CN114649500A - Negative pole piece, electrochemical device and electronic equipment - Google Patents
Negative pole piece, electrochemical device and electronic equipment Download PDFInfo
- Publication number
- CN114649500A CN114649500A CN202210349149.5A CN202210349149A CN114649500A CN 114649500 A CN114649500 A CN 114649500A CN 202210349149 A CN202210349149 A CN 202210349149A CN 114649500 A CN114649500 A CN 114649500A
- Authority
- CN
- China
- Prior art keywords
- active material
- material layer
- porosity
- negative electrode
- pole piece
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/64—Carriers or collectors
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
本申请涉及电池技术领域,特别公开了一种负极极片、电化学装置及电子设备,包括集流体和负极活性物质层。所述负极活性物质层设置于所述集流体上,所述负极活性物质层包括第一活性物质层和第二活性物质层,所述第一活性物质层设置于所述集流体上,所述第一活性物质层位于所述集流体和所述第二活性物质层之间,其中,所述第二活性物质层的孔隙率为P2,所述第一活性物质层的孔隙率为P1,所述第二活性物质层的孔隙率P2满足:20%≤P2≤26%,且0.8≤P2/P1≤1.6。通过上述方式,本申请实施例能够降低锂离子电池电极上的电容量和功率损失。
The present application relates to the technical field of batteries, and particularly discloses a negative electrode pole piece, an electrochemical device and an electronic device, including a current collector and a negative electrode active material layer. The negative electrode active material layer is arranged on the current collector, the negative electrode active material layer includes a first active material layer and a second active material layer, the first active material layer is arranged on the current collector, the The first active material layer is located between the current collector and the second active material layer, wherein the porosity of the second active material layer is P 2 , and the porosity of the first active material layer is P 1 , the porosity P 2 of the second active material layer satisfies: 20%≦P 2 ≦26%, and 0.8≦P 2 /P 1 ≦1.6. In the above manner, the embodiments of the present application can reduce the capacitance and power loss on the electrode of the lithium ion battery.
Description
技术领域technical field
本申请涉及电池技术领域,特别是涉及一种负极极片、电化学装置及电子设备。The present application relates to the field of battery technology, and in particular, to a negative electrode plate, an electrochemical device and an electronic device.
背景技术Background technique
目前,随着科学技术的不断进步,锂离子电池的应用领域也迅速扩展,已经从最初的手机、摄像机等便携式移动设备扩展至电动自行车、电动汽车等大功率高能量要求的大型电动设备。因此,对锂离子电池的设计和制作工艺的要求也越来越高。其中,锂离子电池中的负极极片上的电极材料与电解液在固液相界面上发生反应,形成一层覆盖于电极材料表面的钝化层,钝化层可供锂离子自由的嵌入和脱出,因此,钝化层被称为固体电解质界面膜(solid electrolyte interface),简称SEI膜。At present, with the continuous advancement of science and technology, the application field of lithium-ion batteries has also expanded rapidly, from the initial portable mobile devices such as mobile phones and cameras to large electric devices with high power and high energy requirements such as electric bicycles and electric vehicles. Therefore, the requirements for the design and manufacturing process of lithium-ion batteries are getting higher and higher. Among them, the electrode material on the negative pole piece in the lithium ion battery reacts with the electrolyte at the solid-liquid phase interface to form a passivation layer covering the surface of the electrode material, and the passivation layer can be used for free insertion and extraction of lithium ions. , Therefore, the passivation layer is called a solid electrolyte interface film (solid electrolyte interface), referred to as SEI film.
本申请实施例的发明人在实现本申请的过程中,发现:负极极片上形成的SEI膜易出现金属沉积,从而导致SEI膜孔道阻塞,进一步造成锂离子电池上电极的电容量保持率较低以及功率损失严重,从而使得锂离子电池的循环性能不佳以及锂离子电池的使用寿命不长。In the process of realizing the present application, the inventors of the embodiments of the present application found that the SEI film formed on the negative electrode plate is prone to metal deposition, which leads to the blockage of the pores of the SEI film, and further causes the low capacity retention rate of the upper electrode of the lithium ion battery. And the power loss is serious, so that the cycle performance of the lithium ion battery is poor and the service life of the lithium ion battery is not long.
发明内容SUMMARY OF THE INVENTION
鉴于上述问题,本申请实施例提供了一种负极极片、电化学装置及电子设备,改善了上述锂离子电池上电极的电容量保持率较低,从而导致锂离子电池的循环性能不佳以及锂离子电池的使用寿命不长等问题。In view of the above problems, the embodiments of the present application provide a negative pole piece, an electrochemical device and an electronic device, which improve the low capacity retention rate of the upper electrode of the above-mentioned lithium ion battery, thereby resulting in poor cycle performance of the lithium ion battery and Lithium-ion batteries do not have a long service life.
根据本申请实施例的一个方面,提供了一种负极极片,该负极极片包括集流体和负极活性物质层,所述负极活性物质层设置于所述集流体上,所述负极活性物质层包括第一活性物质层和第二活性物质层,所述第一活性物质层设置于所述集流体上,且所述第一活性物质层位于所述集流体和所述第二活性物质层之间,其中,所述第二活性物质层的孔隙率为P2,所述第一活性物质层的孔隙率为P1,所述第二活性物质层的孔隙率P2满足:20%≤P2≤26%,且0.8≤P2/P1≤1.6。这样设置,可减小负极极片上形成的SEI膜出现金属沉积,从而出现SEI膜孔道堵塞的现象。According to an aspect of the embodiments of the present application, a negative electrode pole piece is provided, the negative electrode pole piece includes a current collector and a negative electrode active material layer, the negative electrode active material layer is disposed on the current collector, and the negative electrode active material layer It includes a first active material layer and a second active material layer, the first active material layer is arranged on the current collector, and the first active material layer is located between the current collector and the second active material layer The porosity of the second active material layer is P 2 , the porosity of the first active material layer is P 1 , and the porosity P 2 of the second active material layer satisfies: 20%≤P 2 ≤ 26%, and 0.8 ≤ P 2 /P 1 ≤ 1.6. In this way, the metal deposition of the SEI film formed on the negative pole piece can be reduced, so that the phenomenon that the pores of the SEI film are blocked.
在一种可选的方式中,所述第二活性物质层的孔隙率P2大于所述第一活性物质层的孔隙率P1,且1.1≤P2/P1≤1.4。这样设置,可保证电池在循环过程中,减少由于负极极片上的第一活性物质层/第二活性物质层的不断脱嵌锂,而导致的第二活性物质层的孔隙率P2逐渐减小,以及第一活性物质层的孔隙率P1逐渐增大等问题,进一步提升电池电极上的电容量保有率。In an optional manner, the porosity P 2 of the second active material layer is greater than the porosity P 1 of the first active material layer, and 1.1≦P 2 /P 1 ≦1.4. This setting can ensure that during the cycle of the battery, the porosity P2 of the second active material layer is gradually reduced due to the continuous de-intercalation of lithium from the first active material layer/second active material layer on the negative pole piece. , and the porosity P1 of the first active material layer gradually increases, which further improves the capacity retention rate on the battery electrode.
在一种可选的方式中,所述第一活性物质层的孔隙率P1满足:16%≤P1≤24%。In an optional manner, the porosity P 1 of the first active material layer satisfies: 16%≦P 1 ≦24%.
在一种可选的方式中,所述第一活性物质层还包括第一活性材料,所述第二活性物质层还包括第二活性材料,所述第二活性材料的Dv50大于所述第一活性材料的Dv50。In an optional manner, the first active material layer further includes a first active material, the second active material layer further includes a second active material, and the Dv50 of the second active material is greater than that of the first active material Dv50 of active material.
在一种可选的方式中,所述第一活性材料和所述第二活性材料包括石墨。In an optional manner, the first active material and the second active material comprise graphite.
在一种可选的方式中,所述第二活性材料的Dv50大于所述第一活性材料的Dv50。In an optional manner, the Dv50 of the second active material is greater than the Dv50 of the first active material.
在一种可选的方式中,所述第一活性材料的Dv50范围为2.9μm至3.3μm,所述第二活性材料的Dv50范围为3.3μm至3.7μm。In an optional manner, the Dv50 of the first active material ranges from 2.9 μm to 3.3 μm, and the Dv50 of the second active material ranges from 3.3 μm to 3.7 μm.
在一种可选的方式中,沿所述负极极片的厚度方向,所述第一活性物质层和第二活性物质层的厚度分别占所述负极活性物质层总厚度的50%。In an optional manner, along the thickness direction of the negative electrode pole piece, the thicknesses of the first active material layer and the second active material layer respectively account for 50% of the total thickness of the negative electrode active material layer.
根据本申请实施例的另一个方面,提供了一种电化学装置,该电化学装置包括如上所述的负极极片。According to another aspect of the embodiments of the present application, an electrochemical device is provided, and the electrochemical device includes the negative electrode plate as described above.
根据本申请实施例的另一个方面,提供了一种电子设备,该电子设备包括如上所述的电化学装置。According to another aspect of the embodiments of the present application, there is provided an electronic device including the electrochemical device as described above.
本申请实施例的有益效果是:区别于现有技术的情况,本申请实施例通过设置有集流体和负极活性物质层,所述负极活性物质层设置于所述集流体上。其中,所述负极活性物质层包括第一活性物质层和第二活性物质层,所述第一活性物质层设置于所述集流体上,所述第二活性物质层设置于所述第一活性物质层上,且所述第一活性物质层位于所述集流体和所述第二活性物质层之间。此外,所述第二活性物质层的孔隙率为P2,所述第一活性物质层的孔隙率为P1,且0.8≤P2/P1≤1.6。这样设置,第一活性物质层和第二活性物质层形成的SEI膜可降低金属沉积,减少SEI膜孔道堵塞,从而降低锂离子电池电极上的电容量和功率损失,提升锂离子电池的循环性能和延长锂离子电池的使用寿命。The beneficial effects of the embodiments of the present application are: different from the situation in the prior art, the embodiments of the present application are provided with a current collector and a negative electrode active material layer, and the negative electrode active material layer is provided on the current collector. Wherein, the negative electrode active material layer includes a first active material layer and a second active material layer, the first active material layer is disposed on the current collector, and the second active material layer is disposed on the first active material layer on the material layer, and the first active material layer is located between the current collector and the second active material layer. In addition, the porosity of the second active material layer is P 2 , the porosity of the first active material layer is P 1 , and 0.8≦P 2 /P 1 ≦1.6. In this way, the SEI film formed by the first active material layer and the second active material layer can reduce metal deposition and block the pores of the SEI film, thereby reducing the capacitance and power loss on the electrode of the lithium ion battery, and improving the cycle performance of the lithium ion battery. and extend the life of lithium-ion batteries.
附图说明Description of drawings
为了更清楚地说明本申请具体实施例或现有技术中的技术方案,下面将对具体实施例或现有技术描述中所需要使用的附图作简单地介绍。在所有附图中,类似的元件或部分一般由类似的附图标记标识。附图中,各元件或部分并不一定按照实际的比例绘制。In order to illustrate the specific embodiments of the present application or the technical solutions in the prior art more clearly, the following briefly introduces the drawings that are required to be used in the description of the specific embodiments or the prior art. Similar elements or parts are generally identified by similar reference numerals throughout the drawings. In the drawings, each element or section is not necessarily drawn to actual scale.
图1是本申请实施例负极极片的整体结构侧视图;Fig. 1 is the overall structure side view of the negative pole piece of the embodiment of the present application;
图2是本申请实施例负极极片的整体结构又一侧视图;2 is another side view of the overall structure of the negative pole piece of the embodiment of the present application;
图3是本申请实施例负极极片的微观结构侧视图;Fig. 3 is the microstructure side view of the negative electrode pole piece of the embodiment of the present application;
图4是本申请实施例负极极片的另一微观结构侧视图;Fig. 4 is another microstructure side view of the negative pole piece of the embodiment of the present application;
图5是本申请实施例电子设备的结构示意图。FIG. 5 is a schematic structural diagram of an electronic device according to an embodiment of the present application.
具体实施方式Detailed ways
为了便于理解本申请,下面结合附图和具体实施例,对本申请进行更详细的说明。需要说明的是,当元件被表述“固定于”另一个元件,它可以直接在另一个元件上、或者其间可以存在一个或多个居中的元件。当一个元件被表述“连接”另一个元件,它可以是直接连接到另一个元件、或者其间可以存在一个或多个居中的元件。本说明书所使用的术语“垂直的”、“水平的”、“左”、“右”以及类似的表述只是为了说明的目的。In order to facilitate the understanding of the present application, the present application will be described in more detail below with reference to the accompanying drawings and specific embodiments. It should be noted that when an element is referred to as being "fixed to" another element, it can be directly on the other element, or one or more intervening elements may be present therebetween. When an element is referred to as being "connected" to another element, it can be directly connected to the other element or one or more intervening elements may be present therebetween. The terms "vertical", "horizontal", "left", "right" and similar expressions used in this specification are for illustrative purposes only.
除非另有定义,本说明书所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同。本说明书中所使用的术语只是为了描述具体的实施例的目的,不是用于限制本申请。本说明书所使用的术语“和/或”包括一个或多个相关的所列项目的任意的和所有的组合。Unless otherwise defined, all technical and scientific terms used in this specification have the same meaning as commonly understood by one of ordinary skill in the technical field belonging to this application. The terms used in this specification are for the purpose of describing specific embodiments only, and are not used to limit the application. As used in this specification, the term "and/or" includes any and all combinations of one or more of the associated listed items.
此外,下面所描述的本申请不同实施例中所涉及的技术特征只要彼此之间未构成冲突就可以相互结合。In addition, the technical features involved in the different embodiments of the present application described below can be combined with each other as long as there is no conflict with each other.
请参阅图1,负极极片100包括集流体101和负极活性物质层102。其中,集流体101具有第一表面1011和与第一表面1011相对的第二表面1012,该负极活性物质层102设置于上述集流体101的第一表面1011/第二表面1012。以下对集流体101、负极活性物质层102以及以负极活性物质层102位于集流体101的第一表面1011时作具体说明。Referring to FIG. 1 , the negative
对于上述负极活性物质层102,如图1和图2所示,该负极活性物质层102包括第一活性物质层1021和第二活性物质层1022。其中,第一活性物质层1021设置于上述集流体101上,第二活性物质层1022设置于第一活性物质层1021上,且第一活性物质层1021位于集流体101和第二活性物质层1022之间。此外,为减小负极极片上形成的SEI膜出现金属沉积,从而出现SEI膜孔道堵塞的现象,第二活性物质层1022的孔隙率为P2,第一活性物质层1021的孔隙率为P1,且0.8≤P2/P1≤1.6。可选地,第一活性物质层1021的孔隙率P1满足:16%≤P1≤24%。可选地,第二活性物质层1022的孔隙率P2满足:20%≤P2≤26%。For the above-mentioned negative electrode
需要说明的是:孔隙是材料的颗粒间距,孔隙率P指的是材料中孔隙体积与材料在自然状态下总体积的百分比。其中,各层孔隙率P可通过如下方法测试:首先将极片冲成直径大小为10mm或14mm的圆片且表面平整无缺口,无掉粉,小圆片数量大于40片,通过电镜扫描横截面可以分别得到第一活性物质层和第二活性物质层的厚度,随后根据各层厚度将两层不同孔隙率膜片分切开,再用碳酸二甲酯清洗并烘干,随后采用气体置换法测试,即可得到不同膜片的孔隙率。It should be noted that: the pore is the particle spacing of the material, and the porosity P refers to the percentage of the pore volume in the material to the total volume of the material in its natural state. Among them, the porosity P of each layer can be tested by the following method: first, the pole piece is punched into a circular piece with a diameter of 10mm or 14mm, and the surface is flat without gaps, no powder drop, and the number of small discs is greater than 40 pieces. The thickness of the first active material layer and the second active material layer can be obtained from the cross section, and then the two layers of membranes with different porosity are cut according to the thickness of each layer, and then cleaned and dried with dimethyl carbonate, and then replaced by gas. The porosity of different membranes can be obtained by the method of testing.
在一些实施例中,如图3所示,第二活性物质层1022的孔隙率P2大于第一活性物质层1021的孔隙率P1,且1.1≤P2/P1≤1.4。这样设置,可保证电池在循环过程中,减少由于负极极片上的第一活性物质层1021/第二活性物质层1022的不断脱嵌锂,而导致的第二活性物质层1022的孔隙率P2逐渐减小,以及第一活性物质层1021的孔隙率P1逐渐增大等问题,进一步提升电池电极上的电容量保有率。In some embodiments, as shown in FIG. 3 , the porosity P 2 of the second
在一些实施例中,第一活性物质层1021和第二活性物质层1022均包括石墨。可选地,第一活性物质层1021中的石墨选用低膨胀石墨。其中,低膨胀性能是相对于第二活性物质层1022中的石墨来进行比较的,即第一活性物质层1021中的石墨的膨胀性能比第二活性物质层1022中的石墨的膨胀性能低,膨胀性能越低,表示在相同情况下越不容易发生膨胀。这样设置,有利于降低负极上第一活性物质层1021与集流体101之间的剥离度,从而改善电池循环稳定性。In some embodiments, both the first
在一些实施例中,如图4所示,第二活性物质层1022的石墨的Dv50大于第一活性物质层1021的石墨的Dv50。其中,Dv50是指在体积基准的粒度分布中,从小粒径测起、达到体积累积50%的粒径(可使用激光粒径测试仪测量)。可选地,第一活性物质层1021中石墨的Dv50范围为2.9μm至3.3μm。可选地,第二活性物质层1022中石墨的Dv50范围为3.3μm至3.7μm。In some embodiments, as shown in FIG. 4 , the Dv50 of the graphite of the second
在一些实施例中,沿负极极片的厚度方向,第一活性物质层1021和第二活性物质层1022的厚度分别占负极活性物质层102总厚度的50%。In some embodiments, the thicknesses of the first
此外,为便于读者理解本技术方案中负极极片的性能所带来的的技术效果,本申请实施例还进行了对比试验,其中,负极极片、隔离膜以及正极极片以卷绕的方式应用于电池中,选用本申请11种不同的负极极片,以及,现有技术的1种负极极片作为对比例,当然,本申请的实施例方式并不限于此,试验过程如下:In addition, in order to facilitate readers to understand the technical effect brought by the performance of the negative pole piece in this technical solution, a comparative test is also carried out in the examples of this application, wherein the negative pole piece, the separator and the positive pole piece are wound in a way of winding Applied to the battery, 11 different negative pole pieces of the present application and 1 negative pole piece of the prior art are selected as the comparative example. Of course, the embodiments of the present application are not limited to this, and the test process is as follows:
电池放电率测试方法:在常温(25摄氏度)下,以1.2C的充电倍率对电池恒流充电至4.5V,再以4.5V对电池恒压充电至0.1C截止,静置5min,然后分别以不同倍率(0.2C、0.5C、1C、1.5C、2C)恒流放电至3V,记录不同倍率下放出的容量,以0.2C放出容量为基准,算出不同倍率下放电容量比率。Test method of battery discharge rate: at normal temperature (25 degrees Celsius), charge the battery with a constant current of 1.2C to 4.5V, and then charge the battery with a constant voltage of 4.5V to 0.1C, let it stand for 5 minutes, and then use Different rates (0.2C, 0.5C, 1C, 1.5C, 2C) were discharged to 3V at constant current, and the discharge capacity at different rates was recorded. Based on the 0.2C discharge capacity, the discharge capacity ratio at different rates was calculated.
电池膨胀和容量保持率测试方法:常温(25摄氏度)下,以1.2C的充电倍率对电池恒流充电至4.5V,再以4.5V对电池恒压充电至0.1C截止,静置5min,然后1.0C恒流放电至3V,在该条件下循环1000圈,记录1000圈的1C放电对应的容量及电芯厚度,以第一圈放电容量及电芯初始厚度为基准,算出1000圈的容量保持率及厚度膨胀率。Test method for battery expansion and capacity retention rate: under normal temperature (25 degrees Celsius), charge the battery with a constant current of 1.2C to 4.5V, and then charge the battery with a constant voltage of 4.5V to 0.1C, let it stand for 5 minutes, and then 1.0C constant current discharge to 3V, cycle 1000 cycles under this condition, record the capacity and cell thickness corresponding to 1000 cycles of 1C discharge, and calculate the capacity retention of 1000 cycles based on the discharge capacity of the first cycle and the initial thickness of the cell rate and thickness expansion.
对比例中的负极极片包括集流体和负极活性物质层,对比例中负极活性物质层为单层活性物质层,或者,对比例中的两层活性物质层(第一活性物质层和第二活性物质层)的孔隙率比值范围与本申请中的两层活性物质层的孔隙率比值范围存在差异。The negative pole piece in the comparative example includes a current collector and a negative active material layer, and the negative active material layer in the comparative example is a single-layer active material layer, or, the two-layer active material layer in the comparative example (the first active material layer and the second active material layer). The porosity ratio range of the active material layer) is different from the porosity ratio range of the two active material layers in the present application.
实施例1Example 1
正极极片的制备:将正极活性材料钴酸锂、导电剂导电炭黑、粘结剂聚偏氟乙烯按重量比97.6:1.3:1.1的比例溶于有机溶剂N-甲基吡咯烷酮(NMP)溶液中,经过搅拌形成正极浆料。采用9um铝箔作为正极集流体,将正极浆料涂覆于正极集流体上,涂布重量为280mg/1540.25mm2,先后经过干燥、冷压、分切后得到正极极片,冷压后正极极片厚度为96um,活性物质层质量密度为4.23g/cm3。Preparation of positive electrode sheet: The positive active material lithium cobalt oxide, the conductive agent conductive carbon black, and the binder polyvinylidene fluoride are dissolved in an organic solvent N-methylpyrrolidone (NMP) solution in a weight ratio of 97.6:1.3:1.1 In the process, a positive electrode slurry is formed by stirring. Using 9um aluminum foil as the positive electrode current collector, the positive electrode slurry was coated on the positive electrode current collector, the coating weight was 280mg/1540.25mm2, and the positive electrode pole piece was obtained after drying, cold pressing and slitting successively. The thickness is 96um, and the mass density of the active material layer is 4.23g/cm3.
负极极片的制备:将负极活性材料石墨、粘结剂丁苯橡胶和分散剂羧甲基纤维素钠按重量比97.8:1:1的比例溶于去离子水中,形成负极浆料。采用6um铜箔作为负极集流体,先将第一层负极浆料涂覆于负极集流体上,涂布重量为为80mg/1540.25mm2,形成第一活性物质层,待干燥后再涂覆第二层负极浆料,第二层负极浆料重量也为80mg/1540.25mm2,形成第二活性物质层,再先后经过干燥、冷压、裁切得到复合负极极片,冷压后复合负极极片厚度为119um,活性物质层质量密度为1.74g/cm3。第二活性物质层和第一活性物质层的孔隙率不同,第二活性物质层的孔隙率为20%,第一活性物质层的孔隙率为24%,上下两层活性物质层的孔隙率比为0.8,第一活性材料和第二活性材料的Dv50相同,且Dv50取2.9μm,且第一活性材料和第二活性材料均为石墨。Preparation of negative electrode pole piece: The negative electrode active material graphite, binder styrene-butadiene rubber and dispersant sodium carboxymethyl cellulose are dissolved in deionized water in a weight ratio of 97.8:1:1 to form a negative electrode slurry. Using 6um copper foil as the negative electrode current collector, first coat the first layer of negative electrode slurry on the negative electrode current collector with a coating weight of 80mg/1540.25mm 2 to form the first active material layer, and then coat the first layer after drying. Two layers of negative electrode slurry, the weight of the second layer of negative electrode slurry is also 80mg/1540.25mm 2 , to form a second active material layer, and then successively dried, cold pressed and cut to obtain a composite negative electrode piece. After cold pressing, the composite negative electrode The thickness of the sheet is 119 um, and the mass density of the active material layer is 1.74 g/cm 3 . The porosity of the second active material layer is different from that of the first active material layer, the porosity of the second active material layer is 20%, the porosity of the first active material layer is 24%, and the porosity ratio of the upper and lower active material layers is 0.8, the Dv50 of the first active material and the second active material are the same, and the Dv50 is 2.9 μm, and both the first active material and the second active material are graphite.
隔离膜的制备:隔离膜基材为8μm厚的聚乙烯(PE),在隔离膜基材的两侧各涂覆2μm氧化铝陶瓷层,最后在涂布了陶瓷层的两侧各涂覆2.5mg的粘结剂聚偏二氟乙烯(PVDF),烘干。Preparation of isolation film: The isolation film substrate is polyethylene (PE) with a thickness of 8 μm, and 2 μm alumina ceramic layers are coated on both sides of the isolation film substrate, and finally, 2.5 μm alumina ceramic layers are coated on both sides of the coated ceramic layer. mg of binder polyvinylidene fluoride (PVDF), dried.
电解液的制备:在含水量小于10ppm的环境下,将六氟磷酸锂与非水有机溶剂(碳酸乙烯酯(EC):碳酸二乙酯(DEC):碳酸亚丙酯(PC):丙酸丙酯(PP):碳酸亚乙烯酯(VC)=20:30:20:28:2,重量比)按重量比8:92配制以形成电解液。Preparation of electrolyte: in an environment with a water content of less than 10 ppm, mix lithium hexafluorophosphate with a non-aqueous organic solvent (ethylene carbonate (EC): diethyl carbonate (DEC): propylene carbonate (PC): propyl propionate ( PP): vinylene carbonate (VC) = 20:30:20:28:2, weight ratio) was formulated at a weight ratio of 8:92 to form an electrolyte.
锂离子电池的制备:将正极极片、隔离膜、负极极片按顺序依次叠好,使隔离膜处于正极极片和负极极片中间起到隔离的作用,并卷绕得到电极组件。将电极组件置于外包装铝塑膜中,在80℃下脱去水分后,注入上述电解液并封装,经过化成、脱气、切边等工艺流程得到锂离子电池。Preparation of lithium ion battery: stack the positive pole piece, the separator and the negative pole piece in order, so that the separator is in the middle of the positive pole piece and the negative pole piece to play a role of isolation, and coil to obtain the electrode assembly. The electrode assembly is placed in the outer packaging aluminum-plastic film, and after dehydration at 80 °C, the above electrolyte is injected and packaged, and the lithium ion battery is obtained through the process of formation, degassing, and trimming.
实施例2Example 2
与实施例1不同的是,第二活性物质层的孔隙率为23%,第一活性物质层的孔隙率为21%,上下两层活性物质层的孔隙率比为1.1;其余与实施例1相同。The difference from Example 1 is that the porosity of the second active material layer is 23%, the porosity of the first active material layer is 21%, and the porosity ratio of the upper and lower active material layers is 1.1; same.
实施例3Example 3
与实施例1不同的是,第二活性物质层的孔隙率为24%,第一活性物质层的孔隙率为20%,上下两层活性物质层的孔隙率比为1.2;其余与实施例1相同。The difference from Example 1 is that the porosity of the second active material layer is 24%, the porosity of the first active material layer is 20%, and the porosity ratio of the upper and lower active material layers is 1.2; same.
实施例4Example 4
与实施例1不同的是,第二活性物质层的孔隙率为25%,第一活性物质层的孔隙率为18%,上下两层活性物质层的孔隙率比为1.4;其余与实施例1相同。The difference from Example 1 is that the porosity of the second active material layer is 25%, the porosity of the first active material layer is 18%, and the porosity ratio of the upper and lower active material layers is 1.4; same.
实施例5Example 5
与实施例1不同的是,第二活性物质层的孔隙率为26%,第一活性物质层的孔隙率为16%,上下两层活性物质层的孔隙率比为1.6;其余与实施例1相同。The difference from Example 1 is that the porosity of the second active material layer is 26%, the porosity of the first active material layer is 16%, and the porosity ratio of the upper and lower active material layers is 1.6; same.
实施例6Example 6
与实施例1不同的是,第二活性材料Dv50取3.4μm,其余与实施例1相同。The difference from Example 1 is that the Dv50 of the second active material is 3.4 μm, and the rest are the same as Example 1.
实施例7Example 7
与实施例2不同的是,第二活性材料Dv50取3.4μm,其余与实施例2相同。The difference from Example 2 is that the Dv50 of the second active material is 3.4 μm, and the rest is the same as Example 2.
实施例8Example 8
与实施例3不同的是,第二活性材料Dv50取3.4μm,其余与实施例3相同。The difference from Example 3 is that the Dv50 of the second active material is 3.4 μm, and the rest is the same as Example 3.
实施例9Example 9
与实施例4不同的是,第二活性材料Dv50取3.4μm,其余与实施例4相同。The difference from Example 4 is that the Dv50 of the second active material is 3.4 μm, and the rest is the same as Example 4.
实施例10Example 10
与实施例5不同的是,第二活性材料Dv50取3.4μm,其余与实施例5相同。The difference from Example 5 is that the Dv50 of the second active material is 3.4 μm, and the rest are the same as in Example 5.
实施例11Example 11
与实施例6不同的是,第一活性物质层孔隙率和第二活性物质层孔隙率均为22%,上下两层活性物质层的孔隙率比为1,其余与实施例6相同。The difference from Example 6 is that the porosity of the first active material layer and the porosity of the second active material layer are both 22%, the porosity ratio of the upper and lower active material layers is 1, and the rest is the same as Example 6.
对比例1Comparative Example 1
与实施例1不同的是,负极极片采用单层涂布,即负极活性物质层为单层活性物质层,将负极活性材料石墨、粘结剂丁苯橡胶和分散剂羧甲基纤维素钠按重量比97.8:1:1的比例溶于去离子水中,形成负极浆料。采用铜箔作为负极集流体,将负极浆料涂覆于负极集流体上,涂布重量为为160mg/1540.25mm2,先后经过干燥、冷压、裁切得到负极极片,冷压后负极极片厚度为119um,活性物质层质量密度为4.23g/cm3,单层活性物质层的孔隙率为22%,活性材料为Dv50为2.9μm的石墨。The difference from Example 1 is that the negative electrode pole piece is coated with a single layer, that is, the negative electrode active material layer is a single layer active material layer, and the negative electrode active material graphite, the binder styrene-butadiene rubber and the dispersant sodium carboxymethyl cellulose are coated. Dissolve in deionized water at a weight ratio of 97.8:1:1 to form a negative electrode slurry. Using copper foil as the negative electrode current collector, the negative electrode slurry was coated on the negative electrode current collector with a coating weight of 160mg/1540.25mm 2 , and the negative electrode pole piece was obtained by drying, cold pressing and cutting successively. The sheet thickness is 119 um, the mass density of the active material layer is 4.23 g/cm 3 , the porosity of the single-layer active material layer is 22%, and the active material is graphite with Dv50 of 2.9 μm.
试验结果如下表格所示:The test results are shown in the following table:
由表格的试验数据可知:实施例1-11与对比例1可知,双层涂布可以明显改善循环性能,且当第二活性物质层与第一活性物质层的孔隙比在1.1至1.4之间时,电池的倍率性能明显改善,可以达到性能最优。在第二活性物质层和第一活性物质层孔隙率比相同的情况下,通过调控第一活性物质层与第二活性材料物质层中活性材料的Dv50,使得第二活性物质层中活性材料的Dv50大于第一活性物质层中活性材料的Dv50,从而实现电池的放电率、容量保持率和膨胀性能均有进一步改善。It can be seen from the test data in the table: Examples 1-11 and Comparative Example 1 show that the double-layer coating can significantly improve the cycle performance, and when the void ratio of the second active material layer and the first active material layer is between 1.1 and 1.4 When the rate performance of the battery is significantly improved, the optimal performance can be achieved. In the case where the porosity ratio of the second active material layer and the first active material layer is the same, by adjusting the Dv50 of the active material in the first active material layer and the second active material material layer, the active material in the second active material layer has the same porosity ratio. The Dv50 is greater than the Dv50 of the active material in the first active material layer, so that the discharge rate, capacity retention rate and swelling performance of the battery are further improved.
在本申请实施例中,通过设置有集流体101和负极活性物质层102,所述负极活性物质层102设置于所述集流体101上。其中,所述负极活性物质层102包括第一活性物质层1021和第二活性物质层1022,所述第一活性物质层1021设置于所述集流体101上,所述第二活性物质层1022设置于所述第一活性物质层1021上,且所述第一活性物质层1021位于所述集流体101和所述第二活性物质层1022之间。此外,所述第二活性物质层1022的孔隙率为P2,所述第一活性物质层1021的孔隙率为P1,且0.8≤P2/P1≤1.6。这样设置,第一活性物质层1021和第二活性物质层1022形成的SEI膜可降低金属沉积,减少SEI膜孔道堵塞,从而降低锂离子电池电极上的电容量和功率损失,提升锂离子电池的循环性能和延长锂离子电池的使用寿命。In the embodiment of the present application, the
本申请还提供了一种电化学装置的实施例,该电化学装置包括正极极片、隔离膜和如上所述的负极极片,隔离膜设于正极极片和负极极片之间,且正极极片、隔离膜和负极极片依次卷绕或堆叠设置,负极极片的功能和结构可参阅上述实施例,此处不再一一赘述。可以理解的是,该电化学装置可为电池,此外,负极极片还可应用于除电池以外的其他电子产品中。The application also provides an embodiment of an electrochemical device, the electrochemical device includes a positive electrode piece, a separator, and the above-mentioned negative electrode piece, the separator is arranged between the positive electrode piece and the negative electrode piece, and the positive electrode The pole piece, the separator and the negative pole piece are wound or stacked in sequence. The function and structure of the negative pole piece can refer to the above-mentioned embodiments, and will not be repeated here. It can be understood that the electrochemical device can be a battery, and the negative electrode sheet can also be applied to other electronic products other than batteries.
本申请还提供了一种电子设备2的实施例,如图5所示,该电子设备包括如上所述的电化学装置,电化学装置的功能和结构可参阅上述实施例,此处不再一一赘述。The present application also provides an embodiment of an
需要说明的是,本申请的说明书及其附图中给出了本申请的较佳的实施例,但是,本申请可以通过许多不同的形式来实现,并不限于本说明书所描述的实施例,这些实施例不作为对本申请内容的额外限制,提供这些实施例的目的是使对本申请的公开内容的理解更加透彻全面。并且,上述各技术特征继续相互组合,形成未在上面列举的各种实施例,均视为本申请说明书记载的范围;进一步地,对本领域普通技术人员来说,可以根据上述说明加以改进或变换,而所有这些改进和变换都应属于本申请所附权利要求的保护范围。It should be noted that preferred embodiments of the present application are given in the description of the present application and the accompanying drawings. However, the present application can be implemented in many different forms, and is not limited to the embodiments described in the present specification. These embodiments are not intended as additional limitations to the content of the present application, and are provided for the purpose of making the understanding of the disclosure of the present application more thorough and complete. In addition, the above technical features continue to be combined with each other to form various embodiments not listed above, which are all regarded as the scope of the description of this application; further, for those of ordinary skill in the art, they can be improved or transformed according to the above descriptions , and all these improvements and transformations should belong to the protection scope of the appended claims of this application.
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210349149.5A CN114649500A (en) | 2022-04-01 | 2022-04-01 | Negative pole piece, electrochemical device and electronic equipment |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210349149.5A CN114649500A (en) | 2022-04-01 | 2022-04-01 | Negative pole piece, electrochemical device and electronic equipment |
Publications (1)
Publication Number | Publication Date |
---|---|
CN114649500A true CN114649500A (en) | 2022-06-21 |
Family
ID=81994826
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210349149.5A Pending CN114649500A (en) | 2022-04-01 | 2022-04-01 | Negative pole piece, electrochemical device and electronic equipment |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114649500A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116190565A (en) * | 2023-04-18 | 2023-05-30 | 中创新航科技集团股份有限公司 | Lithium ion battery |
CN116314591A (en) * | 2023-04-03 | 2023-06-23 | 厦门海辰储能科技股份有限公司 | Electrode pads, batteries, battery packs and electrical equipment |
CN116914079A (en) * | 2023-08-29 | 2023-10-20 | 珠海冠宇电池股份有限公司 | An electrode sheet and battery |
CN117976818A (en) * | 2024-03-28 | 2024-05-03 | 宁德时代新能源科技股份有限公司 | Battery cell, battery and electricity utilization device |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006108113A (en) * | 1998-10-29 | 2006-04-20 | Toshiba Corp | Non-aqueous electrolyte secondary battery |
US20170125788A1 (en) * | 2013-01-25 | 2017-05-04 | Lg Chem, Ltd. | Anode for lithium secondary battery and lithium secondary battery including the same |
CN110867560A (en) * | 2018-08-28 | 2020-03-06 | 宁德时代新能源科技股份有限公司 | Negative pole piece and secondary battery |
CN111261834A (en) * | 2020-03-25 | 2020-06-09 | 宁德新能源科技有限公司 | Negative pole piece, electrochemical device and electronic device |
CN113745451A (en) * | 2021-08-30 | 2021-12-03 | 湖北亿纬动力有限公司 | A kind of negative electrode sheet, preparation method of negative electrode sheet and lithium ion battery |
CN113875049A (en) * | 2020-04-30 | 2021-12-31 | 宁德时代新能源科技股份有限公司 | Secondary battery, method for producing the same, and device containing the same |
-
2022
- 2022-04-01 CN CN202210349149.5A patent/CN114649500A/en active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006108113A (en) * | 1998-10-29 | 2006-04-20 | Toshiba Corp | Non-aqueous electrolyte secondary battery |
US20170125788A1 (en) * | 2013-01-25 | 2017-05-04 | Lg Chem, Ltd. | Anode for lithium secondary battery and lithium secondary battery including the same |
CN110867560A (en) * | 2018-08-28 | 2020-03-06 | 宁德时代新能源科技股份有限公司 | Negative pole piece and secondary battery |
CN111261834A (en) * | 2020-03-25 | 2020-06-09 | 宁德新能源科技有限公司 | Negative pole piece, electrochemical device and electronic device |
CN113875049A (en) * | 2020-04-30 | 2021-12-31 | 宁德时代新能源科技股份有限公司 | Secondary battery, method for producing the same, and device containing the same |
CN113745451A (en) * | 2021-08-30 | 2021-12-03 | 湖北亿纬动力有限公司 | A kind of negative electrode sheet, preparation method of negative electrode sheet and lithium ion battery |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116314591A (en) * | 2023-04-03 | 2023-06-23 | 厦门海辰储能科技股份有限公司 | Electrode pads, batteries, battery packs and electrical equipment |
CN116190565A (en) * | 2023-04-18 | 2023-05-30 | 中创新航科技集团股份有限公司 | Lithium ion battery |
CN116190565B (en) * | 2023-04-18 | 2023-08-18 | 中创新航科技集团股份有限公司 | A lithium ion battery |
CN116914079A (en) * | 2023-08-29 | 2023-10-20 | 珠海冠宇电池股份有限公司 | An electrode sheet and battery |
WO2025044731A1 (en) * | 2023-08-29 | 2025-03-06 | 珠海冠宇电池股份有限公司 | Electrode sheet and battery |
CN116914079B (en) * | 2023-08-29 | 2025-07-08 | 珠海冠宇电池股份有限公司 | Electrode plate and battery |
CN117976818A (en) * | 2024-03-28 | 2024-05-03 | 宁德时代新能源科技股份有限公司 | Battery cell, battery and electricity utilization device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN113097441B (en) | Electrochemical device and electronic device | |
CN104008893B (en) | Preparation method of lithium-ion hybrid capacitor and lithium-ion hybrid capacitor | |
CN114649500A (en) | Negative pole piece, electrochemical device and electronic equipment | |
CN102709591B (en) | Lithium ion secondary battery | |
CN115088100B (en) | Negative electrode composite material and application thereof | |
CA3201114A1 (en) | Lithium-ion battery and electric vehicle | |
CN100416910C (en) | Non-aqueous electrolyte secondary battery | |
WO2024087842A1 (en) | Secondary battery and electrical device | |
CN115799441B (en) | A kind of lithium ion battery and electric device | |
WO2022000328A1 (en) | Electrochemical device and electronic device | |
CN108011126A (en) | Battery module for starting electric power equipment | |
CN115832207A (en) | Pole piece slurry, pole piece, preparation method of pole piece, lithium ion secondary battery, battery module, battery pack and electric device | |
WO2024217031A1 (en) | Secondary battery and electric device | |
KR20230054657A (en) | lithium ion battery | |
WO2023029002A1 (en) | Negative current collector and secondary battery comprising same, and battery module, battery pack and electric device | |
CN113875048B (en) | Secondary battery, method for manufacturing the same, and device comprising the same | |
WO2024077635A1 (en) | Battery cell, battery, and electric device | |
CN115810717A (en) | Negative pole piece and preparation method thereof, secondary battery, battery module, battery pack and electric device | |
WO2023070600A1 (en) | Secondary battery, battery module, battery pack, and electrical device | |
WO2025020845A1 (en) | Secondary battery and electronic apparatus | |
WO2021023010A1 (en) | Splicedly formed lithium strip, preparation method therefor, and negative pole, cell, lithium ion battery, battery module, battery pack and apparatus related thereto | |
CN117747904A (en) | Secondary battery and electric equipment | |
WO2024234652A1 (en) | Battery separator and preparation method therefor, and secondary battery and electric device | |
CN112713301B (en) | energy storage device | |
CN116190556A (en) | A kind of negative pole piece, electric core, lithium ion battery and preparation method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |