CN114649098A - Modeling method of coronary heart disease PCI operation based on SYNTAX-II integral - Google Patents
Modeling method of coronary heart disease PCI operation based on SYNTAX-II integral Download PDFInfo
- Publication number
- CN114649098A CN114649098A CN202210285509.XA CN202210285509A CN114649098A CN 114649098 A CN114649098 A CN 114649098A CN 202210285509 A CN202210285509 A CN 202210285509A CN 114649098 A CN114649098 A CN 114649098A
- Authority
- CN
- China
- Prior art keywords
- patient
- syntax
- coronary heart
- heart disease
- modeling method
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 208000029078 coronary artery disease Diseases 0.000 title claims abstract description 30
- 238000000034 method Methods 0.000 title claims abstract description 23
- 230000035488 systolic blood pressure Effects 0.000 claims abstract description 16
- 238000001356 surgical procedure Methods 0.000 claims abstract description 14
- 208000036758 Postinfectious cerebellitis Diseases 0.000 claims abstract description 10
- 230000035487 diastolic blood pressure Effects 0.000 claims abstract description 10
- UGQMRVRMYYASKQ-KQYNXXCUSA-N Inosine Chemical compound O[C@@H]1[C@H](O)[C@@H](CO)O[C@H]1N1C2=NC=NC(O)=C2N=C1 UGQMRVRMYYASKQ-KQYNXXCUSA-N 0.000 claims abstract description 4
- 229930010555 Inosine Natural products 0.000 claims abstract description 4
- 208000018262 Peripheral vascular disease Diseases 0.000 claims abstract description 4
- 230000001684 chronic effect Effects 0.000 claims abstract description 4
- 229960003786 inosine Drugs 0.000 claims abstract description 4
- 230000000414 obstructive effect Effects 0.000 claims abstract description 4
- 208000014731 pulmonary artery disease Diseases 0.000 claims abstract description 4
- 230000002861 ventricular Effects 0.000 claims abstract description 4
- 230000010354 integration Effects 0.000 claims abstract 7
- 230000003902 lesion Effects 0.000 claims description 10
- 238000012937 correction Methods 0.000 claims description 8
- 201000010099 disease Diseases 0.000 claims description 8
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 claims description 8
- 210000004369 blood Anatomy 0.000 claims description 6
- 239000008280 blood Substances 0.000 claims description 6
- DDRJAANPRJIHGJ-UHFFFAOYSA-N creatinine Chemical compound CN1CC(=O)NC1=N DDRJAANPRJIHGJ-UHFFFAOYSA-N 0.000 claims description 6
- 230000006870 function Effects 0.000 claims description 6
- 208000015181 infectious disease Diseases 0.000 claims description 6
- 230000002980 postoperative effect Effects 0.000 claims description 6
- 238000012502 risk assessment Methods 0.000 claims description 5
- 108090000190 Thrombin Proteins 0.000 claims description 4
- 229960004072 thrombin Drugs 0.000 claims description 4
- PGOHTUIFYSHAQG-LJSDBVFPSA-N (2S)-6-amino-2-[[(2S)-5-amino-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[(2S)-4-amino-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[(2S)-5-amino-2-[[(2S)-5-amino-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[(2S,3R)-2-[[(2S)-5-amino-2-[[(2S)-2-[[(2S)-2-[[(2S,3R)-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[(2S)-5-amino-2-[[(2S)-1-[(2S,3R)-2-[[(2S)-2-[[(2S)-2-[[(2R)-2-[[(2S)-2-[[(2S)-2-[[2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[(2S)-1-[(2S)-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-amino-4-methylsulfanylbutanoyl]amino]-3-(1H-indol-3-yl)propanoyl]amino]-5-carbamimidamidopentanoyl]amino]propanoyl]pyrrolidine-2-carbonyl]amino]-3-methylbutanoyl]amino]-4-methylpentanoyl]amino]-4-methylpentanoyl]amino]acetyl]amino]-3-hydroxypropanoyl]amino]-4-methylpentanoyl]amino]-3-sulfanylpropanoyl]amino]-4-methylsulfanylbutanoyl]amino]-5-carbamimidamidopentanoyl]amino]-3-hydroxybutanoyl]pyrrolidine-2-carbonyl]amino]-5-oxopentanoyl]amino]-3-hydroxypropanoyl]amino]-3-hydroxypropanoyl]amino]-3-(1H-imidazol-5-yl)propanoyl]amino]-4-methylpentanoyl]amino]-3-hydroxybutanoyl]amino]-3-(1H-indol-3-yl)propanoyl]amino]-5-carbamimidamidopentanoyl]amino]-5-oxopentanoyl]amino]-3-hydroxybutanoyl]amino]-3-hydroxypropanoyl]amino]-3-carboxypropanoyl]amino]-3-hydroxypropanoyl]amino]-5-oxopentanoyl]amino]-5-oxopentanoyl]amino]-3-phenylpropanoyl]amino]-5-carbamimidamidopentanoyl]amino]-3-methylbutanoyl]amino]-4-methylpentanoyl]amino]-4-oxobutanoyl]amino]-5-carbamimidamidopentanoyl]amino]-3-(1H-indol-3-yl)propanoyl]amino]-4-carboxybutanoyl]amino]-5-oxopentanoyl]amino]hexanoic acid Chemical compound CSCC[C@H](N)C(=O)N[C@@H](Cc1c[nH]c2ccccc12)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](C)C(=O)N1CCC[C@H]1C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC(C)C)C(=O)NCC(=O)N[C@@H](CO)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CS)C(=O)N[C@@H](CCSC)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H]([C@@H](C)O)C(=O)N1CCC[C@H]1C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CO)C(=O)N[C@@H](CO)C(=O)N[C@@H](Cc1cnc[nH]1)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](Cc1c[nH]c2ccccc12)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CO)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CO)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](Cc1ccccc1)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](Cc1c[nH]c2ccccc12)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CCCCN)C(O)=O PGOHTUIFYSHAQG-LJSDBVFPSA-N 0.000 claims description 3
- 102100036475 Alanine aminotransferase 1 Human genes 0.000 claims description 3
- 108010082126 Alanine transaminase Proteins 0.000 claims description 3
- 108010088751 Albumins Proteins 0.000 claims description 3
- 102000009027 Albumins Human genes 0.000 claims description 3
- 239000003154 D dimer Substances 0.000 claims description 3
- 108010049003 Fibrinogen Proteins 0.000 claims description 3
- 102000008946 Fibrinogen Human genes 0.000 claims description 3
- 102000017011 Glycated Hemoglobin A Human genes 0.000 claims description 3
- 229930012538 Paclitaxel Natural products 0.000 claims description 3
- 108010000499 Thromboplastin Proteins 0.000 claims description 3
- 102000002262 Thromboplastin Human genes 0.000 claims description 3
- PNNCWTXUWKENPE-UHFFFAOYSA-N [N].NC(N)=O Chemical compound [N].NC(N)=O PNNCWTXUWKENPE-UHFFFAOYSA-N 0.000 claims description 3
- 230000002159 abnormal effect Effects 0.000 claims description 3
- 230000002411 adverse Effects 0.000 claims description 3
- 210000004027 cell Anatomy 0.000 claims description 3
- 229940109239 creatinine Drugs 0.000 claims description 3
- 230000001419 dependent effect Effects 0.000 claims description 3
- 230000007717 exclusion Effects 0.000 claims description 3
- 108010052295 fibrin fragment D Proteins 0.000 claims description 3
- 229940012952 fibrinogen Drugs 0.000 claims description 3
- 230000003907 kidney function Effects 0.000 claims description 3
- 210000000265 leukocyte Anatomy 0.000 claims description 3
- 230000003908 liver function Effects 0.000 claims description 3
- 210000004698 lymphocyte Anatomy 0.000 claims description 3
- 210000001616 monocyte Anatomy 0.000 claims description 3
- 210000000440 neutrophil Anatomy 0.000 claims description 3
- 229960001592 paclitaxel Drugs 0.000 claims description 3
- 102000004169 proteins and genes Human genes 0.000 claims description 3
- 108090000623 proteins and genes Proteins 0.000 claims description 3
- ZAHRKKWIAAJSAO-UHFFFAOYSA-N rapamycin Natural products COCC(O)C(=C/C(C)C(=O)CC(OC(=O)C1CCCCN1C(=O)C(=O)C2(O)OC(CC(OC)C(=CC=CC=CC(C)CC(C)C(=O)C)C)CCC2C)C(C)CC3CCC(O)C(C3)OC)C ZAHRKKWIAAJSAO-UHFFFAOYSA-N 0.000 claims description 3
- 238000005070 sampling Methods 0.000 claims description 3
- 229960002930 sirolimus Drugs 0.000 claims description 3
- QFJCIRLUMZQUOT-HPLJOQBZSA-N sirolimus Chemical compound C1C[C@@H](O)[C@H](OC)C[C@@H]1C[C@@H](C)[C@H]1OC(=O)[C@@H]2CCCCN2C(=O)C(=O)[C@](O)(O2)[C@H](C)CC[C@H]2C[C@H](OC)/C(C)=C/C=C/C=C/[C@@H](C)C[C@@H](C)C(=O)[C@H](OC)[C@H](O)/C(C)=C/[C@@H](C)C(=O)C1 QFJCIRLUMZQUOT-HPLJOQBZSA-N 0.000 claims description 3
- RCINICONZNJXQF-MZXODVADSA-N taxol Chemical compound O([C@@H]1[C@@]2(C[C@@H](C(C)=C(C2(C)C)[C@H](C([C@]2(C)[C@@H](O)C[C@H]3OC[C@]3([C@H]21)OC(C)=O)=O)OC(=O)C)OC(=O)[C@H](O)[C@@H](NC(=O)C=1C=CC=CC=1)C=1C=CC=CC=1)O)C(=O)C1=CC=CC=C1 RCINICONZNJXQF-MZXODVADSA-N 0.000 claims description 3
- 108010094028 Prothrombin Proteins 0.000 claims description 2
- 102100027378 Prothrombin Human genes 0.000 claims description 2
- 238000010586 diagram Methods 0.000 claims description 2
- 230000000694 effects Effects 0.000 claims description 2
- 238000011835 investigation Methods 0.000 claims description 2
- 229940039716 prothrombin Drugs 0.000 claims description 2
- 230000023555 blood coagulation Effects 0.000 claims 2
- 229940079593 drug Drugs 0.000 claims 2
- 239000003814 drug Substances 0.000 claims 2
- 108090000340 Transaminases Proteins 0.000 claims 1
- 230000006835 compression Effects 0.000 claims 1
- 238000007906 compression Methods 0.000 claims 1
- 230000008602 contraction Effects 0.000 claims 1
- 108091005995 glycated hemoglobin Proteins 0.000 claims 1
- 238000012417 linear regression Methods 0.000 claims 1
- 238000012216 screening Methods 0.000 claims 1
- 102000014898 transaminase activity proteins Human genes 0.000 claims 1
- 208000035965 Postoperative Complications Diseases 0.000 abstract description 8
- 238000010219 correlation analysis Methods 0.000 abstract description 6
- 230000009021 linear effect Effects 0.000 abstract description 6
- 238000007619 statistical method Methods 0.000 abstract description 3
- 238000010276 construction Methods 0.000 abstract description 2
- 208000030613 peripheral artery disease Diseases 0.000 abstract 1
- 230000002093 peripheral effect Effects 0.000 abstract 1
- 108010028554 LDL Cholesterol Proteins 0.000 description 19
- 230000015271 coagulation Effects 0.000 description 4
- 238000005345 coagulation Methods 0.000 description 4
- 210000004351 coronary vessel Anatomy 0.000 description 4
- 238000011156 evaluation Methods 0.000 description 4
- 238000004393 prognosis Methods 0.000 description 3
- 108010003415 Aspartate Aminotransferases Proteins 0.000 description 2
- 102000004625 Aspartate Aminotransferases Human genes 0.000 description 2
- 208000032928 Dyslipidaemia Diseases 0.000 description 2
- 108010014663 Glycated Hemoglobin A Proteins 0.000 description 2
- 208000017170 Lipid metabolism disease Diseases 0.000 description 2
- 238000011497 Univariate linear regression Methods 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- 238000007405 data analysis Methods 0.000 description 2
- 230000014759 maintenance of location Effects 0.000 description 2
- 230000002265 prevention Effects 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 235000018102 proteins Nutrition 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 230000000250 revascularization Effects 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 230000001225 therapeutic effect Effects 0.000 description 2
- 206010003211 Arteriosclerosis coronary artery Diseases 0.000 description 1
- 201000001320 Atherosclerosis Diseases 0.000 description 1
- 208000024172 Cardiovascular disease Diseases 0.000 description 1
- 230000003143 atherosclerotic effect Effects 0.000 description 1
- 208000026758 coronary atherosclerosis Diseases 0.000 description 1
- 230000002596 correlated effect Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 150000002632 lipids Chemical class 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000005192 partition Methods 0.000 description 1
- 230000001575 pathological effect Effects 0.000 description 1
- 230000001915 proofreading effect Effects 0.000 description 1
- 210000002966 serum Anatomy 0.000 description 1
- 208000024891 symptom Diseases 0.000 description 1
- 238000002560 therapeutic procedure Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16H—HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
- G16H50/00—ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
- G16H50/30—ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for calculating health indices; for individual health risk assessment
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/24—Classification techniques
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T17/00—Three dimensional [3D] modelling, e.g. data description of 3D objects
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Data Mining & Analysis (AREA)
- Theoretical Computer Science (AREA)
- Public Health (AREA)
- General Physics & Mathematics (AREA)
- Medical Informatics (AREA)
- Health & Medical Sciences (AREA)
- Databases & Information Systems (AREA)
- Pathology (AREA)
- General Engineering & Computer Science (AREA)
- Evolutionary Computation (AREA)
- Artificial Intelligence (AREA)
- Evolutionary Biology (AREA)
- Biomedical Technology (AREA)
- Bioinformatics & Computational Biology (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Epidemiology (AREA)
- General Health & Medical Sciences (AREA)
- Primary Health Care (AREA)
- Computer Graphics (AREA)
- Geometry (AREA)
- Software Systems (AREA)
- Investigating Or Analysing Biological Materials (AREA)
Abstract
Description
技术领域technical field
本发明属于模型构建领域,具体是基于SYNTAX-Ⅱ积分的冠心病PCI术的建模方法。The invention belongs to the field of model construction, in particular to a modeling method for coronary heart disease PCI operation based on SYNTAX-II integral.
背景技术Background technique
冠心病作为威胁人类生命健康的重要疾病,其发病率和病死率逐年上升,其病理基础是动脉粥样硬化,而低密度脂蛋白胆固醇在AS中发挥核心作用。血脂异常是导致CHD进一步恶化的独立危险因素,成人血脂异常防治指南强调,降低LDL-C水平,可显著减少CHD的发病及死亡风险。因此,CHD防治中推荐以LDL-C作为首要干预靶点。大量临床研究及流行病学证据显示,调脂治疗对心血管疾病有益处,有研究表明,冠状动脉事件减少的程度与LDL-C下降的水平呈正相关。Coronary heart disease is an important disease threatening human life and health, and its morbidity and mortality are increasing year by year. Its pathological basis is atherosclerosis, and low-density lipoprotein cholesterol plays a central role in AS. Dyslipidemia is an independent risk factor leading to the further deterioration of CHD. Guidelines for the prevention and treatment of dyslipidemia in adults emphasize that reducing the level of LDL-C can significantly reduce the risk of CHD morbidity and mortality. Therefore, LDL-C is recommended as the primary intervention target in the prevention and treatment of CHD. A large number of clinical studies and epidemiological evidence have shown that lipid-lowering therapy is beneficial to cardiovascular disease. Studies have shown that the degree of coronary event reduction is positively correlated with the level of LDL-C reduction.
由于国内外对于血脂控制的标准存在差异,有必要探讨进一步降低LDL-C水平对冠状动脉病变进展的影响程度。SYNTAX、SYNTAXⅡ评分可有效地评价CHD患者冠状动脉病变复杂及严重程度并判断预后,并对对PIC术的实施提供指导意见。Due to the differences in the standards of blood lipid control at home and abroad, it is necessary to explore the impact of further reducing the level of LDL-C on the progression of coronary artery disease. SYNTAX and SYNTAXⅡ scores can effectively evaluate the complexity and severity of coronary artery lesions in CHD patients and judge the prognosis, and provide guidance for the implementation of PIC surgery.
发明内容SUMMARY OF THE INVENTION
为了解决上述问题,本发明的目的是基于SYNTAX-Ⅱ积分的冠心病PCI术的建模方法对PIC术的实施提供指导意见。In order to solve the above problems, the purpose of the present invention is to provide guidance for the implementation of PIC based on the modeling method of coronary heart disease PCI based on SYNTAX-II score.
为了实现上述目的,本发明的技术方案如下:基于SYNTAX-Ⅱ积分的冠心病PCI术的建模方法,包括采集患者的年龄、性别、肌苷清除率、左心室射血分数、慢性阻塞性肺动脉疾病和外周血管疾病因素赋予上述因素在PIC术治疗后4年内不同的权重,随后根据所有权重相加得出术后的病死率,对PIC术的实施提供指导意见。In order to achieve the above object, the technical solution of the present invention is as follows: a modeling method for coronary heart disease PCI based on SYNTAX-II score, including collecting the patient's age, gender, inosine clearance rate, left ventricular ejection fraction, chronic obstructive pulmonary artery Disease and peripheral vascular disease factors gave different weights to the above factors within 4 years after PIC treatment, and then the postoperative mortality rate was calculated according to the addition of all weights, which provided guidance for the implementation of PIC surgery.
进一步,还包括以下步骤:Further, the following steps are also included:
S1,筛选患者情况,对患者进行病症分类,分类的情况主要为左主干病变,具体的患者类型为单独左主干、左主干合并单支和多支病变;S1, screen the patient's condition, classify the patient's disease, the classification is mainly left main disease, and the specific patient types are left main alone, left main combined with single-vessel and multi-vessel disease;
S2,对患者详细信息分区,将感染指标、肝功能、肾功能和凝血功能作为术后评判指标;S2, the detailed information of the patient is divided, and the infection index, liver function, renal function and coagulation function are used as postoperative evaluation indicators;
S3,取样患者的细胞,解析第二代西罗莫司药物洗脱支架和紫杉醇药物洗脱支架的指标区别;S3: Sampling the patient's cells to analyze the index difference between the second-generation sirolimus drug-eluting stent and paclitaxel drug-eluting stent;
S4,辅助标准校对,对患者的收缩压和舒张压进行记录以生成三维散点图;S4, assisting standard calibration, recording the systolic and diastolic blood pressure of the patient to generate a three-dimensional scattergram;
S5,建立一元线性回归模型,取收缩压分组的中点为自变量x,患病比例为因变量y,以求得期望和方差,将期望和方差对比评判指标,以剔除错误参数。S5, establish a univariate linear regression model, take the midpoint of the systolic blood pressure grouping as the independent variable x, and the prevalence rate as the dependent variable y to obtain the expectation and variance, and compare the expectation and variance to the evaluation indicators to eliminate wrong parameters.
进一步,所述S2中还包括数据纠正步骤,数据纠正步骤包括异常值与过度残缺样本排除:由于调查中可能出现记录错误,针对数值型的特征,需要在经验加持的基础上根据数值的分布范围识别异常值,并将其置为空;此外,为避免过度残缺的样本对疾病发病风险评估结果产生不良影响,同时最大限度地保留数据信息。Further, the S2 also includes a data correction step, which includes the exclusion of outliers and excessively incomplete samples: due to possible recording errors in the investigation, for numerical characteristics, it is necessary to base on experience based on the distribution range of numerical values. Identify outliers and leave them empty; in addition, in order to avoid excessively mutilated samples from adversely affecting the results of disease risk assessment, while maximizing data retention.
进一步,纠正步骤中还包括缺失值填补:当数据集有缺失值时,无法正确学习出风险评估模型,对数据集的缺失值进行步进式的填补,填补的步骤在于通过测量不同特征值之间的距离进行分类,如果一个样本在特征空间中k个最邻近的样本属于某一个类别,则该样本也应属于这个类别。Further, the correction step also includes missing value filling: when there are missing values in the data set, the risk assessment model cannot be learned correctly, and the missing values in the data set are filled step by step. The filling step is to measure the difference between different eigenvalues. If the k nearest samples of a sample in the feature space belong to a certain category, the sample should also belong to this category.
进一步,为避免缺失数据较分散时,仅使用较少特征预测大量特征而产生的偏差,使用了步进式的填补方法,即按照特征列的完整程度,将其分为若干个不同等级,位于第一等级的是完整度100%的14个特征,后面每一个等级的样本个数可进行自定义,而处于第n等级特征中的缺失值,则用第1到第n-1等级的所有特征进行学习。Further, in order to avoid the deviation caused by using fewer features to predict a large number of features when the missing data is scattered, a step-by-step filling method is used, that is, according to the completeness of the feature column, it is divided into several different levels, located in The first level is 14 features with 100% completeness. The number of samples in each subsequent level can be customized, and the missing values in the nth level feature are used for all the 1st to n-1th levels. feature to learn.
进一步,S1中的收集研究对象的临床资包括性别、年龄、感染指标、白细胞、中性粒细胞、淋巴细胞、单核细胞、总蛋白、白蛋白、谷丙转氨酶、谷草转氨酶、血尿素氮、血肌酐、凝血功能、凝血酶原时间、活化部分凝血活酶时间、纤维蛋白原、凝血酶时间、D-二聚体和糖化血红蛋白。Further, the clinical data of the collected subjects in S1 include gender, age, infection indicators, leukocytes, neutrophils, lymphocytes, monocytes, total protein, albumin, alanine aminotransferase, aspartate aminotransferase, blood urea nitrogen, Serum creatinine, coagulation function, prothrombin time, activated partial thromboplastin time, fibrinogen, thrombin time, D-dimer and glycosylated hemoglobin.
采用上述方案后实现了以下有益效果:本研究所有研究对象SYNTAX、SYNTAXⅡ评分均依据SYNTAX官网(http://www.syntaxscore.com)上计算器进行计算,通过输入其冠状动脉病变特征及基线数据自动计算所得,分数越高,就代表病变越复杂,患者的预后越差,尤其是血运重建率越高。The following beneficial effects were achieved after adopting the above scheme: All subjects in this study SYNTAX and SYNTAX II scores were calculated according to the calculator on the SYNTAX official website (http://www.syntaxscore.com), and the characteristics and baseline data of coronary artery lesions were input by inputting Automatically calculated, the higher the score, the more complex the lesion and the worse the patient's prognosis, especially the higher the revascularization rate.
对所得数据进行统计学分析,通过对收缩压和舒张压判断患者术后并发症是否产生的数据进行相关分析及偏相关分析,确立术后患者的并发症与收缩压的值呈一定正相关关系,由于收缩压对舒张压有较强的线性影响,我们用线性方程可以非常真实的拟合出收缩压的取值和患者术后并发症产生概率之间的关系,且拟合优度越来越高,以此检验建模的准确度。Statistical analysis was performed on the obtained data, and correlation analysis and partial correlation analysis were performed on the data of systolic blood pressure and diastolic blood pressure to determine whether postoperative complications occurred. , because systolic blood pressure has a strong linear effect on diastolic blood pressure, we can use a linear equation to fit the relationship between the value of systolic blood pressure and the probability of postoperative complications of patients very realistically, and the goodness of fit is getting better and better. The higher it is, to test the accuracy of the modeling.
本研究创新使用SYNTAX、SYNTAXⅡ评分变化来量化评估在不同LDL-C水平下CHD患者冠脉病变程度进展情况,结果显示,低LDL-C水平组SYNTAX、SYNTAXⅡ评分低于非低LDL-C水平组和LDL-C未达标组,提示低LDL-C水平可以进一步减少CHD患者冠状动脉病变进展风险。本技术方案明确了LDL-C在冠脉粥样硬化病变进展中发挥非常重要的作用,提示LDL-C水平可能是延缓甚至阻止冠状动脉病变进展的一个新的潜在治疗靶点。This study innovatively used the changes of SYNTAX and SYNTAXⅡ scores to quantitatively evaluate the progression of coronary artery disease in CHD patients with different LDL-C levels. The results showed that the SYNTAX and SYNTAXⅡ scores in the low LDL-C level group were lower than those in the non-low LDL-C level group and LDL-C unreached group, suggesting that low LDL-C level can further reduce the risk of coronary artery disease progression in CHD patients. This technical solution clarifies that LDL-C plays a very important role in the progression of coronary atherosclerotic lesions, suggesting that LDL-C levels may be a new potential therapeutic target for delaying or even preventing the progression of coronary artery lesions.
附图说明Description of drawings
图1为本发明中患者信息统计图;Fig. 1 is the patient information statistics chart in the present invention;
图2为数值纠正的流程步骤;Fig. 2 is the process steps of numerical correction;
图3为辅助标准校对步骤中舒张压的离散模型图;Fig. 3 is the discrete model diagram of diastolic blood pressure in the auxiliary standard proofreading step;
图4为可以直观的看到收缩压与患者术后并发症产生概率之间的关系。Figure 4 shows the relationship between systolic blood pressure and the probability of postoperative complications in patients.
具体实施方式Detailed ways
下面通过具体实施方式进一步详细说明:The following is further described in detail by specific embodiments:
实施例基本如附图1所示:基于SYNTAX-Ⅱ积分的冠心病PCI术的建模方法:包括采集患者的年龄、性别、肌苷清除率、左心室射血分数、慢性阻塞性肺动脉疾病和外周血管疾病因素赋予上述因素在PIC术治疗后4年内不同的权重,随后根据所有权重相加得出术后的病死率,对PIC术的实施提供指导意见。The embodiment is basically shown in Figure 1: the modeling method of coronary heart disease PCI based on SYNTAX-II score: including collecting the patient's age, gender, inosine clearance, left ventricular ejection fraction, chronic obstructive pulmonary artery disease and Peripheral vascular disease factors give different weights to the above factors within 4 years after PIC surgery, and then the postoperative mortality rate is obtained according to the addition of all weights, which provides guidance for the implementation of PIC surgery.
还包括以下步骤:Also includes the following steps:
S1,筛选患者情况,对患者进行病症分类并收集研究对象的临床资料,分类的情况主要为左主干病变,具体的患者类型为单独左主干、左主干合并单支和多支病变,收集研究对象的临床资包括性别、年龄、感染指标、白细胞、中性粒细胞、淋巴细胞、单核细胞、总蛋白、白蛋白、谷丙转氨酶、谷草转氨酶、血尿素氮、血肌酐、凝血功能、凝血酶原时间、活化部分凝血活酶时间、纤维蛋白原、凝血酶时间、D-二聚体和糖化血红蛋白;S1. Screen the patient's condition, classify the patient's symptoms and collect the clinical data of the research object. The classification is mainly left main disease, and the specific patient types are left main alone, left main combined with single-vessel and multi-vessel disease, and the research objects are collected. The clinical data include gender, age, infection indicators, white blood cells, neutrophils, lymphocytes, monocytes, total protein, albumin, alanine aminotransferase, aspartate aminotransferase, blood urea nitrogen, blood creatinine, coagulation function, thrombin Protime, activated partial thromboplastin time, fibrinogen, thrombin time, D-dimer and glycosylated hemoglobin;
请参考图2,S2,对患者详细信息分区,将感染指标、肝功能、肾功能和凝血功能作为术后评判指标,还包括数据纠正步骤,数据纠正步骤包括异常值与过度残缺样本排除:由于调查中可能出现记录错误,针对数值型的特征,需要在经验加持的基础上根据数值的分布范围识别异常值,并将其置为空;此外,为避免过度残缺的样本对疾病发病风险评估结果产生不良影响,同时最大限度地保留数据信息。Please refer to Figure 2, S2, to partition the patient's detailed information, and use infection indicators, liver function, renal function and coagulation function as postoperative evaluation indicators, and also include data correction steps, which include the exclusion of abnormal values and excessively incomplete samples: due to Recording errors may occur in the survey. For numerical characteristics, it is necessary to identify outliers based on the distribution range of the numerical values on the basis of experience, and set them as empty; produce adverse effects while maximizing the retention of data information.
纠正步骤中还包括缺失值填补:当数据集有缺失值时,无法正确学习出风险评估模型,对数据集的缺失值进行步进式的填补,填补的步骤在于通过测量不同特征值之间的距离进行分类,如果一个样本在特征空间中k个最邻近的样本属于某一个类别,则该样本也应属于这个类别。The correction step also includes missing value filling: when the data set has missing values, the risk assessment model cannot be learned correctly, and the missing values in the data set are filled step by step. The filling step is to measure the difference between different eigenvalues. If the k nearest samples of a sample in the feature space belong to a certain category, the sample should also belong to this category.
为避免缺失数据较分散时,仅使用较少特征预测大量特征而产生的偏差,使用了步进式的填补方法,即按照特征列的完整程度,将其分为若干个不同等级,位于第一等级的是完整度100%的14个特征,后面每一个等级的样本个数可进行自定义,而处于第n等级特征中的缺失值,则用第1到第n-1等级的所有特征进行学习。In order to avoid the deviation caused by using fewer features to predict a large number of features when the missing data is scattered, a step-by-step filling method is used, that is, according to the completeness of the feature column, it is divided into several different levels, which are located in the first The level is 14 features with 100% completeness. The number of samples at each level can be customized, and the missing value in the nth level feature is used for all the features from the 1st to the n-1th level. study.
S3,取样患者的细胞,解析第二代西罗莫司药物洗脱支架和紫杉醇药物洗脱支架的指标区别;S3: Sampling the patient's cells to analyze the index difference between the second-generation sirolimus drug-eluting stent and paclitaxel drug-eluting stent;
请参考图3和图4,S4,辅助标准校对,对患者的收缩压和舒张压进行记录以生成三维散点图;Please refer to Figure 3 and Figure 4, S4, auxiliary standard calibration, record the patient's systolic blood pressure and diastolic blood pressure to generate a three-dimensional scattergram;
S5,建立一元线性回归模型,取收缩压分组的中点为自变量x,患病比例为因变量y,以求得期望和方差,将期望和方差对比评判指标,以剔除错误参数。S5, establish a univariate linear regression model, take the midpoint of the systolic blood pressure grouping as the independent variable x, and the prevalence rate as the dependent variable y to obtain the expectation and variance, and compare the expectation and variance to the evaluation indicators to eliminate wrong parameters.
本研究所有研究对象SYNTAX、SYNTAXⅡ评分均依据SYNTAX官网(http://www.syntaxscore.com)上计算器进行计算,通过输入其冠状动脉病变特征及基线数据自动计算所得,分数越高,就代表病变越复杂,患者的预后越差,尤其是血运重建率越高。The SYNTAX and SYNTAX II scores of all subjects in this study were calculated based on the calculator on the SYNTAX official website (http://www.syntaxscore.com), and were automatically calculated by inputting their coronary artery lesion characteristics and baseline data. The more complex the lesion, the poorer the patient's prognosis, especially the higher the revascularization rate.
对所得数据进行统计学分析,通过对收缩压和舒张压判断患者术后并发症是否产生的数据进行相关分析及偏相关分析,确立术后患者的并发症与收缩压的值呈一定正相关关系,由于收缩压对舒张压有较强的线性影响,我们用线性方程可以非常真实的拟合出收缩压的取值和患者术后并发症产生概率之间的关系,且拟合优度越来越高,以此检验建模的准确度。Statistical analysis was performed on the obtained data, and correlation analysis and partial correlation analysis were performed on the data of systolic blood pressure and diastolic blood pressure to determine whether postoperative complications occurred. , because systolic blood pressure has a strong linear effect on diastolic blood pressure, we can use a linear equation to fit the relationship between the value of systolic blood pressure and the probability of postoperative complications of patients very realistically, and the goodness of fit is getting better and better. The higher it is, to test the accuracy of the modeling.
本研究创新使用SYNTAX、SYNTAXⅡ评分变化来量化评估在不同LDL-C水平下CHD患者冠脉病变程度进展情况,结果显示,低LDL-C水平组SYNTAX、SYNTAXⅡ评分低于非低LDL-C水平组和LDL-C未达标组,提示低LDL-C水平可以进一步减少CHD患者冠状动脉病变进展风险。本技术方案明确了LDL-C在冠脉粥样硬化病变进展中发挥非常重要的作用,提示LDL-C水平可能是延缓甚至阻止冠状动脉病变进展的一个新的潜在治疗靶点。This study innovatively used the changes of SYNTAX and SYNTAXⅡ scores to quantitatively evaluate the progression of coronary artery disease in CHD patients with different LDL-C levels. The results showed that the SYNTAX and SYNTAXⅡ scores in the low LDL-C level group were lower than those in the non-low LDL-C level group and LDL-C unreached group, suggesting that low LDL-C level can further reduce the risk of coronary artery disease progression in CHD patients. This technical solution clarifies that LDL-C plays a very important role in the progression of coronary atherosclerosis, suggesting that LDL-C levels may be a new potential therapeutic target for delaying or even preventing the progression of coronary artery disease.
需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。It should be noted that, in this document, relational terms such as first and second are only used to distinguish one entity or operation from another entity or operation, and do not necessarily require or imply any relationship between these entities or operations. any such actual relationship or sequence exists. Moreover, the terms "comprising", "comprising" or any other variation thereof are intended to encompass a non-exclusive inclusion such that a process, method, article or device that includes a list of elements includes not only those elements, but also includes not explicitly listed or other elements inherent to such a process, method, article or apparatus.
以上所述的仅是本发明的实施例,方案中公知的具体结构及特性等常识在此未作过多描述,所属领域普通技术人员知晓申请日或者优先权日之前发明所属技术领域所有的普通技术知识,能够获知该领域中所有的现有技术,并且具有应用该日期之前常规实验手段的能力,所属领域普通技术人员可以在本申请给出的启示下,结合自身能力完善并实施本方案,一些典型的公知结构或者公知方法不应当成为所属领域普通技术人员实施本申请的障碍。应当指出,对于本领域的技术人员来说,在不脱离本发明结构的前提下,还可以作出若干变形和改进,这些也应该视为本发明的保护范围,这些都不会影响本发明实施的效果和专利的实用性。本申请要求的保护范围应当以其权利要求的内容为准,说明书中的具体实施方式等记载可以用于解释权利要求的内容。The above are only the embodiments of the present invention, and the common knowledge such as the well-known specific structures and characteristics in the scheme has not been described too much here. Those of ordinary skill in the art know that the invention belongs to the technical field before the filing date or the priority date. Technical knowledge, can know all the prior art in this field, and have the ability to apply conventional experimental means before the date, those of ordinary skill in the art can improve and implement this scheme in combination with their own ability under the enlightenment given in this application, Some typical well-known structures or well-known methods should not be an obstacle to those skilled in the art from practicing the present application. It should be pointed out that for those skilled in the art, some modifications and improvements can be made without departing from the structure of the present invention. These should also be regarded as the protection scope of the present invention, and these will not affect the implementation of the present invention. Effectiveness and utility of patents. The scope of protection claimed in this application shall be based on the content of the claims, and the descriptions of the specific implementation manners in the description can be used to interpret the content of the claims.
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210285509.XA CN114649098A (en) | 2022-03-23 | 2022-03-23 | Modeling method of coronary heart disease PCI operation based on SYNTAX-II integral |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210285509.XA CN114649098A (en) | 2022-03-23 | 2022-03-23 | Modeling method of coronary heart disease PCI operation based on SYNTAX-II integral |
Publications (1)
Publication Number | Publication Date |
---|---|
CN114649098A true CN114649098A (en) | 2022-06-21 |
Family
ID=81996186
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210285509.XA Pending CN114649098A (en) | 2022-03-23 | 2022-03-23 | Modeling method of coronary heart disease PCI operation based on SYNTAX-II integral |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114649098A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116504407B (en) * | 2023-06-30 | 2023-09-29 | 中国医学科学院阜外医院 | Branch occlusion risk prediction method and system for coronary left trunk bifurcation |
CN118116595A (en) * | 2024-04-23 | 2024-05-31 | 西南医科大学附属医院 | A multi-factor prognosis assessment method and system for coronary heart disease after intervention |
-
2022
- 2022-03-23 CN CN202210285509.XA patent/CN114649098A/en active Pending
Non-Patent Citations (5)
Title |
---|
张珂瑞等: "不同 LDL-C 水平冠心病 PCI 术后患者的SYNTAX、SYNTAX Ⅱ评分变化", 《中国医药导报》, vol. 18, no. 17, 30 June 2021 (2021-06-30), pages 68 - 72 * |
德吉;魏宗寿;: "基于最小二乘法和SPSS的冠心病建模仿真", 世界最新医学信息文摘, no. 14, 16 February 2018 (2018-02-16), pages 245 - 247 * |
王逸飞等: "基于大数据建模的冠心病发病风险指标评估", 《解放军医学院学报》, vol. 40, no. 8, 31 December 2019 (2019-12-31), pages 725 - 729 * |
赵华;何继强;: "SYNTAX积分Ⅱ在复杂冠心病患者血运重建策略选择中的应用进展", 心肺血管病杂志, no. 10, 26 October 2016 (2016-10-26), pages 843 - 846 * |
陈晖等: "西罗莫司和紫杉醇药物洗脱支架治疗冠状动脉疾病的对比研究", 中国介入心脏病学杂志, no. 04, 27 August 2006 (2006-08-27), pages 202 - 204 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116504407B (en) * | 2023-06-30 | 2023-09-29 | 中国医学科学院阜外医院 | Branch occlusion risk prediction method and system for coronary left trunk bifurcation |
CN118116595A (en) * | 2024-04-23 | 2024-05-31 | 西南医科大学附属医院 | A multi-factor prognosis assessment method and system for coronary heart disease after intervention |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20210041440A1 (en) | Methods and apparatus for identifying disease status using biomarkers | |
Rattanachaiwong et al. | Comparison of nutritional screening and diagnostic tools in diagnosis of severe malnutrition in critically ill patients | |
O'connell et al. | The sensitivity and specificity of the Morse Fall Scale in an acute care setting. | |
CN107153774A (en) | The disease forecasting system of the structure and application of chronic disease risk assessment the hyperbolic model model | |
US6277070B1 (en) | Medical analysis and treatment method and system | |
WO2007142968A2 (en) | Methods, systems, and computer program products for evaluating a patient in a pediatric intensive care unit | |
CN114121285A (en) | Kidney injury risk data prediction system, prediction method, computer equipment and medium | |
Lu et al. | Using path analysis to investigate the relationships between depression, anxiety, and health-related quality of life among patients with coronary artery disease | |
RU2632509C1 (en) | Method for diagnostics of non-infectious diseases based on statistical methods of data processing | |
CN111989752A (en) | Test panel for detecting sepsis | |
Hani et al. | Effective prediction of mortality by heart disease among women in Jordan using the chi-squared automatic interaction detection model: retrospective validation study | |
CN114649098A (en) | Modeling method of coronary heart disease PCI operation based on SYNTAX-II integral | |
US20030191666A1 (en) | System and method for evaluating pretest probabilities of life-threatening diseases | |
CN118658629B (en) | Coronary heart disease risk auxiliary evaluation system based on intelligent medical treatment | |
CN112259231A (en) | High-risk gastrointestinal stromal tumor patient postoperative recurrence risk assessment method and system | |
Shellenberger et al. | Physical examination for the detection of pulmonary hypertension: a systematic review | |
CN112741623B (en) | A system and method for detecting glycosylated hemoglobin based on ECG | |
Kraut et al. | Re-evaluation of total CO2 concentration in apparently healthy younger adults | |
RU2667471C1 (en) | Method of differential diagnostics of anemia | |
CN117617945B (en) | Method and device for predicting pulmonary function classification of chronic obstructive pulmonary disease based on six-minute walking physiological data | |
CN114694831B (en) | A method, device, computer equipment and storage medium for determining risk level | |
CN111986806B (en) | A prediction model for infection risk after acute myocardial infarction based on clinical-biological indicators | |
US20240384345A1 (en) | Method for assessing risk of chronic kidney disease and chronic kidney disease risk assessment system | |
CN119993503A (en) | Risk prediction model of voriconazole-related liver injury and construction method thereof | |
CN119889672A (en) | Method and system for predicting risk of concurrent constipation of first-onset cerebral hemorrhage patients of middle-aged and young people |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |