CN114645161B - High-oxidation-resistance nickel-based alloy block material and preparation method thereof - Google Patents
High-oxidation-resistance nickel-based alloy block material and preparation method thereof Download PDFInfo
- Publication number
- CN114645161B CN114645161B CN202210230702.3A CN202210230702A CN114645161B CN 114645161 B CN114645161 B CN 114645161B CN 202210230702 A CN202210230702 A CN 202210230702A CN 114645161 B CN114645161 B CN 114645161B
- Authority
- CN
- China
- Prior art keywords
- nickel
- pure
- oxidation
- based alloy
- bulk material
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 title claims abstract description 101
- 239000000956 alloy Substances 0.000 title claims abstract description 72
- 229910045601 alloy Inorganic materials 0.000 title claims abstract description 63
- 229910052759 nickel Inorganic materials 0.000 title claims abstract description 51
- 239000000463 material Substances 0.000 title claims abstract description 13
- 238000002360 preparation method Methods 0.000 title abstract description 10
- 238000007254 oxidation reaction Methods 0.000 claims abstract description 61
- 230000003647 oxidation Effects 0.000 claims abstract description 57
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims abstract description 52
- 239000011651 chromium Substances 0.000 claims abstract description 32
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 30
- 239000010703 silicon Substances 0.000 claims abstract description 30
- 229910052782 aluminium Inorganic materials 0.000 claims abstract description 28
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims abstract description 28
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims abstract description 27
- 239000010936 titanium Substances 0.000 claims abstract description 27
- 229910052719 titanium Inorganic materials 0.000 claims abstract description 27
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 claims abstract description 25
- 229910052742 iron Inorganic materials 0.000 claims abstract description 24
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 23
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 claims abstract description 23
- 229910052804 chromium Inorganic materials 0.000 claims abstract description 23
- 229910052750 molybdenum Inorganic materials 0.000 claims abstract description 23
- 239000011733 molybdenum Substances 0.000 claims abstract description 23
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 claims abstract description 23
- 229910052721 tungsten Inorganic materials 0.000 claims abstract description 23
- 239000010937 tungsten Substances 0.000 claims abstract description 23
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 claims abstract description 20
- 229910052796 boron Inorganic materials 0.000 claims abstract description 20
- 238000007670 refining Methods 0.000 claims abstract description 20
- 229910052799 carbon Inorganic materials 0.000 claims abstract description 17
- 239000012535 impurity Substances 0.000 claims abstract description 17
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 claims abstract description 12
- 238000000034 method Methods 0.000 claims abstract description 5
- 239000013590 bulk material Substances 0.000 claims description 37
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 29
- 239000002994 raw material Substances 0.000 claims description 26
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 claims description 16
- 229910052748 manganese Inorganic materials 0.000 claims description 16
- 239000011572 manganese Substances 0.000 claims description 16
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 claims description 12
- 238000005266 casting Methods 0.000 claims description 12
- 238000002844 melting Methods 0.000 claims description 7
- 229910052786 argon Inorganic materials 0.000 claims description 6
- QDWJUBJKEHXSMT-UHFFFAOYSA-N boranylidynenickel Chemical compound [Ni]#B QDWJUBJKEHXSMT-UHFFFAOYSA-N 0.000 claims description 6
- 229910002804 graphite Inorganic materials 0.000 claims description 6
- 239000010439 graphite Substances 0.000 claims description 6
- 238000010438 heat treatment Methods 0.000 claims description 6
- 230000008018 melting Effects 0.000 claims description 6
- 229910052751 metal Inorganic materials 0.000 claims description 6
- 239000002184 metal Substances 0.000 claims description 6
- 239000007789 gas Substances 0.000 claims description 2
- 230000033228 biological regulation Effects 0.000 abstract description 4
- 230000000052 comparative effect Effects 0.000 description 14
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 12
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 6
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 6
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 6
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 6
- 229910052802 copper Inorganic materials 0.000 description 6
- 239000010949 copper Substances 0.000 description 6
- 229910052757 nitrogen Inorganic materials 0.000 description 6
- 229910052760 oxygen Inorganic materials 0.000 description 6
- 239000001301 oxygen Substances 0.000 description 6
- 229910052698 phosphorus Inorganic materials 0.000 description 6
- 239000011574 phosphorus Substances 0.000 description 6
- 229910052717 sulfur Inorganic materials 0.000 description 6
- 239000011593 sulfur Substances 0.000 description 6
- 238000009864 tensile test Methods 0.000 description 6
- 238000005303 weighing Methods 0.000 description 6
- 230000004584 weight gain Effects 0.000 description 6
- 235000019786 weight gain Nutrition 0.000 description 6
- 238000010586 diagram Methods 0.000 description 5
- 238000001816 cooling Methods 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- 238000012876 topography Methods 0.000 description 4
- 230000001681 protective effect Effects 0.000 description 3
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000007792 addition Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 230000005496 eutectics Effects 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C19/00—Alloys based on nickel or cobalt
- C22C19/03—Alloys based on nickel or cobalt based on nickel
- C22C19/05—Alloys based on nickel or cobalt based on nickel with chromium
- C22C19/051—Alloys based on nickel or cobalt based on nickel with chromium and Mo or W
- C22C19/055—Alloys based on nickel or cobalt based on nickel with chromium and Mo or W with the maximum Cr content being at least 20% but less than 30%
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C1/00—Making non-ferrous alloys
- C22C1/02—Making non-ferrous alloys by melting
- C22C1/023—Alloys based on nickel
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C1/00—Making non-ferrous alloys
- C22C1/02—Making non-ferrous alloys by melting
- C22C1/03—Making non-ferrous alloys by melting using master alloys
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Manufacture And Refinement Of Metals (AREA)
Abstract
Description
技术领域technical field
本发明涉及合金材料技术领域,尤其涉及一种高抗氧化性镍基合金块体材料及其制备方法。The invention relates to the technical field of alloy materials, in particular to a nickel-based alloy bulk material with high oxidation resistance and a preparation method thereof.
背景技术Background technique
在航空发动机中,涡轮叶片由于处于温度最高、应力最复杂、环境最恶劣的部位而被列为第一关键件。涡轮叶片的性能水平,成为一种型号发动机先进程度的重要标志。In an aero-engine, the turbine blade is listed as the first critical part because it is the part with the highest temperature, the most complex stress and the harshest environment. The performance level of the turbine blades has become an important symbol of the advanced level of a type of engine.
某型航空发动机涡轮叶片由高温镍基合金GH3044铸成,工作温度在850℃左右,经过一定的飞行周期后,由于GH3044合金在高温下抗氧化性能不佳,叶片会在工作中产生磨损或者裂纹,表面有部分剥落,导致其性能大大下降,以至于逐渐失去使用性能,必须要对其进行修复才能恢复正常使用。所以设计出一种适合于此类航空发动机叶片的高抗氧化性合金材料是至关重要的。A certain type of aero-engine turbine blade is made of high-temperature nickel-based alloy GH3044, and its working temperature is about 850°C. After a certain flight cycle, due to the poor oxidation resistance of GH3044 alloy at high temperature, the blade will wear or crack during work. , Part of the surface is peeled off, which leads to a great decline in its performance, so that it gradually loses its usability, and it must be repaired to restore normal use. Therefore, it is very important to design an alloy material with high oxidation resistance suitable for such aeroengine blades.
发明内容Contents of the invention
本发明的目的在于,针对现有技术的上述不足,提出一种高抗氧化性镍基合金块体材料及其制备方法。The object of the present invention is to propose a nickel-based alloy bulk material with high oxidation resistance and a preparation method thereof, aiming at the above-mentioned deficiencies of the prior art.
本发明的一种高抗氧化性镍基合金块体材料,所述高抗氧化性镍基合金块体材料的各元素的质量百分比含量为:铬22.0%~23.0%,钨13.0%~16.0%,铁≤4.0%,钼≤1.5%,硼0.5%,硅1%,铝0.5%~1%,钛0.3%~0.7%,锰≤0.5%,碳≤0.1%,其它杂质含量≤0.13%,镍余量。A high-oxidation-resistant nickel-based alloy bulk material according to the present invention, the mass percentage content of each element in the high-oxidation-resistant nickel-based alloy bulk material is: chromium 22.0%-23.0%, tungsten 13.0%-16.0% , iron ≤ 4.0%, molybdenum ≤ 1.5%, boron 0.5%,
进一步的,各元素的质量百分比含量为:铬22.0%,钨15.0%,铁4.0%,钼1.5%,硅1%,铝0.5%,钛0.6%,锰0.5%,硼0.5%,碳0.1%,杂质含量0.13%,镍余量。Further, the mass percentage content of each element is: chromium 22.0%, tungsten 15.0%, iron 4.0%, molybdenum 1.5%,
进一步的,各元素的质量百分比含量为:铬22.0%,钨15.0%,铁4.0%,钼1.5%,硅1%,铝1%,钛0.6%,锰0.5%,硼0.5%,碳0.1%,杂质含量0.13%,镍余量。Further, the mass percentage content of each element is: chromium 22.0%, tungsten 15.0%, iron 4.0%, molybdenum 1.5%,
进一步的,各元素的质量百分比含量为:铬23.0%,钨15.0%,铁4.0%,钼1.5%,硅1%,铝0.5%,钛0.6%,锰0.5%,硼0.5%,碳0.1%,杂质含量0.13%,镍余量。Further, the mass percentage content of each element is: chromium 23.0%, tungsten 15.0%, iron 4.0%, molybdenum 1.5%,
进一步的,各元素的质量百分比含量为:铬23.0%,钨15.0%,铁2.0%,钼1%,硅1%,铝0.5%,钛0.6%,锰0.5%,硼0.5%,碳0.1%,杂质含量0.13%,镍余量。Further, the mass percentage content of each element is: chromium 23.0%, tungsten 15.0%, iron 2.0%,
一种如上述的高抗氧化性镍基合金块体材料的制备方法,包括如下步骤:A method for preparing the above-mentioned high oxidation resistance nickel-based alloy bulk material, comprising the steps of:
S1:按各元素的质量百分比含量要求将纯镍、纯铁、纯石墨、纯铬、纯钨、纯钼、镍硼中间合金装入坩埚,抽真空至8~12Pa开始加热,全部熔化后,保持温度在1500~1650℃进行精炼,精炼时间为20分钟;S1: Put pure nickel, pure iron, pure graphite, pure chromium, pure tungsten, pure molybdenum, and nickel-boron intermediate alloy into the crucible according to the mass percentage content requirements of each element, vacuumize to 8-12Pa and start heating, after all are melted, Keep the temperature at 1500-1650°C for refining, and the refining time is 20 minutes;
S2:精炼结束后,充入0.06~0.08MPa氩气,加入一定量的纯钛、纯锰、纯铝、纯硅,准备第二次原料熔化;S2: After refining, fill with 0.06-0.08MPa argon gas, add a certain amount of pure titanium, pure manganese, pure aluminum, pure silicon, and prepare for the second melting of raw materials;
S3:待二次原料完全熔化后,调整温度浇铸,浇铸温度1500~1600℃;S3: After the secondary raw material is completely melted, adjust the temperature for casting, and the casting temperature is 1500-1600°C;
S4:将熔融均匀后的金属液倒入模具冷却成型得高抗氧化性镍基合金块体材料。S4: Pour the uniformly melted molten metal into a mold to cool and form a nickel-based alloy block material with high oxidation resistance.
本专利主要通过对GH3044合金中元素的调控以及制备过程中工艺参数(压力、精炼温度等)的调控,设计了一种新型的高抗氧化性镍基合金块体材料,对比GH3044合金,旨在具有良好的脱氧能力,高温抗氧化性能更佳,以及保证其强度不低于GH3044合金材料强度的85%,硬度不低于GH3044合金材料硬度的90%。This patent mainly designs a new type of high oxidation resistance nickel-based alloy bulk material through the regulation of the elements in the GH3044 alloy and the regulation of the process parameters (pressure, refining temperature, etc.) in the preparation process. Compared with the GH3044 alloy, it aims to It has good deoxidation ability, better high-temperature oxidation resistance, and guarantees that its strength is not lower than 85% of the strength of the GH3044 alloy material, and its hardness is not lower than 90% of the hardness of the GH3044 alloy material.
采用上述元素含量配比,与现有的合金材料(GH3044合金)相比,本次发明的高抗氧化性镍基合金块体材料有以下优点:加入了0.5%的硼元素,硅元素的含量从0.8%增加至1%,硼元素和硅元素能够一起与锰元素形成低熔点共晶化合物,使硼、硅元素能够配合起到良好的脱氧能力;铝元素的含量从0.5增加至1%,铬元素的含量从24%下降至22%、23%,由于原GH3044粉末氧化后的物质主要以NiO、Cr2O3、Al2O3等为主,而Cr2O3氧化膜为非保护性氧化膜,所以适当下降铬元素含量,使GH3044氧化后产生的非保护性氧化膜Cr2O3减少,Al2O3这类保护性氧化膜的数量增加,从而提高抗氧化性,增强了表面抗剥落能力。在保证其强度不低于GH3044合金材料强度的85%和硬度不低于GH3044合金材料硬度的90%前提下,能够增强其合金的高温抗氧化性能。Using the above-mentioned element content ratio, compared with the existing alloy material (GH3044 alloy), the high oxidation resistance nickel-based alloy bulk material of this invention has the following advantages: 0.5% boron element is added, and the content of silicon element Increased from 0.8% to 1%, boron and silicon can form a low-melting eutectic compound with manganese, so that boron and silicon can cooperate to play a good deoxidation ability; the content of aluminum increases from 0.5 to 1%, The content of chromium element dropped from 24% to 22% and 23%, because the oxidized material of the original GH3044 powder is mainly NiO, Cr 2 O 3 , Al 2 O 3 , etc., and the Cr 2 O 3 oxide film is non-protective Therefore, the content of chromium element is appropriately reduced, so that the non-protective oxide film Cr 2 O 3 produced after oxidation of GH3044 is reduced, and the number of protective oxide films such as Al 2 O 3 is increased, thereby improving oxidation resistance and enhancing Surface resistance to peeling. Under the premise of ensuring that its strength is not lower than 85% of the strength of the GH3044 alloy material and its hardness is not lower than 90% of the hardness of the GH3044 alloy material, the high temperature oxidation resistance of the alloy can be enhanced.
附图说明Description of drawings
图1为本发明实施例1中合金块体材料氧化前后XRD物相分析衍射图谱;Fig. 1 is the XRD phase analysis diffraction pattern before and after oxidation of the alloy block material in Example 1 of the present invention;
图2为本发明实施例1中合金块体材料氧化后表面形貌图;Fig. 2 is the surface morphology diagram of the alloy bulk material after oxidation in Example 1 of the present invention;
图3为本发明实施例2中合金块体材料氧化前后XRD物相分析衍射图谱;3 is an XRD phase analysis diffraction pattern before and after oxidation of the alloy bulk material in Example 2 of the present invention;
图4为本发明实施例2中合金块体材料氧化后表面形貌图;Fig. 4 is the surface morphology diagram of the alloy bulk material after oxidation in Example 2 of the present invention;
图5为本发明实施例3中合金块体材料氧化前后XRD物相分析衍射图谱;Fig. 5 is the XRD phase analysis diffraction pattern before and after oxidation of the alloy bulk material in Example 3 of the present invention;
图6为本发明实施例3中合金块体材料氧化后表面形貌图;Fig. 6 is the surface morphology diagram of the alloy bulk material after oxidation in Example 3 of the present invention;
图7为本发明对比例1中合金块体材料氧化前后XRD物相分析衍射图谱;Fig. 7 is the XRD phase analysis diffraction pattern before and after oxidation of the alloy bulk material in comparative example 1 of the present invention;
图8为本发明对比例1中合金块体材料氧化后表面形貌图;Fig. 8 is the surface morphology diagram of the alloy bulk material after oxidation in Comparative Example 1 of the present invention;
图9为本发明对比例2中合金块体材料氧化前后XRD物相分析衍射图谱;Fig. 9 is an XRD phase analysis diffraction pattern before and after oxidation of the alloy bulk material in Comparative Example 2 of the present invention;
图10为本发明对比例2中合金块体材料氧化后表面形貌图。Fig. 10 is a surface morphology diagram of the alloy bulk material in Comparative Example 2 of the present invention after oxidation.
具体实施方式Detailed ways
以下是本发明的具体实施例并结合附图,对本发明的技术方案作进一步的描述,但本发明并不限于这些实施例。The following are specific embodiments of the present invention and in conjunction with the accompanying drawings, the technical solutions of the present invention are further described, but the present invention is not limited to these embodiments.
实施例1Example 1
按以下元素用质量分数配比研制一种新型高温镍基合金块体材料,镍余量,铬22.0%,钨15.0%,铁4.0%,钼1.5%,硅1%,铝0.5%,钛0.6%,锰0.5%,硼0.5%,碳0.1%,杂质含量0.13%(磷0.01%,硫0.01%,铜0.07%,氧0.02%,氮0.02%),各原料百分比之和为100%。Develop a new type of high-temperature nickel-based alloy bulk material according to the mass fraction ratio of the following elements, nickel balance, 22.0% chromium, 15.0% tungsten, 4.0% iron, 1.5% molybdenum, 1% silicon, 0.5% aluminum, and 0.6% titanium %, manganese 0.5%, boron 0.5%, carbon 0.1%, impurity content 0.13% (phosphorus 0.01%, sulfur 0.01%, copper 0.07%, oxygen 0.02%, nitrogen 0.02%), the sum of each raw material percentage is 100%.
按目标成分进行原材料的准备。将纯镍、纯铁、纯石墨、纯铬、纯钨、纯钼、镍硼中间合金装入坩埚,纯钛、纯锰、纯铝、纯硅装入二次加料仓中。抽真空至10Pa开始加热。坩埚内原材料全部熔化后,保持温度在1550℃进行精炼,精炼时间为20分钟。精炼结束后,充入0.08MPa氩气,加入纯钛、纯锰、纯铝、纯硅,准备第二次原料熔化。待二次原料完全熔化后,调整温度浇铸,浇铸温度1570℃,将熔融均匀后的金属液倒入模具冷却成型。Preparation of raw materials according to the target composition. Put pure nickel, pure iron, pure graphite, pure chromium, pure tungsten, pure molybdenum, and nickel-boron intermediate alloy into the crucible, and pure titanium, pure manganese, pure aluminum, and pure silicon into the secondary feeding bin. Vacuum to 10Pa and start heating. After all the raw materials in the crucible are melted, keep the temperature at 1550°C for refining, and the refining time is 20 minutes. After refining, fill with 0.08MPa argon, add pure titanium, pure manganese, pure aluminum, pure silicon, and prepare for the second melting of raw materials. After the secondary raw material is completely melted, adjust the temperature for casting, the casting temperature is 1570°C, and pour the evenly melted molten metal into the mold for cooling and forming.
图1为实施例1中合金块体材料氧化前后XRD物相分析衍射图谱,可得到氧化后主要产物为Cr1.3Fe0.7O3,且主峰较强;图2为实施例1中合金块体材料氧化后表面形貌图,发现表面并无明显剥落。在室温下经过拉伸实验可得到抗拉强度为708MPa;室温硬度为289HV;在900摄氏度高温下氧化并保温100小时,通过称重可得到氧化100小时后氧化增重达到23.17g/mm3,与对比例1相比,抗氧化性提高了16.26%。Figure 1 is the XRD phase analysis diffraction pattern of the alloy bulk material in Example 1 before and after oxidation, and it can be obtained that the main product after oxidation is Cr 1.3 Fe 0.7 O 3 , and the main peak is relatively strong; Figure 2 is the alloy bulk material in Example 1 The surface topography after oxidation shows that there is no obvious peeling off the surface. After tensile test at room temperature, it can be obtained that the tensile strength is 708MPa; the hardness at room temperature is 289HV; it is oxidized at a high temperature of 900 degrees Celsius and kept for 100 hours, and the weight gain after oxidation for 100 hours can be obtained by weighing 23.17g/mm 3 . Compared with Comparative Example 1, the oxidation resistance increased by 16.26%.
实施例2Example 2
按以下元素用质量分数配比研制一种新型高温镍基合金块体材料,镍余量,铬22.0%,钨15.0%,铁4.0%,钼1.5%,硅1%,铝1%,钛0.6%,锰0.5%,硼0.5%,碳0.1%,杂质含量0.13%(磷0.01%,硫0.01%,铜0.07%,氧0.02%,氮0.02%),各原料百分比之和为100%。Develop a new type of high-temperature nickel-based alloy bulk material according to the mass fraction ratio of the following elements, nickel balance, chromium 22.0%, tungsten 15.0%, iron 4.0%, molybdenum 1.5%,
按目标成分进行原材料的准备。将纯镍、纯铁、纯石墨、纯铬、纯钨、纯钼、镍硼中间合金装入坩埚,纯钛、纯锰、纯铝、纯硅装入二次加料仓中。抽真空至10Pa开始加热。坩埚内原材料全部熔化后,保持温度在1550℃进行精炼,精炼时间为20分钟。精炼结束后,充入0.08MPa氩气,加入纯钛、纯锰、纯铝、纯硅,准备第二次原料熔化。待二次原料完全熔化后,调整温度浇铸,浇铸温度1570℃,将熔融均匀后的金属液倒入模具冷却成型。Preparation of raw materials according to the target composition. Put pure nickel, pure iron, pure graphite, pure chromium, pure tungsten, pure molybdenum, and nickel-boron intermediate alloy into the crucible, and pure titanium, pure manganese, pure aluminum, and pure silicon into the secondary feeding bin. Vacuum to 10Pa and start heating. After all the raw materials in the crucible are melted, keep the temperature at 1550°C for refining, and the refining time is 20 minutes. After refining, fill with 0.08MPa argon, add pure titanium, pure manganese, pure aluminum, pure silicon, and prepare for the second melting of raw materials. After the secondary raw material is completely melted, adjust the temperature for casting, the casting temperature is 1570°C, and pour the evenly melted molten metal into the mold for cooling and forming.
图3为实施例2中合金块体材料氧化前后XRD物相分析衍射图谱,可得到氧化后主要产物为Cr1.3Fe0.7O3,且主峰较强;图4为实施例2中合金块体材料氧化后表面形貌图,发现表面并无明显剥落。在室温下经过拉伸实验可得到抗拉强度为789MPa;室温下硬度为351HV;在900摄氏度高温下氧化并保温100小时,通过称重可得到氧化100小时后增重质量达到24.33g/mm3,与对比例1相比,抗氧化性提高了12.07%。Figure 3 is the XRD phase analysis diffraction pattern of the alloy bulk material in Example 2 before and after oxidation, and it can be obtained that the main product after oxidation is Cr 1.3 Fe 0.7 O 3 , and the main peak is strong; Figure 4 is the alloy bulk material in Example 2 The surface topography after oxidation shows that there is no obvious peeling off the surface. After tensile test at room temperature, the tensile strength is 789MPa; the hardness at room temperature is 351HV; it is oxidized at a high temperature of 900 degrees Celsius and kept for 100 hours, and the weight gain after 100 hours of oxidation can reach 24.33g/ mm3 by weighing , compared with Comparative Example 1, the oxidation resistance increased by 12.07%.
实施例3Example 3
按以下元素用质量分数配比研制一种新型高温镍基合金块体材料,镍余量,铬23.0%,钨15.0%,铁4.0%,钼1.5%,硅1%,铝0.5%,钛0.6%,锰0.5%,硼0.5%,碳0.1%,杂质含量0.13%(磷0.01%,硫0.01%,铜0.07%,氧0.02%,氮0.02%),各原料百分比之和为100%。Develop a new type of high-temperature nickel-based alloy bulk material according to the mass fraction ratio of the following elements, nickel balance, 23.0% chromium, 15.0% tungsten, 4.0% iron, 1.5% molybdenum, 1% silicon, 0.5% aluminum, and 0.6% titanium %, manganese 0.5%, boron 0.5%, carbon 0.1%, impurity content 0.13% (phosphorus 0.01%, sulfur 0.01%, copper 0.07%, oxygen 0.02%, nitrogen 0.02%), the sum of each raw material percentage is 100%.
按目标成分进行原材料的准备。将纯镍、纯铁、纯石墨、纯铬、纯钨、纯钼、镍硼中间合金装入坩埚,纯钛、纯锰、纯铝、纯硅装入二次加料仓中。抽真空至10Pa开始加热。坩埚内原材料全部熔化后,保持温度在1550℃进行精炼,精炼时间为20分钟。精炼结束后,充入0.08MPa氩气,加入纯钛、纯锰、纯铝、纯硅,准备第二次原料熔化。待二次原料完全熔化后,调整温度浇铸,浇铸温度1570℃,将熔融均匀后的金属液倒入模具冷却成型。Preparation of raw materials according to the target composition. Put pure nickel, pure iron, pure graphite, pure chromium, pure tungsten, pure molybdenum, and nickel-boron intermediate alloy into the crucible, and pure titanium, pure manganese, pure aluminum, and pure silicon into the secondary feeding bin. Vacuum to 10Pa and start heating. After all the raw materials in the crucible are melted, keep the temperature at 1550°C for refining, and the refining time is 20 minutes. After refining, fill with 0.08MPa argon, add pure titanium, pure manganese, pure aluminum, pure silicon, and prepare for the second melting of raw materials. After the secondary raw material is completely melted, adjust the temperature for casting, the casting temperature is 1570°C, and pour the evenly melted molten metal into the mold for cooling and forming.
图5为实施例3中合金块体材料氧化前后XRD物相分析衍射图谱,可得到氧化后主要产物为Cr1.3Fe0.7O3,且主峰较强;图6为实施例3中合金块体材料氧化后表面形貌图,发现表面并无明显剥落。在室温下经过拉伸实验可得到抗拉强度为715MPa;室温下硬度为299HV;在900摄氏度高温下氧化并保温100小时,通过称重可得到氧化100小时后增重质量达到25.83g/mm3,与对比例1相比,抗氧化性提高了6.65%。Figure 5 is the XRD phase analysis diffraction pattern of the alloy bulk material in Example 3 before and after oxidation, and it can be obtained that the main product after oxidation is Cr 1.3 Fe 0.7 O 3 , and the main peak is strong; Figure 6 is the alloy bulk material in Example 3 The surface topography after oxidation shows that there is no obvious peeling off the surface. After tensile test at room temperature, the tensile strength is 715MPa; the hardness at room temperature is 299HV; it is oxidized at 900 degrees Celsius and kept for 100 hours, and the weight gain after 100 hours of oxidation can reach 25.83g/ mm3 by weighing , compared with Comparative Example 1, the oxidation resistance increased by 6.65%.
实施例4Example 4
按以下元素用质量分数配比研制一种新型高温镍基合金块体材料,镍余量,铬23.0%,钨15.0%,铁2.0%,钼1%,硅1%,铝0.5%,钛0.6%,锰0.5%,硼0.5%,碳0.1%,杂质含量0.13%(磷0.01%,硫0.01%,铜0.07%,氧0.02%,氮0.02%),各原料百分比之和为100%。Develop a new type of high-temperature nickel-based alloy bulk material according to the mass fraction ratio of the following elements, nickel balance, 23.0% chromium, 15.0% tungsten, 2.0% iron, 1% molybdenum, 1% silicon, 0.5% aluminum, and 0.6% titanium %, manganese 0.5%, boron 0.5%, carbon 0.1%, impurity content 0.13% (phosphorus 0.01%, sulfur 0.01%, copper 0.07%, oxygen 0.02%, nitrogen 0.02%), the sum of each raw material percentage is 100%.
按目标成分进行原材料的准备。将纯镍、纯铁、纯石墨、纯铬、纯钨、纯钼、镍硼中间合金装入坩埚,纯钛、纯锰、纯铝、纯硅装入二次加料仓中。抽真空至10Pa开始加热。坩埚内原材料全部熔化后,保持温度在1550℃进行精炼,精炼时间为20分钟。精炼结束后,充入0.08MPa氩气,加入纯钛、纯锰、纯铝、纯硅,准备第二次原料熔化。待二次原料完全熔化后,调整温度浇铸,浇铸温度1570℃,将熔融均匀后的金属液倒入模具冷却成型。Preparation of raw materials according to the target composition. Put pure nickel, pure iron, pure graphite, pure chromium, pure tungsten, pure molybdenum, and nickel-boron intermediate alloy into the crucible, and pure titanium, pure manganese, pure aluminum, and pure silicon into the secondary feeding bin. Vacuum to 10Pa and start heating. After all the raw materials in the crucible are melted, keep the temperature at 1550°C for refining, and the refining time is 20 minutes. After refining, fill with 0.08MPa argon, add pure titanium, pure manganese, pure aluminum, pure silicon, and prepare for the second melting of raw materials. After the secondary raw material is completely melted, adjust the temperature for casting, the casting temperature is 1570°C, and pour the evenly melted molten metal into the mold for cooling and forming.
在室温下经过拉伸实验可得到抗拉强度为700MPa;室温下硬度为280HV;在900摄氏度高温下氧化并保温100小时,通过称重可得到氧化100小时后增重质量达到25.32g/mm3,与对比例1相比,抗氧化性提高了8.5%。After tensile test at room temperature, the tensile strength is 700MPa; the hardness at room temperature is 280HV; it is oxidized at a high temperature of 900 degrees Celsius and kept for 100 hours, and the weight gain after 100 hours of oxidation can reach 25.32g/ mm3 by weighing , Compared with Comparative Example 1, the oxidation resistance increased by 8.5%.
对比例1Comparative example 1
按以下元素用质量分数配比研制一种高温镍基合金块体材料作为对比样(GH3044合金),镍余量,铬24.0%,钨15.0%,铁4.0%,钼1.5%,硅0.8%,铝0.5%,钛0.6%,锰0.5%,碳0.1%,杂质含量0.13%(磷0.01%,硫0.01%,铜0.07%,氧0.02%,氮0.02%),各原料百分比之和为100%。Develop a kind of high-temperature nickel-base alloy block material with mass fraction ratio according to the following elements as a comparison sample (GH3044 alloy), nickel surplus, chromium 24.0%, tungsten 15.0%, iron 4.0%, molybdenum 1.5%, silicon 0.8%, Aluminum 0.5%, titanium 0.6%, manganese 0.5%, carbon 0.1%, impurity content 0.13% (phosphorus 0.01%, sulfur 0.01%, copper 0.07%, oxygen 0.02%, nitrogen 0.02%), the sum of the percentages of each raw material is 100% .
图7为对比例1中合金块体材料氧化前后XRD物相分析衍射图谱,可得到氧化后主要产物为Cr2O3,但主峰强度不高;图8为对比例1中合金块体材料氧化后表面形貌图,发现表面有些许剥落。在室温下经过拉伸试验可得抗拉强度为507MPa;室温下硬度为194HV;在900摄氏度高温下氧化并保温100小时,通过称重可得到氧化100小时后氧化增重为27.67g/mm3。Figure 7 is the XRD phase analysis diffraction pattern of the alloy bulk material in Comparative Example 1 before and after oxidation. It can be obtained that the main product after oxidation is Cr 2 O 3 , but the main peak intensity is not high; Figure 8 is the oxidation of the alloy bulk material in Comparative Example 1. After the surface topography, it was found that the surface was slightly peeled off. After tensile test at room temperature, the tensile strength is 507MPa; the hardness at room temperature is 194HV; it is oxidized at a high temperature of 900 degrees Celsius and kept for 100 hours, and the oxidation weight gain after oxidation for 100 hours is 27.67g/ mm3 by weighing .
对比例2Comparative example 2
按以下元素用质量分数配比研制一种高温镍基合金块体材料作为对比样,镍余量,铬22.0%,钨15.0%,铁4.0%,钼1.5%,硅1%,铝0.5%,钛0.6%,锰0.5%,硼1.5%,碳0.1%,杂质含量0.13%(磷0.01%,硫0.01%,铜0.07%,氧0.02%,氮0.02%),各原料百分比之和为100%。Develop a kind of high-temperature nickel-based alloy block material with the mass fraction ratio of the following elements as a comparison sample, nickel surplus, 22.0% chromium, 15.0% tungsten, 4.0% iron, 1.5% molybdenum, 1% silicon, 0.5% aluminum, Titanium 0.6%, manganese 0.5%, boron 1.5%, carbon 0.1%, impurity content 0.13% (phosphorus 0.01%, sulfur 0.01%, copper 0.07%, oxygen 0.02%, nitrogen 0.02%), the sum of the percentages of each raw material is 100% .
图9为对比例2中合金块体材料氧化前后XRD物相分析衍射图谱,可得到氧化后主要产物为(Ni,Fe)、Cr1.3Fe0.7O3,且Cr1.3Fe0.7O3物相强度不高;氧化后表面呈灰绿色,图10为对比例2中合金块体材料氧化后表面形貌图。在室温下经过拉伸试验可得抗拉强度为536MPa,可看到强度相比硼元素含量为0.5%时有所下降;室温下硬度为462HV;在900摄氏度高温下氧化并保温100小时,通过称重可得到氧化100小时后氧化增重为33g/mm3。Figure 9 is the XRD phase analysis diffraction pattern of the alloy bulk material in Comparative Example 2 before and after oxidation. It can be obtained that the main products after oxidation are (Ni, Fe), Cr 1.3 Fe 0.7 O 3 , and the phase strength of Cr 1.3 Fe 0.7 O 3 Not high; the surface is gray-green after oxidation. Figure 10 is the surface morphology of the alloy bulk material in Comparative Example 2 after oxidation. After a tensile test at room temperature, the tensile strength is 536MPa, and it can be seen that the strength is lower than when the boron content is 0.5%. By weighing, it can be obtained that the oxidation weight gain after oxidation for 100 hours is 33 g/mm 3 .
以上未涉及之处,适用于现有技术。What is not involved above is applicable to the prior art.
虽然已经通过示例对本发明的一些特定实施例进行了详细说明,但是本领域的技术人员应该理解,以上示例仅是为了进行说明,而不是为了限制本发明的范围,本发明所属技术领域的技术人员可以对所描述的具体实施例来做出各种各样的修改或补充或采用类似的方式替代,但并不会偏离本发明的方向或者超越所附权利要求书所定义的范围。本领域的技术人员应该理解,凡是依据本发明的技术实质对以上实施方式所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围。Although some specific embodiments of the present invention have been described in detail by examples, those skilled in the art should understand that the above examples are only for illustration, rather than for limiting the scope of the present invention. Various modifications or additions or similar substitutions can be made to the described specific embodiments without departing from the direction of the present invention or exceeding the scope defined by the appended claims. Those skilled in the art should understand that any modifications, equivalent replacements, improvements, etc. made to the above implementations based on the technical essence of the present invention shall be included in the protection scope of the present invention.
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210230702.3A CN114645161B (en) | 2022-03-09 | 2022-03-09 | High-oxidation-resistance nickel-based alloy block material and preparation method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210230702.3A CN114645161B (en) | 2022-03-09 | 2022-03-09 | High-oxidation-resistance nickel-based alloy block material and preparation method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN114645161A CN114645161A (en) | 2022-06-21 |
CN114645161B true CN114645161B (en) | 2022-11-29 |
Family
ID=81994125
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210230702.3A Active CN114645161B (en) | 2022-03-09 | 2022-03-09 | High-oxidation-resistance nickel-based alloy block material and preparation method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114645161B (en) |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB821745A (en) * | 1956-10-08 | 1959-10-14 | Universal Cyclops Steel Corp | High temperature alloys and the manufacture thereof |
JPH0885838A (en) * | 1994-07-19 | 1996-04-02 | Hitachi Metals Ltd | Ni-base superalloy |
JP2014070230A (en) * | 2012-09-27 | 2014-04-21 | Hitachi Metals Ltd | METHOD FOR PRODUCING Ni-BASED SUPERALLOY |
CN104195474A (en) * | 2014-07-30 | 2014-12-10 | 保定风帆精密铸造制品有限公司 | High-temperature-resistant alloy casting and preparation method thereof |
TWI564398B (en) * | 2015-11-18 | 2017-01-01 | 中國鋼鐵股份有限公司 | Nickel-based alloy and method of producing thereof |
CN109988958A (en) * | 2019-03-08 | 2019-07-09 | 北京矿冶科技集团有限公司 | Nickel-based alloy powder, corresponding corrosion-resistant coating and preparation method thereof |
CN111118318A (en) * | 2020-02-16 | 2020-05-08 | 广东石油化工学院 | A kind of method for deoxidizing nickel-based superalloy |
CN112553505A (en) * | 2020-12-25 | 2021-03-26 | 江苏新核合金科技有限公司 | Nickel-based plate and preparation method thereof |
CN113667861A (en) * | 2021-08-23 | 2021-11-19 | 中航上大高温合金材料股份有限公司 | Smelting method of GH3625 alloy |
-
2022
- 2022-03-09 CN CN202210230702.3A patent/CN114645161B/en active Active
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB821745A (en) * | 1956-10-08 | 1959-10-14 | Universal Cyclops Steel Corp | High temperature alloys and the manufacture thereof |
JPH0885838A (en) * | 1994-07-19 | 1996-04-02 | Hitachi Metals Ltd | Ni-base superalloy |
JP2014070230A (en) * | 2012-09-27 | 2014-04-21 | Hitachi Metals Ltd | METHOD FOR PRODUCING Ni-BASED SUPERALLOY |
CN104195474A (en) * | 2014-07-30 | 2014-12-10 | 保定风帆精密铸造制品有限公司 | High-temperature-resistant alloy casting and preparation method thereof |
TWI564398B (en) * | 2015-11-18 | 2017-01-01 | 中國鋼鐵股份有限公司 | Nickel-based alloy and method of producing thereof |
CN109988958A (en) * | 2019-03-08 | 2019-07-09 | 北京矿冶科技集团有限公司 | Nickel-based alloy powder, corresponding corrosion-resistant coating and preparation method thereof |
CN111118318A (en) * | 2020-02-16 | 2020-05-08 | 广东石油化工学院 | A kind of method for deoxidizing nickel-based superalloy |
CN112553505A (en) * | 2020-12-25 | 2021-03-26 | 江苏新核合金科技有限公司 | Nickel-based plate and preparation method thereof |
CN113667861A (en) * | 2021-08-23 | 2021-11-19 | 中航上大高温合金材料股份有限公司 | Smelting method of GH3625 alloy |
Also Published As
Publication number | Publication date |
---|---|
CN114645161A (en) | 2022-06-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111235434B (en) | Preparation method of nickel-based deformed superalloy wheel disc forging used at high temperature | |
CN111187946B (en) | Nickel-based wrought superalloy with high aluminum content and preparation method thereof | |
US9309584B2 (en) | Base material for high temperature alloy and manufacture method thereof | |
EP2479302A1 (en) | Ni-based heat resistant alloy, gas turbine component and gas turbine | |
CN111118350B (en) | Ce-Mg-N composite treated GH4065 nickel-based high-temperature alloy and preparation process thereof | |
JP4719583B2 (en) | Unidirectional solidification nickel-base superalloy excellent in strength, corrosion resistance and oxidation resistance and method for producing unidirectional solidification nickel-base superalloy | |
CN108441741B (en) | High-strength corrosion-resistant nickel-based high-temperature alloy for aerospace and manufacturing method thereof | |
CN106222457A (en) | A kind of preparation method of high temperature alloy | |
CN110358947B (en) | Nickel-tungsten intermediate alloy for smelting high-temperature alloy and preparation method and application thereof | |
JP2011046972A (en) | Nickel based superalloy for unidirectional solidification having excellent strength and oxidation resistance characteristic | |
CN111074101A (en) | High-strength low-specific-ratio reorientation solidification nickel-based high-temperature alloy and preparation method and application thereof | |
CN114645161B (en) | High-oxidation-resistance nickel-based alloy block material and preparation method thereof | |
CN111910095B (en) | Smelting preparation method of nickel-based single crystal superalloy master alloy | |
JP4773303B2 (en) | Nickel-based single crystal superalloy excellent in strength, corrosion resistance, and oxidation resistance and method for producing the same | |
CN118668086A (en) | Low segregation preparation method of high Ti content deformed superalloy phi 508mm specification cast ingot | |
CN112853156A (en) | High-structure-stability nickel-based high-temperature alloy and preparation method thereof | |
CN108441707B (en) | High-strength tungsten-containing nickel-based high-temperature alloy material and preparation method and application thereof | |
RU2112069C1 (en) | Nickel-base cast high-temperature alloy | |
US3314784A (en) | Cobalt-base alloy resistant to thermal shock | |
US2805154A (en) | Nickel-base alloy | |
CN111254317B (en) | Nickel-based casting alloy and preparation method thereof | |
CN115323206A (en) | A smelting process for accurately controlling the content of trace element boron in GH4169D alloy | |
US2743175A (en) | Precision casting alloy | |
US3166413A (en) | Tungsten-containing nickel-chromium alloys | |
US3166411A (en) | Nickel-chromium alloys |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |