CN114678383A - A TFT array substrate structure with improved metal residue and its manufacturing method - Google Patents
A TFT array substrate structure with improved metal residue and its manufacturing method Download PDFInfo
- Publication number
- CN114678383A CN114678383A CN202210441713.6A CN202210441713A CN114678383A CN 114678383 A CN114678383 A CN 114678383A CN 202210441713 A CN202210441713 A CN 202210441713A CN 114678383 A CN114678383 A CN 114678383A
- Authority
- CN
- China
- Prior art keywords
- layer
- metal
- buffer layer
- grinding
- metal layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 229910052751 metal Inorganic materials 0.000 title claims abstract description 86
- 239000002184 metal Substances 0.000 title claims abstract description 86
- 239000000758 substrate Substances 0.000 title claims abstract description 38
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 18
- 238000000034 method Methods 0.000 claims abstract description 23
- 239000011521 glass Substances 0.000 claims abstract description 16
- 230000008569 process Effects 0.000 claims abstract description 13
- 239000010936 titanium Substances 0.000 claims description 11
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 9
- 238000005229 chemical vapour deposition Methods 0.000 claims description 9
- 229910052814 silicon oxide Inorganic materials 0.000 claims description 9
- 230000004888 barrier function Effects 0.000 claims description 8
- 238000005498 polishing Methods 0.000 claims description 8
- 239000000463 material Substances 0.000 claims description 7
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 6
- 229910004205 SiNX Inorganic materials 0.000 claims description 6
- 229910052750 molybdenum Inorganic materials 0.000 claims description 5
- 229910052719 titanium Inorganic materials 0.000 claims description 5
- 239000000126 substance Substances 0.000 claims description 4
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 3
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 claims description 3
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 3
- 239000000956 alloy Substances 0.000 claims description 3
- 229910045601 alloy Inorganic materials 0.000 claims description 3
- 229910052782 aluminium Inorganic materials 0.000 claims description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 3
- 229910052802 copper Inorganic materials 0.000 claims description 3
- 239000010949 copper Substances 0.000 claims description 3
- 238000005286 illumination Methods 0.000 claims description 3
- 239000011733 molybdenum Substances 0.000 claims description 3
- 229910052759 nickel Inorganic materials 0.000 claims description 3
- 238000009413 insulation Methods 0.000 claims 4
- 239000007788 liquid Substances 0.000 claims 4
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims 3
- 229910052593 corundum Inorganic materials 0.000 claims 3
- 229910001845 yogo sapphire Inorganic materials 0.000 claims 3
- 238000000151 deposition Methods 0.000 claims 1
- 238000013461 design Methods 0.000 abstract description 8
- 238000010586 diagram Methods 0.000 description 8
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 7
- 239000002002 slurry Substances 0.000 description 5
- 239000012530 fluid Substances 0.000 description 4
- 238000012986 modification Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 229910021417 amorphous silicon Inorganic materials 0.000 description 2
- 238000001312 dry etching Methods 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000002860 competitive effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 229910052733 gallium Inorganic materials 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 1
- 229910052755 nonmetal Inorganic materials 0.000 description 1
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 1
- 229920005591 polysilicon Polymers 0.000 description 1
- 238000012805 post-processing Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 238000001039 wet etching Methods 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D86/00—Integrated devices formed in or on insulating or conducting substrates, e.g. formed in silicon-on-insulator [SOI] substrates or on stainless steel or glass substrates
- H10D86/40—Integrated devices formed in or on insulating or conducting substrates, e.g. formed in silicon-on-insulator [SOI] substrates or on stainless steel or glass substrates characterised by multiple TFTs
- H10D86/421—Integrated devices formed in or on insulating or conducting substrates, e.g. formed in silicon-on-insulator [SOI] substrates or on stainless steel or glass substrates characterised by multiple TFTs having a particular composition, shape or crystalline structure of the active layer
- H10D86/423—Integrated devices formed in or on insulating or conducting substrates, e.g. formed in silicon-on-insulator [SOI] substrates or on stainless steel or glass substrates characterised by multiple TFTs having a particular composition, shape or crystalline structure of the active layer comprising semiconductor materials not belonging to the Group IV, e.g. InGaZnO
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D86/00—Integrated devices formed in or on insulating or conducting substrates, e.g. formed in silicon-on-insulator [SOI] substrates or on stainless steel or glass substrates
- H10D86/01—Manufacture or treatment
- H10D86/021—Manufacture or treatment of multiple TFTs
- H10D86/0212—Manufacture or treatment of multiple TFTs comprising manufacture, treatment or coating of substrates
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D86/00—Integrated devices formed in or on insulating or conducting substrates, e.g. formed in silicon-on-insulator [SOI] substrates or on stainless steel or glass substrates
- H10D86/01—Manufacture or treatment
- H10D86/021—Manufacture or treatment of multiple TFTs
- H10D86/0231—Manufacture or treatment of multiple TFTs using masks, e.g. half-tone masks
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D86/00—Integrated devices formed in or on insulating or conducting substrates, e.g. formed in silicon-on-insulator [SOI] substrates or on stainless steel or glass substrates
- H10D86/40—Integrated devices formed in or on insulating or conducting substrates, e.g. formed in silicon-on-insulator [SOI] substrates or on stainless steel or glass substrates characterised by multiple TFTs
- H10D86/411—Integrated devices formed in or on insulating or conducting substrates, e.g. formed in silicon-on-insulator [SOI] substrates or on stainless steel or glass substrates characterised by multiple TFTs characterised by materials, geometry or structure of the substrates
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D86/00—Integrated devices formed in or on insulating or conducting substrates, e.g. formed in silicon-on-insulator [SOI] substrates or on stainless steel or glass substrates
- H10D86/40—Integrated devices formed in or on insulating or conducting substrates, e.g. formed in silicon-on-insulator [SOI] substrates or on stainless steel or glass substrates characterised by multiple TFTs
- H10D86/451—Integrated devices formed in or on insulating or conducting substrates, e.g. formed in silicon-on-insulator [SOI] substrates or on stainless steel or glass substrates characterised by multiple TFTs characterised by the compositions or shapes of the interlayer dielectrics
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D86/00—Integrated devices formed in or on insulating or conducting substrates, e.g. formed in silicon-on-insulator [SOI] substrates or on stainless steel or glass substrates
- H10D86/40—Integrated devices formed in or on insulating or conducting substrates, e.g. formed in silicon-on-insulator [SOI] substrates or on stainless steel or glass substrates characterised by multiple TFTs
- H10D86/60—Integrated devices formed in or on insulating or conducting substrates, e.g. formed in silicon-on-insulator [SOI] substrates or on stainless steel or glass substrates characterised by multiple TFTs wherein the TFTs are in active matrices
Landscapes
- Thin Film Transistor (AREA)
Abstract
本发明公开一种改善金属残留的TFT阵列基板结构及其制造方法,所述改善金属残留的TFT阵列基板结构,包括TFT侧玻璃基板,所述玻璃基板上设有带有凹槽的缓冲层,所述凹槽的的形状为上大下小的梯形状,所述缓冲层的凹槽内沉积有GE金属层,所述GE金属层上设有GI绝缘层,所述GI绝缘层上设有PV绝缘层。本发明在玻璃基板上增加一层带有凹槽设计的缓冲层,使GE金属层走线沉积在缓冲层之内,采用CMP工艺,将缓冲层表面进行平坦化处理,使GE金属层与缓冲层处于共平面,排除了GE Taper的存在,消除了因GE Taper引起的金属残留,从而达到提高产品良率的目的。
The invention discloses a TFT array substrate structure with improved metal residues and a manufacturing method thereof. The TFT array substrate structure with improved metal residues comprises a TFT side glass substrate on which a buffer layer with grooves is arranged, The shape of the groove is a trapezoid with a large upper and a small lower, a GE metal layer is deposited in the groove of the buffer layer, a GI insulating layer is arranged on the GE metal layer, and a GI insulating layer is arranged on the GI insulating layer. PV insulating layer. In the present invention, a buffer layer with groove design is added on the glass substrate, so that the GE metal layer traces are deposited in the buffer layer, and the CMP process is used to flatten the surface of the buffer layer, so that the GE metal layer and the buffer layer are flattened. The layers are coplanar, which eliminates the existence of GE Taper and eliminates the metal residue caused by GE Taper, so as to achieve the purpose of improving product yield.
Description
技术领域technical field
本发明涉及显示技术领域,具体涉及一种改善金属残留的TFT阵列基板结构及其制造方法。The invention relates to the field of display technology, in particular to a TFT array substrate structure with improved metal residues and a manufacturing method thereof.
背景技术Background technique
IGZO是一种含有铟、镓和锌的非晶氧化物,载流子迁移率是非晶硅的20~30倍,可以大大提高TFT对像素电极的充放电速率,提高像素的响应速度,具备更快的面板刷新频率,可实现超高分辨率TFT-LCD。同时,现有的非晶硅生产线只需稍加改动即可兼容IGZO制程,因此在成本方面较低温多晶硅(LTPS)更有竞争力。IGZO is an amorphous oxide containing indium, gallium and zinc. The carrier mobility is 20 to 30 times that of amorphous silicon, which can greatly improve the charge and discharge rate of TFT to the pixel electrode, improve the response speed of the pixel, and have better performance. Fast panel refresh rate, enabling ultra-high resolution TFT-LCD. At the same time, the existing amorphous silicon production line can be compatible with the IGZO process with only minor modifications, so lower temperature polysilicon (LTPS) is more competitive in terms of cost.
现阶段随着市场LCD显示屏窄边框需求趋势明显,且低成本、高分辨率IGZO面板逐渐成为开发的热点,但随着分辨率的提升,IGZO TFT器件的Short chanel(短沟道)设计对制程要求越来越高,金属层线宽线距及精度、金属层与非金属层膜质的选择/搭配直接影响到TFT器件电学特性的稳定性At this stage, as the market demand for narrow borders of LCD displays is obvious, and low-cost, high-resolution IGZO panels have gradually become a hot spot for development, but with the improvement of resolution, the Short chanel (short channel) design of IGZO TFT devices The process requirements are getting higher and higher. The line width and precision of the metal layer, the selection/matching of the film quality of the metal layer and the non-metal layer directly affect the stability of the electrical characteristics of the TFT device.
而制程方面,现有的TFT阵列基板的金属层蚀刻方式主要以湿刻(Mo/Al/Mo为例)和干刻(Ti/Al/Ti为例)为主,考虑到工艺成本、金属线CD大小精度、TFT器件Short chanel设计及不同金属/无机膜层搭配等种种设计需求,常会以Ti/Al/Ti作为SD层的金属,但实际量产过程中会发现,在GE层Taper的侧面处会极易出现一些SD金属残留,会造成后制程膜层堆叠覆盖性不佳和相邻SD金属线的短路现象,最终影响产品的良率。除目前制程中的干蚀刻工艺需要继续提高以外,实际上GE Taper(GE金属经蚀刻后侧面金属层的角度)偏大往往是造成SD金属残留的主要制程原因,而减缓GE Taper仍然是制程上需要攻克的难点,目前仍未有所改善。因此,在现有的制程工艺能力基础上,如何避免SD层金属残留成为了技术关键。In terms of manufacturing process, the existing metal layer etching methods of TFT array substrates are mainly wet etching (Mo/Al/Mo as an example) and dry etching (Ti/Al/Ti as an example). Due to various design requirements such as CD size accuracy, TFT device Short chanel design, and the combination of different metal/inorganic film layers, Ti/Al/Ti is often used as the metal of the SD layer, but in the actual mass production process, it will be found that on the side of the GE layer Taper There will be some SD metal residues very easily at the place, which will cause poor coverage of the post-processing film stack and short circuit of the adjacent SD metal lines, which will ultimately affect the yield of the product. In addition to the need to continue to improve the dry etching process in the current process, in fact, the large GE Taper (the angle of the side metal layer after the GE metal is etched) is often the main process reason for the residual SD metal, and slowing down the GE Taper is still the process. The difficulties that need to be overcome have not yet been improved. Therefore, on the basis of the existing process capability, how to avoid metal residues in the SD layer has become a technical key.
发明内容SUMMARY OF THE INVENTION
本发明旨在提供一种改善金属残留的TFT阵列基板结构及其制造方法,以现有设计的光罩及制程工艺,通过增加一层缓冲层来避免因GE Taper引起的金属残留,从而达到提高产品良率的目的。The present invention aims to provide a TFT array substrate structure with improved metal residues and a manufacturing method thereof. With the existing designed photomask and manufacturing process, a buffer layer is added to avoid metal residues caused by GE Taper, so as to achieve improved performance. The purpose of product yield.
为实现上述目的,本发明采用以下技术方案:To achieve the above object, the present invention adopts the following technical solutions:
一种改善金属残留的TFT阵列基板结构,其包括TFT侧玻璃基板,所述玻璃基板上设有带有凹槽的缓冲层,所述凹槽的的形状为上大下小的梯形状;所述缓冲层的凹槽内沉积有GE金属层,所述GE金属层上设有GI绝缘层,所述GI绝缘层上设有PV绝缘层。A TFT array substrate structure for improving metal residues, comprising a TFT side glass substrate, a buffer layer with grooves is provided on the glass substrate, and the shape of the grooves is a trapezoid shape with a large upper and a smaller lower; A GE metal layer is deposited in the groove of the buffer layer, a GI insulating layer is arranged on the GE metal layer, and a PV insulating layer is arranged on the GI insulating layer.
进一步的,所述缓冲层和GE金属层的上表面齐平。Further, the upper surface of the buffer layer and the GE metal layer are flush.
所述缓冲层通常选用SiOx,不仅可应用于平坦化玻璃表面,且在特定区域Pattern出对应的凹槽形状。The buffer layer is usually made of SiOx, which can not only be applied to planarize the glass surface, but also pattern a corresponding groove shape in a specific area.
所述GE金属层具有低电阻率,可选用铝/钼/钛/镍/铜/等导电性优良金属以及合金,如Mo/Al/Mo或Ti/Al/Ti。The GE metal layer has low resistivity, and can be selected from metals with good electrical conductivity such as aluminum/molybdenum/titanium/nickel/copper, and alloys, such as Mo/Al/Mo or Ti/Al/Ti.
所述GI绝缘层是具有较大介电常数的绝缘层,由SiOx或SiNx材料成型。The GI insulating layer is an insulating layer with a larger dielectric constant and is formed of SiOx or SiNx material.
所述PV绝缘层是具有较大介电常数的绝缘层,由SiOx或SiNx材料成型。The PV insulating layer is an insulating layer with a larger dielectric constant, and is formed of SiOx or SiNx material.
一种改善金属残留的TFT阵列基板结构的制造方法,包括以下步骤:A method for manufacturing a TFT array substrate structure with improved metal residues, comprising the following steps:
1)在玻璃基板上通过化学气相沉积法形成缓冲层;1) A buffer layer is formed on a glass substrate by chemical vapor deposition;
2)通过GE光照对缓冲层进行弱曝,使缓冲层形成上大下小的凹槽模型,2) Weakly expose the buffer layer by GE illumination, so that the buffer layer forms a groove model with a large upper and a small lower.
3)在缓冲层的凹槽内沉积GE金属层,3) Deposit a GE metal layer in the groove of the buffer layer,
4)为了消除高于缓冲层上表面的GE金属层,采用化学机械平坦化抛光(CMP)工艺,使用研磨垫、研磨液对GE金属层进行研磨,将突出于缓冲层上表面的GE金属层磨平;4) In order to eliminate the GE metal layer higher than the upper surface of the buffer layer, the chemical mechanical planarization (CMP) process is used to grind the GE metal layer with a polishing pad and slurry, and the GE metal layer protruding from the upper surface of the buffer layer will be ground. smooth;
4-1)采用Al2O3研磨液研磨去除大部分的GE金属层,留下薄而均匀的GE金属层,(研磨前的GE金属层厚度为3000A左右,经研磨后剩余的GE金属层厚度为500A左右)压力为0.4~0.8MPa,研磨速率为800~1500A/min;4-1) Use Al 2 O 3 slurry to grind and remove most of the GE metal layer, leaving a thin and uniform GE metal layer (the thickness of the GE metal layer before grinding is about 3000A, and the remaining GE metal layer after grinding The thickness is about 500A) the pressure is 0.4~0.8MPa, and the grinding rate is 800~1500A/min;
4-2)采用Al2O3研磨液,用较低的压力和研磨速率将剩余的薄而均匀的GE金属层磨平,压力为0.05~0.1MPa,研磨速率为100~300A/min;4-2) Using Al 2 O 3 grinding fluid, grind the remaining thin and uniform GE metal layer with low pressure and grinding rate, the pressure is 0.05~0.1MPa, and the grinding rate is 100~300A/min;
4-3)进行阻挡层抛光,采用Al2O3研磨液,用研磨垫将突出于缓冲层上表面的GE金属阻挡层进行抛光处理;4-3) Polish the barrier layer, use Al 2 O 3 grinding fluid, and use a polishing pad to polish the GE metal barrier layer protruding from the upper surface of the buffer layer;
5)在GE金属层上通过化学气相沉积法形成GI绝缘层;5) A GI insulating layer is formed on the GE metal layer by chemical vapor deposition;
6)在GI绝缘层上通过化学气相沉积法形成PV绝缘层。6) A PV insulating layer is formed by chemical vapor deposition on the GI insulating layer.
本发明采用以上技术方案,在原有设计基础及不增加光罩的情况下,在玻璃基板上增加一层带有凹槽设计的缓冲层,使GE金属层走线沉积在缓冲层之内,新增一道化学机械研磨(CMP)工艺,将缓冲层表面进行平坦化处理,使GE金属层与缓冲层处于共平面,排除了GE Taper的存在,消除了因GE Taper引起的金属残留,从而达到提高产品良率的目的。The present invention adopts the above technical scheme, on the basis of the original design and without adding a photomask, a buffer layer with groove design is added on the glass substrate, so that the GE metal layer traces are deposited in the buffer layer, and the new A chemical mechanical polishing (CMP) process is added to planarize the surface of the buffer layer, so that the GE metal layer and the buffer layer are coplanar, which eliminates the existence of GE Taper and eliminates the metal residue caused by GE Taper. The purpose of product yield.
附图说明Description of drawings
以下结合附图和具体实施方式对本发明做进一步详细说明;The present invention will be described in further detail below in conjunction with the accompanying drawings and specific embodiments;
图1为现有TFT阵列基板结构的示意图;1 is a schematic diagram of a structure of a conventional TFT array substrate;
图2为本发明改善金属残留的TFT阵列基板结构的制造步骤1的示意图;FIG. 2 is a schematic diagram of the
图3为本发明改善金属残留的TFT阵列基板结构的制造步骤2的示意图;3 is a schematic diagram of the
图4为本发明改善金属残留的TFT阵列基板结构的制造步骤3的示意图;4 is a schematic diagram of the
图5为本发明改善金属残留的TFT阵列基板结构的制造步骤4的示意图1;5 is a schematic diagram 1 of the manufacturing step 4 of the TFT array substrate structure with improved metal residues according to the present invention;
图6为本发明改善金属残留的TFT阵列基板结构的制造步骤4的示意图2;6 is a schematic diagram 2 of the manufacturing step 4 of the TFT array substrate structure with improved metal residues according to the present invention;
图7为本发明改善金属残留的TFT阵列基板结构的制造步骤5的示意图;7 is a schematic diagram of the
图8为本发明改善金属残留的TFT阵列基板结构的制造步骤6的示意图。FIG. 8 is a schematic diagram of the manufacturing step 6 of the TFT array substrate structure with improved metal residues according to the present invention.
具体实施方式Detailed ways
如图1所示,本发明一种改善金属残留的TFT阵列基板结构,其包括TFT侧玻璃基板1,所述玻璃基板1上设有带有凹槽的缓冲层2,所述凹槽的的形状为上大下小的梯形状,,所述缓冲层的凹槽内沉积有GE金属层3,所述缓冲层2和GE金属层3的上表面齐平,所述GE金属层3上设有GI绝缘层4,所述GI绝缘层4上设有PV绝缘层5。As shown in FIG. 1 , a TFT array substrate structure with improved metal residues of the present invention includes a TFT
进一步的,所述缓冲层2通常选用SiOx,不仅可应用于平坦化玻璃表面,且在特定区域Pattern出对应的凹槽形状。Further, the
进一步的,所述GE金属层3具有低电阻率,可选用铝/钼/钛/镍/铜/等导电性优良金属以及合金,如Mo/Al/Mo或Ti/Al/Ti。Further, the
进一步的,所述GI绝缘层4是具有较大介电常数的绝缘层,由SiOx或SiNx材料成型。Further, the GI insulating layer 4 is an insulating layer with a relatively large dielectric constant, and is formed of SiOx or SiNx material.
进一步的,所述PV绝缘层5是具有较大介电常数的绝缘层,由SiOx或SiNx材料成型。Further, the
如图2-8之一所示,一种改善金属残留的TFT阵列基板结构的制造方法,包括以下步骤:As shown in one of Figures 2-8, a method for manufacturing a TFT array substrate structure with improved metal residues includes the following steps:
1)在玻璃基板上通过化学气相沉积法形成缓冲层;1) A buffer layer is formed on a glass substrate by chemical vapor deposition;
2)通过GE光照对缓冲层进行弱曝,使缓冲层形成上大下小的凹槽模型,2) Weakly expose the buffer layer by GE illumination, so that the buffer layer forms a groove model with a large upper and a small lower.
3)在缓冲层的凹槽内沉积GE金属层,3) Deposit a GE metal layer in the groove of the buffer layer,
4)为了消除高于缓冲层上表面的GE金属层,采用化学机械平坦化抛光(CMP)工艺,使用研磨垫、研磨液对GE金属层进行研磨,将突出于缓冲层上表面的GE金属层磨平;4) In order to eliminate the GE metal layer higher than the upper surface of the buffer layer, the chemical mechanical planarization (CMP) process is used to grind the GE metal layer with a polishing pad and slurry, and the GE metal layer protruding from the upper surface of the buffer layer will be ground. smooth;
4-1)采用Al2O3研磨液研磨去除大部分的GE金属层,留下薄而均匀的GE金属层,(研磨前的GE金属层厚度为3000A左右,经研磨后剩余的GE金属层厚度为500A左右)压力为0.4~0.8MPa,研磨速率为800~1500A/min;4-1) Use Al 2 O 3 slurry to grind and remove most of the GE metal layer, leaving a thin and uniform GE metal layer (the thickness of the GE metal layer before grinding is about 3000A, and the remaining GE metal layer after grinding The thickness is about 500A) the pressure is 0.4~0.8MPa, and the grinding rate is 800~1500A/min;
4-2)采用Al2O3研磨液,用较低的压力和研磨速率将剩余的薄而均匀的GE金属层磨平,压力为0.05~0.1MPa,研磨速率为100~300A/min;4-2) Using Al 2 O 3 grinding fluid, grind the remaining thin and uniform GE metal layer with low pressure and grinding rate, the pressure is 0.05~0.1MPa, and the grinding rate is 100~300A/min;
4-3)进行阻挡层抛光,采用Al2O3研磨液,用研磨垫将突出于缓冲层上表面的GE金属阻挡层进行抛光处理;4-3) Polish the barrier layer, use Al 2 O 3 grinding fluid, and use a polishing pad to polish the GE metal barrier layer protruding from the upper surface of the buffer layer;
4-3)进行阻挡层抛光,采用Al2O3研磨液,用较软的研磨垫将突出于缓冲层上表面的GE金属阻挡层进行抛光处理;4-3) Polish the barrier layer, use Al 2 O 3 abrasive slurry, and use a softer abrasive pad to polish the GE metal barrier layer protruding from the upper surface of the buffer layer;
5)在GE金属层上通过化学气相沉积法形成GI绝缘层;5) A GI insulating layer is formed on the GE metal layer by chemical vapor deposition;
6)在GI绝缘层上通过化学气相沉积法形成PV绝缘层。6) A PV insulating layer is formed by chemical vapor deposition on the GI insulating layer.
本发明具有以下有益效果:在原有设计基础及不增加光罩的情况下,在玻璃基板上增加一层带有凹槽设计的缓冲层,使GE金属层走线沉积在缓冲层之内,采用CMP工艺,将缓冲层表面进行平坦化处理,使GE金属层与缓冲层处于共平面,排除了GE Taper的存在,消除了因GE Taper引起的金属残留,从而达到提高产品良率的目的。The invention has the following beneficial effects: on the basis of the original design and without adding a photomask, a buffer layer with groove design is added on the glass substrate, so that the GE metal layer wiring is deposited in the buffer layer, and the use of In the CMP process, the surface of the buffer layer is flattened so that the GE metal layer and the buffer layer are coplanar, which eliminates the existence of GE Taper and eliminates the metal residue caused by GE Taper, so as to achieve the purpose of improving product yield.
上面结合附图对本发明的实施加以描述,但是本发明不局限于上述的具体实施方式,上述的具体实施方式是示意性而不是加以局限本发明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围,其均应涵盖在本发明的权利要求和说明书的范围当中。The implementation of the present invention is described above in conjunction with the accompanying drawings, but the present invention is not limited to the above-mentioned specific embodiments. The above-mentioned specific embodiments are illustrative rather than limiting the present invention. Those of ordinary skill in the art should understand that: it can still be Modifications are made to the technical solutions recorded in the foregoing embodiments, or some or all of the technical features thereof are equivalently replaced; and these modifications or replacements do not make the essence of the corresponding technical solutions depart from the scope of the technical solutions of the embodiments of the present invention, All of them should be covered within the scope of the claims and description of the present invention.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210441713.6A CN114678383A (en) | 2022-04-25 | 2022-04-25 | A TFT array substrate structure with improved metal residue and its manufacturing method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210441713.6A CN114678383A (en) | 2022-04-25 | 2022-04-25 | A TFT array substrate structure with improved metal residue and its manufacturing method |
Publications (1)
Publication Number | Publication Date |
---|---|
CN114678383A true CN114678383A (en) | 2022-06-28 |
Family
ID=82079671
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210441713.6A Pending CN114678383A (en) | 2022-04-25 | 2022-04-25 | A TFT array substrate structure with improved metal residue and its manufacturing method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114678383A (en) |
Citations (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20030075745A (en) * | 2002-03-20 | 2003-09-26 | 삼성전자주식회사 | Method of Forming Metal Gate in Semiconductor Device |
KR20070105240A (en) * | 2006-04-25 | 2007-10-30 | 미쓰비시덴키 가부시키가이샤 | Wiring board, display device and manufacturing method thereof |
CN101398589A (en) * | 2007-09-26 | 2009-04-01 | 株式会社日立显示器 | Liquid crystal display device |
CN101615581A (en) * | 2008-06-26 | 2009-12-30 | 乐金显示有限公司 | Method for manufacturing display device |
CN101689485A (en) * | 2007-07-20 | 2010-03-31 | 夏普株式会社 | Laminated film manufacturing method, semiconductor device manufacturing method, semiconductor device and display device |
CN101877201A (en) * | 2009-04-30 | 2010-11-03 | 乐金显示有限公司 | Display device |
CN101894793A (en) * | 2009-05-21 | 2010-11-24 | 新加坡格罗方德半导体制造私人有限公司 | Integrated circuit (IC) system and manufacture method thereof with silicon through hole |
CN102064130A (en) * | 2009-11-12 | 2011-05-18 | 上海华虹Nec电子有限公司 | Method for forming SDMOS contact hole shape beneficial for filling metal |
US20120171854A1 (en) * | 2010-12-29 | 2012-07-05 | Semiconductor Manufacturing International (Shanghai) Corporation | Method for forming metal gate |
CN103943557A (en) * | 2014-04-28 | 2014-07-23 | 华进半导体封装先导技术研发中心有限公司 | Method for flattening surface of polymer dielectric layer in re-wiring layer through CMP |
CN104810267A (en) * | 2014-01-28 | 2015-07-29 | 中芯国际集成电路制造(上海)有限公司 | Metal gate forming method |
WO2015143745A1 (en) * | 2014-03-28 | 2015-10-01 | 深圳市华星光电技术有限公司 | Manufacturing method of array substrate |
CN105514033A (en) * | 2016-01-12 | 2016-04-20 | 武汉华星光电技术有限公司 | Manufacturing method for array substrate |
US20160336385A1 (en) * | 2015-05-13 | 2016-11-17 | Shenzhen China Star Optoelectronics Technology Co. Ltd. | Amoled backplane structure and manufacturing method thereof |
CN107863356A (en) * | 2017-11-06 | 2018-03-30 | 武汉华星光电半导体显示技术有限公司 | TFT substrate and preparation method thereof |
CN109860209A (en) * | 2019-02-28 | 2019-06-07 | 深圳市华星光电半导体显示技术有限公司 | TFT substrate manufacturing method and TFT substrate |
CN110137385A (en) * | 2019-04-09 | 2019-08-16 | 深圳市华星光电半导体显示技术有限公司 | Organic LED display panel and its manufacturing method |
CN209747514U (en) * | 2019-05-05 | 2019-12-06 | 福建华佳彩有限公司 | Oxide semiconductor TFT array substrate |
US20200227560A1 (en) * | 2017-03-06 | 2020-07-16 | Sharp Kabushiki Kaisha | Semiconductor device and display device |
CN111445788A (en) * | 2020-04-27 | 2020-07-24 | Tcl华星光电技术有限公司 | Display panel and manufacturing method thereof |
CN112614823A (en) * | 2020-12-15 | 2021-04-06 | 长江存储科技有限责任公司 | Semiconductor device and method for manufacturing the same |
CN114078739A (en) * | 2020-08-19 | 2022-02-22 | 和舰芯片制造(苏州)股份有限公司 | Method for improving filling effect of deep trench isolation groove |
CN217588932U (en) * | 2022-04-25 | 2022-10-14 | 福建华佳彩有限公司 | TFT array substrate structure for improving metal residue |
-
2022
- 2022-04-25 CN CN202210441713.6A patent/CN114678383A/en active Pending
Patent Citations (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20030075745A (en) * | 2002-03-20 | 2003-09-26 | 삼성전자주식회사 | Method of Forming Metal Gate in Semiconductor Device |
KR20070105240A (en) * | 2006-04-25 | 2007-10-30 | 미쓰비시덴키 가부시키가이샤 | Wiring board, display device and manufacturing method thereof |
CN101689485A (en) * | 2007-07-20 | 2010-03-31 | 夏普株式会社 | Laminated film manufacturing method, semiconductor device manufacturing method, semiconductor device and display device |
CN101398589A (en) * | 2007-09-26 | 2009-04-01 | 株式会社日立显示器 | Liquid crystal display device |
CN101615581A (en) * | 2008-06-26 | 2009-12-30 | 乐金显示有限公司 | Method for manufacturing display device |
CN101877201A (en) * | 2009-04-30 | 2010-11-03 | 乐金显示有限公司 | Display device |
CN101894793A (en) * | 2009-05-21 | 2010-11-24 | 新加坡格罗方德半导体制造私人有限公司 | Integrated circuit (IC) system and manufacture method thereof with silicon through hole |
CN102064130A (en) * | 2009-11-12 | 2011-05-18 | 上海华虹Nec电子有限公司 | Method for forming SDMOS contact hole shape beneficial for filling metal |
US20120171854A1 (en) * | 2010-12-29 | 2012-07-05 | Semiconductor Manufacturing International (Shanghai) Corporation | Method for forming metal gate |
CN104810267A (en) * | 2014-01-28 | 2015-07-29 | 中芯国际集成电路制造(上海)有限公司 | Metal gate forming method |
WO2015143745A1 (en) * | 2014-03-28 | 2015-10-01 | 深圳市华星光电技术有限公司 | Manufacturing method of array substrate |
CN103943557A (en) * | 2014-04-28 | 2014-07-23 | 华进半导体封装先导技术研发中心有限公司 | Method for flattening surface of polymer dielectric layer in re-wiring layer through CMP |
US20160336385A1 (en) * | 2015-05-13 | 2016-11-17 | Shenzhen China Star Optoelectronics Technology Co. Ltd. | Amoled backplane structure and manufacturing method thereof |
CN105514033A (en) * | 2016-01-12 | 2016-04-20 | 武汉华星光电技术有限公司 | Manufacturing method for array substrate |
US20200227560A1 (en) * | 2017-03-06 | 2020-07-16 | Sharp Kabushiki Kaisha | Semiconductor device and display device |
CN107863356A (en) * | 2017-11-06 | 2018-03-30 | 武汉华星光电半导体显示技术有限公司 | TFT substrate and preparation method thereof |
CN109860209A (en) * | 2019-02-28 | 2019-06-07 | 深圳市华星光电半导体显示技术有限公司 | TFT substrate manufacturing method and TFT substrate |
CN110137385A (en) * | 2019-04-09 | 2019-08-16 | 深圳市华星光电半导体显示技术有限公司 | Organic LED display panel and its manufacturing method |
CN209747514U (en) * | 2019-05-05 | 2019-12-06 | 福建华佳彩有限公司 | Oxide semiconductor TFT array substrate |
CN111445788A (en) * | 2020-04-27 | 2020-07-24 | Tcl华星光电技术有限公司 | Display panel and manufacturing method thereof |
CN114078739A (en) * | 2020-08-19 | 2022-02-22 | 和舰芯片制造(苏州)股份有限公司 | Method for improving filling effect of deep trench isolation groove |
CN112614823A (en) * | 2020-12-15 | 2021-04-06 | 长江存储科技有限责任公司 | Semiconductor device and method for manufacturing the same |
CN217588932U (en) * | 2022-04-25 | 2022-10-14 | 福建华佳彩有限公司 | TFT array substrate structure for improving metal residue |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN106847744A (en) | The preparation method of array base palte, array base palte and display device | |
CN101677058B (en) | Manufacturing method of thin film structure | |
CN106707649B (en) | Preparation method of via hole, preparation method of array substrate and array substrate | |
CN102468306B (en) | Array base plate, liquid crystal display, and manufacturing method for array substrate | |
CN102769040A (en) | Thin film transistor, array substrate and manufacturing method thereof, display device | |
CN102013414A (en) | Making method of flexible display assembly | |
CN102237305A (en) | Array substrate and manufacturing method thereof, and liquid crystal display | |
CN103018977B (en) | A kind of array base palte and manufacture method thereof | |
CN102033370B (en) | Liquid crystal display substrate and manufacturing method thereof | |
CN105789120B (en) | The production method and TFT substrate of TFT substrate | |
CN103887245A (en) | Manufacturing method of array substrate | |
CN102779783A (en) | Pixel structure, as well as manufacturing method and display device thereof | |
CN103915451A (en) | Array substrate, manufacturing method thereof and display device | |
CN104319447A (en) | Multi-layer coplanar waveguide transmission line based on graphene and preparation method thereof | |
US20090278134A1 (en) | Semiconductor device and method of manufacturing the semiconductor device | |
CN107195687B (en) | A TFT and its manufacturing method, an array substrate, a display panel and a display device | |
CN217588932U (en) | TFT array substrate structure for improving metal residue | |
CN102629576A (en) | Array substrate and method for manufacturing the same | |
CN204945589U (en) | A kind of array base palte and display device | |
TW201113843A (en) | Method of fabricating flexible display device | |
CN104766877B (en) | The manufacture method and display device of array base palte, array base palte | |
CN101995711A (en) | TFT-LCD array substrate and manufacturing method thereof | |
CN114678383A (en) | A TFT array substrate structure with improved metal residue and its manufacturing method | |
CN106409920A (en) | Thin film transistor, array substrate, manufacturing method of array substrate and display device | |
CN106504987A (en) | The method and the method for making display base plate of metal pattern is made for the etching solution compositionss of silver layer, using which |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |