CN114657177B - Method for simultaneously realizing gene editing and transcriptional regulation by using I-type CRISPR-Cas system - Google Patents
Method for simultaneously realizing gene editing and transcriptional regulation by using I-type CRISPR-Cas system Download PDFInfo
- Publication number
- CN114657177B CN114657177B CN202011546641.9A CN202011546641A CN114657177B CN 114657177 B CN114657177 B CN 114657177B CN 202011546641 A CN202011546641 A CN 202011546641A CN 114657177 B CN114657177 B CN 114657177B
- Authority
- CN
- China
- Prior art keywords
- crispr
- cas system
- type
- spacer
- gene
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/11—DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
- C12N15/113—Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/82—Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
- C12N15/8241—Phenotypically and genetically modified plants via recombinant DNA technology
- C12N15/8261—Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/87—Introduction of foreign genetic material using processes not otherwise provided for, e.g. co-transformation
- C12N15/90—Stable introduction of foreign DNA into chromosome
- C12N15/902—Stable introduction of foreign DNA into chromosome using homologous recombination
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/14—Hydrolases (3)
- C12N9/16—Hydrolases (3) acting on ester bonds (3.1)
- C12N9/22—Ribonucleases RNAses, DNAses
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2310/00—Structure or type of the nucleic acid
- C12N2310/10—Type of nucleic acid
- C12N2310/20—Type of nucleic acid involving clustered regularly interspaced short palindromic repeats [CRISPRs]
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Genetics & Genomics (AREA)
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Molecular Biology (AREA)
- Organic Chemistry (AREA)
- Biomedical Technology (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- General Engineering & Computer Science (AREA)
- Biotechnology (AREA)
- Microbiology (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Plant Pathology (AREA)
- Biophysics (AREA)
- Physics & Mathematics (AREA)
- Cell Biology (AREA)
- Mycology (AREA)
- Medicinal Chemistry (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
Abstract
本发明公开了一种利用I型CRISPR‑Cas系统同时实现基因编辑和转录调控的方法。本发明提供的方法包括如下步骤:利用I型CRISPR‑Cas系统甲对基因甲进行转录调控并且利用I型CRISPR‑Cas系统乙对基因乙进行基因编辑;I型CRISPR‑Cas系统甲的目标基因为基因甲且为改造后的I型CRISPR‑Cas系统;改造后的I型CRISPR‑Cas系统指的是将现有技术中的I型CRISPR‑Cas系统的gRNA进行改造后的I型CRISPR‑Cas系统;对gRNA的改造为用spacer截短体取代现有技术中的I型CRISPR‑Cas系统的gRNA中的spacer;I型CRISPR‑Cas系统乙的目标基因为基因乙且为现有技术中的I型CRISPR‑Cas系统。本发明可以同时实现基因编辑和不同程度的转录抑制。The present invention discloses a method for simultaneously realizing gene editing and transcriptional regulation using a type I CRISPR-Cas system. The method provided by the present invention comprises the following steps: using a type I CRISPR-Cas system A to perform transcriptional regulation on gene A and using a type I CRISPR-Cas system B to perform gene editing on gene B; the target gene of the type I CRISPR-Cas system A is gene A and is a modified type I CRISPR-Cas system; the modified type I CRISPR-Cas system refers to a type I CRISPR-Cas system after the gRNA of the type I CRISPR-Cas system in the prior art is modified; the modification of the gRNA is to replace the spacer in the gRNA of the type I CRISPR-Cas system in the prior art with a spacer truncate; the target gene of the type I CRISPR-Cas system B is gene B and is a type I CRISPR-Cas system in the prior art. The present invention can simultaneously realize gene editing and different degrees of transcriptional inhibition.
Description
技术领域Technical Field
本发明属于生物技术领域,具体涉及一种利用I型CRISPR-Cas系统同时实现基因编辑和转录调控的方法。The present invention belongs to the field of biotechnology, and specifically relates to a method for simultaneously realizing gene editing and transcriptional regulation by using a type I CRISPR-Cas system.
背景技术Background technique
CRISPR-Cas系统作为基因编辑工具获得了广泛的应用,也被开发用于转录调控。I型CRISPR-Cas系统分布最为广泛。I型CRISPR-Cas系统进行基因编辑的原理是,gRNA与Cascade效应物结合,识别靶序列后会招募Cas3核酸内切酶对靶标进行切割,产生双链断裂(double strand break,DSB),激活非同源末端连接或同源重组修复机制,从而在靶基因中引入突变或者对靶基因进行精确编辑。而要对靶基因进行转录调控,通常需要敲除Cas3蛋白或者突变其活性位点,防止Cas3对靶基因的切割。在失去Cas3内切酶活性时,gRNA与Cascade效应物会与靶标DNA结合,虽然无法对靶标进行切割降解,但效应物的结合会阻止RNA聚合酶的结合或者转录延伸等过程,从而实现转录调控的功能。因此,过去利用一个CRISPR-Cas系统无法同时完成基因编辑和转录调控。The CRISPR-Cas system has been widely used as a gene editing tool and has also been developed for transcriptional regulation. The type I CRISPR-Cas system is the most widely distributed. The principle of gene editing by the type I CRISPR-Cas system is that the gRNA binds to the Cascade effector, and after recognizing the target sequence, it recruits the Cas3 nuclease to cut the target, produce a double strand break (DSB), and activate the non-homologous end joining or homologous recombination repair mechanism, thereby introducing mutations in the target gene or precisely editing the target gene. To perform transcriptional regulation on the target gene, it is usually necessary to knock out the Cas3 protein or mutate its active site to prevent Cas3 from cutting the target gene. When the Cas3 endonuclease activity is lost, the gRNA and the Cascade effector will bind to the target DNA. Although the target cannot be cut and degraded, the binding of the effector will prevent the binding of RNA polymerase or transcription extension, thereby realizing the function of transcriptional regulation. Therefore, in the past, it was impossible to complete gene editing and transcriptional regulation at the same time using a CRISPR-Cas system.
发明内容Summary of the invention
本发明的目的是提供一种利用I型CRISPR-Cas系统同时实现基因编辑和转录调控的方法。The purpose of the present invention is to provide a method for simultaneously achieving gene editing and transcriptional regulation using a type I CRISPR-Cas system.
本发明提供了一种对目的生物的基因甲进行转录调控并且对其基因乙进行基因编辑的方法,包括如下步骤:利用I型CRISPR-Cas系统甲对基因甲进行转录调控并且利用I型CRISPR-Cas系统乙对基因乙进行基因编辑;The present invention provides a method for transcriptionally regulating gene A of a target organism and performing gene editing on gene B thereof, comprising the following steps: using type I CRISPR-Cas system A to transcriptionally regulate gene A and using type I CRISPR-Cas system B to perform gene editing on gene B;
I型CRISPR-Cas系统甲的目标基因为基因甲且为改造后的I型CRISPR-Cas系统;改造后的I型CRISPR-Cas系统指的是将现有技术中的I型CRISPR-Cas系统的gRNA进行改造后的I型CRISPR-Cas系统;对gRNA的改造为用spacer截短体取代现有技术中的I型CRISPR-Cas系统的gRNA中的spacer;The target gene of Type I CRISPR-Cas system A is gene A and it is a modified Type I CRISPR-Cas system; the modified Type I CRISPR-Cas system refers to a Type I CRISPR-Cas system after the gRNA of the Type I CRISPR-Cas system in the prior art is modified; the modification of the gRNA is to replace the spacer in the gRNA of the Type I CRISPR-Cas system in the prior art with a spacer truncation;
I型CRISPR-Cas系统乙的目标基因为基因乙且为现有技术中的I型CRISPR-Cas系统。The target gene of type I CRISPR-Cas system B is gene B and it is a type I CRISPR-Cas system in the prior art.
为了便于区分,将I型CRISPR-Cas系统甲的gRNA称为gRNA甲,将I型CRISPR-Cas系统乙的gRNA称为gRNA乙。For ease of distinction, the gRNA of type I CRISPR-Cas system A is referred to as gRNA A, and the gRNA of type I CRISPR-Cas system B is referred to as gRNA B.
I型CRISPR-Cas系统甲和I型CRISPR-Cas系统乙可共用Cascade效应物、Cas3核酸内切酶。Type I CRISPR-Cas system A and type I CRISPR-Cas system B can share the Cascade effector and Cas3 nuclease.
所述对基因乙进行基因编辑可为对基因乙进行精确基因编辑,例如突变、插入、缺失等。The gene editing of gene B may be precise gene editing of gene B, such as mutation, insertion, deletion, etc.
示例性的,所述生物为具有内源I型CRISPR-Cas系统的生物。所述方法可通过在所述生物中导入编码gRNA甲的DNA分子和编码gRNA乙的DNA分子实现。编码gRNA甲的DNA分子和编码gRNA乙的DNA分子可通过同一质粒导入所述生物。所述质粒中还具有对基因乙进行基因编辑所需的Donor片段。Exemplarily, the organism is an organism with an endogenous type I CRISPR-Cas system. The method can be implemented by introducing a DNA molecule encoding gRNA A and a DNA molecule encoding gRNA B into the organism. The DNA molecule encoding gRNA A and the DNA molecule encoding gRNA B can be introduced into the organism through the same plasmid. The plasmid also has a Donor fragment required for gene editing of gene B.
示例性的,所述生物为不具有内源I型CRISPR-Cas系统的生物。所述方法可通过在所述生物中导入编码gRNA甲的DNA分子、编码gRNA乙的DNA分子、编码Cascade效应物的DNA分子和编码Cas3核酸内切酶的DNA分子实现。各个DNA分子可通过同一质粒导入所述生物,可以通过多个质粒导入所述生物。质粒中还具有对基因乙进行基因编辑所需的Donor片段。Exemplarily, the organism is an organism that does not have an endogenous type I CRISPR-Cas system. The method can be implemented by introducing a DNA molecule encoding gRNA A, a DNA molecule encoding gRNA B, a DNA molecule encoding a Cascade effector, and a DNA molecule encoding a Cas3 endonuclease into the organism. Each DNA molecule can be introduced into the organism through the same plasmid, and can be introduced into the organism through multiple plasmids. The plasmid also has a Donor fragment required for gene editing of gene B.
本发明还提供了一种用于对目的生物的基因甲进行转录调控并且对其基因乙进行基因编辑的试剂盒,包括I型CRISPR-Cas系统甲和I型CRISPR-Cas系统乙;The present invention also provides a kit for transcriptionally regulating gene A of a target organism and gene editing its gene B, comprising type I CRISPR-Cas system A and type I CRISPR-Cas system B;
I型CRISPR-Cas系统甲的目标基因为基因甲且为改造后的I型CRISPR-Cas系统;改造后的I型CRISPR-Cas系统指的是将现有技术中的I型CRISPR-Cas系统的gRNA进行改造后的I型CRISPR-Cas系统;对gRNA的改造为用spacer截短体取代现有技术中的I型CRISPR-Cas系统的gRNA中的spacer;The target gene of Type I CRISPR-Cas system A is gene A and it is a modified Type I CRISPR-Cas system; the modified Type I CRISPR-Cas system refers to a Type I CRISPR-Cas system after the gRNA of the Type I CRISPR-Cas system in the prior art is modified; the modification of the gRNA is to replace the spacer in the gRNA of the Type I CRISPR-Cas system in the prior art with a spacer truncation;
I型CRISPR-Cas系统乙的目标基因为基因乙且为现有技术中的I型CRISPR-Cas系统。The target gene of type I CRISPR-Cas system B is gene B and it is a type I CRISPR-Cas system in the prior art.
为了便于区分,将I型CRISPR-Cas系统甲的gRNA称为gRNA甲,将I型CRISPR-Cas系统乙的gRNA称为gRNA乙。For ease of distinction, the gRNA of type I CRISPR-Cas system A is referred to as gRNA A, and the gRNA of type I CRISPR-Cas system B is referred to as gRNA B.
I型CRISPR-Cas系统甲和I型CRISPR-Cas系统乙可共用Cascade效应物、Cas3核酸内切酶。Type I CRISPR-Cas system A and type I CRISPR-Cas system B can share the Cascade effector and Cas3 nuclease.
所述对基因乙进行基因编辑可为对基因乙进行精确基因编辑,例如突变、插入、缺失等。The gene editing of gene B may be precise gene editing of gene B, such as mutation, insertion, deletion, etc.
所述试剂盒包括gRNA甲和gRNA乙。The kit includes gRNA A and gRNA B.
对于另一种形式,所述试剂盒包括制备gRNA甲和gRNA乙的生物材料,例如编码gRNA甲的DNA分子和编码gRNA乙的DNA分子,例如编码gRNA甲和gRNA乙的DNA分子,例如具有编码gRNA甲的DNA分子的重组质粒和具有编码gRNA乙的DNA分子的重组质粒,例如具有编码gRNA甲和gRNA乙的DNA分子的重组质粒。For another form, the kit includes biological materials for preparing gRNA A and gRNA B, such as a DNA molecule encoding gRNA A and a DNA molecule encoding gRNA B, such as a DNA molecule encoding gRNA A and gRNA B, such as a recombinant plasmid having a DNA molecule encoding gRNA A and a recombinant plasmid having a DNA molecule encoding gRNA B, such as a recombinant plasmid having a DNA molecule encoding gRNA A and gRNA B.
所述试剂盒还可包括Cascade效应物或编码Cascade效应物的DNA分子或具有编码Cascade效应物的DNA分子的重组质粒。The kit may further include a Cascade effector or a DNA molecule encoding a Cascade effector or a recombinant plasmid having a DNA molecule encoding a Cascade effector.
所述试剂盒还包括Cas3核酸内切酶或编码Cas3核酸内切酶的DNA分子或具有编码Cas3核酸内切酶的DNA分子的重组质粒。The kit also includes Cas3 endonuclease or a DNA molecule encoding Cas3 endonuclease or a recombinant plasmid having a DNA molecule encoding Cas3 endonuclease.
本发明还保护一种对目的生物的目标基因进行转录调控的方法,包括如下步骤:The present invention also protects a method for transcriptionally regulating a target gene of a target organism, comprising the following steps:
利用改造后的I型CRISPR-Cas系统对目标基因进行转录调控;Using the modified type I CRISPR-Cas system to regulate the transcription of target genes;
改造后的I型CRISPR-Cas系统指的是将现有技术中的I型CRISPR-Cas系统的gRNA进行改造后的I型CRISPR-Cas系统;对gRNA的改造为用spacer截短体取代现有技术中的I型CRISPR-Cas系统的gRNA中的spacer。The modified type I CRISPR-Cas system refers to a type I CRISPR-Cas system after the gRNA of the type I CRISPR-Cas system in the prior art is modified; the modification of the gRNA is to replace the spacer in the gRNA of the type I CRISPR-Cas system in the prior art with a spacer truncation.
将改造后的I型CRISPR-Cas系统的gRNA称为改造后gRNA。The modified gRNA of the type I CRISPR-Cas system is referred to as modified gRNA.
示例性的,所述生物为具有内源I型CRISPR-Cas系统的生物。所述方法可通过在所述生物中导入编码改造后gRNA的DNA分子实现。Exemplarily, the organism is an organism with an endogenous type I CRISPR-Cas system. The method can be achieved by introducing a DNA molecule encoding the modified gRNA into the organism.
示例性的,所述生物为不具有内源I型CRISPR-Cas系统的生物。所述方法可通过在所述生物中导入编码改造后gRNA的DNA分子、编码Cascade效应物的DNA分子和编码Cas3核酸内切酶的DNA分子实现。各个DNA分子可通过同一质粒导入所述生物,可以通过多个质粒导入所述生物。Exemplarily, the organism is an organism that does not have an endogenous type I CRISPR-Cas system. The method can be implemented by introducing a DNA molecule encoding a modified gRNA, a DNA molecule encoding a Cascade effector, and a DNA molecule encoding a Cas3 endonuclease into the organism. Each DNA molecule can be introduced into the organism via the same plasmid, and can be introduced into the organism via multiple plasmids.
本发明还保护一种对目的生物的目标基因进行转录调控的试剂盒,包括改造后的I型CRISPR-Cas系统;The present invention also protects a kit for transcriptional regulation of a target gene of a target organism, comprising a modified type I CRISPR-Cas system;
改造后的I型CRISPR-Cas系统指的是将现有技术中的I型CRISPR-Cas系统的gRNA进行改造后的I型CRISPR-Cas系统;对gRNA的改造为用spacer截短体取代现有技术中的I型CRISPR-Cas系统的gRNA中的spacer。The modified type I CRISPR-Cas system refers to a type I CRISPR-Cas system after the gRNA of the type I CRISPR-Cas system in the prior art is modified; the modification of the gRNA is to replace the spacer in the gRNA of the type I CRISPR-Cas system in the prior art with a spacer truncation.
将改造后的I型CRISPR-Cas系统的gRNA称为改造后gRNA。The modified gRNA of the type I CRISPR-Cas system is referred to as modified gRNA.
所述试剂盒包括改造后gRNA。The kit includes the modified gRNA.
对于另一种形式,所述试剂盒包括制备改造后gRNA的生物材料,例如编码改造后gRNA的DNA分子,例如具有编码改造后gRNA的DNA分子的重组质粒。In another form, the kit includes biological materials for preparing the modified gRNA, such as a DNA molecule encoding the modified gRNA, such as a recombinant plasmid having a DNA molecule encoding the modified gRNA.
所述试剂盒还可包括Cascade效应物或编码Cascade效应物的DNA分子或具有编码Cascade效应物的DNA分子的重组质粒。The kit may further include a Cascade effector or a DNA molecule encoding a Cascade effector or a recombinant plasmid having a DNA molecule encoding a Cascade effector.
所述试剂盒还包括Cas3核酸内切酶或编码Cas3核酸内切酶的DNA分子或具有编码Cas3核酸内切酶的DNA分子的重组质粒。The kit also includes Cas3 endonuclease or a DNA molecule encoding Cas3 endonuclease or a recombinant plasmid having a DNA molecule encoding Cas3 endonuclease.
现有技术中的I型CRISPR-Cas系统由Cascade效应物、Cas3核酸内切酶和gRNA组成。gRNA与Cascade效应物结合,识别靶序列后招募Cas3核酸内切酶对靶标进行切割。The type I CRISPR-Cas system in the prior art consists of a Cascade effector, a Cas3 endonuclease, and a gRNA. The gRNA binds to the Cascade effector, recognizes the target sequence, and recruits the Cas3 endonuclease to cut the target.
spacer即gRNA中特异性结合靶序列的区段。Spacer is the segment in gRNA that specifically binds to the target sequence.
spacer即gRNA中通过碱基互补配对特异性结合靶序列的区段。Spacer is the segment of gRNA that specifically binds to the target sequence through complementary base pairing.
所述靶序列为目的基因中与PAM相邻且位于其下游的序列。The target sequence is a sequence adjacent to and downstream of the PAM in the target gene.
以上任一所述spacer截短体是将现有技术中的I型CRISPR-Cas系统的gRNA中的spacer中靶向PAM的远端部分截短得到的。Any of the above-mentioned spacer truncations is obtained by truncating the distal part of the spacer targeting PAM in the gRNA of the type I CRISPR-Cas system in the prior art.
所述进行转录调控为抑制基因表达。The transcriptional regulation is to inhibit gene expression.
示例性的,所述I型CRISPR-Cas系统可为I-B型CRISPR-Cas系统。Exemplarily, the type I CRISPR-Cas system may be a type I-B CRISPR-Cas system.
相应的,spacer长度为31-72nt。相应的,spacer截短体的长度为16-28nt。优选的,spacer截短体的长度为20-28nt。Accordingly, the length of the spacer is 31-72 nt. Accordingly, the length of the spacer truncation is 16-28 nt. Preferably, the length of the spacer truncation is 20-28 nt.
示例性的,以上任一所述改造后gRNA包括如下区段:上游repeat片段、spacer截短体和下游repeat片段。示例性的,以上任一所述改造后gRNA由如下区段组成:上游repeat片段、spacer截短体和下游repeat片段。示例性的,上游repeat片段为序列表的序列2中第81-88位核苷酸所示的DNA对应的RNA。示例性的,下游repeat片段为序列表的序列2中第105-126位核苷酸所示的DNA对应的RNA。Exemplarily, any of the above modified gRNAs include the following segments: an upstream repeat segment, a spacer truncation, and a downstream repeat segment. Exemplarily, any of the above modified gRNAs consist of the following segments: an upstream repeat segment, a spacer truncation, and a downstream repeat segment. Exemplarily, the upstream repeat segment is the RNA corresponding to the DNA shown in nucleotides 81-88 in Sequence 2 of the sequence table. Exemplarily, the downstream repeat segment is the RNA corresponding to the DNA shown in nucleotides 105-126 in Sequence 2 of the sequence table.
示例性的,以上任一所述gRNA甲包括如下区段:上游repeat片段、spacer截短体和下游repeat片段。示例性的,以上任一所述gRNA甲由如下区段组成:上游repeat片段、spacer截短体和下游repeat片段。示例性的,上游repeat片段为序列表的序列2中第81-88位核苷酸所示的DNA对应的RNA。示例性的,下游repeat片段为序列表的序列2中第105-126位核苷酸所示的DNA对应的RNA。Exemplarily, any of the above gRNA A comprises the following segments: an upstream repeat segment, a spacer truncation, and a downstream repeat segment. Exemplarily, any of the above gRNA A consists of the following segments: an upstream repeat segment, a spacer truncation, and a downstream repeat segment. Exemplarily, the upstream repeat segment is the RNA corresponding to the DNA shown in nucleotides 81-88 in Sequence 2 of the sequence table. Exemplarily, the downstream repeat segment is the RNA corresponding to the DNA shown in nucleotides 105-126 in Sequence 2 of the sequence table.
示例性的,以上任一所述gRNA乙包括如下区段:上游repeat片段、spacer和下游repeat片段。示例性的,以上任一所述gRNA乙由如下区段组成:上游repeat片段、spacer和下游repeat片段。示例性的,上游repeat片段为序列表的序列2中第81-88位核苷酸所示的DNA对应的RNA。示例性的,下游repeat片段为序列表的序列2中第105-126位核苷酸所示的DNA对应的RNA。Exemplarily, any of the above gRNA B includes the following segments: an upstream repeat segment, a spacer, and a downstream repeat segment. Exemplarily, any of the above gRNA B consists of the following segments: an upstream repeat segment, a spacer, and a downstream repeat segment. Exemplarily, the upstream repeat segment is the RNA corresponding to the DNA shown in nucleotides 81-88 in Sequence 2 of the sequence table. Exemplarily, the downstream repeat segment is the RNA corresponding to the DNA shown in nucleotides 105-126 in Sequence 2 of the sequence table.
示例性的,以上任一所述编码改造后gRNA的DNA分子包括如下区段:repeat的编码DNA、spacer截短体的编码DNA和repeat的编码DNA。示例性的,以上任一所述编码改造后gRNA的DNA分子由如下区段组成:repeat的编码DNA、spacer截短体的编码DNA和repeat的编码DNA。repeat的编码DNA如序列表的序列2中第59-88位核苷酸所示。Exemplarily, any of the above described DNA molecules encoding the modified gRNA includes the following segments: repeat coding DNA, spacer truncated coding DNA and repeat coding DNA. Exemplarily, any of the above described DNA molecules encoding the modified gRNA consists of the following segments: repeat coding DNA, spacer truncated coding DNA and repeat coding DNA. Repeat coding DNA is shown in nucleotides 59-88 in sequence 2 of the sequence table.
示例性的,以上任一所述编码gRNA甲的DNA分子包括如下区段:repeat的编码DNA、spacer截短体的编码DNA和repeat的编码DNA。示例性的,以上任一所述编码gRNA甲的DNA分子由如下区段组成:repeat的编码DNA、spacer截短体的编码DNA和repeat的编码DNA。repeat的编码DNA如序列表的序列2中第59-88位核苷酸所示。Exemplarily, any of the above-described DNA molecules encoding gRNA A includes the following segments: repeat coding DNA, spacer truncated coding DNA, and repeat coding DNA. Exemplarily, any of the above-described DNA molecules encoding gRNA A consists of the following segments: repeat coding DNA, spacer truncated coding DNA, and repeat coding DNA. Repeat coding DNA is shown in nucleotides 59-88 in sequence 2 of the sequence table.
示例性的,以上任一所述编码gRNA乙的DNA分子包括如下区段:repeat的编码DNA、spacer的编码DNA和repeat的编码DNA。示例性的,以上任一所述编码gRNA乙的DNA分子由如下区段组成:repeat的编码DNA、spacer的编码DNA和repeat的编码DNA。repeat的编码DNA如序列表的序列2中第59-88位核苷酸所示。Exemplarily, any of the above-described DNA molecules encoding gRNA B includes the following segments: repeat encoding DNA, spacer encoding DNA, and repeat encoding DNA. Exemplarily, any of the above-described DNA molecules encoding gRNA B consists of the following segments: repeat encoding DNA, spacer encoding DNA, and repeat encoding DNA. Repeat encoding DNA is shown in nucleotides 59-88 in sequence 2 of the sequence table.
示例性的,所述I型CRISPR-Cas系统可为西班牙盐盒菌的CRISPR-Cas系统。Exemplarily, the type I CRISPR-Cas system may be the CRISPR-Cas system of H. hispanica.
示例性的,所述I型CRISPR-Cas系统可为西班牙盐盒菌HH DLCR菌株的CRISPR-Cas系统。Exemplarily, the type I CRISPR-Cas system may be the CRISPR-Cas system of the Spanish salt box bacteria HH DLCR strain.
示例性的,所述PAM可为TTC。Exemplarily, the PAM may be TTC.
示例性的,以上任一所述生物具体可为微生物或植物。Exemplarily, any of the above-mentioned organisms may be microorganisms or plants.
对于本发明的实施例来说,所述生物具体可为西班牙盐盒菌。For the embodiments of the present invention, the organism may specifically be Spanish salt box bacteria.
本发明首次公开了一种利用I型CRISPR-Cas系统同时实现基因编辑和转录调控两种功能的方法。当gRNA中spacer为野生型长度或者更长,CRISPR-Cas系统可以实现对靶标的基因编辑;当改造gRNA使spacer缩短,不需要敲除或突变Cas3,CRISPR-Cas系统可以实现对靶基因不同程度的转录抑制,但不会对靶标进行切割。此外,由于同一基因不同靶位点也有不同的抑制强度,结合这两个因素,可以构建梯度更丰富的转录抑制库。在本发明中,该系统还可以一次靶向多个位点,通过改变相应spacer长度,分别实现基因编辑或不同程度的转录抑制。The present invention discloses for the first time a method for simultaneously realizing two functions of gene editing and transcriptional regulation using a type I CRISPR-Cas system. When the spacer in the gRNA is of wild-type length or longer, the CRISPR-Cas system can realize gene editing of the target; when the gRNA is modified to shorten the spacer, there is no need to knock out or mutate Cas3, and the CRISPR-Cas system can achieve different degrees of transcriptional inhibition of the target gene, but will not cut the target. In addition, since different target sites of the same gene also have different inhibition strengths, combining these two factors, a transcriptional inhibition library with richer gradients can be constructed. In the present invention, the system can also target multiple sites at a time, and by changing the corresponding spacer length, gene editing or different degrees of transcriptional inhibition can be achieved respectively.
在本发明中,不需要敲除或突变Cas3,仅通过改变gRNA中spacer的长度,可以同时实现基因编辑和不同程度的转录抑制。In the present invention, there is no need to knock out or mutate Cas3. Gene editing and different degrees of transcription inhibition can be achieved simultaneously by simply changing the length of the spacer in the gRNA.
附图说明BRIEF DESCRIPTION OF THE DRAWINGS
图1为重组质粒的结构示意图。Figure 1 is a schematic diagram of the structure of the recombinant plasmid.
图2为实施例1的步骤三、步骤四和步骤五的结果。FIG. 2 shows the results of step 3, step 4 and step 5 of Example 1.
图3为实施例1的步骤六的结果。FIG. 3 is the result of step six of Example 1.
图4为实施例2的结果。FIG. 4 shows the results of Example 2.
具体实施方式Detailed ways
下面结合具体实施方式对本发明进行进一步的详细描述,给出的实施例仅为了阐明本发明,而不是为了限制本发明的范围。以下提供的实施例可作为本技术领域普通技术人员进行进一步改进的指南,并不以任何方式构成对本发明的限制。The present invention is further described in detail below in conjunction with specific embodiments, and the examples provided are only for illustrating the present invention, rather than for limiting the scope of the present invention. The examples provided below can be used as a guide for further improvements by those of ordinary skill in the art, and do not constitute a limitation of the present invention in any way.
下述实施例中的实验方法,如无特殊说明,均为常规方法,按照本领域内的文献所描述的技术或条件或者按照产品说明书进行。下述实施例中所用的材料、试剂等,如无特殊说明,均可从商业途径得到。实施例中的各个质粒,均已进行测序验证。The experimental methods in the following examples, unless otherwise specified, are all conventional methods, and are performed according to the techniques or conditions described in the literature in the art or according to the product instructions. The materials, reagents, etc. used in the following examples, unless otherwise specified, can be obtained from commercial channels. Each plasmid in the examples has been sequenced and verified.
如无特殊说明,以下实施例中的定量试验,均设置三次重复实验,结果取平均值。Unless otherwise specified, the quantitative tests in the following examples were performed three times and the results were averaged.
HH DLCR菌株,全称为西班牙盐盒菌HH DLCR菌株,是将西班牙盐盒菌(Haloarculahispanica)ATCC 33960菌株敲除pyrF基因及CRISPR序列得到的。敲除pyrF基因造成营养缺陷,质粒pWL502(或其衍生质粒)中具有该基因从而使转化成功的菌株回补为非营养缺陷的菌株;敲除CRISPR序列可去除本底影响。记载HH DLCR菌株的文献(HH DLCR菌株即文献中的△CR菌株):Rui W,Ming L,Luyao G,et al.DNA motifs determining the accuracy ofrepeat duplication during CRISPR adaptation in Haloarcula hispanica[J].NuclcAcids Research,2016(9):4266-4277.。The HH DLCR strain, whose full name is the Spanish salt box bacteria HH DLCR strain, is obtained by knocking out the pyrF gene and CRISPR sequence of the Spanish salt box bacteria (Haloarcula hispanica) ATCC 33960 strain. Knocking out the pyrF gene causes nutritional deficiency. The plasmid pWL502 (or its derivative plasmid) contains this gene, so that the successfully transformed strain is complemented to a non-nutritional deficiency strain; knocking out the CRISPR sequence can remove the background effect. Literature recording the HH DLCR strain (the HH DLCR strain is the △CR strain in the literature): Rui W, Ming L, Luyao G, et al. DNA motifs determining the accuracy of repeat duplication during CRISPR adaptation in Haloarcula hispanica [J]. Nucl C Acids Research, 2016 (9): 4266-4277.
质粒pWL502(plasmid pWL502)、质粒pGK(pGK plasmid)、质粒pGKBE(pGKBEplasmid),均记载于如下文献:Cheng,F.,Gong,L.,Zhao,D.,Yang,H.,Zhou,J.,Li,M.,andXiang,H.(2017).Harnessing the native type I-B CRISPR-Cas for genome editingin a polyploid archaeon.J Genet Genomics 44,541-548。质粒pGK和质粒pGKBE均为质粒pWL502的衍生质粒。Plasmid pWL502 (plasmid pWL502), plasmid pGK (pGK plasmid), plasmid pGKBE (pGKB Eplasmid) are all described in the following literature: Cheng, F., Gong, L., Zhao, D., Yang, H., Zhou, J., Li, M., and Xiang, H. (2017). Harnessing the native type I-B CRISPR-Cas for genome editing in a polyploid archaeon. J Genet Genomics 44, 541-548. Plasmid pGK and plasmid pGKBE are both derivative plasmids of plasmid pWL502.
30%人工盐水(30%SW):称取氯化钠240g,六水合氯化镁30g,七水合硫酸镁35g,氯化钾7g,无水氯化钙0.555g(用5mL蒸馏水溶解);各组分先加入蒸馏水搅拌溶解后,再缓慢加入氯化钙溶液,然后定容至1L。30% artificial saline (30% SW): weigh 240 g of sodium chloride, 30 g of magnesium chloride hexahydrate, 35 g of magnesium sulfate heptahydrate, 7 g of potassium chloride, and 0.555 g of anhydrous calcium chloride (dissolved in 5 mL of distilled water); first add distilled water to each component and stir to dissolve, then slowly add calcium chloride solution and then adjust the volume to 1 L.
BSS-LS溶液:称取氯化钠5.58g,氯化钾0.201g,蔗糖15g,加入蒸馏水搅拌溶解,定容至95mL;115℃,30min高压蒸汽灭菌;然后再加入5mL灭菌的Tris-Cl(1M,pH8.2)。BSS-LS solution: weigh 5.58 g of sodium chloride, 0.201 g of potassium chloride, and 15 g of sucrose, add distilled water, stir to dissolve, and make up to 95 mL; sterilize with high-pressure steam at 115°C for 30 min; then add 5 mL of sterilized Tris-Cl (1 M, pH 8.2).
BSS-LS/Gly+溶液:称取氯化钠5.58g,氯化钾0.201g,蔗糖15g,量取15mL甘油,加入蒸馏水搅拌溶解,定容至95mL;115℃,30min高压蒸汽灭菌;然后再加入5mL灭菌的Tris-Cl(1M,pH8.2)。BSS-LS/Gly + solution: weigh 5.58 g of sodium chloride, 0.201 g of potassium chloride, 15 g of sucrose, and 15 mL of glycerol, add distilled water, stir to dissolve, and make up to 95 mL; sterilize with high-pressure steam at 115°C for 30 min; then add 5 mL of sterilized Tris-Cl (1 M, pH 8.2).
UBSS-LS溶液:称取氯化钠5.58g,氯化钾0.201g,蔗糖15g,加入蒸馏水搅拌溶解,定容至100mL;用Tris碱或NaOH调pH至7.0-7.5;115℃,30min高压蒸汽灭菌。UBSS-LS solution: weigh 5.58 g of sodium chloride, 0.201 g of potassium chloride, and 15 g of sucrose, add distilled water, stir to dissolve, and make up to 100 mL; adjust the pH to 7.0-7.5 with Tris base or NaOH; sterilize by high-pressure steam at 115°C for 30 min.
60%PEG600溶液:取600μL的PEG600与400μL UBSS-LS溶液充分混匀。60% PEG600 solution: Take 600 μL of PEG600 and mix thoroughly with 400 μL of UBSS-LS solution.
AS-168培养基:称取氯化钠200g,七水合硫酸镁20g,氯化钾2g,柠檬酸三钠3g,酸水解酪素5g,酵母抽提物5g,谷氨酸钠1.8g,七水合硫酸亚铁微量及四水合氯化锰微量,加入蒸馏水搅拌溶解,定容至1L;用NaOH调pH至7.0-7.2;115℃,30min高压蒸汽灭菌。固体培养基多加入1.2%的琼脂粉。AS-168 culture medium: weigh 200g sodium chloride, 20g magnesium sulfate heptahydrate, 2g potassium chloride, 3g trisodium citrate, 5g acid hydrolyzed casein, 5g yeast extract, 1.8g sodium glutamate, trace amounts of ferrous sulfate heptahydrate and manganese chloride tetrahydrate, add distilled water, stir and dissolve, and dilute to 1L; adjust pH to 7.0-7.2 with NaOH; sterilize by high pressure steam at 115℃ for 30min. Add 1.2% agar powder to solid culture medium.
AS-168SY培养基:AS-168培养基配方中减去酵母抽提物组分。AS-168SY Medium: AS-168 medium formula minus the yeast extract component.
23%MGM复苏培养基:量取30%人工盐水76.7mL,称取酵母抽提物0.1g,大豆蛋白胨0.5g,蔗糖15g,加入蒸馏水搅拌溶解,定容至100mL;用Tris碱或NaOH调pH至7.5;115℃,30min高压蒸汽灭菌。23% MGM recovery medium: Measure 76.7 mL of 30% artificial saline, weigh 0.1 g of yeast extract, 0.5 g of soy peptone, and 15 g of sucrose, add distilled water, stir to dissolve, and make up to 100 mL; adjust the pH to 7.5 with Tris base or NaOH; sterilize with high-pressure steam at 115°C for 30 min.
实施例1、Embodiment 1,
西班牙盐盒菌的crtB基因,如序列表的序列1所示,编码八氢番茄红素合成酶(HAH_2563)。敲除该基因,将阻断类胡萝卜素的表达,使菌体由红色变为白色。The crtB gene of Spanish salt box bacteria, as shown in sequence 1 of the sequence table, encodes phytoene synthase (HAH_2563). Knocking out this gene will block the expression of carotenoids and change the bacteria from red to white.
Cascade效应物和Cas3核酸内切酶均为西班牙盐盒菌的内源物。Both the Cascade effector and the Cas3 endonuclease are endogenous to H.
本实施例中针对西班牙盐盒菌的crtB基因,利用其自身I-B型CRISPR-Cas系统,通过采用具有不同长度的spacer的gRNA,可以实现对crtB基因不同程度的转录抑制而不对其进行切割。In this example, for the crtB gene of Spanish salt box bacteria, its own type I-B CRISPR-Cas system was used, and gRNAs with spacers of different lengths were used to achieve different degrees of transcriptional inhibition of the crtB gene without cutting it.
一、构建用于表达具有不同长度spacer的gRNA的质粒1. Construction of plasmids for expressing gRNAs with different spacer lengths
1、7种PphaR-R-spacer-R片段的制备1. Preparation of 7 PphaR-R-spacer-R fragments
本实验室前期已构建了靶向西班牙盐盒菌DLCR菌株crtB基因的gRNA表达质粒pWL502-PphaR-R-C1-R(即质粒pGK),其中具有PphaR-R-C1-R片段。PphaR-R-C1-R片段如序列表的序列9所示。序列表的序列9中,第59-88位核苷酸编码repeat,第89至124位核苷酸编码spacer,第125-154位核苷酸编码repeat。PphaR-R-C1-R片段表达的gRNA的spacer长度为36nt(靶向序列1所示crtB基因的第269-304位,PAM序列为TTC)。In the early stage of this laboratory, the gRNA expression plasmid pWL502-PphaR-R-C1-R (i.e., plasmid pGK) targeting the crtB gene of the Spanish salt box bacteria DLCR strain has been constructed, which contains the PphaR-R-C1-R fragment. The PphaR-R-C1-R fragment is shown in Sequence 9 of the sequence table. In Sequence 9 of the sequence table, nucleotides 59-88 encode repeat, nucleotides 89 to 124 encode spacer, and nucleotides 125-154 encode repeat. The spacer length of the gRNA expressed by the PphaR-R-C1-R fragment is 36nt (targeting positions 269-304 of the crtB gene shown in sequence 1, and the PAM sequence is TTC).
在PphaR-R-C1-R片段的基础上对spacer编码区进行截短,得到7种PphaR-R-spacer-R片段,依次命名为PphaR-R-spacer16-R片段(表达的gRNA的spacer长度为16bp),PphaR-R-spacer20-R片段(表达的gRNA的spacer长度为20bp),PphaR-R-spacer24-R片段(表达的gRNA的spacer长度为24bp),PphaR-R-spacer28-R片段(表达的gRNA的spacer长度为28bp),PphaR-R-spacer30-R片段(表达的gRNA的spacer长度为30bp),PphaR-R-spacer31-R片段(表达的gRNA的spacer长度为31bp),PphaR-R-spacer32-R片段(表达的gRNA的spacer长度为32p)。Based on the PphaR-R-C1-R fragment, the spacer coding region was truncated to obtain 7 PphaR-R-spacer-R fragments, which were named PphaR-R-spacer16-R fragment (the spacer length of the expressed gRNA was 16bp), PphaR-R-spacer20-R fragment (the spacer length of the expressed gRNA was 20bp), PphaR-R-spacer24-R fragment (the spacer length of the expressed gRNA was 24bp), PphaR-R-spacer28-R fragment (the spacer length of the expressed gRNA was 28bp), PphaR-R-spacer30-R fragment (the spacer length of the expressed gRNA was 30bp), PphaR-R-spacer31-R fragment (the spacer length of the expressed gRNA was 31bp), and PphaR-R-spacer32-R fragment (the spacer length of the expressed gRNA was 32p).
PphaR-R-spacer16-R片段如序列表的序列2所示。序列表的序列2中,第59-88位核苷酸编码repeat,第89至104位核苷酸编码spacer,第105-134位核苷酸编码repeat。PphaR-R-spacer16-R片段表达的gRNA的spacer长度为16nt(靶向序列1所示crtB基因的第269-284位,PAM序列为TTC)。The PphaR-R-spacer16-R fragment is shown in Sequence 2 of the sequence list. In Sequence 2 of the sequence list, nucleotides 59-88 encode repeat, nucleotides 89 to 104 encode spacer, and nucleotides 105-134 encode repeat. The spacer length of the gRNA expressed by the PphaR-R-spacer16-R fragment is 16 nt (targeting positions 269-284 of the crtB gene shown in Sequence 1, and the PAM sequence is TTC).
PphaR-R-spacer20-R片段如序列表的序列3所示。序列表的序列3中,第59-88位核苷酸编码repeat,第89至108位核苷酸编码spacer,第109-138位核苷酸编码repeat。PphaR-R-spacer20-R片段表达的gRNA的spacer长度为20nt(靶向序列1所示crtB基因的第269-288位,PAM序列为TTC)。The PphaR-R-spacer20-R fragment is shown in Sequence 3 of the sequence list. In Sequence 3 of the sequence list, nucleotides 59-88 encode repeat, nucleotides 89 to 108 encode spacer, and nucleotides 109-138 encode repeat. The spacer length of the gRNA expressed by the PphaR-R-spacer20-R fragment is 20 nt (targeting positions 269-288 of the crtB gene shown in sequence 1, and the PAM sequence is TTC).
PphaR-R-spacer24-R片段如序列表的序列4所示。序列表的序列4中,第59-88位核苷酸编码repeat,第89至112位核苷酸编码spacer,第113-142位核苷酸编码repeat。PphaR-R-spacer24-R片段表达的gRNA的spacer长度为24nt(靶向序列1所示crtB基因的第269-292位,PAM序列为TTC)。The PphaR-R-spacer24-R fragment is shown in Sequence 4 of the sequence list. In Sequence 4 of the sequence list, nucleotides 59-88 encode repeat, nucleotides 89 to 112 encode spacer, and nucleotides 113-142 encode repeat. The spacer length of the gRNA expressed by the PphaR-R-spacer24-R fragment is 24 nt (targeting positions 269-292 of the crtB gene shown in sequence 1, and the PAM sequence is TTC).
PphaR-R-spacer28-R片段如序列表的序列5所示。序列表的序列5中,第59-88位核苷酸编码repeat,第89至116位核苷酸编码spacer,第117-146位核苷酸编码repeat。PphaR-R-spacer28-R片段表达的gRNA的spacer长度为28nt(靶向序列1所示crtB基因的第269-296位,PAM序列为TTC)。The PphaR-R-spacer28-R fragment is shown in Sequence 5 of the sequence list. In Sequence 5 of the sequence list, nucleotides 59-88 encode repeat, nucleotides 89 to 116 encode spacer, and nucleotides 117-146 encode repeat. The spacer length of the gRNA expressed by the PphaR-R-spacer28-R fragment is 28 nt (targeting positions 269-296 of the crtB gene shown in sequence 1, and the PAM sequence is TTC).
PphaR-R-spacer30-R片段如序列表的序列6所示。序列表的序列6中,第59-88位核苷酸编码repeat,第89至118位核苷酸编码spacer,第119-148位核苷酸编码repeat。PphaR-R-spacer30-R片段表达的gRNA的spacer长度为30nt(靶向序列1所示crtB基因的第269-298位,PAM序列为TTC)。The PphaR-R-spacer30-R fragment is shown in Sequence 6 of the sequence list. In Sequence 6 of the sequence list, nucleotides 59-88 encode repeat, nucleotides 89 to 118 encode spacer, and nucleotides 119-148 encode repeat. The spacer length of the gRNA expressed by the PphaR-R-spacer30-R fragment is 30 nt (targeting positions 269-298 of the crtB gene shown in sequence 1, and the PAM sequence is TTC).
PphaR-R-spacer31-R片段如序列表的序列7所示。序列表的序列7中,第59-88位核苷酸编码repeat,第89至119位核苷酸编码spacer,第120-149位核苷酸编码repeat。PphaR-R-spacer31-R片段表达的gRNA的spacer长度为31nt(靶向序列1所示crtB基因的第269-299位,PAM序列为TTC)。The PphaR-R-spacer31-R fragment is shown in Sequence 7 of the sequence list. In Sequence 7 of the sequence list, nucleotides 59-88 encode repeat, nucleotides 89 to 119 encode spacer, and nucleotides 120-149 encode repeat. The spacer length of the gRNA expressed by the PphaR-R-spacer31-R fragment is 31 nt (targeting positions 269-299 of the crtB gene shown in sequence 1, and the PAM sequence is TTC).
PphaR-R-spacer32-R片段如序列表的序列8所示。序列表的序列8中,第59-88位核苷酸编码repeat,第89至120位核苷酸编码spacer,第121-150位核苷酸编码repeat。PphaR-R-spacer32-R片段表达的gRNA的spacer长度为32nt(靶向序列1所示crtB基因的第269-300位,PAM序列为TTC)。The PphaR-R-spacer32-R fragment is shown in Sequence 8 of the sequence list. In Sequence 8 of the sequence list, nucleotides 59-88 encode repeat, nucleotides 89 to 120 encode spacer, and nucleotides 121-150 encode repeat. The spacer length of the gRNA expressed by the PphaR-R-spacer32-R fragment is 32 nt (targeting positions 269-300 of the crtB gene shown in sequence 1, and the PAM sequence is TTC).
2、重组质粒的构建2. Construction of recombinant plasmid
将PphaR-R-spacer16-R片段进行BamHI和KpnI双酶切,然后与BamHI和KpnI双酶切后的质粒pWL502连接,得到重组质粒pWL502-PphaR-R-spacer16-R。The PphaR-R-spacer16-R fragment was double-digested with BamHI and KpnI, and then ligated with the plasmid pWL502 double-digested with BamHI and KpnI to obtain the recombinant plasmid pWL502-PphaR-R-spacer16-R.
将PphaR-R-spacer20-R片段进行BamHI和KpnI双酶切,然后与BamHI和KpnI双酶切后的质粒pWL502连接,得到重组质粒pWL502-PphaR-R-spacer20-R。The PphaR-R-spacer20-R fragment was double-digested with BamHI and KpnI, and then ligated with the plasmid pWL502 double-digested with BamHI and KpnI to obtain the recombinant plasmid pWL502-PphaR-R-spacer20-R.
将PphaR-R-spacer24-R片段进行BamHI和KpnI双酶切,然后与BamHI和KpnI双酶切后的质粒pWL502连接,得到重组质粒pWL502-PphaR-R-spacer24-R。The PphaR-R-spacer24-R fragment was double-digested with BamHI and KpnI, and then ligated with the plasmid pWL502 double-digested with BamHI and KpnI to obtain the recombinant plasmid pWL502-PphaR-R-spacer24-R.
将PphaR-R-spacer28-R片段进行BamHI和KpnI双酶切,然后与BamHI和KpnI双酶切后的质粒pWL502连接,得到重组质粒pWL502-PphaR-R-spacer28-R。The PphaR-R-spacer28-R fragment was double-digested with BamHI and KpnI, and then ligated with the plasmid pWL502 double-digested with BamHI and KpnI to obtain the recombinant plasmid pWL502-PphaR-R-spacer28-R.
将PphaR-R-spacer30-R片段进行BamHI和KpnI双酶切,然后与BamHI和KpnI双酶切后的质粒pWL502连接,得到重组质粒pWL502-PphaR-R-spacer30-R。The PphaR-R-spacer30-R fragment was double-digested with BamHI and KpnI, and then ligated with the plasmid pWL502 double-digested with BamHI and KpnI to obtain the recombinant plasmid pWL502-PphaR-R-spacer30-R.
将PphaR-R-spacer31-R片段进行BamHI和KpnI双酶切,然后与BamHI和KpnI双酶切后的质粒pWL502连接,得到重组质粒pWL502-PphaR-R-spacer31-R。The PphaR-R-spacer31-R fragment was double-digested with BamHI and KpnI, and then ligated with the plasmid pWL502 double-digested with BamHI and KpnI to obtain the recombinant plasmid pWL502-PphaR-R-spacer31-R.
将PphaR-R-spacer32-R片段进行BamHI和KpnI双酶切,然后与BamHI和KpnI双酶切后的质粒pWL502连接,得到重组质粒pWL502-PphaR-R-spacer32-R。The PphaR-R-spacer32-R fragment was double-digested with BamHI and KpnI, and then ligated with the plasmid pWL502 double-digested with BamHI and KpnI to obtain the recombinant plasmid pWL502-PphaR-R-spacer32-R.
以上七种重组质粒和质粒pGK统称为重组质粒pWL502-PphaR-R-spacer-R。重组质粒pWL502-PphaR-R-spacer-R的结构示意图见图1的A。The above seven recombinant plasmids and plasmid pGK are collectively referred to as recombinant plasmid pWL502-PphaR-R-spacer-R. The schematic diagram of the structure of the recombinant plasmid pWL502-PphaR-R-spacer-R is shown in Figure 1A.
二、转化HH DLCR菌株2. Transformation of HH DLCR strain
待转化质粒分别为重组质粒pWL502-PphaR-R-spacer16-R、重组质粒pWL502-PphaR-R-spacer20-R、重组质粒pWL502-PphaR-R-spacer24-R、重组质粒pWL502-PphaR-R-spacer28-R、重组质粒pWL502-PphaR-R-spacer30-R、重组质粒pWL502-PphaR-R-spacer31-R、重组质粒pWL502-PphaR-R-spacer32-R、质粒pGK或质粒pWL502。The plasmids to be transformed are recombinant plasmid pWL502-PphaR-R-spacer16-R, recombinant plasmid pWL502-PphaR-R-spacer20-R, recombinant plasmid pWL502-PphaR-R-spacer24-R, recombinant plasmid pWL502-PphaR-R-spacer28-R, recombinant plasmid pWL502-PphaR-R-spacer30-R, recombinant plasmid pWL502-PphaR-R-spacer31-R, recombinant plasmid pWL502-PphaR-R-spacer32-R, plasmid pGK or plasmid pWL502.
1、菌的培养与活化1. Cultivation and activation of bacteria
从含50mg/L尿嘧啶的固体AS-168培养基平板上用牙签挑取HH DLCR菌株单克隆,接种于含50mg/L尿嘧啶的液体AS-168培养基中,37℃、200rpm振荡培养至对数期(菌体呈红色),然后以1:30的体积比转接于新鲜的含50mg/L尿嘧啶的液体AS-168培养基中,37℃、200rpm振荡培养20-24h(此时,菌体呈微红色,OD600nm值约为1)。A single clone of the HH DLCR strain was picked from a solid AS-168 medium plate containing 50 mg/L uracil with a toothpick, inoculated into a liquid AS-168 medium containing 50 mg/L uracil, and cultured at 37°C and 200 rpm with shaking until the logarithmic phase (the bacteria were red), then transferred to a fresh liquid AS-168 medium containing 50 mg/L uracil at a volume ratio of 1:30, and cultured at 37°C and 200 rpm with shaking for 20-24 h (at this time, the bacteria were slightly red, and the OD 600nm value was about 1).
2、转化(所有操作均在室温下进行)2. Conversion (all operations are carried out at room temperature)
完成步骤1后,取1mL菌液于灭菌的EP管中,6000rmp离心3min,弃上清;然后加入200μL BSS-LS溶液,用移液枪轻轻吹匀,6000rmp离心3min,弃上清;然后加入100μL BSS-LS/Gly+溶液,用移液枪轻轻吹匀,然后加入10μL pH8.0、0.5M的EDTA缓冲液,用手轻轻拍打EP管壁,混匀后室温下放置10分钟(形成原生质体);然后加入5μL待转化质粒(DNA含量约为500微克)(阴性对照加等体积的ddH2O),用手轻轻拍打EP管壁,混匀后室温下放置5分钟;然后加入115μL 60%PEG600溶液,迅速上下颠倒EP管多次,直到溶液变得透亮、均一,然后室温放置20-30min;然后加入1mL的23%MGM复苏培养基,上下颠倒EP管混匀溶液,6000rmp离心3min,弃上清;然后加入0.5mL的23%MGM复苏培养基悬浮菌体,37℃、200rmp振荡培养过夜。After completing step 1, take 1 mL of bacterial solution into a sterilized EP tube, centrifuge at 6000 rpm for 3 min, and discard the supernatant; then add 200 μL of BSS-LS solution, blow gently with a pipette, centrifuge at 6000 rpm for 3 min, and discard the supernatant; then add 100 μL of BSS-LS/Gly + solution, blow gently with a pipette, then add 10 μL of pH 8.0, 0.5 M EDTA buffer, gently tap the EP tube wall with your hand, mix well and place at room temperature for 10 minutes (to form protoplasts); then add 5 μL of the plasmid to be transformed (DNA content is about 500 micrograms) (negative control plus an equal volume of ddH 2 O), gently tap the EP tube wall with your hand, mix well and place at room temperature for 5 minutes; then add 115 μL 60% PEG600 solution, quickly invert the EP tube upside down several times until the solution becomes transparent and uniform, and then place it at room temperature for 20-30 minutes; then add 1mL of 23% MGM recovery medium, invert the EP tube upside down to mix the solution, centrifuge at 6000rmp for 3min, and discard the supernatant; then add 0.5mL of 23% MGM recovery medium to suspend the bacteria, and culture at 37℃ and 200rmp overnight.
3、涂板3. Coating board
完成步骤2后,取菌液,采用23%MGM复苏培养基进行10倍梯度稀释,分别得到101-103倍稀释液,将原菌液与各个稀释液分别涂布于固体AS-168SY培养基平板。After completing step 2, take the bacterial solution and use 23% MGM recovery medium to perform 10-fold gradient dilution to obtain 10 1 -10 3 -fold dilutions, and spread the original bacterial solution and each dilution on a solid AS-168SY medium plate.
4、生长4. Growth
(1)将完成步骤3的平板于37℃静置1天,待液体被平板彻底吸收后,再置于封口的塑料袋中,42℃倒置培养3-5天,此时可以看到转化子,统计转化效率(结果见步骤三)。如果靶标被切割,染色体断裂,重组菌死亡,无法观察到转化子。(1) Place the plate prepared in step 3 at 37°C for 1 day. After the liquid is completely absorbed by the plate, place it in a sealed plastic bag and invert it at 42°C for 3-5 days. At this time, transformants can be seen and the transformation efficiency can be counted (see step 3 for results). If the target is cut, the chromosome is broken, and the recombinant bacteria die, no transformants can be observed.
(2)将转化子划线接种于固体AS-168SY培养基平板,在42℃培养箱中倒置培养2天,然后观察转化子颜色(结果见步骤四)并进行分子检测(结果见步骤五和步骤六)。(2) Streak the transformants onto solid AS-168SY medium plates and incubate them upside down in a 42°C incubator for 2 days. Then observe the color of the transformants (see step 4 for results) and perform molecular detection (see steps 5 and 6 for results).
三、转化效率统计3. Conversion efficiency statistics
每种待转化质粒设置3个重复处理。记录不同稀释倍数相应平板上的转化子的数量,转化子数量在30-300之间为有效数据。计算每种待转化质粒的转化效率(每微克质粒的转化子个数),根据统计的数据制作柱形图。Each plasmid to be transformed was treated with 3 replicates. The number of transformants on the corresponding plates at different dilution multiples was recorded, and the number of transformants between 30 and 300 was considered valid data. The transformation efficiency (number of transformants per microgram of plasmid) of each plasmid to be transformed was calculated, and a bar graph was made based on the statistical data.
结果见图2的A。图中,16bp对应重组质粒pWL502-PphaR-R-spacer16-R、20bp对应重组质粒pWL502-PphaR-R-spacer20-R、24bp对应重组质粒pWL502-PphaR-R-spacer24-R、28bp对应重组质粒pWL502-PphaR-R-spacer28-R、30bp对应重组质粒pWL502-PphaR-R-spacer30-R、31bp对应重组质粒pWL502-PphaR-R-spacer31-R、32bp对应重组质粒pWL502-PphaR-R-spacer32-R、36bp对应质粒pGK。The results are shown in Figure 2 A. In the figure, 16 bp corresponds to the recombinant plasmid pWL502-PphaR-R-spacer16-R, 20 bp corresponds to the recombinant plasmid pWL502-PphaR-R-spacer20-R, 24 bp corresponds to the recombinant plasmid pWL502-PphaR-R-spacer24-R, 28 bp corresponds to the recombinant plasmid pWL502-PphaR-R-spacer28-R, 30 bp corresponds to the recombinant plasmid pWL502-PphaR-R-spacer30-R, 31 bp corresponds to the recombinant plasmid pWL502-PphaR-R-spacer31-R, 32 bp corresponds to the recombinant plasmid pWL502-PphaR-R-spacer32-R, and 36 bp corresponds to the plasmid pGK.
结果表明:spacer长度为31bp、32bp和36bp时,spacer的干扰能力强,转化子数量很少;spacer长度为16bp、20bp、24bp、28bp和30bp时,转化效率与pWL502质粒在同一个数量级。从以上结果可以推测,缩短gRNA中spacer后(spacer长度不超过30bp),CRISPR系统对靶标没有切割。The results showed that when the spacer length was 31bp, 32bp and 36bp, the interference ability of the spacer was strong and the number of transformants was very small; when the spacer length was 16bp, 20bp, 24bp, 28bp and 30bp, the transformation efficiency was at the same order of magnitude as the pWL502 plasmid. From the above results, it can be inferred that after shortening the spacer in the gRNA (the spacer length does not exceed 30bp), the CRISPR system did not cut the target.
四、转化子颜色分析4. Transformant Color Analysis
对各个待转化质粒进行上述步骤得到的转化子进行颜色观察,结果见图2的B(对应关系同图2的A)。结果表明,spacer长度为16bp时,转化子颜色为较深的红色,与pWL502相同,说明其crtB基因表达几乎没有受到抑制。而spacer长度为20bp、24bp、28bp或30bp时,转化子颜色随着spacer缩短逐渐变浅,其中28bp和30bp转化子颜色为白色,表明crtB基因表达受到强烈抑制。以上结果表明,本发明实现了对靶基因不同程度的转录抑制。The transformants obtained by performing the above steps on each plasmid to be transformed were observed for color, and the results are shown in B of Figure 2 (the corresponding relationship is the same as A of Figure 2). The results show that when the spacer length is 16bp, the transformant color is a darker red, which is the same as pWL502, indicating that its crtB gene expression is almost not inhibited. When the spacer length is 20bp, 24bp, 28bp or 30bp, the transformant color gradually becomes lighter as the spacer shortens, and the 28bp and 30bp transformant colors are white, indicating that crtB gene expression is strongly inhibited. The above results show that the present invention achieves different degrees of transcriptional inhibition of the target gene.
五、转化子crtB基因突变分析5. Analysis of crtB gene mutation in transformants
为了验证crtB基因靶位点是否被Cas3蛋白切割而发生编辑,利用test-F1/test-R1组成的引物对(靶序列包括crtB基因序列)对spacer长度为24bp或28bp、30bp的质粒相应的多个转化子进行PCR扩增,对PCR产物进行琼脂糖凝胶电泳和测序。In order to verify whether the crtB gene target site was edited by cleavage by Cas3 protein, the primer pair consisting of test-F1/test-R1 (the target sequence includes the crtB gene sequence) was used to perform PCR amplification on multiple transformants corresponding to plasmids with spacer lengths of 24 bp, 28 bp, and 30 bp, and the PCR products were subjected to agarose gel electrophoresis and sequencing.
test-F1:GCCCAGACGGGCGACATTCT;test-F1: GCCCAGACGGGCGACATTCT;
test-R1:GACCATCGCGGTCTGCAAGA。test-R1: GACCATCGCGGTCTGCAAGA.
结果见图2C和2D。图2C中,-代表HH DLCR菌株,1-10代表不同转化子。结果表明,对于spacer长度为24bp或28bp的质粒,与出发菌株HH DLCR相比各个转化子crtB基因长度没有变化且测序结果表明,各个转化子crtB基因序列没有发生突变。而对于spacer长度为30bp的质粒,部分转化子crtB基因有约1kb的缺失,表明Cas3蛋白对靶标有一定的切割。以上结果进一步表明,通过缩短gRNA的spacer长度至不超过28bp,可以防止Cas3蛋白对靶标的切割。The results are shown in Figures 2C and 2D. In Figure 2C, - represents the HH DLCR strain, and 1-10 represent different transformants. The results show that for plasmids with a spacer length of 24bp or 28bp, the length of the crtB gene of each transformant did not change compared with the starting strain HH DLCR, and the sequencing results showed that the crtB gene sequence of each transformant did not mutate. For plasmids with a spacer length of 30bp, the crtB gene of some transformants had a deletion of about 1kb, indicating that the Cas3 protein had a certain degree of cutting of the target. The above results further show that by shortening the spacer length of the gRNA to no more than 28bp, the cutting of the target by the Cas3 protein can be prevented.
六、qRT-PCR定量分析转化子crtB基因转录情况6. qRT-PCR quantitative analysis of crtB gene transcription in transformants
取转化子,提取总RNA,反转录得到cDNA。以cDNA为模板,以7S基因为内参基因,在ViiATM7 Real-Time PCR System上进行real time PCR反应,检测crtB基因的相对表达水平。用于检测crtB基因的引物对为crtB QF/crtB QR组成的引物对。用于检测7S基因的引物对为7SF/7SR组成的引物对。Take the transformant, extract total RNA, and reverse transcribe to obtain cDNA. Using cDNA as a template and 7S gene as an internal reference gene, perform real time PCR reaction on ViiATM7 Real-Time PCR System to detect the relative expression level of crtB gene. The primer pair used to detect crtB gene is a primer pair composed of crtB QF/crtB QR. The primer pair used to detect 7S gene is a primer pair composed of 7SF/7SR.
crtB QF(正向引物):CGATACAGCAGGAGACCG;crtB QF (forward primer): CGATACAGCAGGAGACCG;
crtB QR(反向引物):CATCGCGTCGATGAAGAC。crtB QR (reverse primer): CATCGCGTCGATGAAGAC.
7SF(正向引物):TCGATGGTCCGCTGCTCAC;7SF (forward primer): TCGATGGTCCGCTGCTCAC;
7SR(反向引物):GGGGGCGTCCGGTCTGA。7SR (reverse primer): GGGGGCGTCCGGTCTGA.
反应体系:KAPA SYBR FAST qPCR master mix(2x)10μL,正向引物(10μM)1μL,反向引物(10μM)1μL,模板5μL(DNA含量约为3000ng),Dye 0.4μL,ddH2O 2.6μL。Reaction system: KAPA SYBR FAST qPCR master mix (2x) 10 μL, forward primer (10 μM) 1 μL, reverse primer (10 μM) 1 μL, template 5 μL (DNA content is about 3000 ng), Dye 0.4 μL, ddH 2 O 2.6 μL.
反应条件:95℃5min;95℃15s,54℃25s,72℃35s,40个循环。Reaction conditions: 95°C for 5 min; 95°C for 15 s, 54°C for 25 s, 72°C for 35 s, 40 cycles.
对得到的数据进行统计分析,绘制柱形图。结果见图3。图中,spacer-16bp对应重组质粒pWL502-PphaR-R-spacer16-R、spacer-20bp对应重组质粒pWL502-PphaR-R-spacer20-R、spacer-24bp对应重组质粒pWL502-PphaR-R-spacer24-R、spacer-28bp对应重组质粒pWL502-PphaR-R-spacer28-R、spacer-30bp对应重组质粒pWL502-PphaR-R-spacer30-R。The obtained data were statistically analyzed and a bar graph was drawn. The results are shown in Figure 3. In the figure, spacer-16bp corresponds to the recombinant plasmid pWL502-PphaR-R-spacer16-R, spacer-20bp corresponds to the recombinant plasmid pWL502-PphaR-R-spacer20-R, spacer-24bp corresponds to the recombinant plasmid pWL502-PphaR-R-spacer24-R, spacer-28bp corresponds to the recombinant plasmid pWL502-PphaR-R-spacer28-R, and spacer-30bp corresponds to the recombinant plasmid pWL502-PphaR-R-spacer30-R.
结果表明,spacer长度为16bp、20bp、24bp、28bp和30bp时,转化子菌株中crtB基因表达量有不同程度的变化,且随着spacer的缩短,抑制强度减弱。其中spacer长度为24bp、28bp和30bp时,crtB基因表达量有接近一个数量级的明显下调。说明随着spacer长度的改变,本发明实现了对靶基因不同程度的抑制。The results show that when the spacer length is 16bp, 20bp, 24bp, 28bp and 30bp, the expression of the crtB gene in the transformant strain changes to varying degrees, and as the spacer shortens, the inhibition strength weakens. Among them, when the spacer length is 24bp, 28bp and 30bp, the expression of the crtB gene is significantly downregulated by nearly one order of magnitude. It shows that with the change of the spacer length, the present invention achieves different degrees of inhibition of the target gene.
综合实施例1中的结果,本发明在不敲除Cas3蛋白的情况下,利用西班牙盐盒菌HHDLCR菌株I-B型CRISPR-Cas系统和包含不同长度spacer的gRNA,可以实现对靶基因(crtB基因)不同程度的转录调控;且不改变靶标位点的序列,即不对靶位点进行切割。Based on the results in Example 1, the present invention can achieve different degrees of transcriptional regulation of the target gene (crtB gene) by using the Spanish salt box fungus HHDLCR strain I-B type CRISPR-Cas system and gRNA containing spacers of different lengths without knocking out the Cas3 protein; and does not change the sequence of the target site, that is, does not cut the target site.
实施例2、Embodiment 2,
利用西班牙盐盒菌HH DLCR菌株I-B型CRISPR-Cas系统对cdc6E和crtB基因同时分别进行编辑和转录调控。crtB基因如序列表的序列1所示。cdc6E基因如序列表的序列10所示。The cdc6E and crtB genes were edited and transcriptionally regulated simultaneously using the Spanish salt box bacteria HH DLCR strain I-B CRISPR-Cas system. The crtB gene is shown in sequence 1 of the sequence list. The cdc6E gene is shown in sequence 10 of the sequence list.
一、编辑和转录调控质粒pGKBE-DonorE-SpacerBE的构建1. Construction of the editing and transcriptional regulation plasmid pGKBE-DonorE-SpacerBE
1、DonorE-SpacerBE片段的制备1. Preparation of DonorE-SpacerBE fragment
已有靶向西班牙盐盒菌DLCR菌株的cdc6E基因和crtB基因的敲除质粒pGKBE,表达具有两个spacer的gRNA且含有敲除crtB基因的所需的Donor序列和敲除cdc6E基因所需的Donor序列。两个spacer即靶向crtB基因的spacer(SB)和靶向cdc6E基因的spacer(SE)。质粒pGKBE表达的gRNA中,SB的长度为36nt(靶向序列1所示crtB基因的第269-304位,PAM序列为TTC),SE的长度为36nt(靶向序列10所示cdc6E基因的第385-420位,PAM序列为TTC)。There is a knockout plasmid pGKBE targeting the cdc6E gene and crtB gene of the Spanish salt box bacteria DLCR strain, which expresses a gRNA with two spacers and contains the Donor sequence required for knocking out the crtB gene and the Donor sequence required for knocking out the cdc6E gene. The two spacers are the spacer ( SB ) targeting the crtB gene and the spacer ( SE ) targeting the cdc6E gene. In the gRNA expressed by the plasmid pGKBE, the length of SB is 36nt (targeting the 269-304th position of the crtB gene shown in sequence 1, and the PAM sequence is TTC), and the length of SE is 36nt (targeting the 385-420th position of the cdc6E gene shown in sequence 10, and the PAM sequence is TTC).
DonorE-SpacerBE-18bp片段如序列表的序列11所示。序列表的序列11中,第10-682位核苷酸为敲除cdc6E基因所需的DonorE区段,第732-761位核苷酸编码repeat,第762-779位核苷酸编码靶向crtB基因的spacer,第780-809位核苷酸编码repeat,第810-845位核苷酸编码靶向cdc6E基因的spacer,第846-875位核苷酸编码repeat。靶向crtB基因的spacer的长度为18nt(靶向序列1所示crtB基因的第269-286位,PAM序列为TTC),靶向cdc6E基因的spacer的长度为36nt(靶向序列10所示cdc6E基因的第385-420位,PAM序列为TTC)。The DonorE-SpacerBE-18bp fragment is shown in Sequence 11 of the sequence table. In Sequence 11 of the sequence table, nucleotides 10-682 are the DonorE segment required for knocking out the cdc6E gene, nucleotides 732-761 encode repeats, nucleotides 762-779 encode spacers targeting the crtB gene, nucleotides 780-809 encode repeats, nucleotides 810-845 encode spacers targeting the cdc6E gene, and nucleotides 846-875 encode repeats. The length of the spacer targeting the crtB gene is 18 nt (targeting positions 269-286 of the crtB gene shown in sequence 1, and the PAM sequence is TTC), and the length of the spacer targeting the cdc6E gene is 36 nt (targeting positions 385-420 of the cdc6E gene shown in sequence 10, and the PAM sequence is TTC).
DonorE-SpacerBE-24bp片段如序列表的序列12所示。序列表的序列12中,第10-682位核苷酸为敲除cdc6E基因所需的DonorE区段,第732-761位核苷酸编码repeat,第762-785位核苷酸编码靶向crtB基因的spacer,第786-815位核苷酸编码repeat,第816-851位核苷酸编码靶向cdc6E基因的spacer,第852-881位核苷酸编码repeat。靶向crtB基因的spacer的长度为24nt(靶向序列1所示crtB基因的第269-292位,PAM序列为TTC),靶向cdc6E基因的spacer的长度为36nt(靶向序列10所示cdc6E基因的第385-420位,PAM序列为TTC)。The DonorE-SpacerBE-24bp fragment is shown in Sequence 12 of the sequence table. In Sequence 12 of the sequence table, nucleotides 10-682 are the DonorE segment required for knocking out the cdc6E gene, nucleotides 732-761 encode repeats, nucleotides 762-785 encode spacers targeting the crtB gene, nucleotides 786-815 encode repeats, nucleotides 816-851 encode spacers targeting the cdc6E gene, and nucleotides 852-881 encode repeats. The length of the spacer targeting the crtB gene is 24 nt (targeting positions 269-292 of the crtB gene shown in sequence 1, and the PAM sequence is TTC), and the length of the spacer targeting the cdc6E gene is 36 nt (targeting positions 385-420 of the cdc6E gene shown in sequence 10, and the PAM sequence is TTC).
DonorE-SpacerBE-28bp片段如序列表的序列13所示。序列表的序列13中,第10-682位核苷酸为敲除cdc6E基因所需的DonorE区段,第732-761位核苷酸编码repeat,第762-789位核苷酸编码靶向crtB基因的spacer,第790-819位核苷酸编码repeat,第820-855位核苷酸编码靶向cdc6E基因的spacer,第856-885位核苷酸编码repeat。靶向crtB基因的spacer的长度为28nt(靶向序列1所示crtB基因的第269-296位,PAM序列为TTC),靶向cdc6E基因的spacer的长度为36nt(靶向序列10所示cdc6E基因的第385-420位,PAM序列为TTC)。The DonorE-SpacerBE-28bp fragment is shown in Sequence 13 of the sequence table. In Sequence 13 of the sequence table, nucleotides 10-682 are the DonorE segment required for knocking out the cdc6E gene, nucleotides 732-761 encode repeats, nucleotides 762-789 encode spacers targeting the crtB gene, nucleotides 790-819 encode repeats, nucleotides 820-855 encode spacers targeting the cdc6E gene, and nucleotides 856-885 encode repeats. The length of the spacer targeting the crtB gene is 28 nt (targeting positions 269-296 of the crtB gene shown in sequence 1, and the PAM sequence is TTC), and the length of the spacer targeting the cdc6E gene is 36 nt (targeting positions 385-420 of the cdc6E gene shown in sequence 10, and the PAM sequence is TTC).
2、重组质粒的构建2. Construction of recombinant plasmid
将DonorE-SpacerBE-18bp片段进行BamHI和KpnI双酶切,然后与BamHI和KpnI双酶切后的质粒pWL502连接,得到重组质粒pGKBE-DonorE-SpacerBE-18bp。The DonorE-SpacerBE-18bp fragment was double-digested with BamHI and KpnI, and then ligated with the plasmid pWL502 double-digested with BamHI and KpnI to obtain the recombinant plasmid pGKBE-DonorE-SpacerBE-18bp.
将DonorE-SpacerBE-24bp片段进行BamHI和KpnI双酶切,然后与BamHI和KpnI双酶切后的质粒pWL502连接,得到重组质粒pGKBE-DonorE-SpacerBE-24bp。The DonorE-SpacerBE-24bp fragment was double-digested with BamHI and KpnI, and then ligated with the plasmid pWL502 double-digested with BamHI and KpnI to obtain the recombinant plasmid pGKBE-DonorE-SpacerBE-24bp.
将DonorE-SpacerBE-28bp片段进行BamHI和KpnI双酶切,然后与BamHI和KpnI双酶切后的质粒pWL502连接,得到重组质粒pGKBE-DonorE-SpacerBE-28bp。The DonorE-SpacerBE-28bp fragment was double-digested with BamHI and KpnI, and then ligated with the plasmid pWL502 double-digested with BamHI and KpnI to obtain the recombinant plasmid pGKBE-DonorE-SpacerBE-28bp.
以上三种重组质粒和质粒pGKBE统称为重组质粒pGKBE-DonorE-SpacerBE。重组质粒pGKBE-DonorE-SpacerBE的结构示意图见图1的B。The above three recombinant plasmids and plasmid pGKBE are collectively referred to as recombinant plasmid pGKBE-DonorE-SpacerBE. The schematic diagram of the structure of the recombinant plasmid pGKBE-DonorE-SpacerBE is shown in B of Figure 1.
二、转化HH DLCR菌株2. Transformation of HH DLCR strain
待转化质粒分别为重组质粒pGKBE-DonorE-SpacerBE-18bp、重组质粒pGKBE-DonorE-SpacerBE-24bp、重组质粒pGKBE-DonorE-SpacerBE-28bp、质粒pGKBE或质粒pWL502。The plasmids to be transformed are respectively recombinant plasmid pGKBE-DonorE-SpacerBE-18bp, recombinant plasmid pGKBE-DonorE-SpacerBE-24bp, recombinant plasmid pGKBE-DonorE-SpacerBE-28bp, plasmid pGKBE or plasmid pWL502.
方法同实施例1的步骤二。The method is the same as step 2 of Example 1.
三、转化效率分析3. Conversion efficiency analysis
同实施例1的步骤三。Same as step 3 of Example 1.
结果见图4的A。图中,18bp对应重组质粒pGKBE-DonorE-SpacerBE-18bp、24bp对应重组质粒pGKBE-DonorE-SpacerBE-24bp、28bp对应重组质粒pGKBE-DonorE-SpacerBE-28bp。The results are shown in Figure 4 A. In the figure, 18 bp corresponds to the recombinant plasmid pGKBE-DonorE-SpacerBE-18 bp, 24 bp corresponds to the recombinant plasmid pGKBE-DonorE-SpacerBE-24 bp, and 28 bp corresponds to the recombinant plasmid pGKBE-DonorE-SpacerBE-28 bp.
结果表明,相比于pGKBE质粒的转化效率,pGKBE-DonorE-SpacerBE质粒的转化效率高出1个数量级,且crtB基因的spacer长度为18bp、24bp和28bp时转化效率没有明显差异。The results showed that the transformation efficiency of pGKBE-DonorE-SpacerBE plasmid was one order of magnitude higher than that of pGKBE plasmid, and there was no significant difference in transformation efficiency when the spacer length of crtB gene was 18bp, 24bp and 28bp.
四、转化子颜色分析4. Transformant Color Analysis
同实施例1的步骤四。Same as step 4 of Example 1.
结果见图4的B(对应关系同图4的A)。结果显示,spacer长度为18bp时,转化子颜色为较深的红色,与pWL502相似,说明其crtB基因表达几乎没有受到抑制。而spacer长度为24bp和28bp时,转化子颜色均为白色,表明crtB基因表达受到强烈抑制。The results are shown in Figure 4B (corresponding to Figure 4A). The results show that when the spacer length is 18 bp, the transformant color is darker red, similar to pWL502, indicating that the expression of crtB gene is almost not inhibited. When the spacer length is 24 bp and 28 bp, the transformant color is white, indicating that the expression of crtB gene is strongly inhibited.
五、转化子cdc6E和crtB基因突变分析V. Analysis of cdc6E and crtB gene mutations in transformants
为了验证cdc6E和crtB基因靶位点是否被编辑,利用test-F1/test-R1组成的引物对(靶序列包括crtB基因序列)或者test-F2/test-R2组成的引物对(靶序列包括cdc6E基因)对spacer长度为24bp或28bp的质粒相应的转化子进行PCR扩增,对PCR产物进行琼脂糖凝胶电泳和测序。To verify whether the cdc6E and crtB gene target sites were edited, PCR amplification was performed on the corresponding transformants of the plasmids with a spacer length of 24 bp or 28 bp using the primer pair consisting of test-F1/test-R1 (the target sequence included the crtB gene sequence) or the primer pair consisting of test-F2/test-R2 (the target sequence included the cdc6E gene), and the PCR products were subjected to agarose gel electrophoresis and sequencing.
test-F2:CGTGCGCATTCCGGTCATCT;test-F2:CGTGCGCATTCCGGTCATCT;
test-R2:GGTCGACGAACGTCACTGTA。test-R2: GGTCGACGAACGTCACTGTA.
结果见图4C。图4C中,-代表HH DLCR菌株,+代表pGKBE质粒得到的转化子,1-10代表重组质粒pGKBE-DonorE-SpacerBE-24bp得到的不同转化子或重组质粒pGKBE-DonorE-SpacerBE-28bp得到的不同转化子。The results are shown in Figure 4C. In Figure 4C, - represents the HH DLCR strain, + represents the transformants obtained from the pGKBE plasmid, and 1-10 represent different transformants obtained from the recombinant plasmid pGKBE-DonorE-SpacerBE-24bp or different transformants obtained from the recombinant plasmid pGKBE-DonorE-SpacerBE-28bp.
结果表明,与出发菌株HH DLCR相比各个转化子crtB基因长度没有变化,且测序结果表明,各个重组质粒得到的转化子的crtB基因序列没有发生突变,cdc6E基因长度变短被成功敲除。The results showed that the crtB gene length of each transformant did not change compared with the starting strain HH DLCR, and the sequencing results showed that the crtB gene sequence of the transformants obtained from each recombinant plasmid did not mutate, and the cdc6E gene length was shortened and successfully knocked out.
综合实施例2中的结果,本发明在不敲除或突变Cas3蛋白的情况下,利用西班牙盐盒菌HH DLCR菌株I-B型CRISPR-Cas系统可以实现对两个不同基因同时分别进行基因编辑和转录调控,且效率都很高。Based on the results in Example 2, the present invention can achieve gene editing and transcriptional regulation of two different genes simultaneously using the Spanish salt box bacteria HH DLCR strain I-B type CRISPR-Cas system without knocking out or mutating the Cas3 protein, and the efficiency is very high.
以上对本发明进行了详述。对于本领域技术人员来说,在不脱离本发明的宗旨和范围,以及无需进行不必要的实验情况下,可在等同参数、浓度和条件下,在较宽范围内实施本发明。虽然本发明给出了特殊的实施例,应该理解为,可以对本发明作进一步的改进。总之,按本发明的原理,本申请欲包括任何变更、用途或对本发明的改进,包括脱离了本申请中已公开范围,而用本领域已知的常规技术进行的改变。按以下附带的权利要求的范围,可以进行一些基本特征的应用。The present invention has been described in detail above. It will be apparent to those skilled in the art that the present invention may be implemented in a wide range under equivalent parameters, concentrations and conditions without departing from the spirit and scope of the present invention and without the need for unnecessary experimentation. Although the present invention provides specific embodiments, it should be understood that further improvements may be made to the present invention. In short, according to the principles of the present invention, this application is intended to include any changes, uses or improvements to the present invention, including changes made by conventional techniques known in the art that depart from the scope disclosed in this application. Applications of some of the basic features may be made within the scope of the following appended claims.
序列表Sequence Listing
<110> 中国科学院微生物研究所<110> Institute of Microbiology, Chinese Academy of Sciences
<120> 一种利用I型CRISPR-Cas系统同时实现基因编辑和转录调控的方法<120> A method for simultaneously achieving gene editing and transcriptional regulation using a type I CRISPR-Cas system
<130> GNCYX203089<130> GNCYX203089
<160> 13<160> 13
<170> SIPOSequenceListing 1.0<170> SIPOSequenceListing 1.0
<210> 1<210> 1
<211> 972<211> 972
<212> DNA<212> DNA
<213> Haloarcula hispanica<213> Haloarcula hispanica
<400> 1<400> 1
atgcactccg ataacatcca aaccagcaaa tcgatacagc aggagaccgg ccggacgttt 60atgcactccg ataacatcca aaccagcaaa tcgatacagc aggagaccgg ccggacgttt 60
cacctcgcga cgcgtctgct tccggagcgt atccgccacc cgacctacgt catgtacgcc 120cacctcgcga cgcgtctgct tccggagcgt atccgccacc cgacctacgt catgtacgcc 120
tttttccggg tcgcggacga ggtcgtcgac cagacggatg ggccgccccc gaccgtccag 180tttttccggg tcgcggacga ggtcgtcgac cagacggatg ggccgccccc gaccgtccag 180
cacgagcaac tggaggtaat ccgcgaggcc gcgctcggga acgtcgaccc ggccgagacc 240cacgagcaac tggaggtaat ccgcgaggcc gcgctcggga acgtcgaccc ggccgagacc 240
gaccacgagg cggtcatggc ggcgtttcag gacctggccg agcgtcacga catctccgag 300gaccacgagg cggtcatggc ggcgtttcag gacctggccg agcgtcacga catctccgag 300
gagacgatca acgtcttcat cgacgcgatg gagatggaca tcgcacaggc ccgctacgag 360gagacgatca acgtcttcat cgacgcgatg gagatggaca tcgcacaggc ccgctacgag 360
acgttcgagg acctccgtga gtacatgggc ggctccgccg tcgctgtcgg ccacatgatg 420acgttcgagg acctccgtga gtacatgggc ggctccgccg tcgctgtcgg ccacatgatg 420
acggaggtga tggacccgcc acagaaggcg gaggccctgc cccacgcgac ggcgctggcc 480acggaggtga tggacccgcc acagaaggcg gaggccctgc cccacgcgac ggcgctggcc 480
gaagcgttcc agctatcgaa cttcctgcgg gacgtccgcg aggacatcca cgactacggc 540gaagcgttcc agctatcgaa cttcctgcgg gacgtccgcg aggacatcca cgactacggc 540
cgggtgtacc tcccacagga gacgctcgac cgccacggcg tcaccgagga gcaactggcc 600cgggtgtacc tcccacagga gacgctcgac cgccacggcg tcaccgagga gcaactggcc 600
gacgccgagg tcgacgacgc cttccgtgcc gtgatgcagg aggaactggc tcggaccgac 660gacgccgagg tcgacgacgc cttccgtgcc gtgatgcagg aggaactggc tcggaccgac 660
gaactgtacc gcgagggcgt cgccggcatc cgatacctcc cggaagactg ccagttcggc 720gaactgtacc gcgagggcgt cgccggcatc cgatacctcc cggaagactg ccagttcggc 720
gtgctgctgg ctgcggtcct gtacgctgac caccaccgac tcatccgcga ccgtggctac 780gtgctgctgg ctgcggtcct gtacgctgac caccaccgac tcatccgcga ccgtggctac 780
gacgtgctga cggagacgcc ggaactcact cgtcgtcgcc ggctgtggtt gctcgcccgt 840gacgtgctga cggagacgcc ggaactcact cgtcgtcgcc ggctgtggtt gctcgcccgt 840
acgtggtggc actggcggcg caacggcgac cccgaagcga cgttctacac cgtgagcgct 900acgtggtggc actggcggcg caacggcgac cccgaagcga cgttctacac cgtgagcgct 900
gtctccgagc gcggccccgg cgagacgccg acggacgccc acggccacgg gcaacccgcg 960gtctccgagc gcggccccgg cgagacgccg acggacgccc acggccacgg gcaacccgcg 960
tggcgtggat ga 972tggcgtggat ga 972
<210> 2<210> 2
<211> 151<211> 151
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 2<400> 2
cgcggatccc gaagggaaca tatatgttac tgcaggtaca acaccgagtt aggagatggt 60cgcggatccc gaagggaaca tatatgttac tgcaggtaca acaccgagtt aggagatggt 60
ttcagacgaa ccctcgtggg gttgaagcag gacctggccg agcggtttca gacgaaccct 120ttcagacgaa ccctcgtggg gttgaagcag gacctggccg agcggtttca gacgaaccct 120
cgtggggttg aagctttttt ttggtacccc g 151cgtggggttg aagctttttt ttggtacccc g 151
<210> 3<210> 3
<211> 155<211> 155
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 3<400> 3
cgcggatccc gaagggaaca tatatgttac tgcaggtaca acaccgagtt aggagatggt 60cgcggatccc gaagggaaca tatatgttac tgcaggtaca acaccgagtt aggagatggt 60
ttcagacgaa ccctcgtggg gttgaagcag gacctggccg agcgtcacgt ttcagacgaa 120ttcagacgaa ccctcgtggg gttgaagcag gacctggccg agcgtcacgt ttcagacgaa 120
ccctcgtggg gttgaagctt ttttttggta ccccg 155ccctcgtggg gttgaagctt ttttttggta ccccg 155
<210> 4<210> 4
<211> 159<211> 159
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 4<400> 4
cgcggatccc gaagggaaca tatatgttac tgcaggtaca acaccgagtt aggagatggt 60cgcggatccc gaagggaaca tatatgttac tgcaggtaca acaccgagtt aggagatggt 60
ttcagacgaa ccctcgtggg gttgaagcag gacctggccg agcgtcacga cagtttcaga 120ttcagacgaa ccctcgtggg gttgaagcag gacctggccg agcgtcacga cagtttcaga 120
cgaaccctcg tggggttgaa gctttttttt ggtaccccg 159cgaaccctcg tggggttgaa gctttttttt ggtaccccg 159
<210> 5<210> 5
<211> 163<211> 163
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 5<400> 5
cgcggatccc gaagggaaca tatatgttac tgcaggtaca acaccgagtt aggagatggt 60cgcggatccc gaagggaaca tatatgttac tgcaggtaca acaccgagtt aggagatggt 60
ttcagacgaa ccctcgtggg gttgaagcag gacctggccg agcgtcacga catctcgttt 120ttcagacgaa ccctcgtggg gttgaagcag gacctggccg agcgtcacga catctcgttt 120
cagacgaacc ctcgtggggt tgaagctttt ttttggtacc ccg 163cagacgaacc ctcgtggggt tgaagctttt ttttggtacc ccg 163
<210> 6<210> 6
<211> 165<211> 165
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 6<400> 6
cgcggatccc gaagggaaca tatatgttac tgcaggtaca acaccgagtt aggagatggt 60cgcggatccc gaagggaaca tatatgttac tgcaggtaca acaccgagtt aggagatggt 60
ttcagacgaa ccctcgtggg gttgaagcag gacctggccg agcgtcacga catctccggt 120ttcagacgaa ccctcgtggg gttgaagcag gacctggccg agcgtcacga catctccggt 120
ttcagacgaa ccctcgtggg gttgaagctt ttttttggta ccccg 165ttcagacgaa ccctcgtggg gttgaagctt ttttttggta ccccg 165
<210> 7<210> 7
<211> 166<211> 166
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 7<400> 7
cgcggatccc gaagggaaca tatatgttac tgcaggtaca acaccgagtt aggagatggt 60cgcggatccc gaagggaaca tatatgttac tgcaggtaca acaccgagtt aggagatggt 60
ttcagacgaa ccctcgtggg gttgaagcag gacctggccg agcgtcacga catctccgag 120ttcagacgaa ccctcgtggg gttgaagcag gacctggccg agcgtcacga catctccgag 120
tttcagacga accctcgtgg ggttgaagct tttttttggt accccg 166tttcagacga accctcgtgg ggttgaagct tttttttggt accccg 166
<210> 8<210> 8
<211> 167<211> 167
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 8<400> 8
cgcggatccc gaagggaaca tatatgttac tgcaggtaca acaccgagtt aggagatggt 60cgcggatccc gaagggaaca tatatgttac tgcaggtaca acaccgagtt aggagatggt 60
ttcagacgaa ccctcgtggg gttgaagcag gacctggccg agcgtcacga catctccgag 120ttcagacgaa ccctcgtggg gttgaagcag gacctggccg agcgtcacga catctccgag 120
gtttcagacg aaccctcgtg gggttgaagc ttttttttgg taccccg 167gtttcagacg aaccctcgtg gggttgaagc ttttttttgg taccccg 167
<210> 9<210> 9
<211> 171<211> 171
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 9<400> 9
cgcggatccc gaagggaaca tatatgttac tgcaggtaca acaccgagtt aggagatggt 60cgcggatccc gaagggaaca tatatgttac tgcaggtaca acaccgagtt aggagatggt 60
ttcagacgaa ccctcgtggg gttgaagcag gacctggccg agcgtcacga catctccgag 120ttcagacgaa ccctcgtggg gttgaagcag gacctggccg agcgtcacga catctccgag 120
gagagtttca gacgaaccct cgtggggttg aagctttttt ttggtacccc g 171gagagtttca gacgaaccct cgtggggttg aagctttttt ttggtacccc g 171
<210> 10<210> 10
<211> 1329<211> 1329
<212> DNA<212> DNA
<213> Haloarcula hispanica<213> Haloarcula hispanica
<400> 10<400> 10
atggtcgacg tgaacgagaa cccgttcgat gggactgacg cgatcttcga acgaaagcaa 60atggtcgacg tgaacgagaa cccgttcgat gggactgacg cgatcttcga acgaaagcaa 60
ccgctgaaaa aagacacgtt cacgccggat acgatctttc accgcgacga ggagatcgag 120ccgctgaaaa aagacacgtt cacgccggat acgatctttc accgcgacga ggagatcgag 120
ttctacatca acgcgcttca ggacgtcatc gtcggccacg accccaacaa cgtcttcgtc 180ttctacatca acgcgcttca ggacgtcatc gtcggccacg acccccaacaa cgtcttcgtc 180
tacggcccaa cgggggtcgg aaagactgcc gttacgaagt gggtacggga caaactcgaa 240tacggcccaa cgggggtcgg aaagactgcc gttacgaagt gggtacggga caaactcgaa 240
gagaaggccg aggccgagga catcccactc accgttgtcg gtccgataaa ctgccggaac 300gagaaggccg aggccgagga catcccactc accgttgtcg gtccgataaa ctgccggaac 300
taccggtcgg cgtacgccct ggtcaacaca ctcgtcaacg agttccgaga tccggagaac 360taccggtcgg cgtacgccct ggtcaacaca ctcgtcaacg agttccgaga tccggagaac 360
caactccccg agagcggcta cagcactgac agcgtcttcg agttcctcta cgaggagatc 420caactccccg agagcggcta cagcactgac agcgtcttcg agttcctcta cgaggagatc 420
gaagccgtgg gtgggaacgt cctcatcatc ctggacgaga tcgacaacat tccagcggac 480gaagccgtgg gtgggaacgt cctcatcatc ctggacgaga tcgacaacat tccagcggac 480
gcgcggaacg acttcctgta tgaactgccg cgggccgaag cgaacgagaa cacgccgatc 540gcgcggaacg acttcctgta tgaactgccg cgggccgaag cgaacgagaa cacgccgatc 540
accgatgcga aggtcggact catcgggatt tcgaacgacc tcaagttcgt cgacgtgctg 600accgatgcga aggtcggact catcgggatt tcgaacgacc tcaagttcgt cgacgtgctg 600
gaacccaaag tgaaatcgac gctcggggag cgagagatca agttcggtcc gtacgacgca 660gaacccaaag tgaaatcgac gctcggggag cgagagatca agttcggtcc gtacgacgca 660
acggaactcc gagacattct cggctactac gccgacattg cgttccgaga ggacgtgctc 720acggaactcc gagacattct cggctactac gccgacattg cgttccgaga ggacgtgctc 720
ggcgaagatg tcgtcccgct ggcggcggcc ttctcggcgc aggaacgggg cgacgttcgg 780ggcgaagatg tcgtcccgct ggcggcggcc ttctcggcgc aggaacgggg cgacgttcgg 780
cagggactcc gaatcctcga aaaggccgga gagtacgcgc ggatggaggg cgcggacggt 840cagggactcc gaatcctcga aaaggccgga gagtacgcgc ggatggaggg cgcggacggt 840
gtgacagaag cacatacgcg acgggcgaca gacactatcg aaaccgacga actgctggat 900gtgacagaag cacatacgcg acgggcgaca gacactatcg aaaccgacga actgctggat 900
tacttcgagc acgacctgag ttcacagcag gcgctgacgt acctcgcgac gacgcttgcg 960tacttcgagc acgacctgag ttcacagcag gcgctgacgt acctcgcgac gacgcttgcg 960
ctcatcgaac cgaaacacga ggcgtcgaca aagcggattt acaacctcta ctcctcgatt 1020ctcatcgaac cgaaacacga ggcgtcgaca aagcggattt acaacctcta ctcctcgatt 1020
gcggagtcga gtggccgccg cgtgaaatcc gaacgcaaga tctacgagtt cctcgaccag 1080gcggagtcga gtggccgccg cgtgaaatcc gaacgcaaga tctacgagtt cctcgaccag 1080
ctttccatgc aagggctagt ccgctcggcc gaacgcaacc tcggtcgcaa gggtgggcgc 1140ctttccatgc aagggctagt ccgctcggcc gaacgcaacc tcggtcgcaa gggtgggcgc 1140
aagtacatct acgaggtcac cgacgacgcg accgatatca tcaacgccgc gctccagtcg 1200aagtacatct acgaggtcac cgacgacgcg accgatatca tcaacgccgc gctccagtcg 1200
tcctacagcg atgccgtgcc gagcaacgtc aacgggatac tcgaacacta tctggaagac 1260tcctacagcg atgccgtgcc gagcaacgtc aacgggatac tcgaacacta tctggaagac 1260
gaggccaccg agtttgaggc accggacacg accgacgacg agcaacagaa cctctggcag 1320gaggccaccg agtttgaggc accggacacg accgacgacg agcaacagaa cctctggcag 1320
ttcacgtag 1329ttcacgtag 1329
<210> 11<210> 11
<211> 892<211> 892
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 11<400> 11
cgcggatcct tcgaaacgga ataccgggag gctgtggtgg aaacggacgg acacaccggt 60cgcggatcct tcgaaacgga ataccgggag gctgtggtgg aaacggacgg acacaccggt 60
ctgcaagtgt tctacacact gcagtggagg gtaactgcca cataatcgct cggtagcact 120ctgcaagtgt tctacacact gcagtggagg gtaactgcca cataatcgct cggtagcact 120
ccgggttcac ggtctactgt tggcacacac acaccaccct gcaactgttc tggactgtac 180ccgggttcac ggtctactgt tggcacacac acaccaccct gcaactgttc tggactgtac 180
aatagaggga ctgccactga acacacacac accaccgtgc aagtgttctg ccatgtgagt 240aatagaggga ctgccactga acacacacac accaccgtgc aagtgttctg ccatgtgagt 240
cggtgggggg aggggagcaa atacgctggc tacgtgaact gccagaggtt ctgttgctcg 300cggtgggggg aggggagcaa atacgctggc tacgtgaact gccagaggtt ctgttgctcg 300
tcgtcggtca gcggttgctt tcgttcgaag atcgcgtcag tcccatcgaa cgggttctcg 360tcgtcggtca gcggttgctt tcgttcgaag atcgcgtcag tcccatcgaa cgggttctcg 360
ttcacgtcga ccatcgtacg ccaccttttg agtgactcta tataaaacca gtgaccaccg 420ttcacgtcga ccatcgtacg ccaccttttg agtgactcta tataaaacca gtgaccaccg 420
tacaagtgtt tcaagtgttt tcacgccgaa cagtcacaca ccaccctgca agtgtttctt 480tacaagtgtt tcaagtgttt tcacgccgaa cagtcacaca ccaccctgca agtgtttctt 480
cgatccctct ggaaaacagc cacgagcagt ctgctgcacc gacccttcat ctagaacact 540cgatccctct ggaaaacagc cacgagcagt ctgctgcacc gacccttcat ctagaacact 540
tgagtcctgc gattctcgac tgtctcgttc tggaccgtat ctagaactag tagcactatt 600tgagtcctgc gattctcgac tgtctcgttc tggaccgtat ctagaactag tagcactatt 600
atatatttta tggtaaaggc aataaaatca tattcaccat cgaacgtcca cctccataga 660atatatttta tggtaaaggc aataaaatca tattcaccat cgaacgtcca cctccataga 660
attcaagcta caagtgcttc agcgaaggga acatatatgt tactgcaggt acaacaccga 720attcaagcta caagtgcttc agcgaaggga acatatatgt tactgcaggt acaacaccga 720
gttaggagat ggtttcagac gaaccctcgt ggggttgaag caggacctgg ccgagcgtcg 780gttaggagat ggtttcagac gaaccctcgt ggggttgaag caggacctgg ccgagcgtcg 780
tttcagacga accctcgtgg ggttgaagcg atctcctcgt agaggaactc gaagacgctg 840tttcagacga accctcgtgg ggttgaagcg atctcctcgt agaggaactc gaagacgctg 840
tcagtgtttc agacgaaccc tcgtggggtt gaagcttttt tttggtaccc cg 892tcagtgtttc agacgaaccc tcgtggggtt gaagcttttt tttggtaccc cg 892
<210> 12<210> 12
<211> 898<211> 898
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 12<400> 12
cgcggatcct tcgaaacgga ataccgggag gctgtggtgg aaacggacgg acacaccggt 60cgcggatcct tcgaaacgga ataccgggag gctgtggtgg aaacggacgg acacaccggt 60
ctgcaagtgt tctacacact gcagtggagg gtaactgcca cataatcgct cggtagcact 120ctgcaagtgt tctacacact gcagtggagg gtaactgcca cataatcgct cggtagcact 120
ccgggttcac ggtctactgt tggcacacac acaccaccct gcaactgttc tggactgtac 180ccgggttcac ggtctactgt tggcacacac acaccaccct gcaactgttc tggactgtac 180
aatagaggga ctgccactga acacacacac accaccgtgc aagtgttctg ccatgtgagt 240aatagaggga ctgccactga acacacacac accaccgtgc aagtgttctg ccatgtgagt 240
cggtgggggg aggggagcaa atacgctggc tacgtgaact gccagaggtt ctgttgctcg 300cggtgggggg aggggagcaa atacgctggc tacgtgaact gccagaggtt ctgttgctcg 300
tcgtcggtca gcggttgctt tcgttcgaag atcgcgtcag tcccatcgaa cgggttctcg 360tcgtcggtca gcggttgctt tcgttcgaag atcgcgtcag tcccatcgaa cgggttctcg 360
ttcacgtcga ccatcgtacg ccaccttttg agtgactcta tataaaacca gtgaccaccg 420ttcacgtcga ccatcgtacg ccaccttttg agtgactcta tataaaacca gtgaccaccg 420
tacaagtgtt tcaagtgttt tcacgccgaa cagtcacaca ccaccctgca agtgtttctt 480tacaagtgtt tcaagtgttt tcacgccgaa cagtcacaca ccaccctgca agtgtttctt 480
cgatccctct ggaaaacagc cacgagcagt ctgctgcacc gacccttcat ctagaacact 540cgatccctct ggaaaacagc cacgagcagt ctgctgcacc gacccttcat ctagaacact 540
tgagtcctgc gattctcgac tgtctcgttc tggaccgtat ctagaactag tagcactatt 600tgagtcctgc gattctcgac tgtctcgttc tggaccgtat ctagaactag tagcactatt 600
atatatttta tggtaaaggc aataaaatca tattcaccat cgaacgtcca cctccataga 660atatatttta tggtaaaggc aataaaatca tattcaccat cgaacgtcca cctccataga 660
attcaagcta caagtgcttc agcgaaggga acatatatgt tactgcaggt acaacaccga 720attcaagcta caagtgcttc agcgaaggga acatatatgt tactgcaggt acaacaccga 720
gttaggagat ggtttcagac gaaccctcgt ggggttgaag caggacctgg ccgagcgtca 780gttaggagat ggtttcagac gaaccctcgt ggggttgaag caggacctgg ccgagcgtca 780
cgacagtttc agacgaaccc tcgtggggtt gaagcgatct cctcgtagag gaactcgaag 840cgacagtttc agacgaaccc tcgtggggtt gaagcgatct cctcgtagag gaactcgaag 840
acgctgtcag tgtttcagac gaaccctcgt ggggttgaag cttttttttg gtaccccg 898acgctgtcag tgtttcagac gaaccctcgt ggggttgaag cttttttttg gtaccccg 898
<210> 13<210> 13
<211> 902<211> 902
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 13<400> 13
cgcggatcct tcgaaacgga ataccgggag gctgtggtgg aaacggacgg acacaccggt 60cgcggatcct tcgaaacgga ataccgggag gctgtggtgg aaacggacgg acacaccggt 60
ctgcaagtgt tctacacact gcagtggagg gtaactgcca cataatcgct cggtagcact 120ctgcaagtgt tctacacact gcagtggagg gtaactgcca cataatcgct cggtagcact 120
ccgggttcac ggtctactgt tggcacacac acaccaccct gcaactgttc tggactgtac 180ccgggttcac ggtctactgt tggcacacac acaccaccct gcaactgttc tggactgtac 180
aatagaggga ctgccactga acacacacac accaccgtgc aagtgttctg ccatgtgagt 240aatagaggga ctgccactga acacacacac accaccgtgc aagtgttctg ccatgtgagt 240
cggtgggggg aggggagcaa atacgctggc tacgtgaact gccagaggtt ctgttgctcg 300cggtgggggg aggggagcaa atacgctggc tacgtgaact gccagaggtt ctgttgctcg 300
tcgtcggtca gcggttgctt tcgttcgaag atcgcgtcag tcccatcgaa cgggttctcg 360tcgtcggtca gcggttgctt tcgttcgaag atcgcgtcag tcccatcgaa cgggttctcg 360
ttcacgtcga ccatcgtacg ccaccttttg agtgactcta tataaaacca gtgaccaccg 420ttcacgtcga ccatcgtacg ccaccttttg agtgactcta tataaaacca gtgaccaccg 420
tacaagtgtt tcaagtgttt tcacgccgaa cagtcacaca ccaccctgca agtgtttctt 480tacaagtgtt tcaagtgttt tcacgccgaa cagtcacaca ccaccctgca agtgtttctt 480
cgatccctct ggaaaacagc cacgagcagt ctgctgcacc gacccttcat ctagaacact 540cgatccctct ggaaaacagc cacgagcagt ctgctgcacc gacccttcat ctagaacact 540
tgagtcctgc gattctcgac tgtctcgttc tggaccgtat ctagaactag tagcactatt 600tgagtcctgc gattctcgac tgtctcgttc tggaccgtat ctagaactag tagcactatt 600
atatatttta tggtaaaggc aataaaatca tattcaccat cgaacgtcca cctccataga 660atatatttta tggtaaaggc aataaaatca tattcaccat cgaacgtcca cctccataga 660
attcaagcta caagtgcttc agcgaaggga acatatatgt tactgcaggt acaacaccga 720attcaagcta caagtgcttc agcgaaggga acatatatgt tactgcaggt acaacaccga 720
gttaggagat ggtttcagac gaaccctcgt ggggttgaag caggacctgg ccgagcgtca 780gttaggagat ggtttcagac gaaccctcgt ggggttgaag caggacctgg ccgagcgtca 780
cgacatctcg tttcagacga accctcgtgg ggttgaagcg atctcctcgt agaggaactc 840cgacatctcg tttcagacga accctcgtgg ggttgaagcg atctcctcgt agaggaactc 840
gaagacgctg tcagtgtttc agacgaaccc tcgtggggtt gaagcttttt tttggtaccc 900gaagacgctg tcagtgtttc agacgaaccc tcgtggggtt gaagcttttt tttggtaccc 900
cg 902cg 902
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011546641.9A CN114657177B (en) | 2020-12-24 | 2020-12-24 | Method for simultaneously realizing gene editing and transcriptional regulation by using I-type CRISPR-Cas system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011546641.9A CN114657177B (en) | 2020-12-24 | 2020-12-24 | Method for simultaneously realizing gene editing and transcriptional regulation by using I-type CRISPR-Cas system |
Publications (2)
Publication Number | Publication Date |
---|---|
CN114657177A CN114657177A (en) | 2022-06-24 |
CN114657177B true CN114657177B (en) | 2024-07-19 |
Family
ID=82025532
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202011546641.9A Active CN114657177B (en) | 2020-12-24 | 2020-12-24 | Method for simultaneously realizing gene editing and transcriptional regulation by using I-type CRISPR-Cas system |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114657177B (en) |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107557373A (en) * | 2017-09-19 | 2018-01-09 | 安徽大学 | A kind of gene editing method based on I Type B CRISPR Cas system genes cas3 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102676414B (en) * | 2011-03-08 | 2014-03-26 | 中国科学院微生物研究所 | Genetic manipulation system based on Haloarcula hispanica and pyrF gene and its application |
CN105331627B (en) * | 2015-09-30 | 2019-04-02 | 华中农业大学 | A method of prokaryotic gene group editor is carried out using endogenous CRISPR-Cas system |
CN105543266A (en) * | 2015-12-25 | 2016-05-04 | 安徽大学 | CRISPR (Clustered Regularly Interspaced Short Palindromic Repeat sequences)-Cas (CRISPR-associated proteins) system in Streptomyces virginiae IBL14 and method for carrying out gene editing by using CRISPR-Cas system |
WO2018098383A1 (en) * | 2016-11-22 | 2018-05-31 | Integrated Dna Technologies, Inc. | Crispr/cpf1 systems and methods |
CN107475169A (en) * | 2017-09-19 | 2017-12-15 | 安徽大学 | Cas7 and Cas3 prokaryotic gene edit methods in a kind of type Cas systems based on I |
-
2020
- 2020-12-24 CN CN202011546641.9A patent/CN114657177B/en active Active
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107557373A (en) * | 2017-09-19 | 2018-01-09 | 安徽大学 | A kind of gene editing method based on I Type B CRISPR Cas system genes cas3 |
Non-Patent Citations (1)
Title |
---|
金黄色葡萄球菌III-A型CRISPR-Cas系统导致基因组重塑的分子机制;关静;《中国博士学位论文全文数据库(电子期刊) 医药卫生科技辑》;20190715;第3.3.4节 * |
Also Published As
Publication number | Publication date |
---|---|
CN114657177A (en) | 2022-06-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI608100B (en) | Cas9 expression plastid, E. coli gene editing system and method thereof | |
CN104651399B (en) | A method of gene knockout being realized in Pig embryos cell using CRISPR/Cas system | |
CN110358767B (en) | Zymomonas mobilis genome editing method based on CRISPR-Cas12a system and application thereof | |
CN110331158B (en) | Simultaneous editing method of polygene loci based on zymomonas mobilis endogenous CRISPR-Cas system and application thereof | |
CN110607320B (en) | Plant genome directional base editing framework vector and application thereof | |
KR20220142547A (en) | Crispr enabled multiplexed genome engineering | |
CN113717960A (en) | Novel Cas9 protein, CRISPR-Cas9 genome directed editing vector and genome editing method | |
Koh et al. | Advanced multigene expression system for Nannochloropsis salina using 2A self-cleaving peptides | |
EP4217499A1 (en) | Systems and methods for transposing cargo nucleotide sequences | |
US20240352433A1 (en) | Enzymes with hepn domains | |
CN114657177B (en) | Method for simultaneously realizing gene editing and transcriptional regulation by using I-type CRISPR-Cas system | |
CN118703458A (en) | Taro CePDS gene and its VIGS virus vector and silencing method | |
CN106906231A (en) | A kind of even number DNA molecular amount standard and preparation method thereof | |
CN109628448B (en) | Industrial saccharomyces cerevisiae stress resistance modification based on saccharomyces cerevisiae CRISPR library | |
CN111349649B (en) | A kind of method and application for gene editing of Agaricus bisporus | |
CN113429467B (en) | Application of NPF7.6 Protein in Regulating Nitrogen Tolerance of Legume Root Nodules | |
CN114163506A (en) | Application of Pseudomonas stutzeri-derived PsPIWI-RE protein in mediating homologous recombination | |
CN111944811A (en) | Double sgRNA for targeted knockout of FRZB gene, pig fibroblast line for knockout of FRZB gene and application of pig fibroblast line | |
CN112831517B (en) | Lycopene gene-mediated modification cloning vector and application thereof | |
CN116162638B (en) | Induction method of gene tandem repeat mediated by horizontal transfer gene activation in bacteria | |
CN110066821B (en) | Method for constructing random protein expression library based on random expression element multiplication mode | |
CN117866924A (en) | EXPERTplus multi-sgRNA-mediated lead gene editing system and its applications | |
CN117660511A (en) | Rhodobacter sphaeroides gene editing method based on RecET recombination system and application thereof | |
CN118910116A (en) | Issatchenkia orientalis CRISPR/Cas9 gene editing system and application thereof | |
TWI629358B (en) | Gene expression interference system of Synechococcus sp. PCC 7942 and method for inhibiting the expression of S. cerevisiae PCC 7942 gene |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |