccga ttccgaagga ggtagcagtg gaggaggcag caggaagcgc cgccaatccc 300

tcgcagaatt ctgatgggaa tgtgcaacag aataaggacg gctccatcaa acttgtccat 360tcgcagaatt ctgatgggaa tgtgcaacag aataaggacg gctccatcaa acttgtccat 360

gaagcaaatc ccagtgaaaa ttgtgtcact gacggcgatc ataagcacca agaaagtgat 420gaagcaaatc ccagtgaaaa ttgtgtcact gacggcgatc ataagcacca agaaagtgat 420

gcaatgttgg agtcgccacc agcagaggag gatgagaagg aatcgccaaa atccttcgag 480gcaatgttgg agtcgccacc agcagaggag gatgagaagg aatcgccaaa atccttcgag 480

tttgtccctt ccaatgcaaa atcagcagat gttgcttcta gcacaccgaa gattcagagg 540tttgtccctt ccaatgcaaa atcagcagat gttgcttcta gcacaccgaa gattcagagg 540

cctccacccg tcaaagctgt cactacggtg cctacctgtc ccaagctgac agtgaagaca 600cctccacccg tcaaagctgt cactacggtg cctacctgtc ccaagctgac agtgaagaca 600

gaagccttca ctccgaaggt gcaggcaacg aactcctcca gaggtcttgc acccttgact 660gaagccttca ctccgaaggt gcaggcaacg aactcctcca gaggtcttgc acccttgact 660

ggctcaaggg cacatccatc tgctttgaag cagtcgatga gcgtcaagag gagtgtgatc 720ggctcaaggg cacatccatc tgctttgaag cagtcgatga gcgtcaagag gagtgtgatc 720

aaatgccctc gtgagttgct ggctgggaag gccgctactg ctgcgaatga aatcgcacaa 780aaatgccctc gtgagttgct ggctgggaag gccgctactg ctgcgaatga aatcgcacaa 780

gaaaatcaag ctgtcaagag acagaagctt gatgatggga ggacaagaca gatactgaac 840gaaaatcaag ctgtcaagag acagaagctt gatgatggga ggacaagaca gatactgaac 840

gtgaagacaa ggaccctgcc tcacaagggg agaggaggtg gtctagcagg aagcaccgag 900gtgaagacaa ggaccctgcc tcacaagggg agaggaggtg gtctagcagg aagcaccgag 900

atgagcctgt cggccatgag gaagcaccgt gacgattcac actctctcaa ggaagtgact 960atgagcctgt cggccatgag gaagcaccgt gacgattcac actctctcaa ggaagtgact 960

cactatatat cggcagcaga gatggtaaag aagttcgagt ctgggactag agagttggcc 1020cactatatat cggcagcaga gatggtaaag aagttcgagt ctgggactag agagttggcc 1020

atccctcaca acagatcgct ttctcatgag gatgcagcaa ccgcattaca aagaagaaca 1080atccctcaca acagatcgct ttctcatgag gatgcagcaa ccgcattaca aagaagaaca 1080

aagctgatgc taacaaggcc aaaggaacct gagttccaga cctcccacag ggtccgtgct 1140aagctgatgc taacaaggcc aaaggaacct gagttccaga cctcccacag ggtccgtgct 1140

gtcagagtga aaagctctgc tgagctagag gaggagatgc tagccaaaat tccgaagttc 1200gtcagagtga aaagctctgc tgagctagag gaggagatgc tagccaaaat tccgaagttc 1200

agagcacggc cgtttaacaa aaaaattgcg gaggcccctt catttcctcc tcttccaagg 1260agagcacggc cgtttaacaa aaaaattgcg gaggcccctt catttcctcc tcttccaagg 1260

aaagctccac agcttcctga atttaatgag tttcatctta aaacgatgga gagagctaca 1320aaagctccac agcttcctga atttaatgag tttcatctta aaacgatgga gagagctaca 1320

cgacatgcag acacctgttc cgaagcttct tccgtgggga ctatcaggag tcagagcagt 1380cgacatgcag acacctgttc cgaagcttct tccgtgggga ctatcaggag tcagagcagt 1380

aagccactga ccttgacagc gccaaaacca ccccaacttg agacagcatt acgagctaga 1440aagccactga ccttgacagc gccaaaacca ccccaacttg agacagcatt acgagctaga 1440

ccaccaaggg tgaaaagttc tcaggaattg gaactagaag aattagaaaa ggctcccaag 1500ccaccaaggg tgaaaagttc tcaggaattg gaactagaag aattagaaaa ggctcccaag 1500

ttcaaggcaa agccactgaa caaaaagatt ctcgagagca agggtgatat tggtgtgttt 1560ttcaaggcaa agccactgaa caaaaagatt ctcgagagca agggtgatat tggtgtgttt 1560

ccacatctaa aggctcaacc aacagccccc aaggaattcc atttctctac cgatgatcgc 1620ccacatctaa aggctcaacc aacagccccc aaggaattcc atttctctac cgatgatcgc 1620

ttgggtcctc ctgcagttgt ggatctattt gataagctct ctctttgctc agaatcttca 1680ttgggtcctc ctgcagttgt ggatctattt gataagctct ctctttgctc agaatcttca 1680

tatcatagca agaaagatgt gcccagattg acaataccaa accccttcaa tttacataca 1740tatcatagca agaaagatgt gcccagattg acaataccaa accccttcaa tttacataca 1740

gatgaaagag ggcatgagaa agagaggcag ctagctgcac aactgctgca aaagcaatta 1800gatgaaagag ggcatgagaa agagaggcag ctagctgcac aactgctgca aaagcaatta 1800

caggaagaga aagccaggat tccgaaggct aatccttatc cctacacaac tgactatcca 1860caggaagaga aagccaggat tccgaaggct aatccttatc cctacacaac tgactatcca 1860

gtgataccac cgaagcctga accaaaacca tgcacgaggc cagaaggctt tcagttagag 1920gtgataccac cgaagcctga accaaaacca tgcacgaggc cagaaggctt tcagttagag 1920

agtttggtga ggcatgagat ggagcaacag aggataatgg aagaaagaga gaggatggag 1980agtttggtga ggcatgagat ggagcaacag aggataatgg aagaaagaga gaggatggag 1980

agggaagagg cccagaggag agtagtgaag gcacacccca taatgaaaga ggatcccatt 2040agggaagagg cccagaggag agtagtgaag gcacacccca taatgaaaga ggatcccatt 2040

cctcttccag agaaagagag gaagcctctc actgaagttc aaccacttaa gttacatgtt 2100cctcttccag agaaagagag gaagcctctc actgaagttc aaccacttaa gttacatgtt 2100

gatgaaaggg cggtccaaag atcagaattt gacaatatgg tgaaggaaaa ggaaataact 2160gatgaaaggg cggtccaaag atcagaattt gacaatatgg tgaaggaaaa ggaaataact 2160

tacaagagat tgcgagagga aaatgaattc gcacaaaaga ttgaggaaga gaaagcgttg 2220tacaagagat tgcgagagga aaatgaattc gcacaaaaga ttgaggaaga gaaagcgttg 2220

aagcagctca ggaggacctt ggtgccacaa gcacggcctc tcccgaagtt tgacagacca 2280aagcagctca ggaggacctt ggtgccacaa gcacggcctc tcccgaagtt tgacagacca 2280

tttcgtcccc agagatcaac caagcaggtg acgaggccga agtccccaca gcttcaggtc 2340tttcgtcccc agagatcaac caagcaggtg acgaggccga agtccccaca gcttcaggtc 2340

gaccaaagag gggcaagaag gcacgccttc atcagatga 2379gaccaaagag gggcaagaag gcacgccttc atcagatga 2379

<210> 2<210> 2

<211> 792<211> 792

<212> PRT<212> PRT

<213> Oryza sativa L<213> Oryza sativa L

<400> 2<400> 2

Met Ala Thr Asp Ala Asn Pro Glu Ala Ala Ala Pro Pro Pro Gln LeuMet Ala Thr Asp Ala Asn Pro Glu Ala Ala Ala Pro Pro Pro Gln Leu

1 5 10 151 5 10 15

Leu Val Asp Glu Gly Tyr Glu Phe Cys Ala Pro Lys Phe Phe Asp PheLeu Val Asp Glu Gly Tyr Glu Phe Cys Ala Pro Lys Phe Phe Asp Phe

20 25 30 20 25 30

Val Cys Asp Glu Thr Glu Glu Glu Ile Arg Ala Ala Glu Arg Trp PheVal Cys Asp Glu Thr Glu Glu Glu Ile Arg Ala Ala Glu Arg Trp Phe

35 40 45 35 40 45

Glu Ala Ser Ala Ser His Ala Pro Ser Pro Phe Ala Pro Arg Ile LysGlu Ala Ser Ala Ser His Ala Pro Ser Pro Phe Ala Pro Arg Ile Lys

50 55 60 50 55 60

Glu Ser Arg Ala Glu Val Lys Ile Glu Ser Leu Cys Asp Phe Thr AspGlu Ser Arg Ala Glu Val Lys Ile Glu Ser Leu Cys Asp Phe Thr Asp

65 70 75 8065 70 75 80

Ala Glu Pro Ile Pro Lys Glu Val Ala Val Glu Glu Ala Ala Gly SerAla Glu Pro Ile Pro Lys Glu Val Ala Val Glu Glu Ala Ala Gly Ser

85 90 95 85 90 95

Ala Ala Asn Pro Ser Gln Asn Ser Asp Gly Asn Val Gln Gln Asn LysAla Ala Asn Pro Ser Gln Asn Ser Asp Gly Asn Val Gln Gln Asn Lys

100 105 110 100 105 110

Asp Gly Ser Ile Lys Leu Val His Glu Ala Asn Pro Ser Glu Asn CysAsp Gly Ser Ile Lys Leu Val His Glu Ala Asn Pro Ser Glu Asn Cys

115 120 125 115 120 125

Val Thr Asp Gly Asp His Lys His Gln Glu Ser Asp Ala Met Leu GluVal Thr Asp Gly Asp His Lys His Gln Glu Ser Asp Ala Met Leu Glu

130 135 140 130 135 140

Ser Pro Pro Ala Glu Glu Asp Glu Lys Glu Ser Pro Lys Ser Phe GluSer Pro Pro Ala Glu Glu Asp Glu Lys Glu Ser Pro Lys Ser Phe Glu

145 150 155 160145 150 155 160

Phe Val Pro Ser Asn Ala Lys Ser Ala Asp Val Ala Ser Ser Thr ProPhe Val Pro Ser Asn Ala Lys Ser Ala Asp Val Ala Ser Ser Thr Pro

165 170 175 165 170 175

Lys Ile Gln Arg Pro Pro Pro Val Lys Ala Val Thr Thr Val Pro ThrLys Ile Gln Arg Pro Pro Pro Val Lys Ala Val Thr Thr Val Pro Thr

180 185 190 180 185 190

Cys Pro Lys Leu Thr Val Lys Thr Glu Ala Phe Thr Pro Lys Val GlnCys Pro Lys Leu Thr Val Lys Thr Glu Ala Phe Thr Pro Lys Val Gln

195 200 205 195 200 205

Ala Thr Asn Ser Ser Arg Gly Leu Ala Pro Leu Thr Gly Ser Arg AlaAla Thr Asn Ser Ser Arg Gly Leu Ala Pro Leu Thr Gly Ser Arg Ala

210 215 220 210 215 220

His Pro Ser Ala Leu Lys Gln Ser Met Ser Val Lys Arg Ser Val IleHis Pro Ser Ala Leu Lys Gln Ser Met Ser Val Lys Arg Ser Val Ile

225 230 235 240225 230 235 240

Lys Cys Pro Arg Glu Leu Leu Ala Gly Lys Ala Ala Thr Ala Ala AsnLys Cys Pro Arg Glu Leu Leu Ala Gly Lys Ala Ala Thr Ala Ala Asn

245 250 255 245 250 255

Glu Ile Ala Gln Glu Asn Gln Ala Val Lys Arg Gln Lys Leu Asp AspGlu Ile Ala Gln Glu Asn Gln Ala Val Lys Arg Gln Lys Leu Asp Asp

260 265 270 260 265 270

Gly Arg Thr Arg Gln Ile Leu Asn Val Lys Thr Arg Thr Leu Pro HisGly Arg Thr Arg Gln Ile Leu Asn Val Lys Thr Arg Thr Leu Pro His

275 280 285 275 280 285

Lys Gly Arg Gly Gly Gly Leu Ala Gly Ser Thr Glu Met Ser Leu SerLys Gly Arg Gly Gly Gly Leu Ala Gly Ser Thr Glu Met Ser Leu Ser

290 295 300 290 295 300

Ala Met Arg Lys His Arg Asp Asp Ser His Ser Leu Lys Glu Val ThrAla Met Arg Lys His Arg Asp Asp Ser His Ser Leu Lys Glu Val Thr

305 310 315 320305 310 315 320

His Tyr Ile Ser Ala Ala Glu Met Val Lys Lys Phe Glu Ser Gly ThrHis Tyr Ile Ser Ala Ala Glu Met Val Lys Lys Phe Glu Ser Gly Thr

325 330 335 325 330 335

Arg Glu Leu Ala Ile Pro His Asn Arg Ser Leu Ser His Glu Asp AlaArg Glu Leu Ala Ile Pro His Asn Arg Ser Leu Ser His Glu Asp Ala

340 345 350 340 345 350

Ala Thr Ala Leu Gln Arg Arg Thr Lys Leu Met Leu Thr Arg Pro LysAla Thr Ala Leu Gln Arg Arg Thr Lys Leu Met Leu Thr Arg Pro Lys

355 360 365 355 360 365

Glu Pro Glu Phe Gln Thr Ser His Arg Val Arg Ala Val Arg Val LysGlu Pro Glu Phe Gln Thr Ser His Arg Val Arg Ala Val Arg Val Lys

370 375 380 370 375 380

Ser Ser Ala Glu Leu Glu Glu Glu Met Leu Ala Lys Ile Pro Lys PheSer Ser Ala Glu Leu Glu Glu Glu Met Leu Ala Lys Ile Pro Lys Phe

385 390 395 400385 390 395 400

Arg Ala Arg Pro Phe Asn Lys Lys Ile Ala Glu Ala Pro Ser Phe ProArg Ala Arg Pro Phe Asn Lys Lys Ile Ala Glu Ala Pro Ser Phe Pro

405 410 415 405 410 415

Pro Leu Pro Arg Lys Ala Pro Gln Leu Pro Glu Phe Asn Glu Phe HisPro Leu Pro Arg Lys Ala Pro Gln Leu Pro Glu Phe Asn Glu Phe His

420 425 430 420 425 430

Leu Lys Thr Met Glu Arg Ala Thr Arg His Ala Asp Thr Cys Ser GluLeu Lys Thr Met Glu Arg Ala Thr Arg His Ala Asp Thr Cys Ser Glu

435 440 445 435 440 445

Ala Ser Ser Val Gly Thr Ile Arg Ser Gln Ser Ser Lys Pro Leu ThrAla Ser Ser Val Gly Thr Ile Arg Ser Gln Ser Ser Lys Pro Leu Thr

450 455 460 450 455 460

Leu Thr Ala Pro Lys Pro Pro Gln Leu Glu Thr Ala Leu Arg Ala ArgLeu Thr Ala Pro Lys Pro Pro Gln Leu Glu Thr Ala Leu Arg Ala Arg

465 470 475 480465 470 475 480

Pro Pro Arg Val Lys Ser Ser Gln Glu Leu Glu Leu Glu Glu Leu GluPro Pro Arg Val Lys Ser Ser Gln Glu Leu Glu Leu Glu Glu Leu Glu

485 490 495 485 490 495

Lys Ala Pro Lys Phe Lys Ala Lys Pro Leu Asn Lys Lys Ile Leu GluLys Ala Pro Lys Phe Lys Ala Lys Pro Leu Asn Lys Lys Ile Leu Glu

500 505 510 500 505 510

Ser Lys Gly Asp Ile Gly Val Phe Pro His Leu Lys Ala Gln Pro ThrSer Lys Gly Asp Ile Gly Val Phe Pro His Leu Lys Ala Gln Pro Thr

515 520 525 515 520 525

Ala Pro Lys Glu Phe His Phe Ser Thr Asp Asp Arg Leu Gly Pro ProAla Pro Lys Glu Phe His Phe Ser Thr Asp Asp Arg Leu Gly Pro Pro

530 535 540 530 535 540

Ala Val Val Asp Leu Phe Asp Lys Leu Ser Leu Cys Ser Glu Ser SerAla Val Val Asp Leu Phe Asp Lys Leu Ser Leu Cys Ser Glu Ser Ser

545 550 555 560545 550 555 560

Tyr His Ser Lys Lys Asp Val Pro Arg Leu Thr Ile Pro Asn Pro PheTyr His Ser Lys Lys Asp Val Pro Arg Leu Thr Ile Pro Asn Pro Phe

565 570 575 565 570 575

Asn Leu His Thr Asp Glu Arg Gly His Glu Lys Glu Arg Gln Leu AlaAsn Leu His Thr Asp Glu Arg Gly His Glu Lys Glu Arg Gln Leu Ala

580 585 590 580 585 590

Ala Gln Leu Leu Gln Lys Gln Leu Gln Glu Glu Lys Ala Arg Ile ProAla Gln Leu Leu Gln Lys Gln Leu Gln Glu Glu Lys Ala Arg Ile Pro

595 600 605 595 600 605

Lys Ala Asn Pro Tyr Pro Tyr Thr Thr Asp Tyr Pro Val Ile Pro ProLys Ala Asn Pro Tyr Pro Tyr Thr Thr Asp Tyr Pro Val Ile Pro Pro

610 615 620 610 615 620

Lys Pro Glu Pro Lys Pro Cys Thr Arg Pro Glu Gly Phe Gln Leu GluLys Pro Glu Pro Lys Pro Cys Thr Arg Pro Glu Gly Phe Gln Leu Glu

625 630 635 640625 630 635 640

Ser Leu Val Arg His Glu Met Glu Gln Gln Arg Ile Met Glu Glu ArgSer Leu Val Arg His Glu Met Glu Gln Gln Arg Ile Met Glu Glu Arg

645 650 655 645 650 655

Glu Arg Met Glu Arg Glu Glu Ala Gln Arg Arg Val Val Lys Ala HisGlu Arg Met Glu Arg Glu Glu Ala Gln Arg Arg Val Val Lys Ala His

660 665 670 660 665 670

Pro Ile Met Lys Glu Asp Pro Ile Pro Leu Pro Glu Lys Glu Arg LysPro Ile Met Lys Glu Asp Pro Ile Pro Leu Pro Glu Lys Glu Arg Lys

675 680 685 675 680 685

Pro Leu Thr Glu Val Gln Pro Leu Lys Leu His Val Asp Glu Arg AlaPro Leu Thr Glu Val Gln Pro Leu Lys Leu His Val Asp Glu Arg Ala

690 695 700 690 695 700

Val Gln Arg Ser Glu Phe Asp Asn Met Val Lys Glu Lys Glu Ile ThrVal Gln Arg Ser Glu Phe Asp Asn Met Val Lys Glu Lys Glu Ile Thr

705 710 715 720705 710 715 720

Tyr Lys Arg Leu Arg Glu Glu Asn Glu Phe Ala Gln Lys Ile Glu GluTyr Lys Arg Leu Arg Glu Glu Asn Glu Phe Ala Gln Lys Ile Glu Glu

725 730 735 725 730 735

Glu Lys Ala Leu Lys Gln Leu Arg Arg Thr Leu Val Pro Gln Ala ArgGlu Lys Ala Leu Lys Gln Leu Arg Arg Thr Leu Val Pro Gln Ala Arg

740 745 750 740 745 750

Pro Leu Pro Lys Phe Asp Arg Pro Phe Arg Pro Gln Arg Ser Thr LysPro Leu Pro Lys Phe Asp Arg Pro Phe Arg Pro Gln Arg Ser Thr Lys

755 760 765 755 760 765

Gln Val Thr Arg Pro Lys Ser Pro Gln Leu Gln Val Asp Gln Arg GlyGln Val Thr Arg Pro Lys Ser Pro Gln Leu Gln Val Asp Gln Arg Gly

770 775 780 770 775 780

Ala Arg Arg His Ala Phe Ile ArgAla Arg Arg His Ala Phe Ile Arg

785 790785 790

<210> 3<210> 3

<211> 5171<211> 5171

<212> DNA<212> DNA

<213> Oryza sativa L<213> Oryza sativa L

<400> 3<400> 3

gatccaacca ccaccacctt cttctcctcc tcttccgctc gacgccatca ccacgcactt 60gatccaacca ccaccacctt cttctcctcc tcttccgctc gacgccatca ccacgcactt 60

gagagagaga gagagagaga gagagagaga aaccctaagc ctcgcccgct atccagccaa 120gagagagaga gagagagaga gagagagaga aaccctaagc ctcgcccgct atccagccaa 120

gcaccgatgg cgacggacgc gaacccggag gcggcggcgc cgccgccgca gttactggtg 180gcaccgatgg cgacggacgc gaacccggag gcggcggcgc cgccgccgca gttactggtg 180

gacgagggct acgagttctg cgcgcccaag ttcttcgact tcgtctgcga cgagacggag 240gacgagggct acgagttctg cgcgcccaag ttcttcgact tcgtctgcga cgagacggag 240

gaggaaatcc gcgccgccga gcgctggttc gaggcctccg ccagccacgc cccttcccgt 300gaggaaatcc gcgccgccga gcgctggttc gaggcctccg ccagccacgc cccttcccgt 300

acgctcccca atccccaccc cgccgcctcg atcatccccc cctctcccgt gttttgcttt 360acgctcccca atccccaccc cgccgcctcg atcatccccc cctctcccgt gttttgcttt 360

ttttgcgctg attagggctc ttcttctttt acctgcttgc agcgttcgct ccgaggatca 420ttttgcgctg attagggctc ttcttctttt acctgcttgc agcgttcgct ccgaggatca 420

aggagtcgag ggcggaggtc aagatcgaga gcctctgcga cttcaccgac gcggagccga 480aggagtcgag ggcggaggtc aagatcgaga gcctctgcga cttcaccgac gcggagccga 480

ttccgaaggt acgaagcaga aagctgcggg aataaccccc caattttgcc ctaatttctg 540ttccgaaggt acgaagcaga aagctgcggg aataaccccc caattttgcc ctaatttctg 540

taaatctccc cccttcttat tgtccgttgg cctctgcgtt cgtcatgata ggaggtagca 600taaatctccc cccttcttat tgtccgttgg cctctgcgtt cgtcatgata ggaggtagca 600

gtggaggagg cagcaggaag cgccgccaat ccctcgcaga attctgatgg gtaagagttg 660gtggaggagg cagcaggaag cgccgccaat ccctcgcaga attctgatgg gtaagagttg 660

gagaactaaa gaaattgttt atgatgattc gttgtgatct gatgaagtta atcgatttct 720gagaactaaa gaaattgttt atgatgattc gttgtgatct gatgaagtta atcgatttct 720

cgtgtgtttt tcatcttcac ttttggatgt tcaggaatgt gcaacagaat aaggacggct 780cgtgtgtttt tcatcttcac ttttggatgt tcaggaatgt gcaacagaat aaggacggct 780

ccatcaaact tgtacgtgat ttcttgatgt tttcatgttt tctatgttct cagtttcagt 840ccatcaaact tgtacgtgat ttcttgatgt tttcatgttt tctatgttct cagtttcagt 840

aagtactagt gttgggtttc tagcagctca catcctgaat tcttcaggtc catgaagcaa 900aagtactagt gttgggtttc tagcagctca catcctgaat tcttcaggtc catgaagcaa 900

atcccagtga aaattgtgtc actgacggcg atcataagca ccaagaaagg tgcatttcaa 960atcccagtga aaattgtgtc actgacggcg atcataagca ccaagaaagg tgcatttcaa 960

gacctcaatt tgttggttca ttccgtttct tgctggtttt ggcatgtgaa tgactaattg 1020gacctcaatt tgttggttca ttccgtttct tgctggtttt ggcatgtgaa tgactaattg 1020

gttgttttgg gcagtgatgc aatgttggag tcgccaccag cagaggagga tgagaaggaa 1080gttgttttgg gcagtgatgc aatgttggag tcgccaccag cagaggagga tgagaaggaa 1080

tcgccaaaat ccttcgagtt tgtcccttcc aatgcaaaat gtaagttgct agttatatat 1140tcgccaaaat ccttcgagtt tgtcccttcc aatgcaaaat gtaagttgct agttatatat 1140

gagcaatggc agtggggaag aactctgatc cctggatttt gatatcaatg ttgcatggct 1200gagcaatggc agtggggaag aactctgatc cctggatttt gatatcaatg ttgcatggct 1200

ttagcagcag atgttgcttc tagcacaccg aagattcaga ggcctccacc cgtcaaagct 1260ttagcagcag atgttgcttc tagcacaccg aagattcaga ggcctccacc cgtcaaagct 1260

gtcactacgg tgcctacctg tcccaagctg acagtgaaga cagaagcctt cactccgaag 1320gtcactacgg tgcctacctg tcccaagctg acagtgaaga cagaagcctt cactccgaag 1320

gtgcaggcaa cgaactcctc cagaggtctt gcacccttga ctggctcaag ggcacatcca 1380gtgcaggcaa cgaactcctc cagaggtctt gcacccttga ctggctcaag ggcacatcca 1380

tctgctttga agcagtcgat gagcgtcaag aggagtgtga tcaagtaaga gtcatgctca 1440tctgctttga agcagtcgat gagcgtcaag aggagtgtga tcaagtaaga gtcatgctca 1440

ctcataaaaa aatatattaa tctggagatt attttcttac taatgtctga attgttggtt 1500ctcataaaaa aatatattaa tctggagatt attttcttac taatgtctga attgttggtt 1500

tttcagatgc cctcgtgagt tgctggctgg gaaggccgct actgctgcga atgaaatcgc 1560tttcagatgc cctcgtgagt tgctggctgg gaaggccgct actgctgcga atgaaatcgc 1560

acaagaaaat caagctgtca agagacagaa gcttgatgat gggaggacaa gacaggtaat 1620acaagaaaat caagctgtca agagacagaa gcttgatgat gggaggacaa gacaggtaat 1620

actgggatga gattaaagat ggcacttcaa atacatgtgt ttgcgttgcg cgagatttct 1680actgggatga gattaaagat ggcacttcaa atacatgtgt ttgcgttgcg cgagatttct 1680

gagaaacatt gtgtttgccg tcgtggttag atactgaacg tgaagacaag gaccctgcct 1740gagaaacatt gtgtttgccg tcgtggttag atactgaacg tgaagacaag gaccctgcct 1740

cacaagggga gaggaggtgg tctagcagga agcaccgaga tgagcctgtc ggccatgagg 1800cacaagggga gaggaggtgg tctagcagga agcaccgaga tgagcctgtc ggccatgagg 1800

aagcaccgtg acgattcaca ctctctcaag gtagctccca agttgctctt ctgactctta 1860aagcaccgtg acgattcaca ctctctcaag gtagctccca agttgctctt ctgactctta 1860

aatgatagac ttaattgtaa tgtttcttgt gagaatgcaa gtataatgtg attttgttat 1920aatgatagac ttaattgtaa tgtttcttgt gagaatgcaa gtataatgtg attttgttat 1920

tgtgagcttg gcacttagca acttttgttt ctgccatgtg caggaagtga ctcactatat 1980tgtgagcttg gcacttagca acttttgttt ctgccatgtg caggaagtga ctcactatat 1980

atcggcagca gagatggtaa agaagttcga gtctgggact agagagttgg ccatccctca 2040atcggcagca gagatggtaa agaagttcga gtctgggact agagagttgg ccatccctca 2040

caacagatcg ctttctcatg ttagcactca tgtgcccttt attattaatt ttaaattgtg 2100caacagatcg ctttctcatg ttagcactca tgtgcccttt attattaatt ttaaattgtg 2100

tgcatttctc caattttatt aatatacatg tcttctcagt cttgttgtgg gtatttggtt 2160tgcatttctc caattttatt aatatacatg tcttctcagt cttgttgtgg gtatttggtt 2160

ccatacaaag accgatgtcc tttttgtgat actgatatct gcatatcaaa tattgcacag 2220ccatacaaag accgatgtcc tttttgtgat actgatatct gcatatcaaa tattgcacag 2220

ttattacatc tgaaccgttg acgacgaaat cattattggt actaagaatt ttgacatatt 2280ttattacatc tgaaccgttg acgacgaaat cattattggt actaagaatt ttgacatatt 2280

gcaatttgtg cacaatgcag gaggatgcag caaccgcatt acaaagaaga acaaagctga 2340gcaatttgtg cacaatgcag gaggatgcag caaccgcatt acaaagaaga acaaagctga 2340

tgctaacaag gccaaaggaa cctgagttcc agacctccca cagggtccgt gctgtcagag 2400tgctaacaag gccaaaggaa cctgagttcc agacctccca cagggtccgt gctgtcagag 2400

tgaaaagctc tgctgagcta gaggaggaga tgctagccaa aattccgaag ttcagagcac 2460tgaaaagctc tgctgagcta gaggaggaga tgctagccaa aattccgaag ttcagagcac 2460

ggccgtttaa caaaaaagtg agaaatttgt ttgctttggt tttgattata ctaactactc 2520ggccgtttaa caaaaaagtg agaaatttgt ttgctttggt tttgattata ctaactactc 2520

aatccaggat ctgaagacta actatttgtt tgcttctcct ttcagattgc ggaggcccct 2580aatccaggat ctgaagacta actatttgtt tgcttctcct ttcagattgc ggaggcccct 2580

tcatttcctc ctcttccaag gaaagctcca cagcttcctg aatttaatgt acgtcttgtt 2640tcatttcctc ctcttccaag gaaagctcca cagcttcctg aatttaatgt acgtcttgtt 2640

tggctgattc agaaatttat gagctccaca gctttgtttg gctgattcag ttattccttt 2700tggctgattc agaaatttat gagctccaca gctttgtttg gctgattcag ttattccttt 2700

ccaacaccta caggagtttc atcttaaaac gatggagaga gctacacgac atgcagacac 2760ccaacaccta caggagttttc atcttaaaac gatggagaga gctacacgac atgcagacac 2760

ctgttccgaa gcttcttccg tggggactat cagggtaagc tcccttcact taacctggtt 2820ctgttccgaa gcttcttccg tggggactat cagggtaagc tcccttcact taacctggtt 2820

gctaatatca gtatgtaaat tcttcttctt attagtctcc taaaaattaa aattcttggc 2880gctaatatca gtatgtaaat tcttcttctt attagtctcc taaaaattaa aattcttggc 2880

attactgaaa gtttaatcaa atcttgcaga gtcagagcag taagccactg accttgacag 2940attactgaaa gtttaatcaa atcttgcaga gtcagagcag taagccactg accttgacag 2940

cgccaaaacc accccaactt gagacagcat tacgagctag accaccaagg tttccctttg 3000cgccaaaacc accccaactt gagacagcat tacgagctag accaccaagg tttccctttg 3000

ccacttgcat cattcagaaa acaagccatt ttatgttatt gattattttc gattactcta 3060ccacttgcat cattcagaaa acaagccatt ttatgttatt gattattttc gattactcta 3060

acatcatctt tctgcagggt gaaaagttct caggaattgg aactagaaga attagaaaag 3120acatcatctt tctgcagggt gaaaagttct caggaattgg aactagaaga attagaaaag 3120

gctcccaagt tcaaggcaaa gccactgaac aaaaaggtct ccttatcttc ttgaagcttg 3180gctcccaagt tcaaggcaaa gccactgaac aaaaaggtct ccttatcttc ttgaagcttg 3180

tacatttgat acattgattg cattgtgctt caaaacatcc agtctgaaca tcatttcttg 3240tacatttgat acattgattg cattgtgctt caaaacatcc agtctgaaca tcatttcttg 3240

cagattctcg agagcaaggg tgatattggt gtgtttccac atctaaaggc tcaaccaaca 3300cagattctcg agagcaaggg tgatattggt gtgtttccac atctaaaggc tcaaccaaca 3300

gcccccaagg aattccattt ctctaccgat gatcgcttgg gtcctcctgc agttgtggat 3360gcccccaagg aattccattt ctctaccgat gatcgcttgg gtcctcctgc agttgtggat 3360

ctatttgata aggtgagggt tctaagtcat gctagtaagc tcattatttt ttttccagaa 3420ctatttgata aggtgagggt tctaagtcat gctagtaagc tcattatttt ttttccagaa 3420

acctttcttc taagtccttt tctattttgt agctctctct ttgctcagaa tcttcatatc 3480acctttcttc taagtccttt tctattttgt agctctctct ttgctcagaa tcttcatatc 3480

atagcaagaa agatgtgccc agattgacaa taccaaaccc cttcaattta catacagatg 3540atagcaagaa agatgtgccc agattgacaa taccaaaccc cttcaattta catacagatg 3540

taagcagtat gaaagttatt tgttttccca acacattgca tttacctatc tgttgcaggc 3600taagcagtat gaaagttatt tgttttccca acacattgca tttacctatc tgttgcaggc 3600

aaataacttt gttatccatg ttacaggaaa gagggcatga gaaagagagg cagctagctg 3660aaataacttt gttatccatg ttacaggaaa gagggcatga gaaagagagg cagctagctg 3660

cacaactgct gcaaaagcaa ttacaggaag agaaagccag gattccgaag gctaatcctt 3720cacaactgct gcaaaagcaa ttacaggaag agaaagccag gattccgaag gctaatcctt 3720

atccctacac aactgactat ccagtggtac gtgcaaagta acataccgaa tattacatgt 3780atccctacac aactgactat ccagtggtac gtgcaaagta acataccgaa tattacatgt 3780

cctggttgct gaccatctca tattctgcta gccttaacat tttctctctc ttcagatacc 3840cctggttgct gaccatctca tattctgcta gccttaacat tttctctctc ttcagatacc 3840

accgaagcct gaaccaaaac catgcacgag gccagaaggc tttcagttag agagtttggt 3900accgaagcct gaaccaaaac catgcacgag gccagaaggc tttcagttag agagtttggt 3900

gaggcatgag atggagcaac agaggataat ggaagaaaga gagaggatgg agagggaaga 3960gaggcatgag atggagcaac agaggataat ggaagaaaga gagaggatgg agagggaaga 3960

ggcccagagg agagtagtga aggcacaccc cataatgaaa gagtaagcct tcacattacg 4020ggcccagagg agagtagtga aggcacaccc cataatgaaa gagtaagcct tcacattacg 4020

gtttctcttg tcccaacagt tcctggtttc ccttataaga tgcatattaa tactgttaat 4080gtttctcttg tcccaacagt tcctggtttc ccttataaga tgcatattaa tactgttaat 4080

tttgttgcag ggatcccatt cctcttccag agaaagagag gaagcctctc actgaagttc 4140tttgttgcag ggatcccatt cctcttccag agaaagagag gaagcctctc actgaagttc 4140

aaccacttaa gttacatgtt gatgaaaggg cggtccaaag atcagaattt gacaatatgg 4200aaccacttaa gttacatgtt gatgaaaggg cggtccaaag atcagaattt gacaatatgg 4200

tcagcaaagc aagcttgttc tattatctgg tttggaggag cctgccaaat tggctgaatt 4260tcagcaaagc aagcttgttc tattatctgg tttggaggag cctgccaaat tggctgaatt 4260

tactgagcaa ttcgttgtcg tgcaggtgaa ggaaaaggaa ataacttaca agagattgcg 4320tactgagcaa ttcgttgtcg tgcaggtgaa ggaaaaggaa ataacttaca agagattgcg 4320

agaggaaaat gaattcgcac aaaaggttat tattttctta tgccttcttc tcaaaatccc 4380agaggaaaat gaattcgcac aaaaggttat tattttctta tgccttcttc tcaaaatccc 4380

tacattgttg gatgcatttt catctgttct ggcaactaac ttgctgtgat cttttcatgt 4440tacattgttg gatgcatttt catctgttct ggcaactaac ttgctgtgat cttttcatgt 4440

gaagattgag gaagagaaag cgttgaagca gctcaggagg accttggtgc cacaagcacg 4500gaagattgag gaagagaaag cgttgaagca gctcaggagg accttggtgc cacaagcacg 4500

gcctctcccg aagtttgaca gaccatttcg tccccagagg taagagcaga aacggccaag 4560gcctctcccg aagtttgaca gaccatttcg tccccagagg taagagcaga aacggccaag 4560

atttttgcct acaatgtcat cgacctttcc gtttcatctc acaaacgtga actcgttgtt 4620atttttgcct acaatgtcat cgacctttcc gtttcatctc acaaacgtga actcgttgtt 4620

tcgcacacag atcaaccaag caggtgacga ggccgaagtc cccacagctt caggtcgacc 4680tcgcacacag atcaaccaag caggtgacga ggccgaagtc cccacagctt caggtcgacc 4680

aaagaggggc aagaaggcac gccttcatca gatgatccaa ctctccggct catcttgttg 4740aaagaggggc aagaaggcac gccttcatca gatgatccaa ctctccggct catcttgttg 4740

tcgtctatcg gttacccact ggctgctgct gttttctctt ctgttcttga cgtcaagatc 4800tcgtctatcg gttacccact ggctgctgct gttttctctt ctgttcttga cgtcaagatc 4800

atccccaatt ctcgcagcga ttctttctga ccaatacata aataggccga tccaatcctg 4860atccccaatt ctcgcagcga ttctttctga ccaatacata aataggccga tccaatcctg 4860

ttatatagtc agtcaacaca gctgacggcg tgtgtatgct cctttagggt tctgctgatg 4920ttatatagtc agtcaacaca gctgacggcg tgtgtatgct cctttagggt tctgctgatg 4920

cttgactgca ttattgtaaa ttcagtttgt gtgctgtgtg tgtgtgctgt tcgatgaacg 4980cttgactgca ttattgtaaa ttcagtttgt gtgctgtgtg tgtgtgctgt tcgatgaacg 4980

acaataggat gacaccctgt cagtgtcctc ctcgtctgtt tcgacgaatg caagttgtat 5040acaataggat gacaccctgt cagtgtcctc ctcgtctgtt tcgacgaatg caagttgtat 5040

tcattatttg tttatcatct ctgaactatc ctggagttct gtcgatgttg aataatctaa 5100tcattatttg tttatcatct ctgaactatc ctggagttct gtcgatgttg aataatctaa 5100

ttcatatctc ggcacttgga aaactctcgt gagaaacata tgtaccaaga aaaactgatt 5160ttcatatctc ggcacttgga aaactctcgt gagaaacata tgtaccaaga aaaactgatt 5160

catgtcaaca a 5171catgtcaaca a 5171

<210> 4<210> 4

<211> 31<211> 31

<212> DNA<212> DNA

<213> Primer<213> Primer

<400> 4<400> 4

gatccaacca ccaccacctt cttctcctcc t 31gatccaacca ccaccacctt cttctcctcc t 31

<210> 5<210> 5

<211> 30<211> 30

<212> DNA<212> DNA

<213> Primer<213> Primer

<400> 5<400> 5

ttgttgacat gaatcagttt ttcttggtac 30ttgttgacat gaatcagttt ttcttggtac 30

<210> 6<210> 6

<211> 30<211> 30

<212> DNA<212> DNA

<213> Primer<213> Primer

<400> 6<400> 6

atgtgttctt aattgtgggg atcagaattt 30atgtgttctt aattgtgggg atcagaattt 30

<210> 7<210> 7

<211> 30<211> 30

<212> DNA<212> DNA

<213> Primer<213> Primer

<400> 7<400> 7

ttagaaatct ctttgttgct agctgttctc 30ttagaaatct ctttgttgct agctgttctc 30

Claims (15)

1.一种FLO18蛋白或其调节分子的用途,用于调节禾本科植物的产量性状、胚乳性状或淀粉发育性状。1. Use of a FLO18 protein or a regulatory molecule thereof for regulating yield traits, endosperm traits or starch development traits of grasses. 2.如权利要求1所述的用途,其特征在于,所述调节分子为上调分子,所述FLO18蛋白或其上调分子的用途包括选自:2. purposes as claimed in claim 1, is characterized in that, described regulatory molecule is up-regulated molecule, the purposes of described FLO18 protein or its up-regulated molecule comprises being selected from: (i)提高产量;较佳地包括增加籽粒的粒宽或粒厚,或促进籽粒灌浆;(i) increasing yield; preferably including increasing grain width or grain thickness, or promoting grain filling; (ii)提高胚乳品质;较佳地包括促进胚乳发育时细胞均等分裂,或促进形成角质胚乳;(ii) improving the quality of the endosperm; preferably including promoting equal division of cells during endosperm development, or promoting the formation of horny endosperm; (iii)促进淀粉发育;较佳地包括增加淀粉颗粒直径。(iii) promoting starch development; preferably including increasing the diameter of starch granules. 3.如权利要求2所述的用途,其特征在于,所述的上调分子包括:过表达所述FLO18蛋白的表达盒或表达构建物;或,提高所述FLO18蛋白翻译效率的表达盒或表达构建物;或,与所述FLO18蛋白相互作用、从而提高其表达或活性的上调分子。3. purposes as claimed in claim 2 is characterized in that, described up-regulated molecule comprises: the expression cassette or expression construct that overexpresses described FLO18 protein; Or, the expression cassette or expression that improves described FLO18 protein translation efficiency construct; or, an up-regulated molecule that interacts with the FLO18 protein to increase its expression or activity. 4.如权利要求1所述的用途,其特征在于,所述的调节分子为下调分子,其用途包括选自:4. purposes as claimed in claim 1 is characterized in that, described regulatory molecule is down-regulated molecule, and its purposes comprise being selected from: (i)降低产量;较佳地包括降低籽粒的粒宽或粒厚,或减少籽粒灌浆;(i) reducing yield; preferably including reducing grain width or grain thickness, or reducing grain filling; (ii)降低胚乳品质;较佳地包括抑制胚乳发育时细胞均等分裂,或促进形成粉质胚乳;(ii) reducing the quality of the endosperm; preferably including inhibiting the equal division of cells during endosperm development, or promoting the formation of a powdery endosperm; (iii)干扰淀粉发育;较佳地包括降低淀粉颗粒直径。(iii) interfering with starch development; preferably including reducing starch granule diameter. 5.如权利要求4所述的用途,其特征在于,所述下调分子包括:敲除或沉默FLO18蛋白的编码基因的试剂,抑制FLO18蛋白活性的试剂;较佳地,所述下调分子包括:针对所述FLO18蛋白的编码基因的基因编辑试剂、同源重组试剂或定点突变试剂,所述试剂将FLO18蛋白进行功能丧失性突变;或,特异性干扰FLO18蛋白的编码基因表达的干扰分子。5. purposes as claimed in claim 4 is characterized in that, described down regulation molecule comprises: the reagent that knocks out or silences the gene encoding FLO18 protein, the reagent that inhibits FLO18 protein activity; Preferably, described down regulation molecule comprises: A gene editing reagent, a homologous recombination reagent or a site-directed mutagenesis reagent directed against the gene encoding the FLO18 protein, the reagent mutates the FLO18 protein with loss of function; or, an interfering molecule that specifically interferes with the expression of the gene encoding the FLO18 protein. 6.一种调控禾本科植物的产量性状、胚乳性状或淀粉发育性状的方法,包括:在植物中调控FLO18蛋白的表达或活性。6. A method for regulating yield traits, endosperm traits or starch development traits of grass plants, comprising: regulating the expression or activity of FLO18 protein in plants. 7.如权利要求6所述的方法,其特征在于,所述调控为提高产量、提高胚乳品质或促进淀粉发育;所述方法包括:在植物中上调FLO18蛋白的表达或活性。7. The method of claim 6, wherein the regulation is to increase yield, improve endosperm quality or promote starch development; the method comprises: up-regulating the expression or activity of FLO18 protein in plants. 8.如权利要求7所述的方法,其特征在于,所述调控为降低产量、降低胚乳品质或干扰淀粉发育;所述方法包括:在植物中下调FLO18蛋白的表达或活性。8. The method of claim 7, wherein the regulation is to reduce yield, reduce endosperm quality or interfere with starch development; the method comprises: down-regulating the expression or activity of FLO18 protein in plants. 9.如权利要求7或8所述的方法,其特征在于,所述在植物中上调FLO18蛋白的表达或活性包括:在植物中过表达FLO18蛋白;或,以与FLO18蛋白相互作用的上调分子进行调控,从而提高FLO18蛋白的表达或活性;或9. The method of claim 7 or 8, wherein the up-regulating expression or activity of FLO18 protein in plants comprises: overexpressing FLO18 protein in plants; or, with up-regulated molecules that interact with FLO18 protein is modulated to increase the expression or activity of the FLO18 protein; or 所述在植物中下调FLO18蛋白的表达或活性包括:在植物中敲除或沉默FLO18蛋白的编码基因,或抑制FLO18蛋白的活性;较佳地包括:以CRISPR系统进行基因编辑从而敲除FLO18蛋白的编码基因;以同源重组的方法敲除FLO18蛋白的编码基因;以特异性干扰FLO18蛋白编码基因表达的干扰分子来沉默;或将FLO18蛋白进行功能丧失性突变。The down-regulation of the expression or activity of the FLO18 protein in plants includes: knocking out or silencing the gene encoding the FLO18 protein in plants, or inhibiting the activity of the FLO18 protein; preferably, it includes: performing gene editing with the CRISPR system to knock out the FLO18 protein Knock out the encoding gene of FLO18 protein by homologous recombination method; silence by interfering molecules that specifically interfere with the expression of FLO18 protein encoding gene; or perform loss-of-function mutation of FLO18 protein. 10.如权利要求1或6所述,其特征在于,所述禾本科植物为表达FLO18蛋白或其同源物的植物;较佳地,所述禾本科植物包括选自:水稻,大麦、小麦、燕麦、黑麦、玉米、高粱、二穗短柄草。10. as described in claim 1 or 6, it is characterized in that, described gramineous plant is the plant that expresses FLO18 protein or its homologue; Preferably, described gramineous plant comprises selected from: rice, barley, wheat , oats, rye, corn, sorghum, Brachypodium. 11.如权利要求1或6所述,其特征在于,所述的FLO18的多肽的氨基酸序列选自下组:(i)具有SEQ ID NO:2所示氨基酸序列的多肽;(ii)将如SEQ ID NO:2所示的氨基酸序列经过一个或几个氨基酸残基的取代、缺失或添加而形成的,具有(i)多肽功能的、由(i)衍生的多肽;(iii)氨基酸序列与SEQ ID NO:2所示氨基酸序列的同源性≥85%,具有所述调控性状功能的多肽;(iv)SEQ ID NO:2所示氨基酸序列的多肽的活性片段;或(v)在SEQ ID NO:2所示氨基酸序列的多肽的N或C末端添加标签序列或酶切位点序列,或在其N末端添加信号肽序列后形成的多肽。11. as described in claim 1 or 6, it is characterized in that, the amino acid sequence of the polypeptide of described FLO18 is selected from the following group: (i) the polypeptide with the amino acid sequence shown in SEQ ID NO:2; The amino acid sequence shown in SEQ ID NO: 2 is formed by the substitution, deletion or addition of one or several amino acid residues, and has (i) polypeptide function and is derived from (i) polypeptide; (iii) amino acid sequence and The homology of the amino acid sequence shown in SEQ ID NO: 2 is ≥85%, and the polypeptide has the function of regulating the traits; (iv) the active fragment of the polypeptide of the amino acid sequence shown in SEQ ID NO: 2; or (v) in SEQ ID NO: 2 The polypeptide of the amino acid sequence shown in ID NO: 2 is formed by adding a tag sequence or an enzyme cleavage site sequence to the N-terminus or C-terminus thereof, or adding a signal peptide sequence to its N-terminus. 12.FLO18蛋白或其编码基因的用途,用作鉴定禾本科植物性状的分子标记物;所述性状包括:产量性状、胚乳性状或淀粉发育性状。12. Use of FLO18 protein or the gene encoding it as a molecular marker for identifying traits of grasses; the traits include: yield traits, endosperm traits or starch development traits. 13.一种定向选择或鉴定产量高、胚乳品质高或淀粉发育好的禾本科植物的方法,包括:鉴定测试植物体内FLO18蛋白的表达或活性,若该测试植物中FLO18蛋白的表达或活性高于或等于该类植物中FLO18蛋白的表达或活性的平均值,则其为产量高、胚乳品质高或淀粉发育好的禾本科植物。13. A method for directed selection or identification of high yield, high endosperm quality or good starch development, comprising: identification of the expression or activity of FLO18 protein in the test plant, if the expression or activity of FLO18 protein in the test plant is high If it is equal to or equal to the average value of FLO18 protein expression or activity in such plants, it is a grass plant with high yield, high endosperm quality or good starch development. 14.一种筛选促进禾本科植物性状改良的物质的方法,所述性状改良包括:产量高、胚乳品质高或淀粉发育好;所述方法包括:(1)将候选物质加入到表达FLO18蛋白的体系中;(2)检测所述体系,观测其中FLO18蛋白的表达或活性,若其表达或活性提高,则表明该候选物质为促进禾本科植物性状改良的物质。14. A method for screening a substance that promotes the improvement of grass plant traits, the trait improvement comprising: high yield, high endosperm quality or good starch development; the method comprises: (1) adding candidate substances to FLO18 protein-expressing plants; (2) Detecting the system, and observing the expression or activity of the FLO18 protein. If the expression or activity is increased, it indicates that the candidate substance is a substance that promotes the improvement of grass plant traits. 15.一种禾本科植物细胞、组织或器官,其中含有外源的FLO18蛋白的上调分子,所述上调分子包括选自:过表达所述FLO18蛋白的表达盒或表达构建物;或提高所述FLO18蛋白翻译效率的表达盒或表达构建物;或与所述FLO18蛋白相互作用、从而提高其表达或活性的上调分子。15. A grass cell, tissue or organ, wherein the up-regulated molecule of exogenous FLO18 protein is contained, and the up-regulated molecule comprises selected from: an expression cassette or an expression construct that overexpresses the FLO18 protein; or increases the An expression cassette or expression construct for FLO18 protein translation efficiency; or an up-regulated molecule that interacts with said FLO18 protein to increase its expression or activity.
CN202011615007.6A 2020-12-30 2020-12-30 Gene FLO18 for regulating development and quality of endosperm Pending CN114685635A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011615007.6A CN114685635A (en) 2020-12-30 2020-12-30 Gene FLO18 for regulating development and quality of endosperm

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011615007.6A CN114685635A (en) 2020-12-30 2020-12-30 Gene FLO18 for regulating development and quality of endosperm

Publications (1)

Publication Number Publication Date
CN114685635A true CN114685635A (en) 2022-07-01

Family

ID=82132107

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011615007.6A Pending CN114685635A (en) 2020-12-30 2020-12-30 Gene FLO18 for regulating development and quality of endosperm

Country Status (1)

Country Link
CN (1) CN114685635A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118291519A (en) * 2024-03-14 2024-07-05 江苏省农业科学院 A method for increasing the amylose content of Wxmp type semi-glutinous japonica rice

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109182350A (en) * 2018-09-14 2019-01-11 中国农业大学 Application of the corn Zm675 gene in plant quality improvement
CN109422803A (en) * 2017-08-31 2019-03-05 中国科学院上海生命科学研究院 Adjust gene and its application of plant particle shape, mass of 1000 kernel and grain number per spike

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109422803A (en) * 2017-08-31 2019-03-05 中国科学院上海生命科学研究院 Adjust gene and its application of plant particle shape, mass of 1000 kernel and grain number per spike
CN109182350A (en) * 2018-09-14 2019-01-11 中国农业大学 Application of the corn Zm675 gene in plant quality improvement

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
JAIN, R.等上传: "GenBank: KAF2922987.1,"hypothetical protein DAI22_07g155500 [Oryza sativa Japonica Group]"", 《NCBI GENBANK》, pages 1 - 2 *
JAIN, R.等上传: "GenBank: KAF2922987.1,hypothetical protein DAI22_07g155500 [Oryza sativa Japonica Group]", 《NCBI GENBANK》, 25 February 2020 (2020-02-25), pages 1 - 2 *
YU, MZ等: "Rice FLOURY ENDOSPERM 18 encodes a pentatricopeptide repeat protein required for 5 \' processing of mitochondrial nad5 messenger RNA and endosperm development", 《JOURNAL OF INTEGRATIVE PLANT BIOLOGY》, vol. 63, no. 5, pages 834 - 847 *
郭韬等: "中国水稻遗传学研究进展与分子设计育种", 《中国科学:生命科学》, vol. 49, no. 10, pages 1185 - 1212 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118291519A (en) * 2024-03-14 2024-07-05 江苏省农业科学院 A method for increasing the amylose content of Wxmp type semi-glutinous japonica rice

Similar Documents

Publication Publication Date Title
Ji et al. The basic helix‐loop‐helix transcription factor, Os PIL 15, regulates grain size via directly targeting a purine permease gene Os PUP 7 in rice
Tsukagoshi et al. Analysis of a sugar response mutant of Arabidopsis identified a novel B3 domain protein that functions as an active transcriptional repressor
US10087458B2 (en) Manipulating BS1 for plant seed yield
Yu et al. ABNORMAL FLOWER AND GRAIN 1 encodes OsMADS6 and determines palea identity and affects rice grain yield and quality
US20230323380A1 (en) Phosphorus-Efficient and High Yield Gene of Crops, and Application Thereof
CN114763375B (en) A gene for regulating rice grain quality and its application
Li et al. FGW1, a protein containing DUF630 and DUF632 domains, regulates grain size and filling in Oryza sativa L.
CN101679968B (en) Polypeptide capable of improving tolerance to iron deficiency in plant, and use thereof
CN113151323A (en) Cloning, functional study and marker mining of a gene ZmRH4 that controls maize grain development
CN114807212B (en) Gene for regulating or identifying grain type or yield character of plant and application thereof
AU2009210389B2 (en) Flowering inhibition (2)
CN114685635A (en) Gene FLO18 for regulating development and quality of endosperm
WO2024099323A1 (en) Novel zn-nicotinamide transport protein and use thereof
CN115044592B (en) Gene ZmADT2 for regulating and controlling maize plant type and resistance to tumor smut, and encoding protein and application thereof
CN115247184B (en) Grain type and yield control gene and application thereof
CN102206639B (en) Gene adjusting starch anabolism of plant seeds and application thereof
CN114395566A (en) Application of sweet potato ERF transcription factor IbERF4 in promoting synthesis of plant chlorogenic acid substances
CN114410663A (en) Application of corn ZmDek701 gene in regulation and control of plant grain quality and mutant thereof
CN111153980A (en) A plant grain shape-related protein OsSDSG and its encoding gene and application
Liu et al. TaDL interacts with TaB3 and TaNF‐YB1 to synergistically regulate the starch synthesis and grain quality in bread wheat
WO2023169490A1 (en) Key gene for controlling the transformation of dent corn to flint corn
Li et al. NAC25 transcription factor regulates the degeneration of cytoplasmic membrane integrity and starch biosynthesis in rice endosperm through interacting with MADS29
Lin et al. The Component of the TAC Complex, TCD7, Controls Rice Chloroplast Development at the Early Seedling Stage under Cold Stress
CN114686460A (en) Gene for regulating grain width of cereal plant and application thereof
CN118581138A (en) ASN3 gene increases corn protein content

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20220701