CN114664834B - Groove type ferroelectric memory cell structure and preparation method thereof - Google Patents
Groove type ferroelectric memory cell structure and preparation method thereof Download PDFInfo
- Publication number
- CN114664834B CN114664834B CN202210250439.4A CN202210250439A CN114664834B CN 114664834 B CN114664834 B CN 114664834B CN 202210250439 A CN202210250439 A CN 202210250439A CN 114664834 B CN114664834 B CN 114664834B
- Authority
- CN
- China
- Prior art keywords
- drain
- ferroelectric
- electrode
- trench
- memory cell
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000002360 preparation method Methods 0.000 title abstract description 8
- 239000003990 capacitor Substances 0.000 claims abstract description 32
- 239000000758 substrate Substances 0.000 claims description 25
- 238000000151 deposition Methods 0.000 claims description 15
- 238000004519 manufacturing process Methods 0.000 claims description 11
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical group O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 10
- 238000000137 annealing Methods 0.000 claims description 10
- 239000000463 material Substances 0.000 claims description 10
- 238000005530 etching Methods 0.000 claims description 9
- MCMNRKCIXSYSNV-UHFFFAOYSA-N ZrO2 Inorganic materials O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 claims description 7
- 239000004065 semiconductor Substances 0.000 claims description 7
- 230000008021 deposition Effects 0.000 claims description 6
- CJNBYAVZURUTKZ-UHFFFAOYSA-N hafnium(iv) oxide Chemical compound O=[Hf]=O CJNBYAVZURUTKZ-UHFFFAOYSA-N 0.000 claims description 6
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 claims description 6
- 235000012239 silicon dioxide Nutrition 0.000 claims description 5
- 239000000377 silicon dioxide Substances 0.000 claims description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 4
- 229910052732 germanium Inorganic materials 0.000 claims description 3
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 claims description 3
- 238000004151 rapid thermal annealing Methods 0.000 claims description 3
- 229910052710 silicon Inorganic materials 0.000 claims description 3
- 239000010703 silicon Substances 0.000 claims description 3
- 229910001928 zirconium oxide Inorganic materials 0.000 claims description 3
- 229910052684 Cerium Inorganic materials 0.000 claims description 2
- 229910052688 Gadolinium Inorganic materials 0.000 claims description 2
- 229910052765 Lutetium Inorganic materials 0.000 claims description 2
- 229910052779 Neodymium Inorganic materials 0.000 claims description 2
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 claims description 2
- 229910052782 aluminium Inorganic materials 0.000 claims description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 2
- GWXLDORMOJMVQZ-UHFFFAOYSA-N cerium Chemical compound [Ce] GWXLDORMOJMVQZ-UHFFFAOYSA-N 0.000 claims description 2
- UIWYJDYFSGRHKR-UHFFFAOYSA-N gadolinium atom Chemical compound [Gd] UIWYJDYFSGRHKR-UHFFFAOYSA-N 0.000 claims description 2
- 229910052746 lanthanum Inorganic materials 0.000 claims description 2
- FZLIPJUXYLNCLC-UHFFFAOYSA-N lanthanum atom Chemical compound [La] FZLIPJUXYLNCLC-UHFFFAOYSA-N 0.000 claims description 2
- OHSVLFRHMCKCQY-UHFFFAOYSA-N lutetium atom Chemical compound [Lu] OHSVLFRHMCKCQY-UHFFFAOYSA-N 0.000 claims description 2
- QEFYFXOXNSNQGX-UHFFFAOYSA-N neodymium atom Chemical compound [Nd] QEFYFXOXNSNQGX-UHFFFAOYSA-N 0.000 claims description 2
- 229910052757 nitrogen Inorganic materials 0.000 claims description 2
- 229910052706 scandium Inorganic materials 0.000 claims description 2
- SIXSYDAISGFNSX-UHFFFAOYSA-N scandium atom Chemical compound [Sc] SIXSYDAISGFNSX-UHFFFAOYSA-N 0.000 claims description 2
- VSZWPYCFIRKVQL-UHFFFAOYSA-N selanylidenegallium;selenium Chemical compound [Se].[Se]=[Ga].[Se]=[Ga] VSZWPYCFIRKVQL-UHFFFAOYSA-N 0.000 claims description 2
- 229910052712 strontium Inorganic materials 0.000 claims description 2
- CIOAGBVUUVVLOB-UHFFFAOYSA-N strontium atom Chemical compound [Sr] CIOAGBVUUVVLOB-UHFFFAOYSA-N 0.000 claims description 2
- 229910000449 hafnium oxide Inorganic materials 0.000 claims 2
- WIHZLLGSGQNAGK-UHFFFAOYSA-N hafnium(4+);oxygen(2-) Chemical compound [O-2].[O-2].[Hf+4] WIHZLLGSGQNAGK-UHFFFAOYSA-N 0.000 claims 2
- 238000003860 storage Methods 0.000 abstract description 9
- 238000000034 method Methods 0.000 abstract description 7
- 238000005516 engineering process Methods 0.000 abstract description 5
- 230000008901 benefit Effects 0.000 abstract description 4
- 230000008569 process Effects 0.000 abstract description 4
- 230000000694 effects Effects 0.000 abstract description 3
- 230000005669 field effect Effects 0.000 abstract 1
- 239000010410 layer Substances 0.000 description 41
- 238000010586 diagram Methods 0.000 description 20
- 230000010287 polarization Effects 0.000 description 12
- 239000010409 thin film Substances 0.000 description 9
- 229910052751 metal Inorganic materials 0.000 description 5
- 239000002184 metal Substances 0.000 description 5
- 230000005684 electric field Effects 0.000 description 3
- 239000010408 film Substances 0.000 description 3
- 230000002269 spontaneous effect Effects 0.000 description 3
- 101000827703 Homo sapiens Polyphosphoinositide phosphatase Proteins 0.000 description 2
- 102100023591 Polyphosphoinositide phosphatase Human genes 0.000 description 2
- 101100233916 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) KAR5 gene Proteins 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- 229910000577 Silicon-germanium Inorganic materials 0.000 description 2
- 229910052681 coesite Inorganic materials 0.000 description 2
- 229910052906 cristobalite Inorganic materials 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 230000005621 ferroelectricity Effects 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 230000010354 integration Effects 0.000 description 2
- 229910044991 metal oxide Inorganic materials 0.000 description 2
- 150000004706 metal oxides Chemical class 0.000 description 2
- 229910052682 stishovite Inorganic materials 0.000 description 2
- 229910052905 tridymite Inorganic materials 0.000 description 2
- JBRZTFJDHDCESZ-UHFFFAOYSA-N AsGa Chemical compound [As]#[Ga] JBRZTFJDHDCESZ-UHFFFAOYSA-N 0.000 description 1
- 101001121408 Homo sapiens L-amino-acid oxidase Proteins 0.000 description 1
- 102100026388 L-amino-acid oxidase Human genes 0.000 description 1
- 101100012902 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) FIG2 gene Proteins 0.000 description 1
- LEVVHYCKPQWKOP-UHFFFAOYSA-N [Si].[Ge] Chemical compound [Si].[Ge] LEVVHYCKPQWKOP-UHFFFAOYSA-N 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 239000011229 interlayer Substances 0.000 description 1
- 238000005468 ion implantation Methods 0.000 description 1
- 238000004377 microelectronic Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 1
- 229920005591 polysilicon Polymers 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10B—ELECTRONIC MEMORY DEVICES
- H10B53/00—Ferroelectric RAM [FeRAM] devices comprising ferroelectric memory capacitors
- H10B53/30—Ferroelectric RAM [FeRAM] devices comprising ferroelectric memory capacitors characterised by the memory core region
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D1/00—Resistors, capacitors or inductors
- H10D1/60—Capacitors
- H10D1/68—Capacitors having no potential barriers
- H10D1/692—Electrodes
- H10D1/711—Electrodes having non-planar surfaces, e.g. formed by texturisation
- H10D1/716—Electrodes having non-planar surfaces, e.g. formed by texturisation having vertical extensions
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/60—Insulated-gate field-effect transistors [IGFET]
- H10D30/62—Fin field-effect transistors [FinFET]
Landscapes
- Semiconductor Memories (AREA)
- Non-Volatile Memory (AREA)
Abstract
本发明涉及信息存储技术领域,提出了一种沟槽型铁电存储单元结构及制备方法。本发明包括,在制备工艺中采用鳍式场效应晶体管FinFET替代传统平面型晶体管,相比于传统平面晶体管,FinFET晶体管在抑制短沟道效应,减小漏电方面有着绝对的优势。本发明还包括,将铁电电容器折叠集成于漏极区域开设的沟槽表面及侧壁。相比于传统结构,本发明提出的铁电存储单元结构可以使存储单元尺寸进一步缩小。在同等的工艺节点下,只需在存储器件结构上做改变,即可实现数据信息容量的较大提升。结构简单,可广泛用于高密度铁电存储器芯片。
The present invention relates to the field of information storage technology, and proposes a trench-type ferroelectric memory cell structure and a preparation method. The present invention includes using fin field effect transistors FinFET to replace traditional planar transistors in the preparation process. Compared with traditional planar transistors, FinFET transistors have absolute advantages in suppressing short channel effects and reducing leakage. The present invention also includes folding and integrating ferroelectric capacitors on the surface and sidewalls of the trench opened in the drain region. Compared with the traditional structure, the ferroelectric memory cell structure proposed in the present invention can further reduce the size of the memory cell. Under the same process node, only changes need to be made in the structure of the memory device to achieve a significant increase in data information capacity. The structure is simple and can be widely used in high-density ferroelectric memory chips.
Description
技术领域Technical Field
本发明涉及信息存储领域,具体涉及一种铁电存储单元结构及制备方法。The present invention relates to the field of information storage, and in particular to a ferroelectric storage unit structure and a preparation method thereof.
背景技术Background technique
铁电存储器是一种新型非易失性存储器。相比于传统存储器,铁电存储器具有以下的优点:访问时间快、工作电压低、读写功耗低、使用寿命长。并且铁电存储器作为RAM型存储器在掉电后数据依旧存在,不会丢失。此外,铁电存储器的强抗辐照能力使其在航空航天应用中具有得天独厚的优势。Ferroelectric memory is a new type of non-volatile memory. Compared with traditional memory, ferroelectric memory has the following advantages: fast access time, low operating voltage, low reading and writing power consumption, and long service life. And as a RAM-type memory, the data of ferroelectric memory still exists after power failure and will not be lost. In addition, the strong radiation resistance of ferroelectric memory gives it a unique advantage in aerospace applications.
在一些电介质晶体中,晶胞的特殊结构使其正负电荷中心不重合而出现电偶极矩,产生不等于零的电极化强度,使晶体具有自发极化,且电偶极矩方向可以因外电场的作用而改变,呈现出类似于铁磁体的特点;由于极化程度与电场强度的关系曲线与铁磁体的磁滞回线形状类似,所以人们把这种性质叫“铁电性”,将极化程度与电场强度的关系曲线叫“电滞回线”,并将具备铁电性的材料称为“铁电材料”。In some dielectric crystals, the special structure of the unit cell causes the centers of positive and negative charges to not coincide, resulting in an electric dipole moment and an electric polarization intensity that is not equal to zero. This gives the crystal spontaneous polarization, and the direction of the electric dipole moment can be changed by the action of an external electric field, exhibiting characteristics similar to those of ferromagnets. Since the relationship curve between the degree of polarization and the intensity of the electric field is similar in shape to the hysteresis loop of a ferromagnet, people call this property "ferroelectricity", the relationship curve between the degree of polarization and the intensity of the electric field is called "hysteresis loop", and materials with ferroelectricity are called "ferroelectric materials".
附图1所示为实测的铁电材料电滞回线,以附图1正半轴为例,Vmax为外加电压的最大值。Pmax为外加电压为Vmax时铁电材料的最大极化强度。Pr为外加电压为0时铁电材料的正向自发极化强度,又称为剩余极化强度。Vc为将铁电材料的自发极化强度从-Pr上升到0时所需施加的外加正向电压值,又称为矫顽电压。铁电存储器正是利用了铁电材料表现出的极化强度与外加电压之间的非线性响应及剩余极化的特性实现对“1”和“0”数字信息的存储。Figure 1 shows the measured hysteresis loop of ferroelectric material. Taking the positive half axis of Figure 1 as an example, Vmax is the maximum value of the applied voltage. Pmax is the maximum polarization intensity of the ferroelectric material when the applied voltage is Vmax. Pr is the forward spontaneous polarization intensity of the ferroelectric material when the applied voltage is 0, also known as the residual polarization intensity. Vc is the applied forward voltage value required to increase the spontaneous polarization intensity of the ferroelectric material from -Pr to 0, also known as the coercive voltage. Ferroelectric memory utilizes the nonlinear response between the polarization intensity and the applied voltage and the residual polarization characteristics of the ferroelectric material to realize the storage of "1" and "0" digital information.
附图2所示为铁电存储器的基本存储单元电路示意图。其结构是“2T2C”型,即每个存储单元包含两个晶体管和两个铁电电容器。图二中与晶体管栅极G相连的是字线WL,与晶体管源极S相连的是两条互补的位线BL和BLN,与晶体管漏极D相连的是铁电电容器的上极板,与铁电电容器下极板相连的是板线PL。工作状态下,两个铁电电容器的极化方向总是相反的。在进行读取操作时,正是两个电容器极化方向不同,使BL和BLN端的位线电容上电荷量变化不同,通过灵敏放大器实现了对数据“0”、“1”的判断。因此为了保证数据的准确性,铁电电容器能存储的最大电荷量不能过低,这对平板铁电电容器的最小面积做出了要求,极大的限制铁电存储器集成度进一步提高。Figure 2 shows a schematic diagram of the basic memory cell circuit of a ferroelectric memory. Its structure is a "2T2C" type, that is, each memory cell includes two transistors and two ferroelectric capacitors. In Figure 2, the word line WL is connected to the transistor gate G, the two complementary bit lines BL and BLN are connected to the transistor source S, the upper plate of the ferroelectric capacitor is connected to the transistor drain D, and the plate line PL is connected to the lower plate of the ferroelectric capacitor. Under working conditions, the polarization directions of the two ferroelectric capacitors are always opposite. When performing a read operation, it is precisely because the polarization directions of the two capacitors are different that the charge amount on the bit line capacitors at the BL and BLN ends changes differently, and the judgment of the data "0" and "1" is realized through the sensitive amplifier. Therefore, in order to ensure the accuracy of the data, the maximum charge amount that the ferroelectric capacitor can store cannot be too low, which makes a requirement for the minimum area of the planar ferroelectric capacitor, which greatly limits the further improvement of the integration of the ferroelectric memory.
附图3所示为一种“2T2C”存储单元制造中的平铺结构示意图。在这种结构中,晶体管与铁电电容器位于同一金属层,晶体管漏极与铁电电容器极板之间通过金属导线进行电连接。为了保证铁电电容器存储电荷的能力,单个存储单元所耗费的面积较大,因此这种结构并不适用于大容量的铁电存储器制备。Figure 3 shows a schematic diagram of a tiled structure in the manufacture of a "2T2C" memory cell. In this structure, the transistor and the ferroelectric capacitor are located in the same metal layer, and the transistor drain and the ferroelectric capacitor plate are electrically connected through a metal wire. In order to ensure the charge storage capacity of the ferroelectric capacitor, the area consumed by a single memory cell is relatively large, so this structure is not suitable for the preparation of large-capacity ferroelectric memory.
附图4所示为一种“2T2C”存储单元制造中的叠层结构示意图。在这种结构中,晶体管与铁电电容器位于不同的金属层,晶体管漏极与铁电电容器之间通过层间通孔和金属导线进行电连接。相比于附图3所示的结构,这种结构虽然在一定程度下减小了单个存储单元的面积,但是依然受到平板电容器最小面积要求的限制。FIG4 is a schematic diagram of a stacked structure in the manufacture of a "2T2C" memory cell. In this structure, the transistor and the ferroelectric capacitor are located in different metal layers, and the transistor drain and the ferroelectric capacitor are electrically connected through interlayer vias and metal wires. Compared with the structure shown in FIG3, this structure reduces the area of a single memory cell to a certain extent, but is still limited by the minimum area requirement of the planar capacitor.
发明内容Summary of the invention
本发明具体涉及一种沟槽型铁电存储单元结构及制备方法。通过本发明公开的铁电存储器存储单元结构及制备方法,减小铁电存储单元尺寸,可进一步提高铁电存储器的存储密度,降低生产成本。The present invention specifically relates to a trench type ferroelectric memory cell structure and a preparation method thereof. By using the ferroelectric memory cell structure and a preparation method disclosed by the present invention, the size of the ferroelectric memory cell can be reduced, the storage density of the ferroelectric memory can be further improved, and the production cost can be reduced.
技术方案Technical solutions
一种沟槽型铁电存储单元结构,包括:衬底;以及衬底上刻蚀形成的晶体管源极、漏级区域以及连通源漏级的源漏间鳍状结构;在晶体管漏极区域刻蚀形成的漏极沟槽结构;在衬底表面沉积生成的衬底绝缘层;在源漏间鳍状结构中部沉积生成的栅极金属氧化层;沉积生成环绕栅极金属氧化层的栅电极;在漏极沟槽结构的表面、侧壁、沟槽底部依次沉积生成底部电极层、铁电薄膜层、顶部电极层所形成的铁电电容器结构。A trench-type ferroelectric memory cell structure comprises: a substrate; a transistor source, a drain region and a source-drain fin structure connecting the source and drain formed by etching on the substrate; a drain trench structure formed by etching in the transistor drain region; a substrate insulating layer deposited on the substrate surface; a gate metal oxide layer deposited in the middle of the source-drain fin structure; a gate electrode surrounding the gate metal oxide layer deposited; and a ferroelectric capacitor structure formed by sequentially depositing a bottom electrode layer, a ferroelectric film layer and a top electrode layer on the surface, sidewall and bottom of the drain trench structure.
进一步的,所述衬底为半导体衬底,一般为硅(Si)、锗(Ge)、硅锗(SiGe)、砷化镓(GaAs)等材料中的一种。Furthermore, the substrate is a semiconductor substrate, generally one of materials such as silicon (Si), germanium (Ge), silicon germanium (SiGe), gallium arsenide (GaAs), etc.
进一步的,所述源极、漏极、源漏间鳍状结构是在半导体衬底刻蚀形成的,呈杠铃状的结构。所述源漏间鳍状结构,其截面形状为矩形、梯形或倒三角等结构。Furthermore, the source, drain, and fin-shaped structure between the source and drain are formed by etching the semiconductor substrate and are in a barbell-shaped structure. The cross-sectional shape of the fin-shaped structure between the source and drain is a rectangular, trapezoidal, or inverted triangle structure.
进一步的,所述漏极沟槽结构为在晶体管漏极区域通过刻蚀形成的,其沟槽数量可由实际需求自由选取,沟槽宽度必须大于等于两倍铁电电容器的厚度以保证铁电电容器的生成。进一步的,在刻蚀生成漏极沟槽结构时,漏极上除去沟槽部分的其余区域应保持物理连接。进一步的,每个沟槽结构的横截面形状可以为矩形、梯形、“U”型或“V”型。Furthermore, the drain trench structure is formed by etching in the drain region of the transistor, and the number of trenches can be freely selected according to actual needs, and the trench width must be greater than or equal to twice the thickness of the ferroelectric capacitor to ensure the generation of the ferroelectric capacitor. Further, when etching to generate the drain trench structure, the remaining area on the drain except the trench portion should maintain physical connection. Further, the cross-sectional shape of each trench structure can be rectangular, trapezoidal, "U"-shaped or "V"-shaped.
进一步的,所述衬底绝缘层为沉积于半导体衬底表面的绝缘薄膜层结构。Furthermore, the substrate insulating layer is an insulating thin film layer structure deposited on the surface of the semiconductor substrate.
进一步的,所述栅极氧化物层为通过热氧化法或沉积法在源漏间鳍状结构中部的三个外表面形成的一层均匀的氧化物薄膜。所述栅极氧化物层,一般材料为具有高介电常数的氧化物如二氧化硅(SiO2)、二氧化铪(HfO2)、二氧化锆(ZrO2)等。Furthermore, the gate oxide layer is a uniform oxide film formed on three outer surfaces of the middle of the fin structure between the source and drain by thermal oxidation or deposition. The gate oxide layer is generally made of oxides with high dielectric constants such as silicon dioxide ( SiO2 ), hafnium dioxide ( HfO2 ), zirconium dioxide ( ZrO2 ), etc.
进一步的,所述栅电极为通过沉积生成的环绕栅极氧化物层的电极。栅电极与源漏间鳍状结构呈正交关系。栅电极宽度应略小于或等于栅极氧化物层宽度。所述栅电极,一般材料为金属栅电极或n型掺杂的多晶硅(Si)。Furthermore, the gate electrode is an electrode surrounding the gate oxide layer generated by deposition. The gate electrode is orthogonal to the fin structure between the source and drain. The gate electrode width should be slightly less than or equal to the gate oxide layer width. The gate electrode is generally made of a metal gate electrode or n-type doped polysilicon (Si).
进一步的,所述铁电电容器,为在漏极沟槽结构上依次沉积生成的底部电极层、铁电薄膜层、及顶部电极层形成的多层结构。进一步的,其底部电极层和顶部电极层由TiN、TaN或HfNX(0<X≤1.1)制成。进一步的,铁电薄膜层一般材料为氧化铪(HfO2)、氧化锆(ZrO2)、掺杂其他元素的氧化锆(ZrO2)或掺杂其他元素的氧化铪(HfO2);所述其他掺杂元素包括硅(Si)、铝(Al)、锆(Zr)、镧(La)、铈(Ce)、锶(Sr)、镥(Lu)、钆(Gd)、钪(Sc)、钕(Nd)、锗(Ge)、氮(N)中的一种或多种。Further, the ferroelectric capacitor is a multilayer structure formed by sequentially depositing a bottom electrode layer, a ferroelectric thin film layer, and a top electrode layer on the drain trench structure. Further, the bottom electrode layer and the top electrode layer are made of TiN, TaN or HfN X (0<X≤1.1). Further, the ferroelectric thin film layer is generally made of hafnium oxide (HfO 2 ), zirconium oxide (ZrO 2 ), zirconium oxide (ZrO 2 ) doped with other elements, or hafnium oxide (HfO 2 ) doped with other elements; the other doping elements include one or more of silicon (Si), aluminum (Al), zirconium (Zr), lanthanum (La), cerium (Ce), strontium (Sr), lutetium (Lu), gadolinium (Gd), scandium (Sc), neodymium (Nd), germanium (Ge), and nitrogen (N).
进一步的,所述铁电电容器,在形成后需进行快速热退火以获得更好的铁电薄膜界面态,退火温度在400℃-600℃之间,退火时间在40s-400s之间;优选地,退火温度选择500℃,退火时间选择60s。Furthermore, the ferroelectric capacitor needs to be rapidly thermally annealed after formation to obtain a better ferroelectric film interface state, the annealing temperature is between 400°C and 600°C, and the annealing time is between 40s and 400s; preferably, the annealing temperature is 500°C and the annealing time is 60s.
本发明的上述技术方案具有如下有益的技术效果:The above technical solution of the present invention has the following beneficial technical effects:
本发明中选用FinFET代替传统工艺中的平面晶体管,能够有效的解决平面晶体管在特征尺寸缩小时因短沟道效应带来的漏电损失问题,从而适应。The present invention uses FinFET to replace the planar transistor in the traditional process, which can effectively solve the leakage loss problem caused by the short channel effect when the feature size of the planar transistor is reduced, thereby adapting to it.
同时,本发明中提供了一种三维沟槽型铁电电容器的制备方法,将铁电电容由平板结构转变为三维结构来增大电容面积,在不减少铁电电容器电荷储存能力的前提下进一步缩小存储单元尺寸。这种沟槽结构使铁电随机存储器的集成密度更高、制造成本更低,解决了平板结构铁电存储器所遇到的困境,为进一步发展低制造成本、高存储密度、和高可靠性的铁电随机存储器提供了重要的研究意义和广泛的应用价值。At the same time, the present invention provides a method for preparing a three-dimensional groove type ferroelectric capacitor, which converts the ferroelectric capacitor from a flat plate structure to a three-dimensional structure to increase the capacitance area, and further reduce the size of the storage unit without reducing the charge storage capacity of the ferroelectric capacitor. This groove structure makes the integration density of the ferroelectric random access memory higher and the manufacturing cost lower, solves the difficulties encountered by the flat plate structure ferroelectric memory, and provides important research significance and wide application value for further developing a ferroelectric random access memory with low manufacturing cost, high storage density, and high reliability.
附图说明BRIEF DESCRIPTION OF THE DRAWINGS
图1为铁电材料的电滞回线示意图;FIG1 is a schematic diagram of a hysteresis loop of a ferroelectric material;
图2为“2T2C”型铁电存储单元的电路示意图;FIG2 is a circuit diagram of a “2T2C” type ferroelectric memory cell;
图3为“2T2C”型铁电存储单元制造中的一种平铺结构示意图;FIG3 is a schematic diagram of a tiled structure in the manufacture of a “2T2C” type ferroelectric memory cell;
图4为“2T2C”型铁电存储单元制造中的一种叠层结构示意图;FIG4 is a schematic diagram of a stacked structure in the manufacture of a “2T2C” type ferroelectric memory cell;
图5-图7分别为本发明实施例1、实施例2、实施例3提供的在衬底上刻蚀生成晶体管源极、漏级、源漏间鳍状结构及漏极沟槽结构的示意图;5 to 7 are schematic diagrams of etching a transistor source, a drain, a fin structure between the source and the drain, and a drain trench structure on a substrate, respectively, according to Embodiment 1, Embodiment 2, and Embodiment 3 of the present invention;
图8为本发明实施例1提供的在衬底上沉积生成衬底绝缘层的示意图;8 is a schematic diagram of depositing a substrate insulating layer on a substrate provided in Embodiment 1 of the present invention;
图9为本发明实施例1提供的在源漏间鳍状结构中部沉积生成栅氧化层的示意图;9 is a schematic diagram of depositing a gate oxide layer in the middle of a fin-shaped structure between a source and a drain according to Embodiment 1 of the present invention;
图10为本发明实施例1提供的沉积生成晶体管栅极的示意图;FIG10 is a schematic diagram of a transistor gate formed by deposition according to Embodiment 1 of the present invention;
图11-图13分别为本发明实施例1、实施例2、实施例3提供的依次沉积生成铁电电容器底部电极层、铁电薄膜层、顶部电极层的示意图;11-13 are schematic diagrams of sequentially depositing a bottom electrode layer, a ferroelectric thin film layer, and a top electrode layer of a ferroelectric capacitor according to Embodiment 1, Embodiment 2, and Embodiment 3 of the present invention, respectively;
图14为本发明实施例1提供的铁电存储单元的截面示意图。FIG14 is a cross-sectional schematic diagram of a ferroelectric memory cell provided in Embodiment 1 of the present invention.
附图标记:1-半导体衬底;2-衬底绝缘层;3-晶体管源极;4-晶体管漏极;5-源漏间鳍状结构;6-栅极氧化层;7-晶体管栅极;8-漏极鳍状结构;9-电容器底部电极层;10-铁电薄膜层;11-电容器顶部电极层。Figure numerals: 1-semiconductor substrate; 2-substrate insulating layer; 3-transistor source; 4-transistor drain; 5-fin structure between source and drain; 6-gate oxide layer; 7-transistor gate; 8-drain fin structure; 9-capacitor bottom electrode layer; 10-ferroelectric thin film layer; 11-capacitor top electrode layer.
具体实施方式Detailed ways
为使本发明的目的、技术方案和优点更加清楚明了,下面结合具体实施方式并参照附图,对本发明进一步详细说明。应该理解,这些描述只是示例性的,而并非要限制本发明的范围。此外,在以下说明中,省略了对常见结构和技术的描述,以避免不必要地混淆本发明的概念。In order to make the purpose, technical scheme and advantages of the present invention clearer, the present invention is further described in detail below in conjunction with specific embodiments and with reference to the accompanying drawings. It should be understood that these descriptions are only exemplary and are not intended to limit the scope of the present invention. In addition, in the following description, the description of common structures and technologies is omitted to avoid unnecessary confusion of the concept of the present invention.
本发明提供的沟槽型铁电存储单元的制备方法包括以下步骤:The method for preparing a trench ferroelectric memory cell provided by the present invention comprises the following steps:
如图5所示为实施例1对应的,在半导体衬底上通过刻蚀完成晶体管的源极区域、漏极区域、及源漏间鳍状结构的同时完成漏极沟槽结构的制备。具体地,漏极上除去沟槽的剩余部分之间应当保持物理连接。可选的,沟槽截面为矩形、梯形“U”形或“V”形。进一步地,需在对应区域通过离子注入的方式分别形成源极、漏极。As shown in Figure 5, the source region, drain region, and fin structure between the source and drain of the transistor are completed by etching on the semiconductor substrate, and the preparation of the drain trench structure is completed at the same time. Specifically, the remaining parts of the drain except the groove should maintain a physical connection. Optionally, the cross-section of the groove is rectangular, trapezoidal "U" shape or "V" shape. Furthermore, the source and drain need to be formed separately in the corresponding areas by ion implantation.
如图6所示为实施例2形成的漏极沟槽结构示意图,与实施例1的不同在于漏极沟槽结构完全被漏极区域所包裹。FIG6 is a schematic diagram of a drain trench structure formed in Example 2, which is different from Example 1 in that the drain trench structure is completely wrapped by the drain region.
如图7所示为实施例3形成的漏极沟槽结构示意图,与实施例1的不同在于漏极沟槽结构底部高于衬底表面,且沟槽长度贯穿整个漏极区域。FIG7 is a schematic diagram of a drain trench structure formed in Example 3, which is different from Example 1 in that the bottom of the drain trench structure is higher than the substrate surface, and the trench length runs through the entire drain region.
如图8所示为实施例1在衬底上非源极、漏极及漏极沟槽区域沉积形成衬底绝缘层的示意图。FIG. 8 is a schematic diagram showing the deposition of a substrate insulating layer in the non-source, drain and drain trench regions on the substrate according to Example 1.
如图9所示为实施例1在源漏间鳍状结构中部沉积形成包裹三个外表面的均匀栅氧化层。可选的,栅氧化层为为具有高K值的氧化物如二氧化硅(SiO2)、二氧化铪(HfO2)、二氧化锆(ZrO2)等。As shown in Figure 9, a uniform gate oxide layer is deposited in the middle of the fin structure between the source and drain to cover three outer surfaces in Example 1. Optionally, the gate oxide layer is an oxide with a high K value such as silicon dioxide ( SiO2 ), hafnium dioxide ( HfO2 ), zirconium dioxide ( ZrO2 ), etc.
如图10所示为实施例1沉积生成晶体管栅极的示意图。FIG. 10 is a schematic diagram of depositing a transistor gate in Example 1.
如图11所示为实施例1在漏极沟槽区域的表面上方、侧壁、及沟槽底部分别沉积生成底部电极层、铁电薄膜层、顶部电极层形成铁电电容器结构。优选地,铁电薄膜层厚度范围应在10-30nm之间。可选的,在所有薄膜层沉积完成后,为了优化铁电薄膜的界面状态,可进行快速热退火(RTA),退火温度范围为400℃-600℃,退火时间40s-100s。优选地,退火温度550℃,退火时间为60s。As shown in Figure 11, in Example 1, a bottom electrode layer, a ferroelectric thin film layer, and a top electrode layer are deposited above the surface, on the sidewalls, and at the bottom of the drain trench region to form a ferroelectric capacitor structure. Preferably, the thickness of the ferroelectric thin film layer should be in the range of 10-30nm. Optionally, after all the thin film layers are deposited, in order to optimize the interface state of the ferroelectric thin film, rapid thermal annealing (RTA) can be performed, and the annealing temperature ranges from 400°C to 600°C, and the annealing time is 40s-100s. Preferably, the annealing temperature is 550°C, and the annealing time is 60s.
图12为本发明实施例2的整体结构示意图。FIG. 12 is a schematic diagram of the overall structure of Embodiment 2 of the present invention.
图13为本发明实施例3的的整体结构示意图。FIG. 13 is a schematic diagram of the overall structure of Example 3 of the present invention.
在附图中示出了根据本发明实施例的层结构示意图。这些图并非是按比例绘制的,其中为了清楚的目的,放大了某些细节,并且可能省略了某些细节。图中所示出的各种区域、层的形状以及它们之间的相对大小、位置关系仅是示例性的,实际中可能由于制造公差或技术限制而有所偏差,并且本领域技术人员根据实际所需可以另外设计具有不同形状、大小、相对位置的区域/层。The accompanying drawings show schematic diagrams of layer structures according to embodiments of the present invention. These figures are not drawn to scale, and some details are magnified and some details may be omitted for the purpose of clarity. The shapes of various regions and layers shown in the figures and the relative sizes and positional relationships therebetween are only exemplary, and may deviate in practice due to manufacturing tolerances or technical limitations, and those skilled in the art may additionally design regions/layers with different shapes, sizes, and relative positions according to actual needs.
上述流程中有些步骤中涉及到部分工艺流程比如刻蚀、沉积的步骤没有明确描述,但这些技术都是本领域中成熟的技术。本领域专业技术人员可以能够知晓通过现有的微电子制造技术如何实现上述各个步骤。Some steps in the above process involve some process flows such as etching and deposition steps which are not clearly described, but these technologies are mature technologies in this field. Professionals and technicians in this field may know how to implement the above steps through existing microelectronics manufacturing technology.
应当指出的是,本发明的上述具体实施方式仅仅用于示例性说明或解释本发明的原理,而不构成对本发明的限制。因此,在本发明所述发明构想范围内所做的任何修改、等同替代、改进等,均应包含在本发明所附属权利要求的保护范围内。It should be noted that the above specific embodiments of the present invention are only used to illustrate or explain the principles of the present invention, and do not constitute a limitation of the present invention. Therefore, any modifications, equivalent substitutions, improvements, etc. made within the scope of the inventive concept of the present invention should be included in the protection scope of the claims attached to the present invention.
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210250439.4A CN114664834B (en) | 2022-03-15 | 2022-03-15 | Groove type ferroelectric memory cell structure and preparation method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210250439.4A CN114664834B (en) | 2022-03-15 | 2022-03-15 | Groove type ferroelectric memory cell structure and preparation method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN114664834A CN114664834A (en) | 2022-06-24 |
CN114664834B true CN114664834B (en) | 2024-07-12 |
Family
ID=82029796
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210250439.4A Active CN114664834B (en) | 2022-03-15 | 2022-03-15 | Groove type ferroelectric memory cell structure and preparation method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114664834B (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US12254926B2 (en) * | 2022-08-03 | 2025-03-18 | Micron Technology, Inc. | Memory device with fast write mode to mitigate power loss |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019132890A1 (en) * | 2017-12-27 | 2019-07-04 | Intel Corporation | Ferroelectric memory devices with integrated capacitors and methods of manufacturing the same |
CN110534505A (en) * | 2019-08-29 | 2019-12-03 | 华中科技大学 | A kind of three-dimensional ferroelectric capacitor device, preparation method and ferroelectric memory |
WO2022049449A1 (en) * | 2020-09-06 | 2022-03-10 | 株式会社半導体エネルギー研究所 | Semiconductor device, capacitive element, and method of producing same |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE10001118A1 (en) * | 2000-01-13 | 2001-07-26 | Infineon Technologies Ag | Production of a semiconductor component comprises forming a switching transistor on a substrate, applying a first insulating layer, applying a storage capacitor and a metal oxide-containing layer and applying a second insulating layer |
JP2004281782A (en) * | 2003-03-17 | 2004-10-07 | Toshiba Corp | Semiconductor device and manufacturing method thereof |
JP2007318018A (en) * | 2006-05-29 | 2007-12-06 | Toshiba Corp | Ferroelectric memory cell and manufacturing method of ferroelectric memory cell |
US7985633B2 (en) * | 2007-10-30 | 2011-07-26 | International Business Machines Corporation | Embedded DRAM integrated circuits with extremely thin silicon-on-insulator pass transistors |
US10347767B2 (en) * | 2015-06-16 | 2019-07-09 | Intel Corporation | Transistor with a subfin layer |
US11063131B2 (en) * | 2019-06-13 | 2021-07-13 | Intel Corporation | Ferroelectric or anti-ferroelectric trench capacitor with spacers for sidewall strain engineering |
-
2022
- 2022-03-15 CN CN202210250439.4A patent/CN114664834B/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019132890A1 (en) * | 2017-12-27 | 2019-07-04 | Intel Corporation | Ferroelectric memory devices with integrated capacitors and methods of manufacturing the same |
CN110534505A (en) * | 2019-08-29 | 2019-12-03 | 华中科技大学 | A kind of three-dimensional ferroelectric capacitor device, preparation method and ferroelectric memory |
WO2022049449A1 (en) * | 2020-09-06 | 2022-03-10 | 株式会社半導体エネルギー研究所 | Semiconductor device, capacitive element, and method of producing same |
Also Published As
Publication number | Publication date |
---|---|
CN114664834A (en) | 2022-06-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20160308070A1 (en) | Semiconductor device | |
WO2023097743A1 (en) | Semiconductor storage unit structure and preparation method therefor and use thereof, and semiconductor memory | |
TWI656625B (en) | Floating gate memory | |
US11257899B2 (en) | Film structure including hafnium oxide, electronic device including the same, and method of manufacturing the same | |
CN111627920B (en) | Ferroelectric memory cell | |
US11133422B2 (en) | Method for manufacturing a semiconductor device | |
CN111403392B (en) | Stacked capacitor, flash memory device and manufacturing method thereof | |
CN111987105A (en) | Manufacturing method of split-gate memory | |
CN111799263A (en) | Three-dimensional NAND ferroelectric memory and preparation method thereof | |
CN111799265A (en) | A three-dimensional NAND type ferroelectric field effect transistor memory and preparation method thereof | |
CN115064493A (en) | Semiconductor structure and preparation method | |
CN114664834B (en) | Groove type ferroelectric memory cell structure and preparation method thereof | |
WO2022000843A1 (en) | U-shaped ferroelectric field effect transistor memory cell string, memory, and preparation method | |
CN109920794B (en) | A three-dimensional ferroelectric memory and its manufacturing method | |
WO2023221352A1 (en) | Semiconductor device and manufacturing method therefor, and dynamic random access memory and electronic device | |
CN115669262A (en) | Semiconductor memory device and method of manufacturing semiconductor memory device | |
CN210296378U (en) | Ferroelectric capacitor array, ferroelectric memory cell and ferroelectric memory | |
US20230389325A1 (en) | Memory devices and methods of manufacturing thereof | |
CN102693984B (en) | Multi-value non-volatile memory and preparation method thereof | |
CN116613213A (en) | FeFET device based on double-layer ferroelectric material and its fabrication method | |
TWI543303B (en) | Non-volatile memory cell and fabricating method thereof | |
WO2024087380A1 (en) | Vertical gate-all-around transistor structure and preparation method therefor, and vertical gate-all-around capacitor-less memory structure and preparation method therefor | |
CN117219614A (en) | Semiconductor structure and manufacturing method thereof | |
CN117529104B (en) | Semiconductor structure and method for manufacturing the same | |
KR101603511B1 (en) | Method of manufacturing semiconductor memory device having vertical channel structure |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |