[go: up one dir, main page]

CN114678434B - A heterojunction battery with improved photoelectric conversion efficiency - Google Patents

A heterojunction battery with improved photoelectric conversion efficiency Download PDF

Info

Publication number
CN114678434B
CN114678434B CN202210186569.6A CN202210186569A CN114678434B CN 114678434 B CN114678434 B CN 114678434B CN 202210186569 A CN202210186569 A CN 202210186569A CN 114678434 B CN114678434 B CN 114678434B
Authority
CN
China
Prior art keywords
amorphous silicon
type
doped amorphous
silicon substrate
type doped
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210186569.6A
Other languages
Chinese (zh)
Other versions
CN114678434A (en
Inventor
吴智涵
王永谦
林纲正
陈刚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang Aiko Solar Energy Technology Co Ltd
Original Assignee
Zhejiang Aiko Solar Energy Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang Aiko Solar Energy Technology Co Ltd filed Critical Zhejiang Aiko Solar Energy Technology Co Ltd
Priority to CN202210186569.6A priority Critical patent/CN114678434B/en
Publication of CN114678434A publication Critical patent/CN114678434A/en
Application granted granted Critical
Publication of CN114678434B publication Critical patent/CN114678434B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10FINORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
    • H10F10/00Individual photovoltaic cells, e.g. solar cells
    • H10F10/10Individual photovoltaic cells, e.g. solar cells having potential barriers
    • H10F10/16Photovoltaic cells having only PN heterojunction potential barriers
    • H10F10/164Photovoltaic cells having only PN heterojunction potential barriers comprising heterojunctions with Group IV materials, e.g. ITO/Si or GaAs/SiGe photovoltaic cells
    • H10F10/165Photovoltaic cells having only PN heterojunction potential barriers comprising heterojunctions with Group IV materials, e.g. ITO/Si or GaAs/SiGe photovoltaic cells the heterojunctions being Group IV-IV heterojunctions, e.g. Si/Ge, SiGe/Si or Si/SiC photovoltaic cells
    • H10F10/166Photovoltaic cells having only PN heterojunction potential barriers comprising heterojunctions with Group IV materials, e.g. ITO/Si or GaAs/SiGe photovoltaic cells the heterojunctions being Group IV-IV heterojunctions, e.g. Si/Ge, SiGe/Si or Si/SiC photovoltaic cells the Group IV-IV heterojunctions being heterojunctions of crystalline and amorphous materials, e.g. silicon heterojunction [SHJ] photovoltaic cells
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10FINORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
    • H10F77/00Constructional details of devices covered by this subclass
    • H10F77/10Semiconductor bodies
    • H10F77/14Shape of semiconductor bodies; Shapes, relative sizes or dispositions of semiconductor regions within semiconductor bodies
    • H10F77/148Shapes of potential barriers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10FINORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
    • H10F77/00Constructional details of devices covered by this subclass
    • H10F77/10Semiconductor bodies
    • H10F77/16Material structures, e.g. crystalline structures, film structures or crystal plane orientations
    • H10F77/162Non-monocrystalline materials, e.g. semiconductor particles embedded in insulating materials
    • H10F77/166Amorphous semiconductors
    • H10F77/1662Amorphous semiconductors including only Group IV materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/548Amorphous silicon PV cells

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

一种提高光电转换效率的异质结电池,属于太阳能电池技术领域,包括n型硅基底,以及沉积于所述n型硅基底正背面的本征非晶硅;所述n型硅基底的正面自上而下依次设置有正面电极、第一TCO层、混合层以及本征非晶硅,且所述n型硅基底的背面自下而上依次设置有背面电极、第二TCO层、掺杂非晶硅以及本征非晶硅;其中,所述混合层包括第一p型掺杂非晶硅以及膜层,所述第一p型掺杂非晶硅采用镂空设计,所述膜层填充设置在所述第一p型掺杂非晶硅的镂空处,所述掺杂非晶硅为第一n型掺杂非晶硅;通过这种混合相的膜层设计,可以在保证HJT电池其它参数保持同一水平的前提下,打破HJT电池对于光生电流的上限,从而使其能够达到更高的转换效率。

A heterojunction cell for improving photoelectric conversion efficiency belongs to the technical field of solar cells, comprising an n-type silicon substrate, and intrinsic amorphous silicon deposited on the front and back sides of the n-type silicon substrate; the front side of the n-type silicon substrate is provided with a front electrode, a first TCO layer, a mixed layer and intrinsic amorphous silicon in order from top to bottom, and the back side of the n-type silicon substrate is provided with a back electrode, a second TCO layer, doped amorphous silicon and intrinsic amorphous silicon in order from bottom to top; wherein the mixed layer comprises a first p-type doped amorphous silicon and The first p-type doped amorphous silicon adopts a hollow design, and the The film layer filling is arranged in the hollow part of the first p-type doped amorphous silicon, and the doped amorphous silicon is the first n-type doped amorphous silicon; through this mixed-phase film layer design, the upper limit of the photogenerated current of the HJT cell can be broken while ensuring that other parameters of the HJT cell remain at the same level, thereby enabling it to achieve a higher conversion efficiency.

Description

一种提高光电转换效率的异质结电池A heterojunction battery with improved photoelectric conversion efficiency

相关申请的交叉引用CROSS-REFERENCE TO RELATED APPLICATIONS

本申请是基于申请号为2021116201937,申请日为:2021年12月18日,发明名称为:一种提高光电转换效率的异质结电池的分案申请。This application is a divisional application based on application number 2021116201937, application date: December 18, 2021, and the name of the invention is: A heterojunction battery for improving photoelectric conversion efficiency.

技术领域Technical Field

本发明属于太阳能电池加工技术领域,特别涉及一种提高光电转换效率的异质结电池。The invention belongs to the technical field of solar cell processing, and in particular relates to a heterojunction cell for improving photoelectric conversion efficiency.

背景技术Background technique

现有HJT电池结构正面一般采用本征非晶硅叠加n型非晶硅,通常本征非晶硅有着很好的钝化效果,而n型非晶硅通常更多的是起到一个电子选择传输的效果,p型非晶硅通常更多的是起到一个空穴选择传输的效果,但是由于二者其本身存在较大的寄生吸收,因此HJT电池的光生电流始终无法进一步提高。The front side of the existing HJT cell structure generally uses intrinsic amorphous silicon superimposed on n-type amorphous silicon. Usually, intrinsic amorphous silicon has a good passivation effect, while n-type amorphous silicon usually plays a more electron selective transmission effect, and p-type amorphous silicon usually plays a more hole selective transmission effect. However, due to the large parasitic absorption of both, the photocurrent of the HJT cell cannot be further improved.

发明内容Summary of the invention

本发明的目的在于提供一种提高光电转换效率的异质结电池,以解决上述背景技术中提出的问题。The object of the present invention is to provide a heterojunction battery with improved photoelectric conversion efficiency to solve the problems raised in the above background technology.

为实现上述目的,本发明提供如下技术方案:To achieve the above object, the present invention provides the following technical solutions:

一种提高光电转换效率的异质结电池,包括n型硅基底,以及沉积于所述n型硅基底正背面的本征非晶硅;所述n型硅基底的正面自上而下依次设置有正面电极、第一TCO层、混合层以及本征非晶硅,且所述n型硅基底的背面自下而上依次设置有背面电极、第二TCO层、掺杂非晶硅以及本征非晶硅;其中,所述混合层包括第一p型掺杂非晶硅以及膜层,所述第一p型掺杂非晶硅采用镂空设计,所述/>膜层填充设置在所述第一p型掺杂非晶硅的镂空处,所述掺杂非晶硅为第一n型掺杂非晶硅。A heterojunction cell for improving photoelectric conversion efficiency, comprising an n-type silicon substrate, and intrinsic amorphous silicon deposited on the front and back sides of the n-type silicon substrate; the front side of the n-type silicon substrate is provided with a front electrode, a first TCO layer, a mixed layer and intrinsic amorphous silicon in order from top to bottom, and the back side of the n-type silicon substrate is provided with a back electrode, a second TCO layer, doped amorphous silicon and intrinsic amorphous silicon in order from bottom to top; wherein the mixed layer comprises a first p-type doped amorphous silicon and film layer, the first p-type doped amorphous silicon adopts a hollow design, the The film layer is filled and arranged in the hollowed-out part of the first p-type doped amorphous silicon, and the doped amorphous silicon is the first n-type doped amorphous silicon.

与现有技术相比,本技术方案具有如下效果:Compared with the prior art, this technical solution has the following effects:

通过这种混合相的膜层设计,可以在保证HJT电池其它参数保持同一水平的前提下,打破HJT电池对于光生电流的上限,从而使其能够达到更高的转换效率。Through this mixed-phase film design, the upper limit of the photogenerated current of the HJT cell can be broken while ensuring that other parameters of the HJT cell remain at the same level, thereby enabling it to achieve a higher conversion efficiency.

作为优选,所述混合层包括第二n型掺杂非晶硅以及膜层,所述第二n型掺杂非晶硅采用镂空设计,所述/>膜层填充设置在所述第二n型掺杂非晶硅的镂空处.Preferably, the mixed layer comprises a second n-type doped amorphous silicon and film layer, the second n-type doped amorphous silicon adopts a hollow design, the The film layer is filled and arranged at the hollowed-out portion of the second n-type doped amorphous silicon.

作为优选,所述掺杂非晶硅为第二p型掺杂非晶硅。Preferably, the doped amorphous silicon is second p-type doped amorphous silicon.

作为优选,所述正面电极/背面电极为全金属电极。Preferably, the front electrode/back electrode is a full metal electrode.

作为优选,所述全金属电极包括银电极或铜电极。Preferably, the all-metal electrode comprises a silver electrode or a copper electrode.

作为优选,所述第一TCO层的厚度为80nm,第二TCO层的厚度为200nm。Preferably, the thickness of the first TCO layer is 80 nm, and the thickness of the second TCO layer is 200 nm.

作为优选,所述混合层的厚度小于10nm。Preferably, the thickness of the mixed layer is less than 10 nm.

附图说明BRIEF DESCRIPTION OF THE DRAWINGS

图1是本发明第一实施例整体结构示意图;FIG1 is a schematic diagram of the overall structure of a first embodiment of the present invention;

图2是本发明第二实施例整体结构示意图;FIG2 is a schematic diagram of the overall structure of a second embodiment of the present invention;

图3是本发明中实施例和对比例的检测数据表的第一示意图;FIG3 is a first schematic diagram of a detection data table of an embodiment and a comparative example of the present invention;

图4是本发明中实施例和对比例的检测数据表的第二示意图。FIG. 4 is a second schematic diagram of the detection data table of the embodiment and the comparative example in the present invention.

图中:1-n型硅基底;2-本征非晶硅;3-混合层;30-第一p型掺杂非晶硅;31-膜层;30´-第二n型掺杂非晶硅;31´-/>膜层;4-第一TCO层;5-正面电极;6-第一n型掺杂非晶硅;6´-p型掺杂非晶硅;7-第二TCO层;8-背面电极。In the figure: 1-n-type silicon substrate; 2-intrinsic amorphous silicon; 3-mixed layer; 30-first p-type doped amorphous silicon; 31- Film layer; 30´- second n-type doped amorphous silicon; 31´-/> Film layer; 4-first TCO layer; 5-front electrode; 6-first n-type doped amorphous silicon; 6´-p-type doped amorphous silicon; 7-second TCO layer; 8-back electrode.

具体实施方式Detailed ways

下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚,完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部实施例。The technical solutions in the embodiments of the present invention will be described clearly and completely below in conjunction with the drawings in the embodiments of the present invention. Obviously, the described embodiments are only part of the embodiments of the present invention, rather than all the embodiments.

如图1-2所示的一种提高光电转换效率的异质结电池,包括n型硅基底1,以及沉积于所述n型硅基底1正背面的本征非晶硅2;所述n型硅基底1的正面自上而下依次设置有正面电极5、第一TCO层4、混合层3以及本征非晶硅2,且所述n型硅基底1的背面自下而上依次设置有背面电极8、第二TCO层7、掺杂非晶硅以及本征非晶硅2;其中,所述正面电极5/背面电极8为全金属电极,所述全金属电极包括银电极或铜电极,通过这种混合相的膜层设计,可以在保证HJT电池其它参数保持同一水平的前提下,打破HJT电池对于光生电流的上限,从而使其能够达到更高的转换效率。As shown in Figures 1-2, a heterojunction cell for improving photoelectric conversion efficiency includes an n-type silicon substrate 1, and intrinsic amorphous silicon 2 deposited on the front and back sides of the n-type silicon substrate 1; the front side of the n-type silicon substrate 1 is provided with a front electrode 5, a first TCO layer 4, a mixed layer 3 and an intrinsic amorphous silicon 2 in sequence from top to bottom, and the back side of the n-type silicon substrate 1 is provided with a back electrode 8, a second TCO layer 7, doped amorphous silicon and an intrinsic amorphous silicon 2 in sequence from bottom to top; wherein the front electrode 5/back electrode 8 is a full metal electrode, and the full metal electrode includes a silver electrode or a copper electrode. Through this mixed phase film layer design, the upper limit of the photogenerated current of the HJT cell can be broken while ensuring that other parameters of the HJT cell remain at the same level, thereby enabling it to achieve a higher conversion efficiency.

为了进一步的说明上述效果中所说的混合相的膜层设计,在第一实施例中,所述混合层3包括第一p型掺杂非晶硅30以及膜层31,所述第一p型掺杂非晶硅30采用镂空设计,所述/>膜层31填充设置在所述第一p型掺杂非晶硅30的镂空处;其作用是,膜层中含有的常规第一p型掺杂非晶硅30,具备良好的空穴选择传输性质,与第一TCO层4有较好的接触;膜层中另外一部分/>膜层31具备一定的空穴选择传输,同时其透明度较高,可以大大提升光生电流水平。In order to further illustrate the film design of the mixed phase mentioned in the above effect, in the first embodiment, the mixed layer 3 includes a first p-type doped amorphous silicon 30 and The film layer 31, the first p-type doped amorphous silicon 30 adopts a hollow design, the The film layer 31 is filled in the hollowed-out portion of the first p-type doped amorphous silicon 30. Its function is that the conventional first p-type doped amorphous silicon 30 contained in the film layer has good hole selection and transport properties and has good contact with the first TCO layer 4. The other part of the film layer The film layer 31 has certain hole selective transmission and high transparency, which can greatly improve the level of photogenerated current.

具体来说,通常硅片在CVD设备上进行沉积时,需要放在载板上进入CVD设备内部的沉积腔室内进行膜层沉积,因此,混合层3的制备具体步骤为:Specifically, when a silicon wafer is deposited on a CVD device, it is usually placed on a carrier and placed in a deposition chamber inside the CVD device for film deposition. Therefore, the specific steps for preparing the mixed layer 3 are as follows:

1.先将待制备的硅片放置在载板上,再将事先设计好的掩模板固定在硅片的上表面,掩模板镂空部分对应需要沉积膜层结构,其余部分则被遮挡;1. First, place the silicon wafer to be prepared on the carrier, and then fix the pre-designed mask on the upper surface of the silicon wafer. The hollowed-out part of the mask corresponds to the film structure to be deposited, and the rest is blocked;

2.同理,制备好混合层3中的一种膜后,再通过更换掩模板,使遮挡区域对应之前沉积区域,之前遮挡区域则变成镂空区域,最后再沉积形成混合层3结构;2. Similarly, after preparing one film in the mixed layer 3, the mask is replaced so that the blocked area corresponds to the previously deposited area, and the previously blocked area becomes a hollow area, and finally the mixed layer 3 structure is deposited again;

其中,步骤1中事先设计好的掩模板即对完整的掩模板进行镂空设计,从而使沉积的膜层通过镂空处附着于待制备的硅片表面。The mask designed in advance in step 1 is hollowed out on the complete mask, so that the deposited film layer is attached to the surface of the silicon wafer to be prepared through the hollowed-out portion.

另外,为了简化说明,在下述的制备过程中涉及混合层3的制备工艺,均以“硬掩模版方法”命名。In addition, in order to simplify the description, the preparation process involving the mixed layer 3 in the following preparation process is named "hard mask method".

此外,为了确保该异质结电池稳定的结构,所述掺杂非晶硅为第一n型掺杂非晶硅6。In addition, in order to ensure a stable structure of the heterojunction cell, the doped amorphous silicon is a first n-type doped amorphous silicon 6 .

在第二实施例中,所述混合层3包括第二n型掺杂非晶硅30´以及膜层31´,所述第二n型掺杂非晶硅30´采用镂空设计,所述/>膜层31´填充设置在所述第二n型掺杂非晶硅30´的镂空处;其作用是,膜层中含有的第二n型掺杂非晶硅30´,该成份具备良好的电子选择传输性质,与第一TCO层4有较好的接触;同时,膜层中另外一部分/>膜层31´具备一定的电子选择传输,其透明度较高,可以大大提升光生电流水平。In the second embodiment, the mixed layer 3 includes a second n-type doped amorphous silicon 30' and The film layer 31', the second n-type doped amorphous silicon 30' adopts a hollow design, the / > The film layer 31' is filled in the hollowed-out part of the second n-type doped amorphous silicon 30'. Its function is that the second n-type doped amorphous silicon 30' contained in the film layer has good electron selective transmission properties and has good contact with the first TCO layer 4. At the same time, another part of the film layer The film layer 31' has certain electron selective transmission and high transparency, which can greatly improve the level of photogenerated current.

另外,所述掺杂非晶硅为第二p型掺杂非晶硅6´。In addition, the doped amorphous silicon is second p-type doped amorphous silicon 6'.

值得注意的是,所述第一TCO层4的厚度为80nm,第二TCO层7的厚度为200nm,且所述混合层3的厚度小于10nm。It is worth noting that the thickness of the first TCO layer 4 is 80 nm, the thickness of the second TCO layer 7 is 200 nm, and the thickness of the mixed layer 3 is less than 10 nm.

为了更清楚的表达上述方案中异质结电池的结构构成,其制备上述方案中的异质结电池的具体步骤如下:In order to more clearly express the structural composition of the heterojunction battery in the above scheme, the specific steps of preparing the heterojunction battery in the above scheme are as follows:

实施例1:Embodiment 1:

首先,选取经制绒的n型硅基底1,进行绒面的制备,即在n型硅基底1的表面构建金字塔状的陷光结构;First, a textured n-type silicon substrate 1 is selected to prepare a textured surface, that is, a pyramid-shaped light trapping structure is constructed on the surface of the n-type silicon substrate 1;

接着,在n型硅基底1的背面本征非晶硅2的沉积;Next, the intrinsic amorphous silicon 2 is deposited on the back side of the n-type silicon substrate 1;

其次,在背面的本征非晶硅2上进行掺杂非晶硅的沉积;Secondly, doped amorphous silicon is deposited on the intrinsic amorphous silicon 2 at the back side;

然后,对n型硅基底1的正面进行本征非晶硅2的沉积;Then, intrinsic amorphous silicon 2 is deposited on the front surface of the n-type silicon substrate 1;

再然后,采用硬掩模版方法在电池的正面进行混合层3的沉积,所述混合层3的厚度为9nm;其中,当S3中的掺杂非晶硅选用为第一n型掺杂非晶硅6时,该混合层3为第一p型掺杂非晶硅30以及膜层31;当S3中的掺杂非晶硅选用为第二p型掺杂非晶硅6´,该混合层3为第二n型掺杂非晶硅30´以及/>膜层31´,具体来说,所述的硬掩模版方法即通过模版分别进行混合层3中单层的沉积;Then, a mixed layer 3 is deposited on the front side of the battery using a hard mask method. The thickness of the mixed layer 3 is 9 nm. When the doped amorphous silicon in S3 is the first n-type doped amorphous silicon 6, the mixed layer 3 is the first p-type doped amorphous silicon 30 and film layer 31; when the doped amorphous silicon in S3 is selected as the second p-type doped amorphous silicon 6', the mixed layer 3 is the second n-type doped amorphous silicon 30' and / > The film layer 31', specifically, the hard mask template method is to deposit the single layers in the mixed layer 3 respectively through the template;

进一步,对n型硅基底1的正背面进行TCO薄膜沉积;Further, TCO thin film deposition is performed on the front and back sides of the n-type silicon substrate 1;

最后,通过丝网印刷技术进行正面电极5/背面电极8的制备。Finally, the front electrode 5/back electrode 8 is prepared by screen printing technology.

实施例2:Embodiment 2:

首先,选取经制绒的n型硅基底1,进行绒面的制备,即在n型硅基底1的表面构建金字塔状的陷光结构;First, a textured n-type silicon substrate 1 is selected to prepare a textured surface, that is, a pyramid-shaped light trapping structure is constructed on the surface of the n-type silicon substrate 1;

接着,在n型硅基底1的背面本征非晶硅2的沉积;Next, the intrinsic amorphous silicon 2 is deposited on the back side of the n-type silicon substrate 1;

其次,在背面的本征非晶硅2上进行掺杂非晶硅的沉积;Secondly, doped amorphous silicon is deposited on the intrinsic amorphous silicon 2 at the back side;

然后,对n型硅基底1的正面进行本征非晶硅2的沉积;Then, intrinsic amorphous silicon 2 is deposited on the front surface of the n-type silicon substrate 1;

再然后,采用硬掩模版方法在电池的正面进行混合层3的沉积,所述混合层3的厚度为5nm;其中,当S3中的掺杂非晶硅选用为第一n型掺杂非晶硅6时,该混合层3为第一p型掺杂非晶硅30以及膜层31;当S3中的掺杂非晶硅选用为第二p型掺杂非晶硅6´,该混合层3为第二n型掺杂非晶硅30´以及/>膜层31´,具体来说,所述的硬掩模版方法即通过模版分别进行混合层3中单层的沉积;Then, a mixed layer 3 is deposited on the front side of the battery using a hard mask method. The thickness of the mixed layer 3 is 5 nm. When the doped amorphous silicon in S3 is the first n-type doped amorphous silicon 6, the mixed layer 3 is the first p-type doped amorphous silicon 30 and film layer 31; when the doped amorphous silicon in S3 is selected as the second p-type doped amorphous silicon 6', the mixed layer 3 is the second n-type doped amorphous silicon 30' and / > The film layer 31', specifically, the hard mask template method is to deposit the single layers in the mixed layer 3 respectively through the template;

进一步,对n型硅基底1的正背面进行TCO薄膜沉积;Further, TCO thin film deposition is performed on the front and back sides of the n-type silicon substrate 1;

最后,通过丝网印刷技术进行正面电极5/背面电极8的制备。Finally, the front electrode 5/back electrode 8 is prepared by screen printing technology.

实施例3:Embodiment 3:

首先,选取经制绒的n型硅基底1,进行绒面的制备,即在n型硅基底1的表面构建金字塔状的陷光结构;First, a textured n-type silicon substrate 1 is selected to prepare a textured surface, that is, a pyramid-shaped light trapping structure is constructed on the surface of the n-type silicon substrate 1;

接着,在n型硅基底1的背面本征非晶硅2的沉积;Next, the intrinsic amorphous silicon 2 is deposited on the back side of the n-type silicon substrate 1;

其次,在背面的本征非晶硅2上进行掺杂非晶硅的沉积;Secondly, doped amorphous silicon is deposited on the intrinsic amorphous silicon 2 at the back side;

然后,对n型硅基底1的正面进行本征非晶硅2的沉积;Then, intrinsic amorphous silicon 2 is deposited on the front surface of the n-type silicon substrate 1;

再然后,采用硬掩模版方法在电池的正面进行混合层3的沉积,所述混合层3的厚度为1nm;其中,当S3中的掺杂非晶硅选用为第一n型掺杂非晶硅6时,该混合层3为第一p型掺杂非晶硅30以及膜层31;当S3中的掺杂非晶硅选用为第二p型掺杂非晶硅6´,该混合层3为第二n型掺杂非晶硅30´以及/>膜层31´,具体来说,所述的硬掩模版方法即通过模版分别进行混合层3中单层的沉积;Then, a mixed layer 3 is deposited on the front side of the battery using a hard mask method. The thickness of the mixed layer 3 is 1 nm. When the doped amorphous silicon in S3 is the first n-type doped amorphous silicon 6, the mixed layer 3 is the first p-type doped amorphous silicon 30 and film layer 31; when the doped amorphous silicon in S3 is selected as the second p-type doped amorphous silicon 6', the mixed layer 3 is the second n-type doped amorphous silicon 30' and / > The film layer 31', specifically, the hard mask template method is to deposit the single layers in the mixed layer 3 respectively through the template;

进一步,对n型硅基底1的正背面进行TCO薄膜沉积;Further, TCO thin film deposition is performed on the front and back sides of the n-type silicon substrate 1;

最后,通过丝网印刷技术进行正面电极5/背面电极8的制备。Finally, the front electrode 5/back electrode 8 is prepared by screen printing technology.

对比例1:Comparative Example 1:

首先,选取经制绒的n型硅基底1,进行绒面的制备,即在n型硅基底1的表面构建金字塔状的陷光结构;First, a textured n-type silicon substrate 1 is selected to prepare a textured surface, that is, a pyramid-shaped light trapping structure is constructed on the surface of the n-type silicon substrate 1;

接着,在n型硅基底1的背面本征非晶硅2的沉积;Next, the intrinsic amorphous silicon 2 is deposited on the back side of the n-type silicon substrate 1;

其次,在背面的本征非晶硅2上进行掺杂非晶硅的沉积;Secondly, doped amorphous silicon is deposited on the intrinsic amorphous silicon 2 at the back side;

然后,对n型硅基底1的正面进行本征非晶硅2的沉积;Then, intrinsic amorphous silicon 2 is deposited on the front surface of the n-type silicon substrate 1;

再然后,采用硬掩模版方法在电池的正面进行第一p型掺杂非晶硅30/第二p型掺杂非晶硅6´的沉积,所述第一p型掺杂非晶硅30/第二p型掺杂非晶硅6´的厚度为9nm;Then, a hard mask method is used to deposit a first p-type doped amorphous silicon 30/a second p-type doped amorphous silicon 6' on the front side of the battery, wherein the thickness of the first p-type doped amorphous silicon 30/the second p-type doped amorphous silicon 6' is 9 nm;

进一步,对n型硅基底1的正背面进行TCO薄膜沉积;Further, TCO thin film deposition is performed on the front and back sides of the n-type silicon substrate 1;

最后,通过丝网印刷技术进行正面电极5/背面电极8的制备。Finally, the front electrode 5/back electrode 8 is prepared by screen printing technology.

对比例2:Comparative Example 2:

首先,选取经制绒的n型硅基底1,进行绒面的制备,即在n型硅基底1的表面构建金字塔状的陷光结构;First, a textured n-type silicon substrate 1 is selected to prepare a textured surface, that is, a pyramid-shaped light trapping structure is constructed on the surface of the n-type silicon substrate 1;

接着,在n型硅基底1的背面本征非晶硅2的沉积;Next, the intrinsic amorphous silicon 2 is deposited on the back side of the n-type silicon substrate 1;

其次,在背面的本征非晶硅2上进行掺杂非晶硅的沉积;Secondly, doped amorphous silicon is deposited on the intrinsic amorphous silicon 2 at the back side;

然后,对n型硅基底1的正面进行本征非晶硅2的沉积;Then, intrinsic amorphous silicon 2 is deposited on the front surface of the n-type silicon substrate 1;

再然后,采用硬掩模版方法在电池的正面进行第一p型掺杂非晶硅30/第二p型掺杂非晶硅6´的沉积,所述第一p型掺杂非晶硅30/第二p型掺杂非晶硅6´的厚度为5nm;Then, a hard mask method is used to deposit a first p-type doped amorphous silicon 30/a second p-type doped amorphous silicon 6' on the front side of the battery, wherein the thickness of the first p-type doped amorphous silicon 30/the second p-type doped amorphous silicon 6' is 5 nm;

进一步,对n型硅基底1的正背面进行TCO薄膜沉积;Further, TCO thin film deposition is performed on the front and back sides of the n-type silicon substrate 1;

最后,通过丝网印刷技术进行正面电极5/背面电极8的制备。Finally, the front electrode 5/back electrode 8 is prepared by screen printing technology.

对比例3:Comparative Example 3:

首先,选取经制绒的n型硅基底1,进行绒面的制备,即在n型硅基底1的表面构建金字塔状的陷光结构;First, a textured n-type silicon substrate 1 is selected to prepare a textured surface, that is, a pyramid-shaped light trapping structure is constructed on the surface of the n-type silicon substrate 1;

接着,在n型硅基底1的背面本征非晶硅2的沉积;Next, the intrinsic amorphous silicon 2 is deposited on the back side of the n-type silicon substrate 1;

其次,在背面的本征非晶硅2上进行掺杂非晶硅的沉积;Secondly, doped amorphous silicon is deposited on the intrinsic amorphous silicon 2 at the back side;

然后,对n型硅基底1的正面进行本征非晶硅2的沉积;Then, intrinsic amorphous silicon 2 is deposited on the front surface of the n-type silicon substrate 1;

再然后,采用硬掩模版方法在电池的正面进行第一p型掺杂非晶硅30/第二p型掺杂非晶硅6´的沉积,所述第一p型掺杂非晶硅30/第二p型掺杂非晶硅6´的厚度为:1nm;Then, a first p-type doped amorphous silicon 30/a second p-type doped amorphous silicon 6' is deposited on the front side of the battery by using a hard mask method, and the thickness of the first p-type doped amorphous silicon 30/the second p-type doped amorphous silicon 6' is 1 nm;

进一步,对n型硅基底1的正背面进行TCO薄膜沉积;Further, TCO thin film deposition is performed on the front and back sides of the n-type silicon substrate 1;

最后,通过丝网印刷技术进行正面电极5/背面电极8的制备。Finally, the front electrode 5/back electrode 8 is prepared by screen printing technology.

对比例4:Comparative Example 4:

首先,选取经制绒的n型硅基底1,进行绒面的制备,即在n型硅基底1的表面构建金字塔状的陷光结构;First, a textured n-type silicon substrate 1 is selected to prepare a textured surface, that is, a pyramid-shaped light trapping structure is constructed on the surface of the n-type silicon substrate 1;

接着,在n型硅基底1的背面本征非晶硅2的沉积;Next, intrinsic amorphous silicon 2 is deposited on the back side of the n-type silicon substrate 1;

其次,在背面的本征非晶硅2上进行掺杂非晶硅的沉积;Secondly, doped amorphous silicon is deposited on the intrinsic amorphous silicon 2 at the back side;

然后,对n型硅基底1的正面进行本征非晶硅2的沉积;Then, intrinsic amorphous silicon 2 is deposited on the front surface of the n-type silicon substrate 1;

再然后,采用硬掩模版方法在电池的正面进行第一n型掺杂非晶硅6/第二n型掺杂非晶硅30´的沉积,所述第一n型掺杂非晶硅6/第二n型掺杂非晶硅30´的厚度为9nm;Then, a hard mask method is used to deposit the first n-type doped amorphous silicon 6/the second n-type doped amorphous silicon 30' on the front side of the battery, and the thickness of the first n-type doped amorphous silicon 6/the second n-type doped amorphous silicon 30' is 9 nm;

进一步,对n型硅基底1的正背面进行TCO薄膜沉积;Further, TCO thin film deposition is performed on the front and back sides of the n-type silicon substrate 1;

最后,通过丝网印刷技术进行正面电极5/背面电极8的制备。Finally, the front electrode 5 and the back electrode 8 are prepared by screen printing technology.

对比例5:Comparative Example 5:

首先,选取经制绒的n型硅基底1,进行绒面的制备,即在n型硅基底1的表面构建金字塔状的陷光结构;First, a textured n-type silicon substrate 1 is selected to prepare a textured surface, that is, a pyramid-shaped light trapping structure is constructed on the surface of the n-type silicon substrate 1;

接着,在n型硅基底1的背面本征非晶硅2的沉积;Next, the intrinsic amorphous silicon 2 is deposited on the back side of the n-type silicon substrate 1;

其次,在背面的本征非晶硅2上进行掺杂非晶硅的沉积;Secondly, doped amorphous silicon is deposited on the intrinsic amorphous silicon 2 at the back side;

然后,对n型硅基底1的正面进行本征非晶硅2的沉积;Then, intrinsic amorphous silicon 2 is deposited on the front surface of the n-type silicon substrate 1;

再然后,采用硬掩模版方法在电池的正面进行第一n型掺杂非晶硅6/第二n型掺杂非晶硅30´的沉积,所述第一n型掺杂非晶硅6/第二n型掺杂非晶硅30´的厚度为5nm;Then, a hard mask method is used to deposit the first n-type doped amorphous silicon 6/the second n-type doped amorphous silicon 30' on the front side of the battery, and the thickness of the first n-type doped amorphous silicon 6/the second n-type doped amorphous silicon 30' is 5 nm;

进一步,对n型硅基底1的正背面进行TCO薄膜沉积;Further, TCO thin film deposition is performed on the front and back sides of the n-type silicon substrate 1;

最后,通过丝网印刷技术进行正面电极5/背面电极8的制备。Finally, the front electrode 5/back electrode 8 is prepared by screen printing technology.

对比例6:Comparative Example 6:

首先,选取经制绒的n型硅基底1,进行绒面的制备,即在n型硅基底1的表面构建金字塔状的陷光结构;First, a textured n-type silicon substrate 1 is selected to prepare a textured surface, that is, a pyramid-shaped light trapping structure is constructed on the surface of the n-type silicon substrate 1;

接着,在n型硅基底1的背面本征非晶硅2的沉积;Next, the intrinsic amorphous silicon 2 is deposited on the back side of the n-type silicon substrate 1;

其次,在背面的本征非晶硅2上进行掺杂非晶硅的沉积;Secondly, doped amorphous silicon is deposited on the intrinsic amorphous silicon 2 at the back side;

然后,对n型硅基底1的正面进行本征非晶硅2的沉积;Then, intrinsic amorphous silicon 2 is deposited on the front surface of the n-type silicon substrate 1;

再然后,采用硬掩模版方法在电池的正面进行第一n型掺杂非晶硅6/第二n型掺杂非晶硅30´的沉积,所述第一n型掺杂非晶硅6/第二n型掺杂非晶硅30´的厚度为1nm;Then, a hard mask method is used to deposit the first n-type doped amorphous silicon 6/the second n-type doped amorphous silicon 30' on the front side of the battery, and the thickness of the first n-type doped amorphous silicon 6/the second n-type doped amorphous silicon 30' is 1 nm;

进一步,对n型硅基底1的正背面进行TCO薄膜沉积;Further, TCO thin film deposition is performed on the front and back sides of the n-type silicon substrate 1;

最后,通过丝网印刷技术进行正面电极5/背面电极8的制备。Finally, the front electrode 5/back electrode 8 is prepared by screen printing technology.

值得一说的是,在本实施例中,对比例不用,/>的原因如下:目前单层的此类膜层直接应用在异质结电池中会带来很多性能衰减,无论是从商业化的角度还是从技术优劣角度上,该类单层膜仍旧与非晶硅还有较大的差距,因此,主要针对n型掺杂非晶硅以及p型掺杂非晶硅这类单层膜和我们设计的混合相膜层进行相关数据的对比,对比数据如图3和图4所示:It is worth mentioning that, in this embodiment, the comparative example does not need ,/> The reasons are as follows: Currently, the direct application of such single-layer films in heterojunction cells will bring about a lot of performance degradation. Whether from the perspective of commercialization or technical advantages and disadvantages, such single-layer films are still far behind amorphous silicon. Therefore, we mainly compare the relevant data of single-layer films such as n-type doped amorphous silicon and p-type doped amorphous silicon with the mixed-phase films we designed. The comparison data are shown in Figures 3 and 4:

其中,表格中的A表示混合相膜层,B表示/>混合相膜层,C表示p型掺杂非晶硅,D表示n型掺杂非晶硅,经过对比数据可知,随着膜层的厚度逐渐的增加,电压数值显然处于一个上升的变化,另外,在膜层处于相同规格的情况下,电流密度、填充因子以及转换效率均得到了一定的提升。Among them, A in the table represents Mixed phase film, B represents/> Mixed phase film layer, C represents p-type doped amorphous silicon, D represents n-type doped amorphous silicon. By comparing the data, it can be seen that as the thickness of the film layer gradually increases, the voltage value is obviously in an upward change. In addition, when the film layer is in the same specifications, the current density, fill factor and conversion efficiency have all been improved to a certain extent.

本发明的描述中,需要理解的是,术语“中心”、“横向”、“上”、“下”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本发明的描述中,除非另有说明,“若干个”的含义是两个或两个以上。另外,术语“包括”及其任何变形,意图在于覆盖不排他的包含。In the description of the present invention, it should be understood that the orientation or positional relationship indicated by the terms "center", "lateral", "up", "down", "left", "right", "vertical", "horizontal", "top", "bottom", "inside", "outside", etc. is based on the orientation or positional relationship shown in the accompanying drawings, and is only for the convenience of describing the present invention and simplifying the description, rather than indicating or implying that the device or element referred to must have a specific orientation, be constructed and operated in a specific orientation, and therefore cannot be understood as a limitation on the present invention. In addition, the terms "first" and "second" are used only for descriptive purposes, and cannot be understood as indicating or implying relative importance or implicitly indicating the number of technical features indicated. Thus, the features defined as "first" and "second" may explicitly or implicitly include one or more of the features. In the description of the present invention, unless otherwise specified, "several" means two or more. In addition, the term "including" and any variation thereof are intended to cover non-exclusive inclusions.

本发明按照实施例进行了说明,在不脱离本原理的前提下,本装置还可以作出若干变形和改进。应当指出,凡采用等同替换或等效变换等方式所获得的技术方案,均落在本发明的保护范围内。The present invention is described according to the embodiments. Without departing from the principle, the present device can also be modified and improved. It should be pointed out that any technical solution obtained by equivalent replacement or equivalent transformation falls within the protection scope of the present invention.

Claims (1)

1. A heterojunction cell for improving photoelectric conversion efficiency comprises an n-type silicon substrate (1) and intrinsic amorphous silicon (2) deposited on the front and back surfaces of the n-type silicon substrate (1); the method is characterized in that: the front surface of the n-type silicon substrate (1) is sequentially provided with a front electrode (5), a first TCO layer (4), a mixed layer (3) and intrinsic amorphous silicon (2) from top to bottom, and the back surface of the n-type silicon substrate (1) is sequentially provided with a back electrode (8), a second TCO layer (7), doped amorphous silicon and intrinsic amorphous silicon (2) from bottom to top; wherein the hybrid layer (3) comprises a first p-type doped amorphous silicon (30) andThe film layer (31) is formed by adopting a hollowed-out design of the first p-type doped amorphous silicon (30), and the/>The film layer (31) is filled at the hollowed-out part of the first p-type doped amorphous silicon (30); the doped amorphous silicon is first n-type doped amorphous silicon (6), the front electrode (5)/the back electrode (8) is an all-metal electrode, the all-metal electrode comprises a silver electrode or a copper electrode, the thickness of the first TCO layer (4) is 80nm, the thickness of the second TCO layer (7) is 200nm, and the thickness of the mixed layer (3) is smaller than 10nm.
CN202210186569.6A 2021-12-28 2021-12-28 A heterojunction battery with improved photoelectric conversion efficiency Active CN114678434B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210186569.6A CN114678434B (en) 2021-12-28 2021-12-28 A heterojunction battery with improved photoelectric conversion efficiency

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210186569.6A CN114678434B (en) 2021-12-28 2021-12-28 A heterojunction battery with improved photoelectric conversion efficiency
CN202111620193.7A CN113990972B (en) 2021-12-28 2021-12-28 A heterojunction cell with improved photoelectric conversion efficiency

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
CN202111620193.7A Division CN113990972B (en) 2021-12-28 2021-12-28 A heterojunction cell with improved photoelectric conversion efficiency

Publications (2)

Publication Number Publication Date
CN114678434A CN114678434A (en) 2022-06-28
CN114678434B true CN114678434B (en) 2024-05-10

Family

ID=79734710

Family Applications (2)

Application Number Title Priority Date Filing Date
CN202210186569.6A Active CN114678434B (en) 2021-12-28 2021-12-28 A heterojunction battery with improved photoelectric conversion efficiency
CN202111620193.7A Active CN113990972B (en) 2021-12-28 2021-12-28 A heterojunction cell with improved photoelectric conversion efficiency

Family Applications After (1)

Application Number Title Priority Date Filing Date
CN202111620193.7A Active CN113990972B (en) 2021-12-28 2021-12-28 A heterojunction cell with improved photoelectric conversion efficiency

Country Status (1)

Country Link
CN (2) CN114678434B (en)

Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011074523A1 (en) * 2009-12-15 2011-06-23 三洋電機株式会社 Photoelectric conversion device and method for producing same
JP2013161822A (en) * 2012-02-01 2013-08-19 Mitsubishi Electric Corp Solar battery and method of manufacturing the same, and solar battery module
JP2013191657A (en) * 2012-03-13 2013-09-26 Sharp Corp Photoelectric conversion element and manufacturing method thereof
JP2014072209A (en) * 2012-09-27 2014-04-21 Sharp Corp Photoelectric conversion element and photoelectric conversion element manufacturing method
CN204315606U (en) * 2015-01-21 2015-05-06 中电投西安太阳能电力有限公司 Double heterojunction double-sided solar battery
CN107819052A (en) * 2017-12-11 2018-03-20 晋能光伏技术有限责任公司 A kind of efficiently crystal silicon non crystal heterogeneous agglomeration battery structure and preparation method thereof
CN108172658A (en) * 2018-01-23 2018-06-15 国家电投集团西安太阳能电力有限公司 A kind of preparation method of N-type heterojunction double-sided solar cell
CN207637825U (en) * 2017-12-11 2018-07-20 晋能光伏技术有限责任公司 A kind of efficient crystal silicon non crystal heterogeneous agglomeration battery structure
CN109411551A (en) * 2018-12-13 2019-03-01 江苏爱康能源研究院有限公司 Efficient silicon/crystalline silicon heterojunction solar battery electrode structure of multiple deposition and preparation method thereof
CN109473493A (en) * 2018-12-20 2019-03-15 江苏日托光伏科技股份有限公司 A kind of MWT heterojunction silicon solar cell and preparation method thereof
CN109509807A (en) * 2018-12-04 2019-03-22 江苏爱康能源研究院有限公司 Emitter structure of silicon/crystalline silicon heterojunction solar battery and preparation method thereof
CN109935660A (en) * 2019-03-04 2019-06-25 晋能光伏技术有限责任公司 A method for producing heterojunction solar cell amorphous silicon coating deposition layer by tubular PECVD equipment
CN110416342A (en) * 2019-06-25 2019-11-05 湖南红太阳光电科技有限公司 A kind of HJT battery based on metal nanoparticle and preparation method thereof
CN110629206A (en) * 2019-09-10 2019-12-31 苏州帕萨电子装备有限公司 A kind of N-type single crystal heterojunction solar cell film deposition equipment and its deposition method
CN110767760A (en) * 2019-11-27 2020-02-07 成都晔凡科技有限公司 Heterojunction solar cell, shingled module and manufacturing method thereof
CN111063757A (en) * 2019-11-29 2020-04-24 晋能光伏技术有限责任公司 A kind of high-efficiency crystalline silicon/amorphous silicon heterojunction solar cell and preparation method thereof
CN111370521A (en) * 2018-12-26 2020-07-03 君泰创新(北京)科技有限公司 Silicon heterojunction solar cell and its emitter and method for making the same
CN113113501A (en) * 2021-04-26 2021-07-13 江苏日托光伏科技股份有限公司 MWT heterojunction solar cell and preparation method thereof

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080173350A1 (en) * 2007-01-18 2008-07-24 Applied Materials, Inc. Multi-junction solar cells and methods and apparatuses for forming the same
TWI475703B (en) * 2011-12-27 2015-03-01 Nexpower Technology Corp Thin film solar cell
CN103227246A (en) * 2013-04-11 2013-07-31 浙江正泰太阳能科技有限公司 Preparation method of heterojunction cell
TW201526252A (en) * 2013-12-25 2015-07-01 Neo Solar Power Corp Solar cell and method of manufacturing same
CN108074989A (en) * 2016-11-14 2018-05-25 Lg电子株式会社 Solar cell and its manufacturing method
US20180166603A1 (en) * 2016-12-08 2018-06-14 Ramesh Kakkad Method of fabricating thin film photovoltaic devices
KR20190063908A (en) * 2017-11-30 2019-06-10 성균관대학교산학협력단 Carrier selective solar cell and mehtod of fabricating thereof
CN208753334U (en) * 2018-08-16 2019-04-16 研创应用材料(赣州)股份有限公司 A kind of silicon based hetero-junction solar battery using vapor deposition zinc oxide transparent conducting film
CN209119123U (en) * 2019-01-25 2019-07-16 西南石油大学 A kind of hetero-junctions double-side solar cell
CN111952381B (en) * 2020-08-24 2024-02-09 中国科学院上海微系统与信息技术研究所 Silicon heterojunction solar cell and preparation method thereof

Patent Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011074523A1 (en) * 2009-12-15 2011-06-23 三洋電機株式会社 Photoelectric conversion device and method for producing same
JP2013161822A (en) * 2012-02-01 2013-08-19 Mitsubishi Electric Corp Solar battery and method of manufacturing the same, and solar battery module
JP2013191657A (en) * 2012-03-13 2013-09-26 Sharp Corp Photoelectric conversion element and manufacturing method thereof
JP2014072209A (en) * 2012-09-27 2014-04-21 Sharp Corp Photoelectric conversion element and photoelectric conversion element manufacturing method
CN204315606U (en) * 2015-01-21 2015-05-06 中电投西安太阳能电力有限公司 Double heterojunction double-sided solar battery
CN107819052A (en) * 2017-12-11 2018-03-20 晋能光伏技术有限责任公司 A kind of efficiently crystal silicon non crystal heterogeneous agglomeration battery structure and preparation method thereof
CN207637825U (en) * 2017-12-11 2018-07-20 晋能光伏技术有限责任公司 A kind of efficient crystal silicon non crystal heterogeneous agglomeration battery structure
CN108172658A (en) * 2018-01-23 2018-06-15 国家电投集团西安太阳能电力有限公司 A kind of preparation method of N-type heterojunction double-sided solar cell
CN109509807A (en) * 2018-12-04 2019-03-22 江苏爱康能源研究院有限公司 Emitter structure of silicon/crystalline silicon heterojunction solar battery and preparation method thereof
CN109411551A (en) * 2018-12-13 2019-03-01 江苏爱康能源研究院有限公司 Efficient silicon/crystalline silicon heterojunction solar battery electrode structure of multiple deposition and preparation method thereof
CN109473493A (en) * 2018-12-20 2019-03-15 江苏日托光伏科技股份有限公司 A kind of MWT heterojunction silicon solar cell and preparation method thereof
CN111370521A (en) * 2018-12-26 2020-07-03 君泰创新(北京)科技有限公司 Silicon heterojunction solar cell and its emitter and method for making the same
CN109935660A (en) * 2019-03-04 2019-06-25 晋能光伏技术有限责任公司 A method for producing heterojunction solar cell amorphous silicon coating deposition layer by tubular PECVD equipment
CN110416342A (en) * 2019-06-25 2019-11-05 湖南红太阳光电科技有限公司 A kind of HJT battery based on metal nanoparticle and preparation method thereof
CN110629206A (en) * 2019-09-10 2019-12-31 苏州帕萨电子装备有限公司 A kind of N-type single crystal heterojunction solar cell film deposition equipment and its deposition method
CN110767760A (en) * 2019-11-27 2020-02-07 成都晔凡科技有限公司 Heterojunction solar cell, shingled module and manufacturing method thereof
CN111063757A (en) * 2019-11-29 2020-04-24 晋能光伏技术有限责任公司 A kind of high-efficiency crystalline silicon/amorphous silicon heterojunction solar cell and preparation method thereof
CN113113501A (en) * 2021-04-26 2021-07-13 江苏日托光伏科技股份有限公司 MWT heterojunction solar cell and preparation method thereof

Also Published As

Publication number Publication date
CN113990972A (en) 2022-01-28
CN114678434A (en) 2022-06-28
CN113990972B (en) 2022-06-21

Similar Documents

Publication Publication Date Title
JP5383792B2 (en) Solar cell
CN108987488B (en) Silicon heterojunction solar cell and preparation method thereof
JP5424800B2 (en) Heterojunction photovoltaic cell with dual doping and method of manufacturing the same
CN114823935B (en) Heterojunction battery and preparation method thereof
CN114975691A (en) Passivated contact solar cell with selective emitter and preparation method, assembly and system thereof
CN218788382U (en) A high-efficiency heterojunction solar cell
CN106057926A (en) Passivated emitting electrode solar cell with laminated heterojunction structure and preparation method thereof
US20240243212A1 (en) Heterojunction cell and method for preparing same
CN204651337U (en) Hybrid solar cell
CN205985014U (en) Passivation projecting pole solar battery with stromatolite heterostructure
CN110416329A (en) A crystalline silicon solar cell
CN114464687A (en) A kind of local double-sided tunneling passivation contact structure battery and preparation method thereof
CN114678434B (en) A heterojunction battery with improved photoelectric conversion efficiency
CN110797428A (en) Heterojunction solar cells
WO2024234954A1 (en) Solar cell and preparation method therefor
CN116722053B (en) Solar cell, preparation method thereof and photovoltaic module
CN216213500U (en) Novel heterogeneous crystalline silicon cell
CN217280796U (en) A TOPCon battery
CN117238979A (en) Heterojunction solar cell, manufacturing method thereof, photovoltaic module and photovoltaic system
JP4412766B2 (en) Thin film polycrystalline Si solar cell
WO2018214023A1 (en) Back-contact heterojunction solar cell and emitter thereof, and preparation method for solar cell
CN108389928B (en) Solar cell and preparation method thereof
CN113394309A (en) Solar cell and preparation method thereof
CN118472062B (en) Solar cell and preparation method thereof
TWI705572B (en) Solar cell having silicon oxynitride passivation layer and method for manufacturing the same

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant