CN114664968B - Visible-infrared dual-band photoelectric detector - Google Patents
Visible-infrared dual-band photoelectric detector Download PDFInfo
- Publication number
- CN114664968B CN114664968B CN202210251620.7A CN202210251620A CN114664968B CN 114664968 B CN114664968 B CN 114664968B CN 202210251620 A CN202210251620 A CN 202210251620A CN 114664968 B CN114664968 B CN 114664968B
- Authority
- CN
- China
- Prior art keywords
- layer
- semiconductor layer
- type semiconductor
- infrared
- visible
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000004065 semiconductor Substances 0.000 claims abstract description 129
- 229910052751 metal Inorganic materials 0.000 claims abstract description 43
- 239000002184 metal Substances 0.000 claims abstract description 43
- 239000000758 substrate Substances 0.000 claims abstract description 28
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 25
- 239000010703 silicon Substances 0.000 claims abstract description 25
- 229910045601 alloy Inorganic materials 0.000 claims description 15
- 239000000956 alloy Substances 0.000 claims description 15
- 239000000463 material Substances 0.000 claims description 11
- 230000009977 dual effect Effects 0.000 claims description 9
- 150000002739 metals Chemical class 0.000 claims description 8
- 238000007747 plating Methods 0.000 claims description 7
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 6
- 150000002500 ions Chemical class 0.000 claims description 6
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 5
- 229910021389 graphene Inorganic materials 0.000 claims description 5
- VLJQDHDVZJXNQL-UHFFFAOYSA-N 4-methyl-n-(oxomethylidene)benzenesulfonamide Chemical group CC1=CC=C(S(=O)(=O)N=C=O)C=C1 VLJQDHDVZJXNQL-UHFFFAOYSA-N 0.000 claims description 3
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 claims description 3
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 3
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 claims description 3
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 3
- 229910052782 aluminium Inorganic materials 0.000 claims description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 3
- 229910052804 chromium Inorganic materials 0.000 claims description 3
- 239000011651 chromium Substances 0.000 claims description 3
- 229910052802 copper Inorganic materials 0.000 claims description 3
- 239000010949 copper Substances 0.000 claims description 3
- 229910052732 germanium Inorganic materials 0.000 claims description 3
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 claims description 3
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 claims description 3
- 229910052737 gold Inorganic materials 0.000 claims description 3
- 239000010931 gold Substances 0.000 claims description 3
- 229910052759 nickel Inorganic materials 0.000 claims description 3
- 229910021340 platinum monosilicide Inorganic materials 0.000 claims description 3
- 229910021426 porous silicon Inorganic materials 0.000 claims description 3
- 229910052709 silver Inorganic materials 0.000 claims description 3
- 239000004332 silver Substances 0.000 claims description 3
- 229910052719 titanium Inorganic materials 0.000 claims description 3
- 239000010936 titanium Substances 0.000 claims description 3
- 238000001514 detection method Methods 0.000 abstract description 25
- 238000006243 chemical reaction Methods 0.000 abstract description 8
- 238000001228 spectrum Methods 0.000 abstract description 7
- 238000010521 absorption reaction Methods 0.000 abstract description 6
- 230000004888 barrier function Effects 0.000 abstract description 6
- 230000005540 biological transmission Effects 0.000 abstract description 5
- 238000005036 potential barrier Methods 0.000 abstract description 5
- 230000008901 benefit Effects 0.000 abstract description 4
- 239000000969 carrier Substances 0.000 abstract description 3
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 21
- 239000000243 solution Substances 0.000 description 14
- 239000010408 film Substances 0.000 description 8
- 238000010586 diagram Methods 0.000 description 6
- 238000000034 method Methods 0.000 description 5
- 230000031700 light absorption Effects 0.000 description 4
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 3
- 230000003287 optical effect Effects 0.000 description 3
- 239000010409 thin film Substances 0.000 description 3
- 239000004642 Polyimide Substances 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 239000003822 epoxy resin Substances 0.000 description 2
- 238000002329 infrared spectrum Methods 0.000 description 2
- 238000009413 insulation Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 2
- 229920000647 polyepoxide Polymers 0.000 description 2
- 229920001721 polyimide Polymers 0.000 description 2
- 239000004926 polymethyl methacrylate Substances 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 230000003595 spectral effect Effects 0.000 description 2
- 238000006467 substitution reaction Methods 0.000 description 2
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 229910052681 coesite Inorganic materials 0.000 description 1
- 229910052906 cristobalite Inorganic materials 0.000 description 1
- 230000023004 detection of visible light Effects 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 239000002210 silicon-based material Substances 0.000 description 1
- 229910052682 stishovite Inorganic materials 0.000 description 1
- 229910052905 tridymite Inorganic materials 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F77/00—Constructional details of devices covered by this subclass
- H10F77/10—Semiconductor bodies
- H10F77/14—Shape of semiconductor bodies; Shapes, relative sizes or dispositions of semiconductor regions within semiconductor bodies
- H10F77/143—Shape of semiconductor bodies; Shapes, relative sizes or dispositions of semiconductor regions within semiconductor bodies comprising quantum structures
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F30/00—Individual radiation-sensitive semiconductor devices in which radiation controls the flow of current through the devices, e.g. photodetectors
- H10F30/20—Individual radiation-sensitive semiconductor devices in which radiation controls the flow of current through the devices, e.g. photodetectors the devices having potential barriers, e.g. phototransistors
- H10F30/21—Individual radiation-sensitive semiconductor devices in which radiation controls the flow of current through the devices, e.g. photodetectors the devices having potential barriers, e.g. phototransistors the devices being sensitive to infrared, visible or ultraviolet radiation
- H10F30/22—Individual radiation-sensitive semiconductor devices in which radiation controls the flow of current through the devices, e.g. photodetectors the devices having potential barriers, e.g. phototransistors the devices being sensitive to infrared, visible or ultraviolet radiation the devices having only one potential barrier, e.g. photodiodes
- H10F30/222—Individual radiation-sensitive semiconductor devices in which radiation controls the flow of current through the devices, e.g. photodetectors the devices having potential barriers, e.g. phototransistors the devices being sensitive to infrared, visible or ultraviolet radiation the devices having only one potential barrier, e.g. photodiodes the potential barrier being a PN heterojunction
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F77/00—Constructional details of devices covered by this subclass
- H10F77/30—Coatings
- H10F77/306—Coatings for devices having potential barriers
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F77/00—Constructional details of devices covered by this subclass
- H10F77/70—Surface textures, e.g. pyramid structures
- H10F77/703—Surface textures, e.g. pyramid structures of the semiconductor bodies, e.g. textured active layers
Landscapes
- Light Receiving Elements (AREA)
Abstract
本发明实施例中提供的可见‑红外双波段光电探测器,利用PIN光电探测结构和金属‑半导体接触界面势垒结构,在实现提高中远红外波段量子效率的同时实现光电探测器的可见‑红外双波段探测的功能。优点为当光垂直入射时,可见光通过PIN结构时被其充分吸收探测,由于硅对红外波段的光具有良好的透过性能,红外波段光线穿过衬底层,通过金属薄膜反射层进行反射,将红外波段光线反射到微结构层,利用微结构层特性增强对红外波段光的吸收,使载流子获得能量跃迁至费米能级,越过势垒进入半导体衬底,使电子和空穴分别被两侧金属电极收集,对红外波段光线进行高量子转换效率的吸收探测,实现可见‑红外双波段探测,本发明可大幅提高探测光谱范围,拓宽应用领域。
The visible-infrared dual-band photodetector provided in the embodiment of the present invention utilizes the PIN photoelectric detection structure and the metal-semiconductor contact interface barrier structure to improve the quantum efficiency of the mid- and far-infrared bands and at the same time realize the visible-infrared dual-band photodetector. Band detection function. The advantage is that when light is vertically incident, the visible light is fully absorbed and detected when passing through the PIN structure. Since silicon has good transmission performance for infrared band light, the infrared band light passes through the substrate layer and is reflected by the metal film reflective layer. The infrared band light is reflected to the microstructure layer, and the characteristics of the microstructure layer are used to enhance the absorption of infrared band light, causing the carriers to gain energy and jump to the Fermi level, crossing the potential barrier and entering the semiconductor substrate, causing electrons and holes to be absorbed respectively. The metal electrodes on both sides collect and absorb the infrared band light with high quantum conversion efficiency to achieve visible-infrared dual-band detection. This invention can greatly increase the detection spectrum range and broaden the application field.
Description
技术领域Technical field
本发明涉及光电技术领域,特别涉及一种可见-红外双波段光电探测器。The invention relates to the field of photoelectric technology, and in particular to a visible-infrared dual-band photoelectric detector.
背景技术Background technique
硅基光电探测器作为可见光和近红外波段探测器件的主力军,具有效率高、功耗低、体积小、抗震动、价格低廉和易于和电路集成等优点,在各领域中被广泛应用。由于硅的带隙宽度约为1.1eV,硅在可见光和近红外波段存在响应,但对于能量小于1.1eV的光子,由于硅材料的禁带宽度相对较大,导致硅光电探测器在中远红外波段的光吸收几乎为零,在一定程度上制约了硅基光电探测器在波长大于1.1μm的近红外及中远红外光波段的发展,且目前现有的硅基光电探测器主要进行单波段光谱探测,探测光谱范围受到限制,在宽波段探测中具有局限性,限制了其在一些领域的应用。As the main force of visible light and near-infrared band detection devices, silicon-based photodetectors have the advantages of high efficiency, low power consumption, small size, vibration resistance, low price and easy integration with circuits, and are widely used in various fields. Since the bandgap width of silicon is about 1.1eV, silicon responds in the visible and near-infrared bands. However, for photons with energy less than 1.1eV, due to the relatively large bandgap width of the silicon material, the silicon photodetector responds in the mid- and far-infrared bands. The light absorption is almost zero, which to a certain extent restricts the development of silicon-based photodetectors in the near-infrared and mid-far infrared light bands with wavelengths greater than 1.1 μm, and currently existing silicon-based photodetectors mainly perform single-band spectral detection , the detection spectrum range is limited and has limitations in wide-band detection, which limits its application in some fields.
发明内容Contents of the invention
本发明实施例中提供一种可见-红外双波段光电探测器,对红外波段光线进行高量子转换效率的吸收探测的同时实现可见-红外双波段探测。本发明与传统探测器相比可大幅提高探测光谱范围,扩展应用领域。Embodiments of the present invention provide a visible-infrared dual-band photodetector, which can absorb and detect infrared band light with high quantum conversion efficiency and simultaneously achieve visible-infrared dual-band detection. Compared with traditional detectors, the invention can greatly increase the detection spectrum range and expand the application field.
本发明实施例中提供一种可见-红外双波段光电探测器,包括:An embodiment of the present invention provides a visible-infrared dual-band photoelectric detector, which includes:
半导体衬底层;semiconductor substrate layer;
位于所述半导体衬底层一面的金属反射层,所述金属反射层贴合所述半导体衬底层的一侧设有反射面结构;A metal reflective layer located on one side of the semiconductor substrate layer, and a reflective surface structure is provided on the side of the metal reflective layer that is in contact with the semiconductor substrate layer;
位于所述半导体衬底层相对的另一面上的第一型半导体层;a first-type semiconductor layer located on the opposite side of the semiconductor substrate layer;
间隔设置在所述第一型半导体层上的微结构层和第二型半导体层;a microstructure layer and a second type semiconductor layer spaced apart from each other on the first type semiconductor layer;
位于所述微结构层上的第一阳极;a first anode located on the microstructure layer;
位于所述第二型半导体层上的第三型半导体层;a third type semiconductor layer located on the second type semiconductor layer;
位于所述第三型半导体层上的第一阴极,所述第一阴极具有用于光通过的镂空结构;a first cathode located on the third type semiconductor layer, the first cathode having a hollow structure for light to pass;
位于所述第一型半导体层上且与所述第一阴极、所述第一阳极分别间隔设置的第二阴极和第二阳极,所述第一阳极和所述第二阴极构成一组电极,所述第二阳极和所述第一阴极构成另一组电极。a second cathode and a second anode located on the first type semiconductor layer and spaced apart from the first cathode and the first anode respectively, the first anode and the second cathode forming a set of electrodes, The second anode and the first cathode form another set of electrodes.
作为一种可选的方案,所述半导体衬底层的材料为硅、锗、SOI中的一种,所述第一型半导体层为P型半导体层或N型半导体层,所述第二型半导体层为I型本征,所述第三型半导体层为N型半导体层或P型半导体层。As an optional solution, the material of the semiconductor substrate layer is one of silicon, germanium, and SOI, the first-type semiconductor layer is a P-type semiconductor layer or an N-type semiconductor layer, and the second-type semiconductor layer The third type semiconductor layer is an I-type intrinsic semiconductor layer, and the third-type semiconductor layer is an N-type semiconductor layer or a P-type semiconductor layer.
作为一种可选的方案,所述的绝缘层的材料为聚酰亚胺、聚甲基丙烯酸甲酯、环氧树脂或SiO2中的任一种。As an optional solution, the material of the insulating layer is any one of polyimide, polymethylmethacrylate, epoxy resin or SiO2 .
作为一种可选的方案,所述第一阳极、第一阴极、第二阳极和第二阴极的材料为金、银、铜、铝、铬、镍、钛中的一种或几种的合金。As an optional solution, the material of the first anode, the first cathode, the second anode and the second cathode is one or more alloys selected from gold, silver, copper, aluminum, chromium, nickel and titanium. .
作为一种可选的方案,所述P型半导体层掺杂离子为B3+,所述N型半导体层掺杂离子为P5+或As5+。As an optional solution, the doped ions of the P-type semiconductor layer are B 3+ , and the doped ions of the N-type semiconductor layer are P 5+ or As 5+ .
作为一种可选的方案,所述微结构层为直接在硅上镀相应金属形成合金薄膜、多孔硅上镀相应金属形成合金薄膜、光栅结构的硅上镀相应金属形成合金薄膜、或黑磷和石墨烯构成的二维材料上镀相应金属中的一种或几种,所述合金薄膜为PtSi或Pt2Si,所述相应金属为Pt。As an optional solution, the microstructure layer is directly plated with corresponding metals on silicon to form an alloy thin film, plating corresponding metals on porous silicon to form an alloy thin film, plating corresponding metals on grating-structured silicon to form an alloy thin film, or black phosphorus. The two-dimensional material composed of graphene and graphene is plated with one or more of the corresponding metals, the alloy film is PtSi or Pt 2 Si, and the corresponding metal is Pt.
作为一种可选的方案,所述反射面结构位于所述金属反射层的几何中心处,所述反射面结构、所述镂空结构、所述第二型半导体层、所述第三半导体层在竖直方向中线共线。As an optional solution, the reflective surface structure is located at the geometric center of the metal reflective layer, and the reflective surface structure, the hollow structure, the second type semiconductor layer, and the third semiconductor layer are located at Vertical midlines are collinear.
作为一种可选的方案,所述可见-红外双波段光电探测器的横截面为圆形、方形或六边形。As an optional solution, the cross-section of the visible-infrared dual-band photodetector is circular, square or hexagonal.
作为一种可选的方案,所述反射面结构为锥形体。As an optional solution, the reflective surface structure is a cone.
作为一种可选的方案,包括:台阶型结构,所述台阶型结构包括一位于所述第一型半导体层几何中心位置的第一凸台和位于所述第一凸台的几何中心位置的第二凸台,所述第一阳极、所述第二阳极和所述微结构层位于所述第一凸台上,所述第一阴极、所述第二型半导体层位于所述第二凸台上,所述第一阳极和所述第二阳极之间设有绝缘层。As an optional solution, it includes: a stepped structure, the stepped structure includes a first boss located at the geometric center of the first type semiconductor layer and a first boss located at the geometric center of the first boss. A second boss, the first anode, the second anode and the microstructure layer are located on the first boss, and the first cathode and the second type semiconductor layer are located on the second boss. On the stage, an insulation layer is provided between the first anode and the second anode.
作为一种可选的方案,包括:平面型结构,所述平面型结构包括位于所述第一型半导体层上且围绕所述二型半导体层设置的第三凸台,所述微结构层和所述第二阳极位于所述第三凸台上,所述第一阳极、所述第一阴极和所述第二阳极位于同一水平面上。As an optional solution, it includes: a planar structure including a third boss located on the first-type semiconductor layer and surrounding the second-type semiconductor layer, the microstructure layer and The second anode is located on the third boss, and the first anode, the first cathode and the second anode are located on the same horizontal plane.
本发明实施例中提供的可见-红外双波段光电探测器,利用PIN光电探测结构和金属-半导体接触界面势垒结构,在实现提高中远红外波段量子效率的同时实现光电探测器的可见-红外双波段探测的功能。其好处是光垂直入射时,可见光通过PIN结构进行充分吸收探测,由于硅对红外波段的光具有良好的透过性能,红外波段光线穿过衬底层,通过金属薄膜反射层进行反射,将红外波段光线反射到微结构层,利用微结构层特性增强对红外波段光线的吸收,使载流子获得能量跃迁至费米能级,越过势垒进入半导体衬底,使电子和空穴分别被两侧金属电极收集,对红外波段光线进行高量子转换效率的吸收探测,实现可见-红外双波段探测。本发明与传统探测器相比可大幅提高探测光谱范围,拓宽应用领域。The visible-infrared dual-band photodetector provided in the embodiment of the present invention utilizes the PIN photoelectric detection structure and the metal-semiconductor contact interface barrier structure to improve the quantum efficiency of the mid- and far-infrared bands and at the same time realize the visible-infrared dual-band photodetector. Band detection function. The advantage is that when light is vertically incident, the visible light is fully absorbed and detected through the PIN structure. Since silicon has good transmission performance for infrared band light, the infrared band light passes through the substrate layer and is reflected by the metal film reflective layer, thereby converting the infrared band light into the infrared band. The light is reflected to the microstructure layer, and the characteristics of the microstructure layer are used to enhance the absorption of light in the infrared band, causing the carriers to gain energy and jump to the Fermi level, crossing the potential barrier and entering the semiconductor substrate, causing electrons and holes to be absorbed by both sides respectively. The metal electrode collects and absorbs the infrared band light with high quantum conversion efficiency to achieve visible-infrared dual-band detection. Compared with traditional detectors, the invention can greatly increase the detection spectrum range and broaden the application fields.
附图说明Description of the drawings
图1为本发明实施例中提供一种可见-红外双波段光电探测器的结构纵向剖面图;Figure 1 is a structural longitudinal cross-sectional view of a visible-infrared dual-band photodetector provided in an embodiment of the present invention;
图2a为本发明实施例中提供一种可见-红外双波段光电探测器的圆形形状俯视图;Figure 2a is a circular top view of a visible-infrared dual-band photodetector provided in an embodiment of the present invention;
图2b为本发明实施例中提供一种可见-红外双波段光电探测器的方形形状俯视图;Figure 2b is a square-shaped top view of a visible-infrared dual-band photodetector provided in an embodiment of the present invention;
图2c为本发明实施例中提供一种可见-红外双波段光电探测器的六边形形状俯视图;Figure 2c is a top view of a hexagonal shape of a visible-infrared dual-band photodetector provided in an embodiment of the present invention;
图3为本发明实施例中提供一种可见-红外双波段光电探测器的工作光路示意图;Figure 3 is a schematic diagram of the working optical path of a visible-infrared dual-band photodetector provided in an embodiment of the present invention;
图4为本发明实施例中提供另一种可见-红外双波段光电探测器的结构纵向剖面图;Figure 4 is a longitudinal cross-sectional view of the structure of another visible-infrared dual-band photodetector provided in an embodiment of the present invention;
图5为本发明实施例中提供另一种可见-红外双波段光电探测器的工作光路示意图;Figure 5 is a schematic diagram of the working optical path of another visible-infrared dual-band photodetector in an embodiment of the present invention;
图6a为本发明实施例中提供另一种可见-红外双波段光电探测器的圆形形状俯视图;Figure 6a is a top view of a circular shape of another visible-infrared dual-band photodetector provided in an embodiment of the present invention;
图6b为本发明实施例中提供另一种可见-红外双波段光电探测器的方形形状俯视图;Figure 6b is a square-shaped top view of another visible-infrared dual-band photodetector provided in the embodiment of the present invention;
图6c为本发明实施例中提供另一种可见-红外双波段光电探测器的六边形形状俯视图;Figure 6c is a top view of a hexagonal shape of another visible-infrared dual-band photodetector provided in the embodiment of the present invention;
图7a为本发明实施例中提供一种可见-红外双波段光电探测器中微结构层的结构示意图;Figure 7a is a schematic structural diagram of a microstructure layer in a visible-infrared dual-band photodetector provided in an embodiment of the present invention;
图7b为本发明实施例中提供另一种可见-红外双波段光电探测器中微结构层的结构示意图;Figure 7b is a schematic structural diagram of the microstructure layer in another visible-infrared dual-band photodetector provided in an embodiment of the present invention;
图7c为本发明实施例中提供再一种可见-红外双波段光电探测器中微结构层的结构示意图;Figure 7c is a schematic structural diagram of the microstructure layer in yet another visible-infrared dual-band photodetector provided in an embodiment of the present invention;
图7d为本发明实施例中提供又一种可见-红外双波段光电探测器中微结构层的结构示意图。Figure 7d is a schematic structural diagram of the microstructure layer in another visible-infrared dual-band photodetector provided in an embodiment of the present invention.
具体实施方式Detailed ways
为了使本技术领域的人员更好地理解本发明方案,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分的实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都应当属于本发明保护的范围。In order to enable those skilled in the art to better understand the solutions of the present invention, the technical solutions in the embodiments of the present invention will be clearly and completely described below in conjunction with the accompanying drawings in the embodiments of the present invention. Obviously, the described embodiments are only These are some embodiments of the present invention, rather than all embodiments. Based on the embodiments of the present invention, all other embodiments obtained by those of ordinary skill in the art without creative efforts should fall within the scope of protection of the present invention.
本发明的说明书和权利要求书及上述附图中的术语“第一”、“第二”、“第三”、“第四”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的实施例能够以除了在这里图示或描述的内容以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。The terms "first", "second", "third", "fourth", etc. in the description and claims of the present invention and the above-mentioned drawings are used to distinguish similar objects and are not necessarily used to describe specific objects. Sequence or sequence. It is to be understood that the data so used are interchangeable under appropriate circumstances so that the embodiments described herein can be practiced in sequences other than those illustrated or described herein. In addition, the terms "including" and "having" and any variations thereof are intended to cover non-exclusive inclusions, e.g., a process, method, system, product, or apparatus that encompasses a series of steps or units and need not be limited to those explicitly listed. Those steps or elements may instead include other steps or elements not expressly listed or inherent to the process, method, product or apparatus.
结合图1所示,本发明实施例中提供一种可见-红外双波段光电探测器,包括:As shown in Figure 1, an embodiment of the present invention provides a visible-infrared dual-band photodetector, which includes:
半导体衬底层6;semiconductor substrate layer 6;
位于所述半导体衬底层6一面的金属反射层7,所述金属反射层7贴合所述半导体衬底层6的一侧设有反射面结构;A metal reflective layer 7 located on one side of the semiconductor substrate layer 6, and a reflective surface structure is provided on the side of the metal reflective layer 7 that is in contact with the semiconductor substrate layer 6;
位于所述半导体衬底层6相对的另一面上的第一型半导体层5;The first type semiconductor layer 5 located on the other side opposite to the semiconductor substrate layer 6;
间隔设置在所述第一型半导体层5上的微结构层4和第二型半导体层3;The microstructure layer 4 and the second type semiconductor layer 3 are spaced apart from each other on the first type semiconductor layer 5;
位于所述微结构层4上的第一阳极10;a first anode 10 located on the microstructure layer 4;
位于所述第二型半导体层3上的第三型半导体层2;a third-type semiconductor layer 2 located on the second-type semiconductor layer 3;
位于所述第三型半导体层2上的第一阴极1,所述第一阴极1具有用于光通过的镂空结构,镂空结构可以是环形开口,用于光通过即可;The first cathode 1 is located on the third type semiconductor layer 2. The first cathode 1 has a hollow structure for light to pass through. The hollow structure can be an annular opening for light to pass through;
位于所述第一型半导体层5上且与所述第一阴极1、所述第一阳极10分别间隔设置的第二阴极9和第二阳极8,所述第一阳极10和所述第二阴极9构成一组电极,所述第二阳极8和所述第一阴极1构成另一组电极,并且两对电极互不相连。A second cathode 9 and a second anode 8 are located on the first type semiconductor layer 5 and are spaced apart from the first cathode 1 and the first anode 10 respectively. The cathode 9 constitutes one set of electrodes, the second anode 8 and the first cathode 1 constitute another set of electrodes, and the two pairs of electrodes are not connected to each other.
需要说明的是,本发明实施例中提到的位置关系是以附图所展示的上下左右位置关系作为参考,方便理解。It should be noted that the positional relationships mentioned in the embodiments of the present invention are based on the up, down, left, and right position relationships shown in the drawings for ease of understanding.
作为一种可选的方案,所述半导体衬底层6的材料为硅、锗、SOI(Silicon-On-Insulator,绝缘衬底上的硅)中的一种,其中,SOI可以实现集成电路中元器件的介质隔离,所述第一型半导体层5为P型半导体层或N型半导体层,所述第二型半导体层3为I型本征层,所述第三型半导体层2则对应为N型半导体层或P型半导体层,需要保证掺杂情况相反,即第一型半导体层5为P型半导体层则第三型半导体层2对应为N型半导体层,P型半导体层和N型半导体层的位置发生转换时,阴极和阳极发生相应转换。As an optional solution, the material of the semiconductor substrate layer 6 is one of silicon, germanium, and SOI (Silicon-On-Insulator, silicon on an insulating substrate), where SOI can realize an integrated circuit element. For dielectric isolation of the device, the first-type semiconductor layer 5 is a P-type semiconductor layer or an N-type semiconductor layer, the second-type semiconductor layer 3 is an I-type intrinsic layer, and the third-type semiconductor layer 2 corresponds to The N-type semiconductor layer or P-type semiconductor layer needs to ensure that the doping conditions are opposite, that is, the first-type semiconductor layer 5 is a P-type semiconductor layer, and the third-type semiconductor layer 2 corresponds to an N-type semiconductor layer, a P-type semiconductor layer and an N-type semiconductor layer. When the position of the semiconductor layer switches, the cathode and anode switch accordingly.
通过本申请方案可以增强红外谱段光电转换效率的同时有效解决可见-红外双波段探测问题。通过采用PIN结构,使可见光从顶层垂直入射到探测器吸收区,在P型(或N型)半导体层或者进入I型(本征)半导体层后被充分吸收探测,同时由于硅对红外波段的光具有良好的透过性能,采用金属反射层使透过的红外谱段光线反射至微结构硅层,使红外波段光线被充分吸收探测,让各谱段光进入各自完全吸收区,实现了双谱段探测,大幅度提高探测光谱范围,拓宽了应用领域。同时,通过合理设置微结构层的结构以及厚度,增强中远红外波段的吸收的同时提高光电转换效率。Through this application solution, the photoelectric conversion efficiency in the infrared spectrum can be enhanced while effectively solving the problem of visible-infrared dual-band detection. By using the PIN structure, visible light is vertically incident from the top layer to the detector absorption area, and is fully absorbed and detected after entering the P-type (or N-type) semiconductor layer or entering the I-type (intrinsic) semiconductor layer. At the same time, due to the infrared wavelength of silicon, The light has good transmission performance. The metal reflective layer is used to reflect the transmitted infrared spectrum light to the microstructure silicon layer, so that the infrared band light is fully absorbed and detected, allowing the light of each spectrum band to enter its own complete absorption zone, achieving dual Spectral detection greatly increases the detection spectrum range and broadens the application fields. At the same time, by rationally setting the structure and thickness of the microstructure layer, the absorption of mid- and far-infrared bands is enhanced and the photoelectric conversion efficiency is improved.
本实施例中,所述的绝缘层11的材料可以为聚酰亚胺、聚甲基丙烯酸甲酯、环氧树脂或SiO2中的任一种,本领域普通技术人员可以根据需要灵活选择,对此不做限定。In this embodiment, the material of the insulating layer 11 can be any one of polyimide, polymethyl methacrylate, epoxy resin or SiO 2 , and those of ordinary skill in the art can flexibly select according to needs. There is no restriction on this.
在本实施例中,所述P型半导体层掺杂离子为B3+,所述N型半导体层掺杂离子为P5+或As5+,本领域技术人员可以根据需要灵活选择,对此不做限定。In this embodiment, the doped ions of the P-type semiconductor layer are B 3+ , and the doped ions of the N-type semiconductor layer are P 5+ or As 5+ . Those skilled in the art can flexibly choose according to needs. No restrictions.
在一些实施例中,所述第一阳极10、第一阴极1、第二阳极8和第二阴极9的材料为金、银、铜、铝、铬、镍、钛中的一种或几种的合金。In some embodiments, the materials of the first anode 10, the first cathode 1, the second anode 8 and the second cathode 9 are one or more of gold, silver, copper, aluminum, chromium, nickel, and titanium. alloy.
在一些实施例中,所述反射面结构位于所述金属反射层的几何中心处,所述反射面结构、所述镂空结构、所述第二型半导体层3、所述第三半导体层2在竖直方向中线共线,所述反射面结构为锥形体。In some embodiments, the reflective surface structure is located at the geometric center of the metal reflective layer, and the reflective surface structure, the hollow structure, the second type semiconductor layer 3 and the third semiconductor layer 2 are located at The vertical center lines are collinear, and the reflective surface structure is a cone.
进一步的,可见-红外双波段光电探测器的结构可分为两种,即台阶型结构和平面型结构,下面进行分别介绍。Furthermore, the structures of visible-infrared dual-band photodetectors can be divided into two types, namely stepped structure and planar structure, which are introduced separately below.
结合图1和图3所示,在一些实施例中,台阶型结构包括一位于第一型半导体层5几何中心位置的第一凸台51和位于所述第一凸台51的几何中心位置的第二凸台52,所述第一阳极10、所述第二阳极8和所述微结构层4位于所述第一凸台51上,所述第一阴极1、所述第二型半导体层3位于所述第二凸台52上,第一阳极10和第二阳极8之间设有绝缘层11,绝缘层11为了隔绝开第一阳极10和第二阳极8,防止串扰,具体地,按照器件结构排布台阶型结构从上至下分别为:第一阴极1、第三型半导体层2、第二型半导体层3、第二阳极8、第二阴极9、第一阳极10、绝缘层11、微结构层4、第一型半导体层5、半导体衬底层6、金属反射层7。As shown in FIGS. 1 and 3 , in some embodiments, the stepped structure includes a first boss 51 located at the geometric center of the first type semiconductor layer 5 and a first boss 51 located at the geometric center of the first boss 51 . The second boss 52, the first anode 10, the second anode 8 and the microstructure layer 4 are located on the first boss 51, the first cathode 1, the second type semiconductor layer 3 is located on the second boss 52, and an insulating layer 11 is provided between the first anode 10 and the second anode 8. The insulating layer 11 is used to isolate the first anode 10 and the second anode 8 and prevent crosstalk. Specifically, According to the device structure, the stepped structure is arranged from top to bottom: first cathode 1, third type semiconductor layer 2, second type semiconductor layer 3, second anode 8, second cathode 9, first anode 10, insulation Layer 11, microstructure layer 4, first-type semiconductor layer 5, semiconductor substrate layer 6, and metal reflective layer 7.
结合图2a、图2b和图2c所示,在台阶型结构的一些实施例中,所述可见-红外双波段光电探测器的横截面为圆形、方形或六边形,电极包括阳极和阴极,相应地,对于电极的形状也可以根据整体形状而相适应设计,例如在圆形时,电极可以沿着中心呈同心圆的方式间隔环绕,同样的,采用方形或者六边形时候可采取同心环绕的方式设置电极,阳极和阴极的形状分别为外环形、单条形、多条形、圆形、内圆环形、内多边形中的一种或几种的结合,可以根据需要进行选择。As shown in Figure 2a, Figure 2b and Figure 2c, in some embodiments of the stepped structure, the cross-section of the visible-infrared dual-band photodetector is circular, square or hexagonal, and the electrodes include an anode and a cathode. , Correspondingly, the shape of the electrode can also be designed according to the overall shape. For example, when it is circular, the electrodes can be spaced around the center in a concentric circle. Similarly, when a square or hexagon is used, the electrodes can be concentrically spaced. The electrodes are arranged in a surrounding manner, and the shapes of the anode and cathode are one or a combination of outer ring, single strip, multiple strips, circle, inner ring, and inner polygon, which can be selected according to needs.
结合图4和图5所示,在一些实施例中,所述平面型结构包括位于第一型半导体层5上且围绕所述二型半导体层3设置的第三凸台53,所述微结构层4和所述第二阳极位8于所述第三凸台53上,所述第一阳极10、所述第一阴极1和所述第二阳极8位于同一水平面上,具体地,平面型结构从上至下分别为:第一阴极1、第一阳极10、第三型半导体层2、微结构层4、第二型半导体层3、第一型半导体层5、第二阳极8、第二阴极9、半导体衬底层6、金属反射层7。As shown in FIGS. 4 and 5 , in some embodiments, the planar structure includes a third boss 53 located on the first-type semiconductor layer 5 and surrounding the second-type semiconductor layer 3 . The microstructure The layer 4 and the second anode position 8 are on the third boss 53, and the first anode 10, the first cathode 1 and the second anode 8 are located on the same horizontal plane, specifically, a planar The structures from top to bottom are: first cathode 1, first anode 10, third type semiconductor layer 2, microstructure layer 4, second type semiconductor layer 3, first type semiconductor layer 5, second anode 8, third Two cathodes 9, semiconductor substrate layer 6, and metal reflective layer 7.
结合图6a、图6b和图6c所示,在平面型结构的一些实施例中,所述可见-红外双波段光电探测器的横截面为圆形、方形或六边形,电极包括阳极和阴极,相应地,对于电极的形状也可以根据整体形状而相适应设计,例如在圆形时,电极可以沿着中心呈同心圆的方式间隔环绕,同样的,采用方形或者六边形时候可采取同心环绕的方式设置电极,阳极和阴极的形状分别为外环形、单条形、多条形、圆形、内圆环形、内多边形中的一种或几种的结合,可以根据需要进行选择。As shown in Figure 6a, Figure 6b and Figure 6c, in some embodiments of the planar structure, the cross-section of the visible-infrared dual-band photodetector is circular, square or hexagonal, and the electrodes include an anode and a cathode. , Correspondingly, the shape of the electrode can also be designed according to the overall shape. For example, when it is circular, the electrodes can be spaced around the center in a concentric circle. Similarly, when a square or hexagon is used, the electrodes can be concentrically spaced. The electrodes are arranged in a surrounding manner, and the shapes of the anode and cathode are one or a combination of outer ring, single strip, multiple strips, circle, inner ring, and inner polygon, which can be selected according to needs.
结合图7a、图7b、图7c和图7d所示,在一些实施例中,所述微结构层为在硅上镀相应金属形成合金薄膜、多孔硅上镀相应金属形成合金薄膜、光栅结构的硅上镀相应金属形成合金薄膜、或黑磷和石墨烯等构成的二维材料上镀相应金属中的一种或几种,所述合金薄膜为PtSi、Pt2Si等,所述相应金属为Pt等,其中,13为金属Pt薄膜,14为P型(或N型)硅层,15为多孔P型(或N型)硅层,16为光栅结构P型(或N型)硅层,17为P型(或N型)黑磷层(或石墨烯层)。As shown in Figure 7a, Figure 7b, Figure 7c and Figure 7d, in some embodiments, the microstructure layer is formed by plating corresponding metals on silicon to form an alloy film, plating corresponding metals on porous silicon to form an alloy film, or a grating structure. Silicon is plated with a corresponding metal to form an alloy film, or a two-dimensional material composed of black phosphorus and graphene is plated with one or more of the corresponding metals. The alloy film is PtSi, Pt 2 Si, etc., and the corresponding metal is Pt, etc., among which, 13 is a metal Pt film, 14 is a P-type (or N-type) silicon layer, 15 is a porous P-type (or N-type) silicon layer, 16 is a grating structure P-type (or N-type) silicon layer, 17 is a P-type (or N-type) black phosphorus layer (or graphene layer).
为提高中远红外波段的光电转换效率,设计采用微结构层,通常包含多孔结构、光学腔结构、光栅结构、二维材料等结构,通过增加比表面积、利用外场反射或利用表面等离激元增强对红外光的吸收,一定程度上提高光电转换效率,得到最佳量子效率和频率响应。In order to improve the photoelectric conversion efficiency in the mid- and far-infrared bands, the design uses a microstructure layer, which usually includes porous structures, optical cavity structures, grating structures, two-dimensional materials and other structures, which are enhanced by increasing the specific surface area, using external field reflection, or using surface plasmons. The absorption of infrared light improves the photoelectric conversion efficiency to a certain extent and obtains the best quantum efficiency and frequency response.
本发明的器件包括多个金属电极,多个掺杂层,主要将器件分为两部分:中间部分主要实现对可见光波段的高性能探测,从上至下依次是P型(或N型)半导体、I型(本征)半导体、N型(或P型)半导体;两侧部分主要实现红外波段的高性能探测,从上至下依次为微结构层、N型(或P型)半导体、衬底层和金属反射层。The device of the present invention includes multiple metal electrodes and multiple doping layers. The device is mainly divided into two parts: the middle part mainly realizes high-performance detection of visible light bands, and the P-type (or N-type) semiconductors are sequentially from top to bottom. , I-type (intrinsic) semiconductor, N-type (or P-type) semiconductor; the parts on both sides mainly realize high-performance detection in the infrared band. From top to bottom, they are the microstructure layer, N-type (or P-type) semiconductor, and lining. Bottom layer and metal reflective layer.
本发明实施例中提供的可见-红外双波段探测器的工作原理,以第三型半导体层2为P型半导体层、第二型半导体层3为I型半导体层为例,加以介绍:The working principle of the visible-infrared dual-band detector provided in the embodiment of the present invention is introduced by taking the third-type semiconductor layer 2 as a P-type semiconductor layer and the second-type semiconductor layer 3 as an I-type semiconductor layer as an example:
如图3和图7所示,光线进入探测器后,可见光部分在第三型半导体层2或者进入第二型半导体层3后被吸收;在红外波段由于半导体衬底层6中的硅对其具有良好的透过性能,红外谱段光线穿过半导体衬底层6,入射到金属反射层7上进行反射,将红外波段光线反射到微结构层4上被吸收。在可见光吸收区(PIN结构):P区和I区的光线以光注入的方式激发产生电子-空穴对,电子和空穴在电场的作用下迅速向N区和P区定向移动,形成光电流;在红外吸收区:对红外波段采用微结构的金属-半导体接触界面势垒结构,入射光经金属反射层7反射至微结构层4,对于N型半导体,金属与半导体接触后形成肖特基势垒结构,红外光子透过半导体层被微结构层吸收,使电子获得能量跃迁至费米能级,留下空穴越过势垒进入半导体衬底,微结构层的电子被收集,完成红外探测;对于P型半导体,金属与半导体接触后形成欧姆接触,红外光子透过半导体层被微结构层吸收,空穴从金属进入半导体只有很小的势垒,比较小的电压就可以使空穴轻松越过势垒进入半导体,完成红外探测。电子和空穴最后被两侧金属电极收集,实现可见-红外双波段探测。As shown in Figure 3 and Figure 7, after the light enters the detector, the visible light part is absorbed in the third-type semiconductor layer 2 or after entering the second-type semiconductor layer 3; in the infrared band, the silicon in the semiconductor substrate layer 6 has With good transmission performance, the infrared band light passes through the semiconductor substrate layer 6 and is incident on the metal reflective layer 7 for reflection. The infrared band light is reflected to the microstructure layer 4 and absorbed. In the visible light absorption region (PIN structure): The light in the P region and I region is excited by light injection to generate electron-hole pairs. The electrons and holes quickly move toward the N region and P region under the action of the electric field, forming light Current; in the infrared absorption area: for the infrared band, a microstructured metal-semiconductor contact interface barrier structure is used, and the incident light is reflected to the microstructure layer 4 through the metal reflective layer 7. For N-type semiconductors, Schott is formed after the metal contacts the semiconductor. Based on the barrier structure, infrared photons pass through the semiconductor layer and are absorbed by the microstructure layer, causing the electrons to gain energy and jump to the Fermi level, leaving holes to cross the barrier and enter the semiconductor substrate. The electrons in the microstructure layer are collected, completing the infrared Detection; For P-type semiconductors, ohmic contact is formed after the metal contacts the semiconductor. Infrared photons pass through the semiconductor layer and are absorbed by the microstructure layer. There is only a small potential barrier for holes to enter the semiconductor from the metal. A relatively small voltage can make the holes Easily cross the potential barrier and enter the semiconductor to complete infrared detection. The electrons and holes are finally collected by the metal electrodes on both sides to achieve visible-infrared dual-band detection.
本发明实施例中提供的可见-红外双波段光电探测器,利用PIN光电探测结构和金属-半导体接触界面势垒结构,在实现提高中远红外波段量子效率的同时实现光电探测器的可见-红外双波段探测的功能。其好处是光垂直入射时,可见光通过PIN结构进行充分吸收探测,由于硅对红外波段的光具有良好的透过性能,红外波段光线穿过衬底层,通过金属薄膜反射层进行反射,将红外波段光线反射到微结构层,利用微结构层特性增强对红外波段光线的吸收,使载流子获得能量跃迁至费米能级,越过势垒进入半导体衬底,使电子和空穴分别被两侧金属电极收集,对红外波段光线进行高量子转换效率的吸收探测,实现可见-红外双波段探测。本发明与传统探测器相比可大幅提高探测光谱范围,拓宽应用领域。The visible-infrared dual-band photodetector provided in the embodiment of the present invention utilizes the PIN photoelectric detection structure and the metal-semiconductor contact interface barrier structure to improve the quantum efficiency of the mid- and far-infrared bands and at the same time realize the visible-infrared dual-band photodetector. Band detection function. The advantage is that when light is vertically incident, the visible light is fully absorbed and detected through the PIN structure. Since silicon has good transmission performance for infrared band light, the infrared band light passes through the substrate layer and is reflected by the metal film reflective layer, thereby converting the infrared band light into the infrared band. The light is reflected to the microstructure layer, and the characteristics of the microstructure layer are used to enhance the absorption of light in the infrared band, causing the carriers to gain energy and jump to the Fermi level, crossing the potential barrier and entering the semiconductor substrate, causing electrons and holes to be absorbed by both sides respectively. The metal electrode collects and absorbs the infrared band light with high quantum conversion efficiency to achieve visible-infrared dual-band detection. Compared with traditional detectors, the invention can greatly increase the detection spectrum range and broaden the application fields.
上述具体实施方式,并不构成对本发明保护范围的限制。本领域技术人员应该明白的是,根据设计要求和其他因素,可以进行各种修改、组合、子组合和替代。任何在本发明的精神和原则之内所作的修改、等同替换和改进等,均应包含在本发明保护范围之内。The above-mentioned specific embodiments do not constitute a limitation on the scope of the present invention. It will be understood by those skilled in the art that various modifications, combinations, sub-combinations and substitutions are possible depending on design requirements and other factors. Any modifications, equivalent substitutions and improvements made within the spirit and principles of the present invention shall be included in the protection scope of the present invention.
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210251620.7A CN114664968B (en) | 2022-03-15 | 2022-03-15 | Visible-infrared dual-band photoelectric detector |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210251620.7A CN114664968B (en) | 2022-03-15 | 2022-03-15 | Visible-infrared dual-band photoelectric detector |
Publications (2)
Publication Number | Publication Date |
---|---|
CN114664968A CN114664968A (en) | 2022-06-24 |
CN114664968B true CN114664968B (en) | 2023-11-14 |
Family
ID=82030289
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210251620.7A Active CN114664968B (en) | 2022-03-15 | 2022-03-15 | Visible-infrared dual-band photoelectric detector |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114664968B (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012170456A2 (en) * | 2011-06-06 | 2012-12-13 | University Of Florida Research Foundation, Inc. | Infrared imaging device integrating an ir up-conversion device with a cmos image sensor |
CN103840033A (en) * | 2012-11-27 | 2014-06-04 | 光引研创股份有限公司 | High Efficiency Bandwidth Product Germanium Photodetector |
CN105742397A (en) * | 2016-03-14 | 2016-07-06 | 电子科技大学 | Broadband photodiode for detection from visible light to infrared light |
CN106531822A (en) * | 2016-11-29 | 2017-03-22 | 电子科技大学 | Photoelectric detector |
CN113196366A (en) * | 2018-09-28 | 2021-07-30 | 株式会社半导体能源研究所 | Method and apparatus for manufacturing display device |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109119509B (en) * | 2017-06-23 | 2023-10-27 | 松下知识产权经营株式会社 | Light detecting element |
-
2022
- 2022-03-15 CN CN202210251620.7A patent/CN114664968B/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012170456A2 (en) * | 2011-06-06 | 2012-12-13 | University Of Florida Research Foundation, Inc. | Infrared imaging device integrating an ir up-conversion device with a cmos image sensor |
CN103840033A (en) * | 2012-11-27 | 2014-06-04 | 光引研创股份有限公司 | High Efficiency Bandwidth Product Germanium Photodetector |
CN105742397A (en) * | 2016-03-14 | 2016-07-06 | 电子科技大学 | Broadband photodiode for detection from visible light to infrared light |
CN106531822A (en) * | 2016-11-29 | 2017-03-22 | 电子科技大学 | Photoelectric detector |
CN113196366A (en) * | 2018-09-28 | 2021-07-30 | 株式会社半导体能源研究所 | Method and apparatus for manufacturing display device |
Non-Patent Citations (2)
Title |
---|
Design of InAs/GaSb superlattice infrared barrier detectors;M.Delmas;《Superlattices and Microstructures》;第104卷;全文 * |
分孔径红外偏振成像仪光学系统设计;王琪;《中国光学》;第11卷(第1期);全文 * |
Also Published As
Publication number | Publication date |
---|---|
CN114664968A (en) | 2022-06-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6341651B2 (en) | Avalanche photodetector elements that convert optical signals into electrical signals, electrical circuits using the same, and use of avalanche photodetectors | |
US8750653B1 (en) | Infrared nanoantenna apparatus and method for the manufacture thereof | |
US7928389B1 (en) | Wide bandwidth infrared detector and imager | |
US8618622B2 (en) | Photodetector optimized by metal texturing provided on the rear surface | |
US11996492B2 (en) | Nanophotonic hot-electron devices for infrared light detection | |
CN109755331A (en) | A kind of narrowband photodetector coupled based on phasmon-photon mode | |
Sun et al. | Photodetection by hot electrons or hot holes: a comparable study on physics and performances | |
CN102881761B (en) | Avalanche photo diode (APD) infrared detector and manufacturing method thereof | |
JP2003346927A (en) | Photoelectric conversion device | |
KR20110136789A (en) | Photodiodes and Photodiode Arrays | |
JP2013156463A (en) | Imaging device | |
US8897609B1 (en) | Frequency selective infrared sensors | |
US8461571B2 (en) | Method and apparatus for converting photon energy to electrical energy | |
JP6918631B2 (en) | Photodetector | |
CN113447141B (en) | Infrared microbridge detector based on CMOS (complementary Metal oxide semiconductor) process | |
US11688820B2 (en) | Photodetectors | |
CN107039556A (en) | A kind of photovoltaic conversion structure | |
CN114664968B (en) | Visible-infrared dual-band photoelectric detector | |
CN102593132B (en) | Lamination differential photoelectric detector based on standard CMOS (complementary metal oxide semiconductor) process | |
CN113720472B (en) | Infrared detector based on CMOS (complementary Metal oxide semiconductor) process | |
RU2488916C1 (en) | Semiconductor infrared detector | |
CN204128692U (en) | The infrared imaging detector of a kind of pixel cell and formation thereof | |
TWI578552B (en) | Solar battery, solar battery pack and preparation method thereof | |
TWI460872B (en) | Solar battery | |
CN113447142A (en) | Reinforced CMOS infrared detector |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |