CN114678423A - High voltage semiconductor device - Google Patents
High voltage semiconductor device Download PDFInfo
- Publication number
- CN114678423A CN114678423A CN202110566453.0A CN202110566453A CN114678423A CN 114678423 A CN114678423 A CN 114678423A CN 202110566453 A CN202110566453 A CN 202110566453A CN 114678423 A CN114678423 A CN 114678423A
- Authority
- CN
- China
- Prior art keywords
- high voltage
- well
- semiconductor device
- disposed
- voltage well
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/60—Insulated-gate field-effect transistors [IGFET]
- H10D30/64—Double-diffused metal-oxide semiconductor [DMOS] FETs
- H10D30/65—Lateral DMOS [LDMOS] FETs
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D62/00—Semiconductor bodies, or regions thereof, of devices having potential barriers
- H10D62/10—Shapes, relative sizes or dispositions of the regions of the semiconductor bodies; Shapes of the semiconductor bodies
- H10D62/102—Constructional design considerations for preventing surface leakage or controlling electric field concentration
- H10D62/103—Constructional design considerations for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse-biased devices
- H10D62/105—Constructional design considerations for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse-biased devices by having particular doping profiles, shapes or arrangements of PN junctions; by having supplementary regions, e.g. junction termination extension [JTE]
Landscapes
- Insulated Gate Type Field-Effect Transistor (AREA)
- Bipolar Transistors (AREA)
Abstract
Description
技术领域technical field
本发明关于一种高压半导体装置,特别是在外部高压阱中具有掺杂区的高压半导体装置。The present invention relates to a high voltage semiconductor device, particularly a high voltage semiconductor device having a doped region in an outer high voltage well.
背景技术Background technique
半导体集成电路(integrated circuit;IC)技术已快速发展,其中高压半导体装置技术被发展应用于高电压和高功率。高压半导体装置包括垂直式扩散金氧半导体(vertically diffused metal oxide semiconductor;VDMOS)晶体管及横向扩散金属氧化物半导体(laterally diffused metal oxide semiconductor;LDMOS)晶体管,并且高压半导体装置的优点在于符合成本效益,且易相容于其它工艺,已广泛应用于显示器驱动IC器件、电源供应器、电力管理、通信、车用电子或工业控制等领域中。Semiconductor integrated circuit (IC) technology has rapidly developed, in which high-voltage semiconductor device technology has been developed for high voltage and high power. High voltage semiconductor devices include vertically diffused metal oxide semiconductor (VDMOS) transistors and laterally diffused metal oxide semiconductor (LDMOS) transistors, and the advantages of high voltage semiconductor devices are that they are cost-effective, and It is easily compatible with other processes and has been widely used in display driver IC devices, power supplies, power management, communications, automotive electronics or industrial control and other fields.
尽管高压半导体装置的现有技术通常已足以满足其预期目的,但它们并非在各个方面都令人满意。随着高压半导体装置技术的发展,期望高压半导体装置可以有更大的操作电压,并因此需要更大的击穿电压。因此,需要一种具有更大击穿电压的高压半导体装置。While the prior art for high voltage semiconductor devices is generally adequate for their intended purpose, they are not satisfactory in all respects. With the development of high-voltage semiconductor device technology, it is expected that the high-voltage semiconductor device can have a larger operating voltage, and thus require a larger breakdown voltage. Therefore, there is a need for a high voltage semiconductor device having a larger breakdown voltage.
发明内容SUMMARY OF THE INVENTION
本发明提供一种高压半导体装置。高压半导体装置包括基板、第一高压阱、第二高压阱、第三高压阱、漏极区、源极区、栅极结构、以及掺杂区。基板具有一第一导电类型。第一高压阱设置在基板上方,并且具有与第一导电类型相反的第二导电类型。第二高压阱设置与第一高压阱相邻且接触,并且具有第一导电类型。第三高压阱设置与第一高压阱相邻且接触,并且具有第二导电类型。漏极区设置在第一高压阱内。栅极结构设置在源极区和漏极区之间。掺杂区设置在第三高压阱内,并且具有第二导电类型。The present invention provides a high-voltage semiconductor device. The high-voltage semiconductor device includes a substrate, a first high-voltage well, a second high-voltage well, a third high-voltage well, a drain region, a source region, a gate structure, and a doped region. The substrate has a first conductivity type. The first high voltage well is disposed over the substrate and has a second conductivity type opposite to the first conductivity type. The second high voltage well is disposed adjacent to and in contact with the first high voltage well and has the first conductivity type. The third high voltage well is disposed adjacent to and in contact with the first high voltage well and has the second conductivity type. The drain region is disposed within the first high voltage well. The gate structure is disposed between the source region and the drain region. The doped region is disposed within the third high voltage well and has the second conductivity type.
在一些实施例中,高压半导体装置更包括设置在第二高压阱和第三高压阱下方,并且具有第二导电类型的埋入层。In some embodiments, the high-voltage semiconductor device further includes a buried layer disposed under the second high-voltage well and the third high-voltage well and having the second conductivity type.
在一些实施例中,埋入层的边界与第一高压阱和上述第二高压阱之间的边界相距既定距离。In some embodiments, the boundary of the buried layer is at a predetermined distance from the boundary between the first high voltage well and the aforementioned second high voltage well.
在一些实施例中,高压半导体装置更包括介电层、金属接点、以及金属层。介电层设置在基板上方。金属接点设置在介电层中,并且接触掺杂区。金属层设置在介电层上方,并且接触金属接点。In some embodiments, the high voltage semiconductor device further includes a dielectric layer, a metal contact, and a metal layer. A dielectric layer is disposed over the substrate. Metal contacts are provided in the dielectric layer and contact the doped regions. A metal layer is disposed over the dielectric layer and contacts the metal contacts.
在一些实施例中,掺杂区的深度与第三高压阱的深度的比值在0.006至0.01的范围内。In some embodiments, the ratio of the depth of the doped region to the depth of the third high voltage well is in the range of 0.006 to 0.01.
本发明提供一种高压半导体装置。高压半导体装置包括基板、高压阱、第一环形阱、第二环形阱、漏极区、环形栅极结构、环形源极区、以及环形掺杂区。高压阱设置在基板上方,并且具有第一导电类型掺杂物。第一环形阱设置围绕且接触高压阱,并且具有与第一导电类型掺杂物相反的第二导电类型掺杂物。第二环形阱设置围绕第一环形阱,并且具有第一导电类型掺杂物。漏极区设置在高压阱中。环形栅极结构设置在高压阱上方,并且围绕漏极区。环形源极区设置在第一环形阱中,并且围绕环形栅极结构。环形掺杂区设置在第二环形阱内,并且具有第一导电类型掺杂物。The present invention provides a high-voltage semiconductor device. The high voltage semiconductor device includes a substrate, a high voltage well, a first annular well, a second annular well, a drain region, an annular gate structure, an annular source region, and an annular doped region. A high voltage well is disposed over the substrate and has dopants of the first conductivity type. The first annular well is disposed around and in contact with the high voltage well and has a second conductivity type dopant opposite to the first conductivity type dopant. The second annular well is disposed around the first annular well and has a first conductivity type dopant. The drain region is disposed in the high voltage well. A ring gate structure is disposed over the high voltage well and surrounds the drain region. A ring-shaped source region is disposed in the first ring-shaped well and surrounds the ring-shaped gate structure. An annular doped region is disposed within the second annular well and has dopants of the first conductivity type.
在一些实施例中,高压半导体装置更包括设置在第一环形阱和第二环形阱下方,并且具有第一导电类型掺杂物的环形埋入层。In some embodiments, the high voltage semiconductor device further includes an annular buried layer disposed under the first annular well and the second annular well and having a dopant of the first conductivity type.
在一些实施例中,环形埋入层的内边界与高压阱的外边界相距既定距离。In some embodiments, the inner boundary of the annular buried layer is a predetermined distance from the outer boundary of the high voltage well.
在一些实施例中,高压半导体装置更包括介电层、金属接点、以及金属层。介电层设置在基板上方。金属接点设置在介电层中,并且接触环形掺杂区。金属层设置在介电层上方,并且接触金属接点。In some embodiments, the high voltage semiconductor device further includes a dielectric layer, a metal contact, and a metal layer. A dielectric layer is disposed over the substrate. A metal contact is provided in the dielectric layer and contacts the annular doped region. A metal layer is disposed over the dielectric layer and contacts the metal contacts.
在一些实施例中,环形掺杂区的深度与第二环形阱的深度的比值在0.006至0.01的范围内。In some embodiments, the ratio of the depth of the annular doped region to the depth of the second annular well is in the range of 0.006 to 0.01.
随着高压半导体装置技术的发展,期望高压半导体装置可以有更大的操作电压。因此,作为隔离区的高压阱需要改进,以具有更大的击穿电压来避免高压半导体装置在更大的操作电压操作中不会影响邻近的器件。With the development of high voltage semiconductor device technology, it is expected that the high voltage semiconductor device can have a larger operating voltage. Therefore, the high voltage well as an isolation region needs to be improved to have a larger breakdown voltage to avoid high voltage semiconductor devices operating at higher operating voltages without affecting adjacent devices.
附图说明Description of drawings
为了使本发明的描述方式能涵盖上述的举例、其他优点及特征,上述简要说明的原理,将通过图式中的特定范例做更具体的描述。应理解此处所示的图式仅为本发明的范例,并不能对本发明的范围形成限制。本发明的原理是通过附图以进行具有附加特征与细节的描述与解释,其中:In order to enable the description of the present invention to cover the above examples, other advantages and features, the principles briefly described above will be described in more detail by way of specific examples in the drawings. It should be understood that the drawings shown herein are merely exemplary of the present invention and do not limit the scope of the present invention. The principles of the present invention are described and explained with additional character and detail by reference to the accompanying drawings, wherein:
图1A是根据本发明实施例的在隔离高压阱具有掺杂区的高压半导体装置的俯视图。1A is a top view of a high voltage semiconductor device having doped regions in isolated high voltage wells according to an embodiment of the present invention.
图1B是根据本发明实施例的在隔离高压阱具有掺杂区的高压半导体装置的剖面图。1B is a cross-sectional view of a high voltage semiconductor device having doped regions in isolated high voltage wells according to an embodiment of the present invention.
图2是根据本发明实施例的高压半导体装置与已知高压半导体装置的击穿电压比较图。FIG. 2 is a graph comparing the breakdown voltage of a high voltage semiconductor device according to an embodiment of the present invention and a known high voltage semiconductor device.
图3是根据本发明实施例的在隔离高压阱具有掺杂区的高压半导体装置的剖面图,其中在掺杂区上方额外形成通孔和金属层。3 is a cross-sectional view of a high voltage semiconductor device having a doped region in an isolated high voltage well, wherein a via and a metal layer are additionally formed over the doped region, according to an embodiment of the present invention.
附图标号reference number
100:高压半导体装置100: High Voltage Semiconductor Devices
102:基板102: Substrate
104:掺杂区104: Doping region
106:掺杂区106: Doping region
108:外延层108: Epitaxial layer
110:高压阱110: High Voltage Trap
112:高压阱112: High Voltage Trap
114:高压阱114: High Voltage Trap
116:高压阱116: High Voltage Trap
118:飘移区118: Drift Zone
120:阱120: Well
122:漏极区122: drain region
124:本体区124: Ontology area
126:掺杂区126: Doping region
128:掺杂区128: Doping region
130:源极区130: source region
132-1:氧化物结构132-1: Oxide Structure
132-2:氧化物结构132-2: Oxide Structure
132-3:氧化物结构132-3: Oxide Structure
132-4:氧化物结构132-4: Oxide Structure
134:栅极结构134: Gate structure
136:掺杂区136: Doping region
138:掺杂区138: Doping region
140:介电层140: Dielectric layer
142:通孔142: Through hole
144:介电层144: Dielectric layer
146:导线146: Wire
148:通孔148: Through hole
150:导线150: Wire
H1:深度H1: depth
H2:深度H2: depth
D1:距离D1: Distance
202:曲线202: Curves
204:曲线204: Curves
152:通孔152: Through hole
154:导线154: Wire
302:电路302: Circuit
304:电阻304: Resistor
具体实施方式Detailed ways
以下的发明内容提供许多不同的实施例或范例以实施本案的不同特征。以下的发明内容叙述各个构件及其排列方式的特定范例,以简化说明。当然,这些特定的范例并非用以限定。举例来说,若是本发明叙述了一第一特征形成于一第二特征的上或上方,即表示其可能包含上述第一特征与上述第二特征是直接接触的实施例,也可能包含了有附加特征形成于上述第一特征与上述第二特征之间,而使上述第一特征与第二特征可能未直接接触的实施例。另外,以下说明不同范例可能重复使用相同的参考符号及/或标记。这些重复是为了简化与清晰的目的,并非用以限定所讨论的不同实施例及/或结构之间有特定的关系。The following summary provides many different embodiments or examples for implementing different features of the present invention. The following summary describes specific examples of various components and their arrangements to simplify the description. Of course, these specific examples are not intended to be limiting. For example, if the present disclosure describes that a first feature is formed on or above a second feature, it means that it may include an embodiment in which the first feature and the second feature are in direct contact, and may also include an embodiment where the first feature is in direct contact with the second feature. Embodiments in which additional features are formed between the first and second features, such that the first and second features may not be in direct contact. In addition, the different examples described below may reuse the same reference symbols and/or labels. These repetitions are for the purpose of simplicity and clarity and are not intended to limit the particular relationship between the various embodiments and/or structures discussed.
为本发明内容的详述目的,除非特定否认,单数词包含复数词,反之亦然。并且字词“包含”其意为“非限制性地包含”。此外,进似性的(approximation)用语例如“大约”、“几乎”、“相当地”、“大概”等,可用于本发明实施例,其意义上如“在、接近或接近在”或“在3至5%内”或“在可接受制造公差内”或任意逻辑上的组合。For the purpose of this detailed description, unless specifically denied, the singular includes the plural and vice versa. And the word "comprising" means "includes without limitation." In addition, approximation terms such as "about," "almost," "substantially," "approximately," etc., may be used in embodiments of the present invention in the sense of "at, near, or near" or "at," Within 3 to 5%" or "within acceptable manufacturing tolerance" or any logical combination.
此外,其与空间相关用词。例如“在…下方”、“下方”、“较低的”、“上方”、“较高的”、及类似的用词,是为了便于描述图示中一个器件或特征与另一个器件或特征之间的关系。除了在图式中绘示的方位外,这些空间相关用词意欲包含使用中或操作中的装置的不同方位。举例来说,若在示意图中的装置被反转,被描述在其他器件或特征的“下方”或“在…下方”的器件也会因而变成在另外其他器件或特征的“上方”。如此一来,示范词汇“下方”会涵盖朝上面与朝下面的两种解读方式。除此之外,设备可能被转向不同方位(旋转90度或其他方位),则在此使用的空间相关词也可依此相同解释。Furthermore, it is a spatially related term. Terms such as "below," "below," "lower," "above," "upper," and similar terms are used to facilitate the description of one device or feature in the illustration to another device or feature The relationship between. These spatially relative terms are intended to encompass different orientations of the device in use or operation other than the orientation depicted in the figures. For example, if the device in the schematic diagrams is turned over, devices described as "below" or "beneath" other devices or features would then be oriented "above" the other devices or features. In this way, the model word "below" will cover both upside and downside interpretations. In addition, the device may be turned in different orientations (rotated 90 degrees or other orientations), and the spatially related terms used herein are to be interpreted in the same way.
此处所使用的术语仅用于描述特定实施例的目的,并且不限制本发明。如此处所使用的,除非上下文另外清楚的指出,否则单数形式“一”、“一个”以及“该”意旨在也包括复数形式。此外,就被用于详细描述及/或权利要求中的“囊括”、“包含”、“具有”、“有”、“含”或其变体的术语来说,这些术语旨在以相似于“包括”的方式而具有包容性。The terminology used herein is for the purpose of describing particular embodiments only, and does not limit the invention. As used herein, the singular forms "a," "an," and "the" are intended to include the plural forms as well, unless the context clearly dictates otherwise. Furthermore, to the extent that the terms "include", "include", "have", "have", "including" or variations thereof are used in the detailed description and/or the claims, these terms are intended to be used in a manner similar to Inclusive by way of "including".
除非另外定义,否则此处所使用的所有术语(包括技术和科学术语)具有与本领域技术人员通常理解的相同含义。此外,诸如在通用字典中定义的那些术语应该被解释为具有与其在相关领域的上下文中的含义中相同的含义,并且不会被理解为理想化或过度正式,除非在此处有明确地如此定义。Unless otherwise defined, all terms (including technical and scientific terms) used herein have the same meaning as commonly understood by one of ordinary skill in the art. Furthermore, terms such as those defined in general dictionaries should be construed to have the same meanings as they have in the context of the relevant field, and should not be construed as idealized or overly formal, unless expressly so stated herein definition.
本发明总体上涉及高压半导体装置。在通常高压半导体装置中,在高压半导体装置的外圈使用高压阱作为隔离区,以使得高压半导体装置在操作期间中不会影响邻近的器件。然而,随着高压半导体装置技术的发展,期望高压半导体装置可以有更大的操作电压。因此,作为隔离区的高压阱需要改进,以具有更大的击穿电压来避免高压半导体装置在更大的操作电压操作中不会影响邻近的器件。The present invention generally relates to high voltage semiconductor devices. In a typical high-voltage semiconductor device, a high-voltage well is used as an isolation region at the outer ring of the high-voltage semiconductor device so that the high-voltage semiconductor device does not affect adjacent devices during operation. However, with the development of high voltage semiconductor device technology, it is expected that the high voltage semiconductor device can have a larger operating voltage. Therefore, the high voltage well as an isolation region needs to be improved to have a larger breakdown voltage to avoid high voltage semiconductor devices operating at higher operating voltages without affecting adjacent devices.
图1A是根据本发明实施例的高压半导体装置100的俯视图,并且图1B是根据本发明实施例的高压半导体装置100的剖面图。根据一些实施例,高压半导体装置100形成在基板102。基板102可以大抵由硅组成。在一些实施例中,基板102可以包括另一种元素半导体,例如锗;化合物半导体,例如碳化硅、磷化镓、砷化镓、磷化镓、磷化铟、砷化铟及/或锑化铟;合金半导体,例如硅锗(SiGe)、碳磷化硅(SiPC)、磷砷化镓(GaAsP)、砷化铝铟(AlInAs)、砷化铝镓(AlGaAs)、砷化镓铟(GaInAs)、磷化镓铟(GaInP)及/或磷砷化镓铟(GaInAsP);或其组合。1A is a top view of a high-
替代地,基板102可以是绝缘体上半导体基板,例如绝缘体上硅(silicon-on-insulator;SOI)基板、绝缘体上硅锗(silicon germanium-on-insulator;SGOI)基板或绝缘体上锗(germanium-on-insulator;GOI)基板。绝缘体上半导体基板可以借由氧注入隔离(separation by implantation of oxygen;SIMOX),晶圆键结及/或其他合适方法来制造。Alternatively, the
在一些实施例中,基板102可具有第一导电类型,例如P型导电类型或N型导电类型。具体来说,基板102可具有第一导电类型掺杂物,例如P型掺杂物或N型掺杂物。N型掺杂物可包括磷(P)、砷(As)、其他N型掺杂物或其组合。P型掺杂物可包括硼(B)、铟(In)、其他P型掺杂物或其组合。In some embodiments, the
掺杂区104和106设置在基板102中。在一些实施例中,掺杂区104可具有与基板的第一导电类型(例如P型导电类型或N型导电类型)相反的第二导电类型(例如N型导电类型或P型导电类型),并且掺杂区106可具有与基板相同的第一导电类型。具体来说,掺杂区104可具有第二导电类型掺杂物(例如N型掺杂物或P型掺杂物),并且掺杂区106可具有第一导电类型掺杂物(例如P型掺杂物或N型掺杂物)。掺杂区104和106可借由一或多次掺杂工艺形成在基板102中,例如扩散工艺或离子注入工艺。在一些实施例中,掺杂区104的掺杂浓度可在5x1012原子/立方公分(atoms/cm3)至约1x1013原子/立方公分(atoms/cm3)的范围内,并且掺杂区106的掺杂浓度可在3x1012atoms/cm3至约8x1012atoms/cm3的范围内。此外,在一些实施例中,掺杂区104和106垂直于基板102的顶表面的厚度为约8微米。在一些实施例中,掺杂区104和106可称为埋入层。另外,如图1A所示,掺杂区104和106在俯视上为环形或具有环形布局(以虚线表示),并因此掺杂区104和106亦可称为环形掺杂区。
参照图1B,外延层108设置于基板102上方。外延层108可为具有第一导电类型或第二导电类型的外延半导体材料(例如:外延成长的硅(Si)或其他合适材料)。在一些实施例中,外延层108可借由金属有机物化学气相沉积(metal organic chemical vapordeposition;MOCVD)、等离子体增强化学气相沉积(plasma-enhanced CVD;PECVD)、分子束外延(molecular beam epitaxy;MBE)、氢化物气相外延(hydride vapour phase epitaxy;HVPE)、液相外延(liquid phase epitaxy;LPE)、氯化物气相外延(chloride-vapor phaseepitaxy;Cl-VPE)、其他工艺方法或其组合来形成。Referring to FIG. 1B , an
仍参照图1B,高压阱110、112、114、116设置在外延层108中。在一些实施例中,高压阱112、116可具有第一导电类型(即具有第一导电类型掺杂物),并且高压阱110、114可具有第二导电类型(即具有第二导电类型掺杂物)。与掺杂区104和106相似,高压阱110、112、114、116可借由一或多次掺杂工艺形成在外延层108中。值得注意的是,高压阱110、112彼此相邻并接触,而高压阱112、114、116彼此间隔设置。另外,如图1A所示,高压阱112、114、116在俯视上为环形或具有环形布局,并因此高压阱112、114、116亦可称为环形阱或环形高压阱,其中高压阱112围绕高压阱110、高压阱114围绕高压阱112、以及高压阱116围绕高压阱114。Still referring to FIG. 1B ,
再参照图1B,飘移区118设置在高压阱110中,阱120设置在飘移区118中,并且漏极区122设置在阱120中,其中飘移区118、阱120、以及漏极区122皆具有第二导电类型(即具有第二导电类型掺杂物)。在一些实施例中,漏极区122的掺杂浓度大于阱120的掺杂浓度、阱120的掺杂浓度大于飘移区118的掺杂浓度、以及飘移区118的掺杂浓度大于高压阱110的掺杂浓度。在一些实施例中,高压阱110的掺杂浓度可在1x1012atoms/cm3至约5x1012atoms/cm3的范围内,飘移区118的掺杂浓度可在6x1012atoms/cm3至约9x1013atoms/cm3的范围内,阱120的掺杂浓度可在1x1013atoms/cm3至约5x1013atoms/cm3的范围内,并且漏极区122可在1x1015atoms/cm3至约5x1015atoms/cm3的范围内。1B again, the
在高压阱112中形成有本体(body)区124,而本体区124中形成有源极区130,其中源极区130包括掺杂区126、128。本体区124和掺杂区126具有第一导电类型(即具有第一导电类型掺杂物),并且掺杂区128具有第二导电类型(即具有第二导电类型掺杂物)。在一些实施例中,掺杂区126、128的掺杂浓度大于本体区124的掺杂浓度,并且本体区124的掺杂浓度大于高压阱112的掺杂浓度。在一些实施例中,掺杂区126、128的掺杂浓度可在1x1015atoms/cm3至约5x1015atoms/cm3的范围内,并且本体区124的掺杂浓度可在1x1013atoms/cm3至约5x1013atoms/cm3的范围内。如上面所述,与高压阱110、112、114、116相似,飘移区118、阱120、漏极区122、本体区124、以及掺杂区126和128各自可借由一或多次掺杂工艺形成。A
复数氧化物结构132-1、132-2、132-3、132-4设置在外延层108上,并且部分地嵌入在外延层108中。在一些实施例中,氧化物结构132-1、132-2、132-3、132-4可由氧化硅、氮化硅或氮氧化硅组成,并且可以是借由热氧化所形成的硅局部氧化(local oxidation ofsilicon;LOCOS)。在其他实施例中,氧化物结构132-1、132-2、132-3、132-4可以是借由刻蚀和沉积工艺所形成的浅沟槽隔离(shallow trench isolation;STI)结构。Complex oxide structures 132 - 1 , 132 - 2 , 132 - 3 , 132 - 4 are disposed on and partially embedded in
栅极结构134设置在外延层108上,并且可包括栅极介电层和栅极电极层。栅极介电层可以包括氧化硅、氮氧化硅、氧化铝硅、高k介电材料(例如氧化铪、氧化锆、氧化镧、氧化钛、氧化钇、钛酸锶)、其他合适介电材料或其组合,并且可借由化学气相沉积(chemicalvapor deposition;CVD)、旋转涂布(spin coating)、或其他合适工艺来形成。栅极电极层可以包括非晶硅、复晶硅、一或多种金属、金属氮化物、导电金属氧化物、其他合适材料或其组合,并且可借由CVD、溅射(sputtering)、电阻加热蒸发、电子束蒸发、或其他合适沉积工艺来形成。值得注意的是,如图1B所示,栅极结构134的一部分设置在氧化物结构132-1上。在此实施例中,氧化物结构132-1可被称为场氧化物,以提高漏极至栅极的击穿电压(punchthrough voltage)。The
在一些实施例中,栅极结构134可更包括一或多个功函数金属层以调节栅极结构134的功函数。功函数金属层的材料可以包括氮化钛(TiN)、氮化钽(TaN)、钌(Ru)、钼(Mo)、铝(Al)、氮化钨(WN)、二硅化锆(ZrSi2)、二硅化钼(MoSi2)、二硅化钽(TaSi2)、二硅化镍(NiSi2)、钛(Ti)、银(Ag)、钛铝(TiAl)、碳化钛铝(TiAlC)、氮化钛铝(TiAlN)、碳化钽(TaC)、碳氮化钽(TaCN)、氮化钽硅(TaSiN)、锰(Mn)、锆(Zr)、其他合适功函数材料或其组合,并且功函数金属层可以借由原子层沉积(atomic layer deposition;ALD)、CVD及/或其他合适工艺来沉积。In some embodiments, the
如图1A所示,源极区130在俯视上为环形或具有环形布局,并因此源极区130亦可称为环形源极区,并且围绕高压阱110和漏极区122。另外,尽管图1A未显示,在本实施例中,栅极结构134亦可为环形或具有环形布局,并因此栅极结构134亦可称为环形栅极结构,并且围绕漏极区122。因此,源极区130亦围绕栅极结构134,或者栅极结构134设置在漏极区122和源极区130之间。As shown in FIG. 1A , the
掺杂区136、138可借由一或多次掺杂工艺个别设置在高压阱114和116中。掺杂区138具有第一导电类型(即具有第一导电类型掺杂物),并且掺杂区136具有第二导电类型(即具有第二导电类型掺杂物)。在一些实施例中,掺杂区136、138的掺杂浓度个别大于高压阱114和116的掺杂浓度。在一些实施例中,掺杂区136、138的掺杂浓度可在1x1015atoms/cm3至约5x1015atoms/cm3的范围内。另外,如图1A所示,掺杂区136、138在俯视上为环形或具有环形布局,并因此掺杂区136、138亦可称为环形掺杂区,其中掺杂区136围绕高压阱110、漏极区122、栅极结构134、高压阱112、以及源极区130,并且掺杂区138围绕高压阱110、漏极区122、栅极结构134、高压阱112、源极区130、高压阱114、以及掺杂区136。The doped
再参照图1B,互连结构设置在外延层108上方。互连结构可以包括复数导电特征,其被配置以将高压半导体装置100与额外装置、部件、电压源等互连,以确保高压半导体装置100的适当功能。互连结构包括各种导电层和介电层。导电层被配置以形成垂直互连特征,例如垂直互连结构(例如:通孔142、148)及/或水平互连结构(例如:导线146、150)。设置在介电层中的每一个水平互连特征可以被称为“金属层”,并且两个不同的金属层可以借由一或多个垂直互连结构电性耦接。各种导电层嵌入在介电层中,例如介电层140和144。如图1B所示,源极区130和掺杂区138各自连接通孔142和导线146,并且漏极区122连接通孔142、导线146、通孔148、导线150。每一个导电层(例如:通孔142、148和导线146、150)可以包括铜(Cu)、钨(W)、钌(Ru)、钴(Co)、铝(Al)、其他合适金属或其组合,并且在一些实施例中可以进一步包括阻挡层,其包括钛(Ti)、钽(Ta)、氮化钛(TiN)及/或氮化钽(TaN)。介电层140和144可以被称为层间介电(interlayer dielectric;ILD)层。在一些实施例中,介电层140和144可以包括氧化硅、四乙氧基硅烷(tetraethylorthosilicate;TEOS)、未掺杂的硅酸盐玻璃或掺杂的氧化硅,例如硼磷硅酸盐玻璃(borophosphosilicate glass;BPSG)、熔融石英玻璃(fused silica glass;FSG)、磷硅酸盐玻璃(phosphosilicate glass;PSG)、硼掺杂硅玻璃(boron doped silicon glass;BSG)、其他合适介电材料或其组合。在一些实施例中,介电层140和144可以使用CVD、流动式CVD(flowable CVD;FCVD)或旋涂玻璃来形成。Referring again to FIG. 1B , an interconnect structure is disposed over
如上面所述,在本发明实施例中,在高压半导体装置100的外圈使用高压阱114作为隔离区,以使得高压半导体装置在操作期间中不会影响邻近的器件。为了使高压半导体装置100可以在更大的操作电压中操作而不影响邻近器件,需要增加高压半导体装置100的横向击穿电压(lateral punch voltage)。在本发明实施例中,掺杂区136被设置在高压阱114中以进一步增加横向击穿电压。如上面所述,掺杂区136的掺杂浓度大于高压阱114的掺杂浓度。如此一来,因为掺杂区136的掺杂物可以部分扩散至高压阱114,高压阱114的掺杂浓度会增加,并因此缩小空乏区以具有更大的横向击穿电压。值得注意的是,掺杂区136设置在高压阱114的上部。具体来说,掺杂区136的深度H1与高压阱114的深度H2的比值在约0.006至约0.01的范围内。如果掺杂区136的深度H1的深度太小,则无法有效增加横向击穿电压。如果掺杂区136的深度H1的深度太大,则将导致此器件的接面击穿电压(JunctionBreakdown)下降(将导致高压阱114到高压阱116的击穿)。As described above, in the embodiment of the present invention, the high-
图2是根据本发明实施例的高压半导体装置100与已知高压半导体装置的击穿电压比较图。已知高压半导体装置的外围高压阱不具有掺杂区,而高压半导体装置100的外围高压阱(例如高压阱114)具有掺杂区(例如掺杂区136)。如图2所示,在漏极电流-漏极电压特性图(Id-Vd特性图)中,曲线202和204个别表示已知高压半导体装置和高压半导体装置100的Id-Vd特性。当已知高压半导体装置的漏极电压增加至约90V时,发生横向击穿而漏极电流急剧上升。相对地,由于高压半导体装置100的外围高压阱具有掺杂区,漏极电压增加至约167V时才发生横向击穿而漏极电流急剧上升。因此,在高压半导体装置的外围高压阱设置掺杂区可以有效增加横向击穿电压。FIG. 2 is a graph comparing the breakdown voltage of the high-
再参照图1A和图1B,掺杂区104设置在高压阱112和114下方。值得注意的是,在本发明实施例中,掺杂区104不会延伸到高压阱110下方。具体来说,掺杂区104的边界(如图1A所示,掺杂区104的内边界)与高压阱110的边界(如图1A所示,高压阱110的外边界)相距一个既定的距离D1,以防止从漏极区122流到掺杂区104的漏电。另外,如果距离D1太大,掺杂区104无法有效防止高压阱112至基板102的垂直漏电。Referring again to FIGS. 1A and 1B , the doped
图3是另一实施例的高压半导体装置100的剖面图,其中在掺杂区136上方额外形成通孔152和导线154。在此情况下,掺杂区136、高压阱114、掺杂区104、漏极区122可构成电路302。如上面所述,掺杂区104的边界与高压阱110的边界相距距离D1,此部分构成在电路302中的电阻304。在此实施例中,借由量测电路302中的电阻304的电阻值,可以监控距离D1是否符合设计。具体来说,形成高压半导体装置100的一连串工艺可能会影响掺杂区104的轮廓。举例来说,高压半导体装置100的工艺可能使掺杂区104向延伸高压阱110的下方延伸(即距离D1减小),并因此导致电路302中的电阻304的电阻值减小。如此一来,最后所得高压半导体装置100在操作中发生从漏极区122到掺杂区104的漏电。因此,通过量测电路302中的电阻304的电阻值,可以确定高压半导体装置100是否符合设计需求或具有缺陷。FIG. 3 is a cross-sectional view of a high
相较于现有技术,本发明的实施例提供多个优点,并应了解其他实施例可提供不同优点,在此不须讨论全部优点,并且全部实施例无特定优点。Embodiments of the present invention provide a number of advantages over the prior art, and it is understood that other embodiments may provide different advantages, all of which need not be discussed here, and none of which are specific.
前述内容概述了许多实施例的特征,使本领域技术人员可以从各个方面更佳地了解本发明。本领域技术人员应可理解,且可轻易地以本发明为基础来设计或修饰其他工艺及结构,并以此达到相同的目的及/或达到与在此介绍的实施例等相同的优点。本领域技术人员也应了解这些相等的结构并未违背本发明的发明精神与范围。在不违背本发明的发明精神与范围的前提下,可对本发明进行各种改变、置换或修改。The foregoing has outlined the features of the many embodiments so that those skilled in the art may better understand the invention from its various aspects. Those skilled in the art should appreciate and can easily design or modify other processes and structures based on the present invention and thereby achieve the same purposes and/or the same advantages as the embodiments and the like described herein. Those skilled in the art should also realize that these equivalent structures do not depart from the spirit and scope of the invention. Various changes, substitutions or modifications can be made in the present invention without departing from the spirit and scope of the invention.
Claims (10)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW109145889A TWI812909B (en) | 2020-12-24 | 2020-12-24 | High voltage semiconductor device |
TW109145889 | 2020-12-24 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN114678423A true CN114678423A (en) | 2022-06-28 |
Family
ID=82071334
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202110566453.0A Pending CN114678423A (en) | 2020-12-24 | 2021-05-24 | High voltage semiconductor device |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN114678423A (en) |
TW (1) | TWI812909B (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI812561B (en) * | 2022-12-19 | 2023-08-11 | 新唐科技股份有限公司 | Semiconductor device |
TWI863441B (en) * | 2023-07-20 | 2024-11-21 | 世界先進積體電路股份有限公司 | High voltage semiconductor device |
TWI869126B (en) * | 2023-12-20 | 2025-01-01 | 新唐科技股份有限公司 | Semiconductor structure |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100974697B1 (en) * | 2008-07-09 | 2010-08-06 | 주식회사 동부하이텍 | Method for Manufacturing LMDOS Element and LMDMOS Element |
KR101228365B1 (en) * | 2011-10-13 | 2013-02-01 | 주식회사 동부하이텍 | Lateral double diffused metal oxide semiconductor and method for fabricating the same |
KR101975630B1 (en) * | 2015-04-03 | 2019-08-29 | 매그나칩 반도체 유한회사 | Semiconductor Structure having a Junction Field Effect Transistor and a High Voltage Transistor and Method for Manufacturing the same |
TWI654756B (en) * | 2018-04-25 | 2019-03-21 | 新唐科技股份有限公司 | High voltage semiconductor device |
TWI673869B (en) * | 2018-07-31 | 2019-10-01 | 新唐科技股份有限公司 | High voltage semiconductor devices and methods for manufacturing the same |
-
2020
- 2020-12-24 TW TW109145889A patent/TWI812909B/en active
-
2021
- 2021-05-24 CN CN202110566453.0A patent/CN114678423A/en active Pending
Also Published As
Publication number | Publication date |
---|---|
TWI812909B (en) | 2023-08-21 |
TW202226382A (en) | 2022-07-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI656623B (en) | Semiconductor device and method of forming thereof | |
US8796745B2 (en) | Monolithically integrated active snubber | |
CN110400842B (en) | High voltage semiconductor device | |
TWI812909B (en) | High voltage semiconductor device | |
CN104425612B (en) | Semiconductor devices with silicide | |
US9443943B2 (en) | Semiconductor device and fabrication method thereof | |
TWI624942B (en) | High voltage semiconductor device | |
US8878330B2 (en) | Integrated high voltage divider | |
WO2011093953A2 (en) | High voltage scrmos in bicmos process technologies | |
US10319809B2 (en) | Structures to avoid floating resurf layer in high voltage lateral devices | |
US20080173924A1 (en) | Semiconductor device and method for manufacturing semiconductor device | |
JP2020047715A (en) | Semiconductor device | |
US11417649B2 (en) | Semiconductor device | |
TWI748729B (en) | Semiconductor structure | |
US20250098290A1 (en) | High-voltage device and method of forming the same | |
TWI872272B (en) | Semiconductor device | |
US20220359502A1 (en) | Method of manufacturing a semiconductor device | |
US20230142760A1 (en) | Vertical transistors having improved control of parasitic capacitance and gate-to-contact short circuits | |
CN111564488B (en) | Semiconductor device and method for manufacturing the same | |
TWI684213B (en) | Semiconductor structure and method for forming the same | |
CN111146284B (en) | Semiconductor device and method for manufacturing the same | |
TWI823892B (en) | Semiconductor devices and methods for fabricating the same | |
CN107017284A (en) | Semiconductor device structure | |
CN116454122A (en) | GAA LDMOS structure for high voltage operation | |
TW202420437A (en) | Semiconductor structure and method for forming the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |