CN114672824A - A kind of electrolysis method for producing high-purity hydrogen peroxide - Google Patents
A kind of electrolysis method for producing high-purity hydrogen peroxide Download PDFInfo
- Publication number
- CN114672824A CN114672824A CN202210208635.5A CN202210208635A CN114672824A CN 114672824 A CN114672824 A CN 114672824A CN 202210208635 A CN202210208635 A CN 202210208635A CN 114672824 A CN114672824 A CN 114672824A
- Authority
- CN
- China
- Prior art keywords
- hydrogen peroxide
- cathode
- anode
- producing high
- oxygen
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 title claims abstract description 93
- 238000005868 electrolysis reaction Methods 0.000 title claims abstract description 13
- 238000000034 method Methods 0.000 claims abstract description 43
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims abstract description 36
- 229910052760 oxygen Inorganic materials 0.000 claims abstract description 36
- 239000001301 oxygen Substances 0.000 claims abstract description 36
- 238000006722 reduction reaction Methods 0.000 claims abstract description 17
- 239000003575 carbonaceous material Substances 0.000 claims abstract description 9
- 238000007254 oxidation reaction Methods 0.000 claims abstract description 8
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 8
- 239000010405 anode material Substances 0.000 claims abstract description 6
- 239000010406 cathode material Substances 0.000 claims abstract description 6
- 239000013078 crystal Substances 0.000 claims description 16
- 229910052797 bismuth Inorganic materials 0.000 claims description 14
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 claims description 14
- LSGOVYNHVSXFFJ-UHFFFAOYSA-N vanadate(3-) Chemical compound [O-][V]([O-])([O-])=O LSGOVYNHVSXFFJ-UHFFFAOYSA-N 0.000 claims description 14
- 239000011521 glass Substances 0.000 claims description 8
- 239000003792 electrolyte Substances 0.000 claims description 7
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 claims description 6
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 5
- 230000007935 neutral effect Effects 0.000 claims description 5
- 239000003054 catalyst Substances 0.000 claims description 4
- 239000006229 carbon black Substances 0.000 claims description 3
- 229910002804 graphite Inorganic materials 0.000 claims description 3
- 239000010439 graphite Substances 0.000 claims description 3
- 229920001343 polytetrafluoroethylene Polymers 0.000 claims description 3
- 239000004810 polytetrafluoroethylene Substances 0.000 claims description 3
- 239000011787 zinc oxide Substances 0.000 claims description 3
- 229910052799 carbon Inorganic materials 0.000 claims description 2
- 238000001704 evaporation Methods 0.000 claims description 2
- 230000008020 evaporation Effects 0.000 claims description 2
- 150000001875 compounds Chemical class 0.000 claims 1
- 229910052739 hydrogen Inorganic materials 0.000 abstract description 13
- 239000001257 hydrogen Substances 0.000 abstract description 13
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 abstract description 12
- 239000000047 product Substances 0.000 abstract description 7
- 239000006227 byproduct Substances 0.000 abstract description 4
- 238000003860 storage Methods 0.000 abstract description 3
- 150000002978 peroxides Chemical class 0.000 abstract 1
- 210000004027 cell Anatomy 0.000 description 11
- 238000004519 manufacturing process Methods 0.000 description 10
- 238000006243 chemical reaction Methods 0.000 description 9
- 150000001768 cations Chemical class 0.000 description 7
- 229910052751 metal Inorganic materials 0.000 description 7
- 239000002184 metal Substances 0.000 description 7
- 239000002994 raw material Substances 0.000 description 6
- PYKYMHQGRFAEBM-UHFFFAOYSA-N anthraquinone Natural products CCC(=O)c1c(O)c2C(=O)C3C(C=CC=C3O)C(=O)c2cc1CC(=O)OC PYKYMHQGRFAEBM-UHFFFAOYSA-N 0.000 description 5
- 150000004056 anthraquinones Chemical class 0.000 description 5
- 238000002848 electrochemical method Methods 0.000 description 4
- 238000009776 industrial production Methods 0.000 description 3
- 239000012528 membrane Substances 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- AZQWKYJCGOJGHM-UHFFFAOYSA-N 1,4-benzoquinone Chemical compound O=C1C=CC(=O)C=C1 AZQWKYJCGOJGHM-UHFFFAOYSA-N 0.000 description 2
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- ROOXNKNUYICQNP-UHFFFAOYSA-N ammonium persulfate Chemical compound [NH4+].[NH4+].[O-]S(=O)(=O)OOS([O-])(=O)=O ROOXNKNUYICQNP-UHFFFAOYSA-N 0.000 description 2
- MWPLVEDNUUSJAV-UHFFFAOYSA-N anthracene Chemical compound C1=CC=CC2=CC3=CC=CC=C3C=C21 MWPLVEDNUUSJAV-UHFFFAOYSA-N 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 238000005265 energy consumption Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- 229910052725 zinc Inorganic materials 0.000 description 2
- 239000011701 zinc Substances 0.000 description 2
- NWUYHJFMYQTDRP-UHFFFAOYSA-N 1,2-bis(ethenyl)benzene;1-ethenyl-2-ethylbenzene;styrene Chemical compound C=CC1=CC=CC=C1.CCC1=CC=CC=C1C=C.C=CC1=CC=CC=C1C=C NWUYHJFMYQTDRP-UHFFFAOYSA-N 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 229910001870 ammonium persulfate Inorganic materials 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- ZJRXSAYFZMGQFP-UHFFFAOYSA-N barium peroxide Chemical compound [Ba+2].[O-][O-] ZJRXSAYFZMGQFP-UHFFFAOYSA-N 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 210000002421 cell wall Anatomy 0.000 description 1
- 239000013064 chemical raw material Substances 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000004043 dyeing Methods 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 229910052733 gallium Inorganic materials 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- 239000003456 ion exchange resin Substances 0.000 description 1
- 229920003303 ion-exchange polymer Polymers 0.000 description 1
- 238000011031 large-scale manufacturing process Methods 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 229910000510 noble metal Inorganic materials 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000007639 printing Methods 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 229910052761 rare earth metal Inorganic materials 0.000 description 1
- 229910052706 scandium Inorganic materials 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 229910052712 strontium Inorganic materials 0.000 description 1
- 238000000194 supercritical-fluid extraction Methods 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 229910021642 ultra pure water Inorganic materials 0.000 description 1
- 239000012498 ultrapure water Substances 0.000 description 1
- 229910052727 yttrium Inorganic materials 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B1/00—Electrolytic production of inorganic compounds or non-metals
- C25B1/01—Products
- C25B1/28—Per-compounds
- C25B1/30—Peroxides
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B1/00—Electrolytic production of inorganic compounds or non-metals
- C25B1/50—Processes
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B11/00—Electrodes; Manufacture thereof not otherwise provided for
- C25B11/04—Electrodes; Manufacture thereof not otherwise provided for characterised by the material
- C25B11/051—Electrodes formed of electrocatalysts on a substrate or carrier
- C25B11/052—Electrodes comprising one or more electrocatalytic coatings on a substrate
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B11/00—Electrodes; Manufacture thereof not otherwise provided for
- C25B11/04—Electrodes; Manufacture thereof not otherwise provided for characterised by the material
- C25B11/051—Electrodes formed of electrocatalysts on a substrate or carrier
- C25B11/055—Electrodes formed of electrocatalysts on a substrate or carrier characterised by the substrate or carrier material
- C25B11/057—Electrodes formed of electrocatalysts on a substrate or carrier characterised by the substrate or carrier material consisting of a single element or compound
- C25B11/065—Carbon
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B11/00—Electrodes; Manufacture thereof not otherwise provided for
- C25B11/04—Electrodes; Manufacture thereof not otherwise provided for characterised by the material
- C25B11/051—Electrodes formed of electrocatalysts on a substrate or carrier
- C25B11/073—Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
- C25B11/075—Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of a single catalytic element or catalytic compound
- C25B11/077—Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of a single catalytic element or catalytic compound the compound being a non-noble metal oxide
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B11/00—Electrodes; Manufacture thereof not otherwise provided for
- C25B11/04—Electrodes; Manufacture thereof not otherwise provided for characterised by the material
- C25B11/051—Electrodes formed of electrocatalysts on a substrate or carrier
- C25B11/073—Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
- C25B11/091—Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of at least one catalytic element and at least one catalytic compound; consisting of two or more catalytic elements or catalytic compounds
- C25B11/095—Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of at least one catalytic element and at least one catalytic compound; consisting of two or more catalytic elements or catalytic compounds at least one of the compounds being organic
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
Abstract
本发明公开了一种生产高纯度过氧化氢的电解方法,采用氧化物单晶片作为电解槽的阳极材料,碳基材料作为阴极材料,将中性或碱性电解液加入电解槽,并在阴极通入氧气后,在电解槽的阳极和阴极上外加偏压,使阳极发生两电子水氧化反应生成过氧化氢,同时阴极发生氧还原反应生成过氧化氢。与现有技术相比,该方法将在阴极发生的质子还原反应替换为两电子氧还原反应,将氢气直接转化为过氧化氢,解决了副产品氢气的存贮和利用难题;单一目标产物过氧化氢在阳极和阴极同步生成,大幅度提升了产品附加值;利用两电子氧还原反应还进一步降低了外加偏压,提高了电能利用效率。
The invention discloses an electrolysis method for producing high-purity hydrogen peroxide. The oxide single wafer is used as the anode material of the electrolytic cell, and the carbon-based material is used as the cathode material. After the oxygen is introduced, a bias voltage is applied to the anode and the cathode of the electrolytic cell, so that the anode undergoes a two-electron water oxidation reaction to generate hydrogen peroxide, and at the same time, the cathode undergoes an oxygen reduction reaction to generate hydrogen peroxide. Compared with the prior art, this method replaces the proton reduction reaction that occurs at the cathode with a two-electron oxygen reduction reaction, and directly converts hydrogen into hydrogen peroxide, which solves the storage and utilization problems of the by-product hydrogen; single target product peroxide Hydrogen is simultaneously generated at the anode and cathode, which greatly increases the added value of the product; the use of the two-electron oxygen reduction reaction further reduces the applied bias voltage and improves the power utilization efficiency.
Description
技术领域technical field
本发明涉及过氧化氢制备技术领域,具体为一种以超纯水和氧气为原料生产高纯度过氧化氢的电解方法。The invention relates to the technical field of hydrogen peroxide preparation, in particular to an electrolysis method for producing high-purity hydrogen peroxide by using ultrapure water and oxygen as raw materials.
背景技术Background technique
过氧化氢水溶液俗称双氧水,是一种重要的化工原料,具有清洁无污染特性,广泛应用于印染、造纸、环保、食品、化学合成以及半导体等行业。过氧化氢通常分为工业级、食品级、试剂级和电子级,其中超净高纯电子级过氧化氢是半导体技术微细加工制作过程中不可缺少的关键性材料之一,主要用在芯片制造中研磨、氧化、刻蚀以及清洗等工序环节,其纯度严重影响集成电路的电性能、可靠性及成品率。Hydrogen peroxide aqueous solution, commonly known as hydrogen peroxide, is an important chemical raw material with clean and non-polluting properties. It is widely used in printing and dyeing, papermaking, environmental protection, food, chemical synthesis and semiconductor industries. Hydrogen peroxide is usually divided into industrial grade, food grade, reagent grade and electronic grade. Among them, ultra-clean and high-purity electronic grade hydrogen peroxide is one of the indispensable key materials in the microfabrication process of semiconductor technology, mainly used in chip manufacturing. In the process links such as grinding, oxidation, etching and cleaning, its purity seriously affects the electrical performance, reliability and yield of integrated circuits.
过氧化氢的工业生产方法有过氧化钡法、过硫酸铵法(电解法)、蒽醌法、异丙醇法以及氧阴极还原法等。其中,蒽醌法是当前国内外主流的工业生产方法,其总化学反应方程为H2 + O2 = H2O2;其优点是技术成熟,自动化控制程度高,原料成本和能耗较低,适合大规模生产,其缺点是存在原料(主要是氢气)供应瓶颈,生产工艺复杂,产物纯度较低。目前,电子级过氧化氢是以蒽醌法生产的工业级过氧化氢为原料,再利用精馏、离子交换树脂、膜分离以及超临界萃取等技术深度提纯获得。氧阴极还原法是一种电化学方法,在强碱性条件下阳极发生析氧反应(4OH‒→ O2 + 2H2O + 4e ‒),阴极发生两电子氧还原反应(2O2 + 2H2O+ 4e ‒→ 2HO2 ‒+ 2OH‒),总化学反应方程为O2 + 2OH‒→ 2HO2 ‒或O2 + 2H2O → 2H2O2;其优点是电流效率较高、可小规模现场生产,其缺点是阳极催化剂为贵金属Pt、RuO2等,成本较高,生产的双氧水稳定性差(依据文献为:Gustaaf Goor et al., Hydrogen Peroxide inUllmann's Encyclopedia of Industrial Chemistry, Wiley-VCH, Weinheim, Germany,2019)。The industrial production methods of hydrogen peroxide include barium peroxide method, ammonium persulfate method (electrolysis method), anthraquinone method, isopropanol method and oxygen cathode reduction method. Among them, the anthraquinone method is the current mainstream industrial production method at home and abroad, and its total chemical reaction equation is H 2 + O 2 = H 2 O 2 ; its advantages are mature technology, high degree of automation control, low raw material cost and energy consumption , suitable for large-scale production, its disadvantage is that there is a bottleneck in the supply of raw materials (mainly hydrogen), the production process is complex, and the product purity is low. At present, electronic grade hydrogen peroxide is obtained by using industrial grade hydrogen peroxide produced by anthraquinone method as raw material, and then deeply purified by techniques such as rectification, ion exchange resin, membrane separation and supercritical extraction. Oxygen cathodic reduction is an electrochemical method in which an oxygen evolution reaction (4OH ‒ → O 2 + 2H 2 O + 4 e ‒ ) occurs at the anode and a two-electron oxygen reduction reaction (2O 2 + 2H ) occurs at the cathode under strong alkaline conditions. 2 O+ 4 e ‒ → 2HO 2 ‒ + 2OH ‒ ), the overall chemical reaction equation is O 2 + 2OH ‒ → 2HO 2 ‒ or O 2 + 2H 2 O → 2H 2 O 2 ; Small-scale on-site production, the disadvantage is that the anode catalyst is noble metal Pt, RuO 2 , etc., the cost is high, and the produced hydrogen peroxide has poor stability (according to the literature: Gustaaf Goor et al ., Hydrogen Peroxide in Ullmann's Encyclopedia of Industrial Chemistry , Wiley-VCH , Weinheim, Germany, 2019).
另一种电化学方法,阳极材料采用钒酸铋单晶来最大程度增强水氧化反应的催化活性和选择性,阴极材料采用镍基合金;在碱性条件下,阳极发生两电子水氧化反应(2H2O→ H2O2 + 2H+ + 2e ‒),阴极发生析氢反应(2H+ + 2e ‒→ H2),总化学反应方程为2H2O →H2O2 + H2;由于该水阳极氧化法以钒酸铋单晶为核心催化剂,可以称之为钒酸铋法或单晶电催化法;其优点是电流效率高、成本低、产品纯度高,其缺点是阴极析出的氢气附加值低,并且不便存储和利用(依据文献为:发明人李国岭申请的专利名称为《一种低成本生产高纯度过氧化氢和氢气的电解方法》,专利申请号为201610567960.5的中国发明专利申请)。Another electrochemical method, the anode material uses bismuth vanadate single crystal to maximize the catalytic activity and selectivity of the water oxidation reaction, and the cathode material uses a nickel-based alloy; under alkaline conditions, the anode undergoes a two-electron water oxidation reaction ( 2H 2 O → H 2 O 2 + 2H + + 2 e ‒ ), the hydrogen evolution reaction occurs at the cathode (2H + + 2 e ‒ → H 2 ), and the overall chemical reaction equation is 2H 2 O → H 2 O 2 + H 2 ; Since this water anodic oxidation method uses bismuth vanadate single crystal as the core catalyst, it can be called bismuth vanadate method or single crystal electrocatalysis method; its advantages are high current efficiency, low cost and high product purity, and its disadvantage is that the cathode precipitates The added value of hydrogen is low, and it is inconvenient to store and utilize (according to the literature: the patent title applied by the inventor Li Guoling is "An Electrolysis Method for Low-cost Production of High-purity Hydrogen Peroxide and Hydrogen", the patent application number is 201610567960.5 Chinese invention patent application).
与蒽醌法相比,氧阴极还原法和钒酸铋法所需原料(水和氧气)价格低廉、供应充足且纯度可控性好,因此生产的过氧化氢纯度更高,倘若用来替代蒽醌法生产的工业级过氧化氢,则可有效降低电子级过氧化氢的提纯成本。如果能够充分发挥电化学方法的原料优势并解决氧阴极还原法阳极或钒酸铋法阴极存在的技术劣势,从而进一步降低生产成本,那么电化学方法有希望取代蒽醌法成为过氧化氢的主流工业生产方法。Compared with the anthraquinone method, the raw materials (water and oxygen) required by the oxygen cathode reduction method and the bismuth vanadate method are low in price, sufficient in supply and controllable in purity, so the hydrogen peroxide produced is of higher purity. If it is used to replace anthracene The industrial-grade hydrogen peroxide produced by the quinone method can effectively reduce the purification cost of electronic-grade hydrogen peroxide. If the raw material advantages of the electrochemical method can be fully utilized and the technical disadvantages of the oxygen cathode reduction method anode or the bismuth vanadate method cathode can be solved to further reduce the production cost, then the electrochemical method is expected to replace the anthraquinone method as the mainstream of hydrogen peroxide. industrial production methods.
发明内容SUMMARY OF THE INVENTION
本发明的目的是在综合考虑氧阴极还原法和钒酸铋法优缺点的基础上,提供一种生产高纯度过氧化氢的电解方法。The object of the present invention is to provide a kind of electrolysis method for producing high-purity hydrogen peroxide on the basis of comprehensively considering the advantages and disadvantages of the oxygen cathode reduction method and the bismuth vanadate method.
为达到上述目的,本发明为解决上述技术问题所采用的技术方案是:一种生产高纯度过氧化氢的电解方法,其采用氧化物单晶片作为电解槽的阳极材料,碳基材料作为阴极材料,将中性或碱性电解液加入电解槽,并在阴极通入氧气后,在电解槽的阳极和阴极上外加偏压,使阳极发生两电子水氧化反应生成过氧化氢(2H2O → H2O2 + 2H+ + 2e ‒),同时阴极发生氧还原反应生成过氧化氢(O2 + 2H+ + 2e ‒→ H2O2),总化学反应方程为O2 + 2H2O→ 2H2O2。In order to achieve the above-mentioned purpose, the technical scheme adopted by the present invention to solve the above-mentioned technical problems is: a kind of electrolysis method for producing high-purity hydrogen peroxide, which adopts an oxide single wafer as the anode material of the electrolytic cell, and the carbon-based material is used as the cathode material , add neutral or alkaline electrolyte into the electrolytic cell, and after oxygen is introduced into the cathode, a bias voltage is applied to the anode and cathode of the electrolytic cell, so that the anode undergoes a two-electron water oxidation reaction to generate hydrogen peroxide (2H 2 O → H 2 O 2 + 2H + + 2 e ‒ ), and at the same time, the oxygen reduction reaction occurs at the cathode to generate hydrogen peroxide (O 2 + 2H + + 2 e ‒ → H 2 O 2 ), and the overall chemical reaction equation is O 2 + 2H 2 O→ 2H 2 O 2 .
所述氧化物单晶片与钒酸铋法使用的阳极材料相同或类似,可以是掺杂钒酸铋单晶{111}、{110}、{112}、{100}等晶面或掺杂氧化锌单晶{0001}晶面。The oxide single crystal is the same as or similar to the anode material used in the bismuth vanadate method, and can be doped bismuth vanadate single crystal {111}, {110}, {112}, {100} and other crystal planes or doped oxide Zinc single crystal {0001} plane.
所述掺杂钒酸铋单晶的化学成分为(Bi1-xAx)(V1-yBy)O4,其中A为空位、+1/+2/+3价金属阳离子或其混合组分,B为+4/+6价金属阳离子或其混合组分,其中,0≤x,y≤0.2。The chemical composition of the doped bismuth vanadate single crystal is (Bi 1-x A x )(V 1- y By )O 4 , wherein A is a vacancy, a +1/+2/+3 valent metal cation or its Mixed component, B is a +4/+6 valent metal cation or a mixed component thereof, wherein 0≤x, y≤0.2.
所述掺杂氧化锌单晶的化学成分为Ga:ZnO。The chemical composition of the doped zinc oxide single crystal is Ga:ZnO.
所述+1价金属阳离子为Li、Na、K等;+2价金属阳离子为Mg、Ca、Sr、Zn等;+3价金属阳离子为Ga、In、Sc、Y或其他稀土元素等;所述+4价金属阳离子为Ti或Ge等;所述+6价金属阳离子为W或Mo等。The +1-valent metal cations are Li, Na, K, etc.; the +2-valent metal cations are Mg, Ca, Sr, Zn, etc.; the +3-valent metal cations are Ga, In, Sc, Y or other rare earth elements, etc.; The +4-valent metal cation is Ti or Ge, etc.; the +6-valent metal cation is W, Mo, etc.
所述中性或碱性电解液的pH值范围为7-13。The pH range of the neutral or alkaline electrolyte is 7-13.
所述氧气为制氧机制备的纯度³ 90%的廉价氧气。The oxygen is cheap oxygen with a purity of ≥ 90% prepared by an oxygen generator.
所述碳基材料与氧阴极还原法使用的阴极材料相同或类似,可以是石墨/炭黑/聚四氟乙烯复合物、氧化或掺杂的碳材料或碳基单原子催化剂等。The carbon-based material is the same as or similar to the cathode material used in the oxygen cathode reduction method, and can be a graphite/carbon black/polytetrafluoroethylene composite, an oxidized or doped carbon material, or a carbon-based single-atom catalyst.
所述氧化物单晶片固定在导电玻璃的导电膜上。The oxide single wafer is fixed on the conductive film of the conductive glass.
所述外加偏压为1.8-2.5 V,电解时的电流密度为0.01-0.3 A/cm2。The applied bias voltage is 1.8-2.5 V, and the current density during electrolysis is 0.01-0.3 A/cm 2 .
电解完成后收集阳极和阴极区域的电解液,经包括蒸发、浓缩处理后,得到过氧化氢溶液。After the electrolysis is completed, the electrolytes in the anode and cathode regions are collected, and the hydrogen peroxide solution is obtained after the processes including evaporation and concentration.
本发明的有益效果是:与钒酸铋法相比,该方法将在阴极发生的质子还原反应替换为两电子氧还原反应,将氢气直接转化为过氧化氢,解决了副产品氢气的存贮和利用难题;在1.8-2.5 V外加偏压条件下,单一目标产物过氧化氢在阳极和阴极同步生成,大幅度提升了产品附加值;利用两电子氧还原反应还进一步降低了外加偏压,提高了电能利用效率,具有重要的工业应用价值。The beneficial effects of the invention are: compared with the bismuth vanadate method, the method replaces the proton reduction reaction that occurs at the cathode with a two-electron oxygen reduction reaction, directly converts hydrogen into hydrogen peroxide, and solves the storage and utilization of by-product hydrogen. Under the condition of 1.8-2.5 V applied bias, a single target product, hydrogen peroxide, is simultaneously generated at the anode and the cathode, which greatly increases the added value of the product; the use of two-electron oxygen reduction reaction further reduces the applied bias and improves the Electric energy utilization efficiency has important industrial application value.
附图说明Description of drawings
图1是本发明所用电解槽的示意图。Fig. 1 is a schematic diagram of an electrolytic cell used in the present invention.
附图标记中,111为阳极,112为阴极,113为质子交换膜,121为外加正向偏压。In the reference numerals, 111 is an anode, 112 is a cathode, 113 is a proton exchange membrane, and 121 is an applied forward bias voltage.
具体实施方式Detailed ways
下面结合具体实施例对本发明作进一步说明,需要说明的是,实施例并不构成对本发明要求保护范围的限制。The present invention will be further described below with reference to specific embodiments. It should be noted that the embodiments do not constitute a limitation on the protection scope of the present invention.
一种生产高纯度过氧化氢的电解方法,基于图1所示的电解槽构造,在电解槽的槽壁上分别设置阳极111和阴极112,在电解槽内,阳极111与阴极112之间设置质子交换膜113。其中阳极111采用氧化物单晶片作为阳极材料,阴极采用碳基材料作为阴极材料。在电解槽内加入中性或碱性电解液,并在阴极112通入氧气后,在电解槽的阳极111和阴极112上外加正向偏压121,使阳极111发生两电子水氧化反应生成过氧化氢(2H2O → H2O2 + 2H+ +2e ‒),同时阴极112发生氧还原反应生成过氧化氢(O2 + 2H++ 2e ‒→ H2O2),总化学反应方程为O2 + 2H2O → 2H2O2。其中,所述阳极111中的氧化物单晶片固定在导电玻璃的导电膜上。所述导电玻璃由玻璃基体及附着在玻璃基体上的导电膜组成,可以是ITO玻璃或FTO玻璃等。在槽壁对应阴极112处设置氧气进口,所述氧气进口与阴极112上的碳基材料相通,以便于高效的引入反应所需氧气。An electrolysis method for producing high-purity hydrogen peroxide, based on the electrolytic cell structure shown in FIG. 1 , an
下面以生产1吨30% 双氧水为例,作进一步说明。The following takes the production of 1 ton of 30% hydrogen peroxide as an example for further explanation.
采用掺杂钒酸铋<111>单晶片为电解槽阳极,商业石墨/炭黑/聚四氟乙烯复合物为电解槽阴极,其有效面积均为10 m2;外加偏压为2.5 V,单位面积电流强度是0.3 A/cm2;阴极通入的氧气纯度³ 90%,由制氧机(产氧量³14 Nm3/h)提供。按阳极100%、阴极90%的电流转换效率估算,在不考虑制氧机能耗的情况下,生产上述过氧化氢需要耗电622千瓦时,用时约为8小时。若按制氧机功率18 kW,则生产上述过氧化氢需要耗电约为766千瓦时。The doped bismuth vanadate <111> single wafer was used as the anode of the electrolytic cell, and the commercial graphite/carbon black/polytetrafluoroethylene composite was used as the cathode of the electrolytic cell, and the effective area was 10 m 2 ; the applied bias voltage was 2.5 V, unit The area current intensity is 0.3 A/cm 2 ; the purity of oxygen fed into the cathode is ³ 90%, which is provided by the oxygen generator (oxygen production ³ 14 Nm 3 /h). According to the current conversion efficiency of 100% of the anode and 90% of the cathode, without considering the energy consumption of the oxygen generator, the production of the above hydrogen peroxide requires 622 kWh of electricity, which takes about 8 hours. If the power of the oxygen generator is 18 kW, the power consumption for producing the above-mentioned hydrogen peroxide is about 766 kWh.
若采用钒酸铋法生产上述过氧化氢和副产品氢气200 Nm3需要消耗的电能为1322千瓦时,所需时间约为16小时(依据文献为:专利申请号为201610567960.5,专利名称为《一种低成本生产高纯度过氧化氢和氢气的电解方法》的中国发明专利申请)。If adopt the bismuth vanadate method to produce above-mentioned hydrogen peroxide and by-product hydrogen 200 Nm The electric energy that needs to consume is 1322 kilowatt hours, and the required time is about 16 hours (according to the document: the patent application number is 201610567960.5, and the patent name is "a kind of Low-cost production of high-purity hydrogen peroxide and hydrogen electrolysis method" Chinese invention patent application).
与钒酸铋法相比,本发明中将氢气直接转化为过氧化氢,解决了副产品氢气的存贮和利用难题,缩短了生产时间,提高了电能利用效率,大幅度提升了产品附加值。Compared with the bismuth vanadate method, in the present invention, hydrogen is directly converted into hydrogen peroxide, which solves the problem of storage and utilization of the by-product hydrogen, shortens the production time, improves the electric energy utilization efficiency, and greatly increases the added value of the product.
以上所述者,仅为本发明的较佳实施例而已,当不能以此限定本发明实施的范围,即但凡依本发明申请专利范围及发明说明内容所作的简单等效变化与修饰,皆仍属本发明专利涵盖的范围内。The above are only preferred embodiments of the present invention, and should not limit the scope of implementation of the present invention, that is, any simple equivalent changes and modifications made according to the scope of the patent application of the present invention and the contents of the description of the invention are still applicable. It belongs to the scope covered by the patent of the present invention.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210208635.5A CN114672824A (en) | 2022-03-04 | 2022-03-04 | A kind of electrolysis method for producing high-purity hydrogen peroxide |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210208635.5A CN114672824A (en) | 2022-03-04 | 2022-03-04 | A kind of electrolysis method for producing high-purity hydrogen peroxide |
Publications (1)
Publication Number | Publication Date |
---|---|
CN114672824A true CN114672824A (en) | 2022-06-28 |
Family
ID=82073218
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210208635.5A Pending CN114672824A (en) | 2022-03-04 | 2022-03-04 | A kind of electrolysis method for producing high-purity hydrogen peroxide |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114672824A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114990610A (en) * | 2022-07-13 | 2022-09-02 | 郑州大学 | Method for preparing functionalized carbon material by in-situ oxidation, carbon material prepared and application thereof |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6004449A (en) * | 1998-02-09 | 1999-12-21 | Boeing North American, Inc. | Method of operating electrolytic cell to produce highly concentrated alkaline hydrogen peroxide |
CN106086922A (en) * | 2016-07-19 | 2016-11-09 | 李国岭 | A kind of utilize solar energy low-cost production hydrogen peroxide and the electrolytic method of hydrogen |
-
2022
- 2022-03-04 CN CN202210208635.5A patent/CN114672824A/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6004449A (en) * | 1998-02-09 | 1999-12-21 | Boeing North American, Inc. | Method of operating electrolytic cell to produce highly concentrated alkaline hydrogen peroxide |
CN106086922A (en) * | 2016-07-19 | 2016-11-09 | 李国岭 | A kind of utilize solar energy low-cost production hydrogen peroxide and the electrolytic method of hydrogen |
Non-Patent Citations (2)
Title |
---|
SARA R. KELLY等: "ZnO As an Active and Selective Catalyst for Electrochemical Water Oxidation to Hydrogen Peroxide", 《ACS CATAL》, vol. 9, pages 4593 * |
XINJIAN SHI等: "Light-Driven BiVO4–C Fuel Cell with Simultaneous Production of H2O2", 《ADVANCED ENERGY MATERIALS》, vol. 8, no. 23, pages 1 - 9 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114990610A (en) * | 2022-07-13 | 2022-09-02 | 郑州大学 | Method for preparing functionalized carbon material by in-situ oxidation, carbon material prepared and application thereof |
CN114990610B (en) * | 2022-07-13 | 2023-06-13 | 郑州大学 | Method for preparing functionalized carbon material by in-situ oxidation, prepared carbon material and application thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN105951117B (en) | A kind of electrolytic method of low cost production high purity of hydrogen peroxide and hydrogen | |
CN109778218A (en) | Device and method for co-production of electrochemical hydrogen production and lithium extraction | |
CN107497444A (en) | A kind of preparation method of nickel vanadium dual metal hydroxide nano chip arrays water oxidation catalyst | |
CN103361689A (en) | Method for preparing titanium dioxide nanotube array photoelectrode | |
CN110316729B (en) | Method for preparing graphene based on high-concentration organic salt aqueous solution electrochemical intercalation | |
CN112410811A (en) | An electrocatalytic system and its application in the production of formic acid | |
CN105925999B (en) | A kind of Fe2+Anodic oxidation and cathodic reduction co-production H2Process | |
CN108840327A (en) | A kind of electrochemical method preparing nitrogen-doped graphene material | |
CN108394895A (en) | A kind of sheet diameter stannic oxide/graphene nano preparation of sections method | |
CN105970247B (en) | It is a kind of to prepare hydrogen peroxide single crystal semiconductor oxide anode and electrolytic cell | |
CN106086922B (en) | It is a kind of to utilize solar energy low cost production hydrogen peroxide and the electrolytic method of hydrogen | |
CN114672824A (en) | A kind of electrolysis method for producing high-purity hydrogen peroxide | |
CN110670089A (en) | Preparation method of C-N co-doped titanium dioxide electrode and application of C-N co-doped titanium dioxide electrode in electrolysis of aquatic hydrogen peroxide in acidic solution | |
CN102965711A (en) | Anodization two-step preparation method of cuprous oxide nanosheet powder material | |
CN111663147B (en) | Process for preparing iron phosphate by electrolytic method | |
CN114162912B (en) | Preparation method of high {001} crystal face-loaded titanium dioxide particle electrode | |
CN114672825A (en) | Electrolysis method for producing high-purity hydrogen peroxide by using solar energy | |
CN106591922B (en) | Cu2Preparation method of O nano film | |
CN106048641A (en) | A kind of process method for electrochemical preparation of Fe3+ and H2 in pairs | |
CN114717571B (en) | Anolyte, benzaldehyde and hydrogen coupling co-production system and application | |
CN113277550A (en) | Lead-containing solid waste treatment method, and preparation method and application of lead dioxide powder | |
CN114672826A (en) | A dual-cathode electrolyzer for switchable production of hydrogen peroxide or hydrogen | |
CN114000159B (en) | Chevrel-phase nano-sheet electrode material, preparation method and application | |
CN114672827A (en) | An electrolytic cell for directly producing hydrogen peroxide simultaneously with cathode and anode | |
CN114606534B (en) | A kind of bifunctional electrode and its preparation method and application |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
TA01 | Transfer of patent application right |
Effective date of registration: 20240911 Address after: 471000 No.1, yard 259, Kaiyuan Avenue, Luolong District, Luoyang City, Henan Province Applicant after: Li Guoling Country or region after: China Applicant after: Shansheng Technology Development (Shantou) Co.,Ltd. Address before: 515000 Xueyuan Road, Fujiang street, Jinping District, Shantou City, Guangdong Province Applicant before: Guangdong Laboratory of chemistry and fine chemicals Country or region before: China |
|
TA01 | Transfer of patent application right | ||
TA01 | Transfer of patent application right |
Effective date of registration: 20241220 Address after: Room 7A09-2, Jiesi Information Building, No. 6 Keji West Road, High tech Zone, Shantou City, Guangdong Province 515000 Applicant after: Qingyang Technology (Shantou) Co.,Ltd. Country or region after: China Address before: 471000 No.1, yard 259, Kaiyuan Avenue, Luolong District, Luoyang City, Henan Province Applicant before: Li Guoling Country or region before: China Applicant before: Shansheng Technology Development (Shantou) Co.,Ltd. |
|
TA01 | Transfer of patent application right |