CN114644357A - Method for preparing ammonium metavanadate by sodium modification vanadium extraction combined alkali preparation and low-cost vanadium slag utilization - Google Patents
Method for preparing ammonium metavanadate by sodium modification vanadium extraction combined alkali preparation and low-cost vanadium slag utilization Download PDFInfo
- Publication number
- CN114644357A CN114644357A CN202210241452.3A CN202210241452A CN114644357A CN 114644357 A CN114644357 A CN 114644357A CN 202210241452 A CN202210241452 A CN 202210241452A CN 114644357 A CN114644357 A CN 114644357A
- Authority
- CN
- China
- Prior art keywords
- vanadium
- sodium
- slag
- chloride
- leaching
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 229910052720 vanadium Inorganic materials 0.000 title claims abstract description 127
- LEONUFNNVUYDNQ-UHFFFAOYSA-N vanadium atom Chemical compound [V] LEONUFNNVUYDNQ-UHFFFAOYSA-N 0.000 title claims abstract description 126
- 239000002893 slag Substances 0.000 title claims abstract description 65
- 238000000034 method Methods 0.000 title claims abstract description 47
- 238000000605 extraction Methods 0.000 title claims abstract description 35
- UNTBPXHCXVWYOI-UHFFFAOYSA-O azanium;oxido(dioxo)vanadium Chemical compound [NH4+].[O-][V](=O)=O UNTBPXHCXVWYOI-UHFFFAOYSA-O 0.000 title claims abstract description 31
- 239000003513 alkali Substances 0.000 title claims abstract description 22
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 title claims description 16
- 239000011734 sodium Substances 0.000 title claims description 16
- 229910052708 sodium Inorganic materials 0.000 title claims description 16
- 238000012986 modification Methods 0.000 title claims description 5
- 230000004048 modification Effects 0.000 title claims description 5
- 238000002360 preparation method Methods 0.000 title claims description 3
- NLXLAEXVIDQMFP-UHFFFAOYSA-N Ammonia chloride Chemical compound [NH4+].[Cl-] NLXLAEXVIDQMFP-UHFFFAOYSA-N 0.000 claims abstract description 56
- 238000002386 leaching Methods 0.000 claims abstract description 50
- 238000001556 precipitation Methods 0.000 claims abstract description 42
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 claims abstract description 33
- 239000000706 filtrate Substances 0.000 claims abstract description 31
- UIIMBOGNXHQVGW-UHFFFAOYSA-M Sodium bicarbonate Chemical compound [Na+].OC([O-])=O UIIMBOGNXHQVGW-UHFFFAOYSA-M 0.000 claims abstract description 30
- 235000019270 ammonium chloride Nutrition 0.000 claims abstract description 28
- 239000007788 liquid Substances 0.000 claims abstract description 27
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 claims abstract description 24
- 239000000047 product Substances 0.000 claims abstract description 23
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 claims abstract description 21
- 229910052804 chromium Inorganic materials 0.000 claims abstract description 21
- 239000011651 chromium Substances 0.000 claims abstract description 21
- 239000000463 material Substances 0.000 claims abstract description 15
- 229910000030 sodium bicarbonate Inorganic materials 0.000 claims abstract description 15
- 235000017557 sodium bicarbonate Nutrition 0.000 claims abstract description 15
- ATRRKUHOCOJYRX-UHFFFAOYSA-N Ammonium bicarbonate Chemical compound [NH4+].OC([O-])=O ATRRKUHOCOJYRX-UHFFFAOYSA-N 0.000 claims abstract description 14
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 claims abstract description 14
- 239000001099 ammonium carbonate Substances 0.000 claims abstract description 14
- 229910000013 Ammonium bicarbonate Inorganic materials 0.000 claims abstract description 13
- 235000012538 ammonium bicarbonate Nutrition 0.000 claims abstract description 13
- UXVMQQNJUSDDNG-UHFFFAOYSA-L Calcium chloride Chemical compound [Cl-].[Cl-].[Ca+2] UXVMQQNJUSDDNG-UHFFFAOYSA-L 0.000 claims abstract description 12
- 239000001110 calcium chloride Substances 0.000 claims abstract description 12
- 229910001628 calcium chloride Inorganic materials 0.000 claims abstract description 12
- 229910000029 sodium carbonate Inorganic materials 0.000 claims abstract description 12
- 229910021578 Iron(III) chloride Inorganic materials 0.000 claims abstract description 11
- RBTARNINKXHZNM-UHFFFAOYSA-K iron trichloride Chemical compound Cl[Fe](Cl)Cl RBTARNINKXHZNM-UHFFFAOYSA-K 0.000 claims abstract description 11
- 239000002699 waste material Substances 0.000 claims abstract description 9
- 238000002156 mixing Methods 0.000 claims abstract description 7
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 claims description 30
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 29
- GNTDGMZSJNCJKK-UHFFFAOYSA-N divanadium pentaoxide Chemical compound O=[V](=O)O[V](=O)=O GNTDGMZSJNCJKK-UHFFFAOYSA-N 0.000 claims description 18
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 14
- 238000001914 filtration Methods 0.000 claims description 13
- 229910052698 phosphorus Inorganic materials 0.000 claims description 13
- 239000002994 raw material Substances 0.000 claims description 13
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 claims description 12
- 239000011574 phosphorus Substances 0.000 claims description 12
- 229910052710 silicon Inorganic materials 0.000 claims description 12
- 239000010703 silicon Substances 0.000 claims description 12
- 229910001415 sodium ion Inorganic materials 0.000 claims description 11
- UIIMBOGNXHQVGW-DEQYMQKBSA-M Sodium bicarbonate-14C Chemical compound [Na+].O[14C]([O-])=O UIIMBOGNXHQVGW-DEQYMQKBSA-M 0.000 claims description 10
- 229960002089 ferrous chloride Drugs 0.000 claims description 9
- NMCUIPGRVMDVDB-UHFFFAOYSA-L iron dichloride Chemical compound Cl[Fe]Cl NMCUIPGRVMDVDB-UHFFFAOYSA-L 0.000 claims description 9
- 238000001704 evaporation Methods 0.000 claims description 8
- 239000002244 precipitate Substances 0.000 claims description 8
- 229910052742 iron Inorganic materials 0.000 claims description 7
- LSGOVYNHVSXFFJ-UHFFFAOYSA-N vanadate(3-) Chemical compound [O-][V]([O-])([O-])=O LSGOVYNHVSXFFJ-UHFFFAOYSA-N 0.000 claims description 7
- 238000005406 washing Methods 0.000 claims description 7
- BVKZGUZCCUSVTD-UHFFFAOYSA-M Bicarbonate Chemical compound OC([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-M 0.000 claims description 5
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 claims description 5
- 239000003054 catalyst Substances 0.000 claims description 5
- 239000003208 petroleum Substances 0.000 claims description 5
- 238000001816 cooling Methods 0.000 claims description 4
- 238000003723 Smelting Methods 0.000 claims description 2
- 238000000227 grinding Methods 0.000 claims description 2
- 150000003681 vanadium Chemical class 0.000 claims 5
- FBAFATDZDUQKNH-UHFFFAOYSA-M iron chloride Chemical compound [Cl-].[Fe] FBAFATDZDUQKNH-UHFFFAOYSA-M 0.000 claims 1
- 230000007935 neutral effect Effects 0.000 claims 1
- 230000001105 regulatory effect Effects 0.000 claims 1
- 238000004519 manufacturing process Methods 0.000 abstract description 15
- CFVBFMMHFBHNPZ-UHFFFAOYSA-N [Na].[V] Chemical compound [Na].[V] CFVBFMMHFBHNPZ-UHFFFAOYSA-N 0.000 abstract description 13
- 239000002351 wastewater Substances 0.000 abstract description 11
- 238000004064 recycling Methods 0.000 abstract description 9
- 230000007613 environmental effect Effects 0.000 abstract description 7
- 150000001450 anions Chemical class 0.000 abstract description 4
- 238000001354 calcination Methods 0.000 abstract description 3
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 abstract 2
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 abstract 1
- 239000000460 chlorine Substances 0.000 abstract 1
- 229910052801 chlorine Inorganic materials 0.000 abstract 1
- 239000000243 solution Substances 0.000 description 39
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 10
- 239000012535 impurity Substances 0.000 description 10
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 8
- 238000007654 immersion Methods 0.000 description 7
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 6
- PMZURENOXWZQFD-UHFFFAOYSA-L Sodium Sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 description 6
- FKNQFGJONOIPTF-UHFFFAOYSA-N Sodium cation Chemical compound [Na+] FKNQFGJONOIPTF-UHFFFAOYSA-N 0.000 description 6
- 238000006243 chemical reaction Methods 0.000 description 6
- 229910052938 sodium sulfate Inorganic materials 0.000 description 6
- 235000011152 sodium sulphate Nutrition 0.000 description 6
- 230000002308 calcification Effects 0.000 description 4
- 230000008020 evaporation Effects 0.000 description 4
- 238000009854 hydrometallurgy Methods 0.000 description 4
- 150000002500 ions Chemical class 0.000 description 4
- 239000011780 sodium chloride Substances 0.000 description 4
- XHCLAFWTIXFWPH-UHFFFAOYSA-N [O-2].[O-2].[O-2].[O-2].[O-2].[V+5].[V+5] Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[V+5].[V+5] XHCLAFWTIXFWPH-UHFFFAOYSA-N 0.000 description 3
- 239000012267 brine Substances 0.000 description 3
- 239000013078 crystal Substances 0.000 description 3
- 238000007689 inspection Methods 0.000 description 3
- 150000003839 salts Chemical class 0.000 description 3
- HPALAKNZSZLMCH-UHFFFAOYSA-M sodium;chloride;hydrate Chemical compound O.[Na+].[Cl-] HPALAKNZSZLMCH-UHFFFAOYSA-M 0.000 description 3
- 229910001935 vanadium oxide Inorganic materials 0.000 description 3
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- XKMRRTOUMJRJIA-UHFFFAOYSA-N ammonia nh3 Chemical compound N.N XKMRRTOUMJRJIA-UHFFFAOYSA-N 0.000 description 2
- 150000003863 ammonium salts Chemical class 0.000 description 2
- BFNBIHQBYMNNAN-UHFFFAOYSA-N ammonium sulfate Chemical compound N.N.OS(O)(=O)=O BFNBIHQBYMNNAN-UHFFFAOYSA-N 0.000 description 2
- 229910052921 ammonium sulfate Inorganic materials 0.000 description 2
- 235000011130 ammonium sulphate Nutrition 0.000 description 2
- 239000006227 byproduct Substances 0.000 description 2
- 239000012141 concentrate Substances 0.000 description 2
- 238000002425 crystallisation Methods 0.000 description 2
- 230000008025 crystallization Effects 0.000 description 2
- 238000005262 decarbonization Methods 0.000 description 2
- 238000005649 metathesis reaction Methods 0.000 description 2
- 230000001376 precipitating effect Effects 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 238000000746 purification Methods 0.000 description 2
- 229920006395 saturated elastomer Polymers 0.000 description 2
- 239000002910 solid waste Substances 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-L sulfate group Chemical group S(=O)(=O)([O-])[O-] QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 238000004065 wastewater treatment Methods 0.000 description 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- WJEIYVAPNMUNIU-UHFFFAOYSA-N [Na].OC(O)=O Chemical compound [Na].OC(O)=O WJEIYVAPNMUNIU-UHFFFAOYSA-N 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 235000012501 ammonium carbonate Nutrition 0.000 description 1
- GSTANBWEAXRNHP-UHFFFAOYSA-N azanium;hydrogen carbonate;sodium Chemical compound [NH4+].[Na].OC([O-])=O GSTANBWEAXRNHP-UHFFFAOYSA-N 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 159000000007 calcium salts Chemical class 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- JYYOBHFYCIDXHH-UHFFFAOYSA-N carbonic acid;hydrate Chemical compound O.OC(O)=O JYYOBHFYCIDXHH-UHFFFAOYSA-N 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 150000003841 chloride salts Chemical class 0.000 description 1
- JOPOVCBBYLSVDA-UHFFFAOYSA-N chromium(6+) Chemical compound [Cr+6] JOPOVCBBYLSVDA-UHFFFAOYSA-N 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- RCJVRSBWZCNNQT-UHFFFAOYSA-N dichloridooxygen Chemical compound ClOCl RCJVRSBWZCNNQT-UHFFFAOYSA-N 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000003912 environmental pollution Methods 0.000 description 1
- 239000012065 filter cake Substances 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- XDBSEZHMWGHVIL-UHFFFAOYSA-M hydroxy(dioxo)vanadium Chemical compound O[V](=O)=O XDBSEZHMWGHVIL-UHFFFAOYSA-M 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 235000010755 mineral Nutrition 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- MEFBJEMVZONFCJ-UHFFFAOYSA-N molybdate Chemical compound [O-][Mo]([O-])(=O)=O MEFBJEMVZONFCJ-UHFFFAOYSA-N 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 239000010802 sludge Substances 0.000 description 1
- 159000000000 sodium salts Chemical class 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000013589 supplement Substances 0.000 description 1
- 239000002912 waste gas Substances 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G31/00—Compounds of vanadium
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01C—AMMONIA; CYANOGEN; COMPOUNDS THEREOF
- C01C1/00—Ammonia; Compounds thereof
- C01C1/16—Halides of ammonium
- C01C1/164—Ammonium chloride
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01D—COMPOUNDS OF ALKALI METALS, i.e. LITHIUM, SODIUM, POTASSIUM, RUBIDIUM, CAESIUM, OR FRANCIUM
- C01D7/00—Carbonates of sodium, potassium or alkali metals in general
- C01D7/02—Preparation by double decomposition
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G31/00—Compounds of vanadium
- C01G31/02—Oxides
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B3/00—Extraction of metal compounds from ores or concentrates by wet processes
- C22B3/20—Treatment or purification of solutions, e.g. obtained by leaching
- C22B3/44—Treatment or purification of solutions, e.g. obtained by leaching by chemical processes
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B34/00—Obtaining refractory metals
- C22B34/20—Obtaining niobium, tantalum or vanadium
- C22B34/22—Obtaining vanadium
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2006/00—Physical properties of inorganic compounds
- C01P2006/80—Compositional purity
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Inorganic Chemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Manufacturing & Machinery (AREA)
- Mechanical Engineering (AREA)
- Geochemistry & Mineralogy (AREA)
- Geology (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Environmental & Geological Engineering (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Manufacture And Refinement Of Metals (AREA)
Abstract
本发明公开了一种钠化提钒联合制碱及低成本利用钒渣制备偏钒酸铵的方法,包括以下步骤:A、将钒渣与碳酸钠混匀焙烧;B、水浸焙烧熟料,得到浸出渣和浸出液,向浸出液中先后加入氯化钙和聚合氯化铝;C、向合格液中加入氯化铵进行沉钒;D、沉钒尾液加入氯化铁除钒,接着加入氯化亚铁和氢氧化钠除铬,接着加入碳酸氢铵沉淀出碳酸氢钠;E、滤液蒸发结晶析出得到氯化铵。本发明使溶液体系从复杂的多种类阴离子转变为单一阴离子的体系,由此避免了处理系统的崩溃,同时在高效率制备偏钒酸铵产品时,实现了辅料和废水的循环使用,“三废”排放量很低,满足了现阶段国家的环保要求,彻底解决了生产企业目前面临的环保压力。
The invention discloses a method for combined alkali production by sodium vanadium extraction and low-cost utilization of vanadium slag to prepare ammonium metavanadate. The method comprises the following steps: A. mixing and calcining vanadium slag and sodium carbonate; Obtain leaching residue and leaching solution, successively add calcium chloride and polyaluminum chloride to the leaching solution; C, add ammonium chloride to the qualified solution to carry out vanadium precipitation; D, add ferric chloride to remove vanadium in the vanadium precipitation tail liquid, then add chlorine Ferrous oxide and sodium hydroxide are used to remove chromium, and then ammonium bicarbonate is added to precipitate sodium bicarbonate; E, the filtrate is evaporated and crystallized to obtain ammonium chloride. The invention transforms the solution system from a complex multi-type anion system to a single anion system, thereby avoiding the collapse of the treatment system, and at the same time realizing the recycling of auxiliary materials and waste water when preparing ammonium metavanadate products with high efficiency, "three wastes""The emission is very low, which meets the national environmental protection requirements at this stage, and completely solves the environmental protection pressure currently faced by production enterprises.
Description
技术领域technical field
本发明涉及湿法冶金提钒技术领域,特别涉及一种钠化提钒联合制碱及低成本利用钒渣制备偏钒酸铵的方法。The invention relates to the technical field of vanadium extraction by hydrometallurgy, in particular to a method for combined alkali production by sodium vanadium extraction and low-cost utilization of vanadium slag to prepare ammonium metavanadate.
背景技术Background technique
当前世界上的矿物提钒技术,主要包括钠化提钒和钙法提钒。钠化提钒工艺因矿中的杂质元素种类较多并且也容易钠化形成相应的钠盐溶解在水中,此后经过滤、除杂等一系列过程后再加入沉淀剂沉淀出合格的偏钒酸铵或多钒酸铵,在一系列的除杂以及沉淀等过程中,相应地会引入不同种类的离子,为保障最终成品质量以及产品收率,一般都会过量加入,从而导致了沉钒尾液中的离子种类多,主要是硫酸钠或氯化钠。一般来说,沉淀偏钒酸铵后的尾液浓度高于沉淀多钒酸铵后的尾液,尾液中的主要离子都是钠离子、铵离子、硫酸根、氯离子以及少量的钒酸根和六价铬。目前,很多钒制品(湿法冶金)企业的废水都是采用预处理—膜分盐—蒸发结晶的工艺模式进行处理,得到工业氯化钠和硫酸钠,氯化钠在焙烧时有时作为钠离子的补充剂以及焙烧料的pH调节剂返到前端工段使用,但硫酸钠的市场用途就比较狭窄,很难找到市场。有的企业的处理方式就是直接预处理后蒸发得硫酸钠和氯化钠的混合盐,其市场应用更加狭窄。随着国家环保要求的日趋严格,国家对钒制品(湿法冶金)企业的废水排放标准要求更高,这就严格要求了相关企业妥善处理好该工业产生的废水、废物。而现有处理工艺蒸发得到的硫酸钠,本身附加值就低,处理成本以及设备要求还高,处理成本高、环保压力大、产品附加值低等弊端日益凸显。The current world's mineral vanadium extraction technology mainly includes sodium vanadium extraction and calcium extraction vanadium. The sodium vanadium extraction process has many types of impurity elements in the ore and is also easy to sodium to form the corresponding sodium salt and dissolve in water. After a series of processes such as filtration and impurity removal, a precipitant is added to precipitate qualified metavanadic acid. Ammonium or ammonium polyvanadate, in a series of impurity removal and precipitation processes, correspondingly introduce different types of ions. In order to ensure the quality of the final product and product yield, it is generally added in excess, resulting in the precipitation of vanadium tail liquid. There are many kinds of ions, mainly sodium sulfate or sodium chloride. Generally speaking, the concentration of tail liquor after precipitating ammonium metavanadate is higher than that after precipitating ammonium polyvanadate. The main ions in tail liquor are sodium ion, ammonium ion, sulfate group, chloride ion and a small amount of vanadate group. and hexavalent chromium. At present, the wastewater of many vanadium products (hydrometallurgy) enterprises is treated by the process mode of pretreatment-membrane separation-evaporation and crystallization to obtain industrial sodium chloride and sodium sulfate, and sodium chloride is sometimes used as sodium ion during roasting. The supplements and pH adjusters of the roasting materials are returned to the front-end section for use, but the market use of sodium sulfate is relatively narrow, and it is difficult to find a market. The treatment method of some enterprises is to evaporate the mixed salt of sodium sulfate and sodium chloride directly after pretreatment, and its market application is more narrow. With the increasingly stringent national environmental protection requirements, the state has higher requirements for wastewater discharge standards for vanadium products (hydrometallurgy) enterprises, which strictly requires relevant enterprises to properly handle the wastewater and waste generated by the industry. However, the sodium sulfate obtained by evaporation in the existing treatment process has low added value, high processing cost and equipment requirements, high processing cost, high environmental protection pressure, and low product added value. The drawbacks are increasingly prominent.
针对当前钒湿法冶金的废水,中科院对其进行了相关的研究,提出了浓缩—制碱—制硫酸铵的工艺,该工艺在攀钢集团进行了相应的中试调试试验,但是该工艺在硫酸铵过滤后的溶液处置上采取的是返回到前序复分解反应,因溶液中有氯离子的存在,一方面影响了成品的纯度,另一方面,氯离子在富集后,影响了反应的收率,而且对设备的腐蚀影响也极大。因此,该工艺的处理方式到循环后期必然因杂质的影响而需要外排浓盐水,而这种浓盐水的处置成本会很高,这也是该工艺不可估算的处理成本增加项。In view of the current wastewater of vanadium hydrometallurgy, the Chinese Academy of Sciences has carried out relevant research on it, and proposed a process of concentration-soda-making ammonium sulfate. The solution disposal after ammonium sulfate filtration is to return to the previous metathesis reaction. Due to the presence of chloride ions in the solution, on the one hand, the purity of the finished product is affected, and on the other hand, the enrichment of chloride ions affects the reaction. Yield, but also a great impact on the corrosion of equipment. Therefore, the treatment method of this process will inevitably need to discharge concentrated brine due to the influence of impurities in the later stage of the cycle, and the disposal cost of such concentrated brine will be very high, which is also an inestimable increase in the treatment cost of this process.
中国专利CN110106346A公开一种碳酸铵浸出焙烧熟料制备氧化钒的方法,其步骤为:1、将钒渣与钙盐混匀焙烧;2、向焙烧熟料中加入水和含钠碳酸盐浸出;3、向浸出液中加入除硅剂,然后通过CO2调节pH至7.8-8.5,固液分离得到结晶母液和碳酸氢钠,结晶母液加入碳酸氢铵沉钒,得到偏钒酸铵和沉钒上层液,沉钒上层液直接作为浸出剂回收使用。该专利通过向除硅后的溶液中通入CO2调节pH为7.8-8.5,降低了溶液中钠离子浓度,提高了沉钒率,该工艺中由于没有除铬工序,因此不会产生钒铬滤饼和固废硫酸钠,实现了钒渣低成本清洁生产氧化钒。然而,该专利技术采用的是钙化提钒工艺,钙化提钒相对于钠化提钒来说,由于焙烧熟料溶解度存在较大差异,导致钙化提钒的盐水浓度低于钠化提钒的盐水浓度,而正因如此,钠化提钒工艺的收率高于钙化提钒工艺。同时,该专利技术在循环使用沉钒上层液时,沉钒上层液中的铬、钼、磷等杂质不断富集后,不仅影响成品的纯度,而且还会影响收率,并不是优选的实施方案。另外,该工艺对浸出前物料的颗粒要求很高(固液反应要求很高),其对钒的收率影响很大。Chinese patent CN110106346A discloses a method for preparing vanadium oxide by leaching and roasting clinker with ammonium carbonate. The steps are: 1. Mixing and roasting vanadium slag and calcium salt; 3. Add silicon remover to the leaching solution, then adjust pH to 7.8-8.5 by CO The upper layer solution and the vanadium precipitation upper layer solution are directly used as leaching agent for recycling. In this patent, the pH of the solution after silicon removal is adjusted to 7.8-8.5 by introducing CO 2 , which reduces the concentration of sodium ions in the solution and improves the rate of vanadium precipitation. Since there is no chromium removal process in this process, vanadium and chromium will not be produced. Filter cake and solid waste sodium sulfate realize low-cost and clean production of vanadium oxide from vanadium slag. However, what this patented technology adopts is the calcification vanadium extraction process. Compared with the sodium vanadium extraction, the calcification vanadium extraction has a large difference in the solubility of the roasted clinker, so the brine concentration of the calcification vanadium extraction is lower than that of the sodium vanadium extraction. Concentration, and because of this, the yield of the sodium vanadium extraction process is higher than that of the calcification vanadium extraction process. At the same time, when the vanadium precipitation upper layer liquid is recycled, the impurities such as chromium, molybdenum and phosphorus in the vanadium precipitation upper layer liquid are continuously enriched, which not only affects the purity of the finished product, but also affects the yield, which is not a preferred implementation. Program. In addition, this process has high requirements on the particle size of the material before leaching (high requirements for solid-liquid reaction), which has a great influence on the yield of vanadium.
发明内容SUMMARY OF THE INVENTION
本发明的发明目的在于:针对上述存在的问题,提供一种钠化提钒联合制碱及低成本利用钒渣制备偏钒酸铵的方法,以克服现有湿法提钒工艺所存在的废水处理成本高、难度大、副产品价值低等问题。The purpose of the invention of the present invention is to: in view of the above-mentioned problems, provide a kind of sodium vanadium extraction combined alkali production and low-cost method of utilizing vanadium slag to prepare ammonium metavanadate, to overcome the existing waste water treatment of the existing wet vanadium extraction process High cost, high difficulty, and low value of by-products.
本发明采用的技术方案如下:一种钠化提钒联合制碱的方法,包括以下步骤:The technical scheme adopted in the present invention is as follows: a method for sodium vanadium extraction and combined alkali production, comprising the following steps:
A、将钒渣与碳酸钠混匀焙烧,得到焙烧熟料;A, vanadium slag and sodium carbonate are mixed and roasted to obtain roasted clinker;
B、水浸焙烧熟料,得到浸出渣和浸出液,向浸出液中先后加入氯化钙和聚合氯化铝,以除去浸出液中的磷和硅,得到脱磷渣、脱硅渣以及合格液;B, water leaching roasts the clinker to obtain leaching residue and leaching solution, successively adding calcium chloride and polyaluminum chloride to the leaching solution, to remove phosphorus and silicon in the leaching solution, to obtain dephosphorization slag, desiliconization slag and qualified solution;
C、向合格液中加入氯化铵进行沉钒,过滤得到偏钒酸铵沉淀和沉钒尾液;C, in qualified solution, add ammonium chloride to carry out vanadium precipitation, filter to obtain ammonium metavanadate precipitation and precipitation vanadium tail liquor;
D、沉钒尾液用盐酸调节pH至酸性,然后加入氯化铁除钒,接着加入氯化亚铁和氢氧化钠除铬,再向溶液中加入碳酸氢铵沉淀出碳酸氢钠,过滤得到碳酸氢钠沉淀和滤液;D, the vanadium precipitation tail liquid is adjusted pH to acidity with hydrochloric acid, then adds ferric chloride to remove vanadium, then adds ferrous chloride and sodium hydroxide to remove chromium, then adds ammonium bicarbonate to the solution to precipitate sodium bicarbonate, and filters to obtain Sodium bicarbonate precipitation and filtrate;
E、滤液加盐酸除碳酸根后蒸发形成过饱和溶液,然后冷却析出,过滤得到氯化铵。E. The filtrate is evaporated to form a supersaturated solution after adding hydrochloric acid to remove carbonate radicals, then cooling and separating out, and filtering to obtain ammonium chloride.
在本发明中,将钒渣与碳酸钠按比例充分混匀,在850-900℃进行钠化焙烧,出料后水浸出,浸出过滤后先后用氯化钙、聚合氯化铝除去溶液中的杂质磷和硅,过滤后得合格液,然后加入氯化铵沉钒,沉淀出的偏钒酸铵净化后融片制得片钒,沉钒尾液用盐酸调节pH值后,加三氯化铁除钒,再加氯化亚铁和氢氧化钠除铬,然后加入碳酸氢铵沉淀出碳酸氢钠,过滤,滤液加盐酸除碳酸根后蒸发至过饱和,冷却析出氯化铵晶体。本发明的工艺在制备偏钒酸铵产品时,采用钠化提钒保证了钒的收率,同时以沉钒尾液为制碱原料制备得到产品价值较高的碳酸氢钠和氯化铵,在一定程度上降低了废水处理成本,提高了副产品的价值,缓解了生产企业的环保压力。In the present invention, the vanadium slag and sodium carbonate are fully mixed in proportion, and the sodium calcination is carried out at 850-900 ° C. After the material is discharged, water is leached. After leaching and filtration, calcium chloride and polyaluminum chloride are successively used to remove the solution in the solution. Impurities of phosphorus and silicon are filtered to obtain a qualified solution, then ammonium chloride is added to precipitate vanadium, the precipitated ammonium metavanadate is purified and fused to obtain flakes of vanadium. Iron to remove vanadium, add ferrous chloride and sodium hydroxide to remove chromium, then add ammonium bicarbonate to precipitate sodium bicarbonate, filter, add hydrochloric acid to remove carbonate, evaporate to supersaturation, and cool to precipitate ammonium chloride crystals. When preparing the ammonium metavanadate product, the process of the invention adopts sodium extraction to ensure the yield of vanadium, and at the same time, the sodium bicarbonate and ammonium chloride with higher product value are prepared by using the vanadium precipitation tail liquid as the raw material for alkali production. To a certain extent, the cost of wastewater treatment is reduced, the value of by-products is increased, and the environmental protection pressure of production enterprises is relieved.
进一步,在进行焙烧前,将钒渣破碎至过100目筛。Further, before the roasting, the vanadium slag is crushed to pass a 100-mesh sieve.
进一步,在A中,焙烧温度为850-900℃。Furthermore, in A, the calcination temperature is 850-900 degreeC.
进一步,在B中,水浸时间为1-3h,为了提高浸出率,水浸采用逆流洗涤方式进行(多级洗涤),以保障转化的可溶钒尽可能多的进入到溶液里。Further, in B, the water immersion time is 1-3h. In order to improve the leaching rate, the water immersion is carried out by countercurrent washing (multi-stage washing) to ensure that the converted soluble vanadium enters the solution as much as possible.
进一步,在步骤D中,加氯化铁除钒得到的钒酸铁作为钒渣回收利用。Further, in step D, the ferric vanadate obtained by adding ferric chloride to remove vanadium is recycled as vanadium slag.
进一步,在步骤D中,加入氯化亚铁后,用氢氧化钠调节溶液至中性,然后静置过滤除去铬。Further, in step D, after adding ferrous chloride, the solution is adjusted to neutrality with sodium hydroxide, and then left to stand and filter to remove chromium.
进一步,在步骤D中,按照钠离子与碳酸氢根离子摩尔比1:1.1-1.3的比例加入碳酸氢铵。Further, in step D, ammonium bicarbonate is added in a ratio of 1:1.1-1.3 molar ratio of sodium ion to bicarbonate ion.
本发明还包括一种低成本利用钒渣制备偏钒酸铵的方法,包括以下步骤:The present invention also includes a low-cost method for preparing ammonium metavanadate by utilizing vanadium slag, comprising the following steps:
S1、将钒渣破碎磨细后与碳酸钠或/和碳酸氢钠混合,在850-900℃下焙烧1-3h,得到焙烧熟料;S1. The vanadium slag is crushed and ground, mixed with sodium carbonate or/and sodium bicarbonate, and roasted at 850-900 ° C for 1-3 hours to obtain roasted clinker;
S2、水浸焙烧熟料,水浸时间为1-3h,得到浸出渣和浸出液,向浸出液中先后加入氯化钙和聚合氯化铝,以除去浸出液中的磷和硅,得到脱磷渣、脱硅渣以及合格液;S2, water immersion roasting clinker, water immersion time is 1-3h, obtain leaching slag and leaching solution, add calcium chloride and polyaluminum chloride successively to leaching solution, in order to remove phosphorus and silicon in leaching solution, obtain dephosphorization slag, Desiliconization slag and qualified liquid;
S3、向合格液中加入氯化铵进行沉钒,过滤得到偏钒酸铵沉淀和沉钒尾液,偏钒酸铵经净化焙烧后得到五氧化二钒成品,沉钒尾液作为制碱原料处理;S3, add ammonium chloride to the qualified solution to carry out vanadium precipitation, filter to obtain ammonium metavanadate precipitation and precipitation vanadium tail liquor, ammonium metavanadate obtains vanadium pentoxide finished product after purification and roasting, and the precipitation vanadium tail liquor is used as raw material for making alkali deal with;
S4、沉钒尾液用盐酸调节pH至酸性,然后加入氯化铁除钒,接着向溶液中先后加入氯化亚铁和氢氧化钠除铬;S4, the vanadium precipitation tail liquor is adjusted pH to acidity with hydrochloric acid, then adds ferric chloride to remove vanadium, then successively adds ferrous chloride and sodium hydroxide to the solution to remove chromium;
S5、蒸发浓缩步骤S4得到的溶液,然后按照钠离子与碳酸氢根离子摩尔比1:1.1-1.3的比例加入碳酸氢铵,反应一定时间后,过滤得到碳酸氢钠沉淀和滤液,碳酸氢钠沉淀作为钠化提钒原料直接使用;S5, evaporate and concentrate the solution obtained in step S4, then add ammonium bicarbonate according to the molar ratio of sodium ions to bicarbonate ions of 1:1.1-1.3, and react for a certain period of time to obtain sodium bicarbonate precipitation and filtrate by filtration, sodium bicarbonate The precipitation is directly used as the raw material for sodium vanadium extraction;
S6、滤液加盐酸除碳酸根后蒸发形成过饱和溶液,然后冷却析出,过滤得到氯化铵,氯化铵直接返回S2中作为辅料使用,过滤后的液体作为水浸步骤的水源使用。S6, the filtrate is evaporated to form a supersaturated solution after adding hydrochloric acid to remove carbonate radicals, then cooled and separated out, filtered to obtain ammonium chloride, and the ammonium chloride is directly returned to S2 for use as an auxiliary material, and the filtered liquid is used as a water source in the water leaching step.
在本发明中,在钠化焙烧阶段,碳酸钠原料可来自联合制碱工艺得到的产品碳酸氢钠,由此实现碱料的循环使用,同时,联合制碱工艺得到的氯化铵产品可作为沉钒阶段的原料使用,不仅实现了氯盐的循环使用,通过氯化铵产品的方式还实现了部分铵盐的循环使用(约50%铵盐),大幅减低了氨气的排放,此外,在制备氯化铵阶段产生的废水可作为钠化提钒阶段的水源直接使用,由此避免了废水的排放。进一步,本发明使用碳酸氢铵来制备碳酸氢钠,而未使用碳酸盐直接制备碳酸钠,缘由在于,碳酸氢钠在水中的溶解度明显低于碳酸钠在水中的溶解度,采用碳酸氢铵来制备碳酸氢钠可得到更多的碳酸氢钠产品,同时也能降低废水中的盐分浓度。In the present invention, in the sodium roasting stage, the sodium carbonate raw material can be obtained from the product sodium bicarbonate obtained by the combined alkali production process, thereby realizing the recycling of the alkali material, and at the same time, the ammonium chloride product obtained by the combined alkali production process can be used as vanadium precipitation The use of raw materials in this stage not only realizes the recycling of chloride salts, but also realizes the recycling of part of ammonium salts (about 50% ammonium salts) by means of ammonium chloride products, which greatly reduces the emission of ammonia gas. The wastewater generated in the ammonium chloride stage can be directly used as the water source in the sodium vanadium extraction stage, thus avoiding the discharge of wastewater. Further, the present invention uses ammonium bicarbonate to prepare sodium bicarbonate, and does not use carbonate to directly prepare sodium carbonate, the reason is that the solubility of sodium bicarbonate in water is significantly lower than the solubility of sodium carbonate in water, and ammonium bicarbonate is used to The preparation of sodium bicarbonate can obtain more sodium bicarbonate products, and can also reduce the salt concentration in wastewater.
进一步,所述钒渣为钒钛磁铁矿经冶炼后得到的钒渣,或者为含钒的废旧石油催化剂。Further, the vanadium slag is a vanadium slag obtained by smelting vanadium titanomagnetite, or a waste petroleum catalyst containing vanadium.
综上所述,由于采用了上述技术方案,本发明的有益效果是:To sum up, due to the adoption of the above-mentioned technical solutions, the beneficial effects of the present invention are:
1、本发明以含氯离子的辅料代替含硫酸根离子的辅料,使溶液体系从复杂的多种类阴离子转变为单一阴离子的体系,由此避免了后期在循环使用时,因某些离子的富集而导致的系统崩溃;1. In the present invention, the auxiliary material containing chloride ions is used to replace the auxiliary material containing sulfate ions, so that the solution system is changed from a complex variety of anions to a single anion system, thereby avoiding the later cycle use, due to the richness of some ions. System crash caused by the set;
2、本发明将现有的沉淀多钒酸铵工艺转化为沉淀偏钒酸铵工艺,这样可以使溶液中的钒浓度更高,有助于提高沉钒效率,而且废水中盐浓度的提升也有助于提高后续联合制碱工艺的效率;同时,在沉钒时,不再需要加热来进行,也不需要调整pH至酸性条件,节省了能耗和辅料成本,降低了生产成本;2. The present invention converts the existing precipitation ammonium polyvanadate process into a precipitation ammonium metavanadate process, which can make the vanadium concentration in the solution higher, help to improve the vanadium precipitation efficiency, and the increase of the salt concentration in the waste water also has It helps to improve the efficiency of the subsequent combined alkali-making process; at the same time, during the vanadium precipitation, it is no longer necessary to heat and adjust the pH to an acidic condition, which saves energy consumption and auxiliary material costs, and reduces production costs;
3、本发明在高效率制备偏钒酸铵产品时,实现了辅料和废水的循环使用,“三废”排放量很低(固废仅有浸出渣、脱磷渣以及脱硅渣,几乎实现了废水全循环,废气产生量极低,可忽略不计),满足了现阶段国家的环保要求,彻底解决了生产企业目前面临的环保压力;3. The present invention realizes the recycling of auxiliary materials and waste water when preparing ammonium metavanadate products with high efficiency, and the discharge amount of "three wastes" is very low (solid waste only has leaching slag, dephosphorization slag and desiliconization slag, which is almost realized. The waste water is fully circulated, and the amount of waste gas generated is extremely low, which can be ignored), which meets the current national environmental protection requirements and completely solves the environmental protection pressure currently faced by production enterprises;
4、在本发明的方法中,钒转化率>90%,钒总收率达到85%以上,所得偏钒酸铵经焙烧后得到五氧化二钒(片钒)产品,五氧化二钒产品经检验,其质量指标符合YB/T5304-2017中98%牌号的质量要求。4. In the method of the present invention, the conversion rate of vanadium is greater than 90%, the total yield of vanadium reaches more than 85%, and the obtained ammonium metavanadate is roasted to obtain a vanadium pentoxide (vanadium sheet) product, and the vanadium pentoxide product is obtained after roasting. Inspection, its quality indicators meet the quality requirements of 98% of the grades in YB/T5304-2017.
附图说明Description of drawings
图1是本发明的一种低成本利用钒渣制备偏钒酸铵的方法流程示意图;Fig. 1 is a kind of low-cost method schematic diagram of the present invention utilizing vanadium slag to prepare ammonium metavanadate;
图2是本发明的方法制备的偏钒酸铵焙烧后得到的五氧化二钒产品图;Fig. 2 is the vanadium pentoxide product figure obtained after the ammonium metavanadate roasting prepared by the method of the present invention;
图3是本发明的钠化提钒联合制碱方法制备得到而碳酸铵氢钠产品图。Fig. 3 is the product figure of sodium ammonium bicarbonate prepared by the sodium extraction vanadium extraction combined alkali production method of the present invention.
具体实施方式Detailed ways
下面结合附图,对本发明作详细的说明。The present invention will be described in detail below with reference to the accompanying drawings.
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。In order to make the objectives, technical solutions and advantages of the present invention clearer, the present invention will be further described in detail below with reference to the accompanying drawings and embodiments. It should be understood that the specific embodiments described herein are only used to explain the present invention, but not to limit the present invention.
如图1所示,一种低成本利用钒渣制备偏钒酸铵的方法,包括以下步骤:As shown in Figure 1, a low-cost method for utilizing vanadium slag to prepare ammonium metavanadate comprises the following steps:
S1、将钒渣破碎磨细后与碳酸钠或/和碳酸氢钠混合,在850-900℃下焙烧1-3h,得到焙烧熟料;S1. The vanadium slag is crushed and ground, mixed with sodium carbonate or/and sodium bicarbonate, and roasted at 850-900 ° C for 1-3 hours to obtain roasted clinker;
S2、水浸焙烧熟料,水浸时间为1-3h,得到浸出渣和浸出液,向浸出液中先后加入氯化钙和聚合氯化铝,以除去浸出液中的磷和硅,得到脱磷渣、脱硅渣以及合格液;S2, water immersion roasting clinker, water immersion time is 1-3h, obtain leaching slag and leaching solution, add calcium chloride and polyaluminum chloride successively to leaching solution, in order to remove phosphorus and silicon in leaching solution, obtain dephosphorization slag, Desiliconization slag and qualified liquid;
S3、向合格液中加入氯化铵进行沉钒,过滤得到偏钒酸铵沉淀和沉钒尾液,偏钒酸铵经净化焙烧后得到五氧化二钒成品,沉钒尾液作为制碱原料处理;S3, add ammonium chloride to the qualified solution to carry out vanadium precipitation, filter to obtain ammonium metavanadate precipitation and precipitation vanadium tail liquor, ammonium metavanadate obtains vanadium pentoxide finished product after purification and roasting, and the precipitation vanadium tail liquor is used as raw material for making alkali deal with;
S4、沉钒尾液用盐酸调节pH至酸性,然后加入氯化铁除钒,得到钒酸铁、钼酸铁,钒酸铁可作为钒渣回收利用,接着再向溶液中先后加入氯化亚铁来还原铬,然后通过氢氧化钠调节pH至中性,以沉淀出铬泥,过滤;S4, the vanadium precipitation tail liquor is adjusted pH to acidity with hydrochloric acid, then adds ferric chloride to remove vanadium, obtains iron vanadate, iron molybdate, and iron vanadate can be used as vanadium slag recycling, then adds oxychloride successively to the solution Iron is used to reduce chromium, then pH is adjusted to neutrality with sodium hydroxide to precipitate chromium sludge, which is filtered;
S5、蒸发浓缩步骤S4过滤后的溶液,然后按照钠离子与碳酸氢根离子摩尔比1:1.1-1.3的比例加入碳酸氢铵,复分解反应一定时间后,过滤得到碳酸氢钠沉淀和滤液,碳酸氢钠沉淀作为钠化提钒原料直接使用;S5, evaporate and concentrate the solution filtered in step S4, then add ammonium bicarbonate according to the molar ratio of sodium ion to bicarbonate ion of 1:1.1-1.3, after metathesis reaction for a certain period of time, filter to obtain sodium bicarbonate precipitate and filtrate, carbonic acid Sodium hydrogen precipitation is directly used as the raw material for sodium vanadium extraction;
S6、滤液加盐酸除碳酸根后蒸发形成过饱和溶液,然后冷却析出,过滤得到氯化铵,氯化铵直接作为沉钒辅料使用,过滤后的液体以及冷凝水作为水浸步骤的水源使用。S6, the filtrate is evaporated to form a supersaturated solution after adding hydrochloric acid to remove carbonate, then cooling and precipitation, filtering to obtain ammonium chloride, ammonium chloride is directly used as a vanadium precipitation auxiliary material, and the filtered liquid and condensed water are used as the water source of the water immersion step.
为了更好的实施本发明,以下列举具体实施例:In order to better implement the present invention, specific examples are listed below:
实施例1Example 1
本实施例以钒钛磁铁矿冶炼的钒渣(以质量百分比计,钒渣主要成分包括:CaO:1.5-2.5%、SiO2:16-18%、V2O5:16-18%、TFe:30-35%、P:0.057%)为原料,采用上述工艺进行试验,包括以下步骤:In this example, vanadium slag smelted from vanadium titanomagnetite (in mass percentage, the main components of vanadium slag include: CaO: 1.5-2.5%, SiO 2 : 16-18%, V 2 O 5 : 16-18%, TFe: 30-35%, P: 0.057%) as raw materials, the above-mentioned process is used to conduct the test, including the following steps:
S1、将钒渣破碎磨细过100目筛后,经磁选铁屑后与碳酸钠混合,混合质量比为10:3,经850℃焙烧1.5小时后,取出得到焙烧熟料;S1. After crushing and grinding the vanadium slag and passing through a 100-mesh sieve, the iron filings are magnetically separated and mixed with sodium carbonate. The mixing mass ratio is 10:3. After roasting at 850°C for 1.5 hours, take out to obtain roasted clinker;
S2、取焙烧熟料,按照固液比1:2的比例,用水浸出至浸出渣中的钒含量尽可能低,必要时采用逆流洗涤,以提高洗涤效率和增加溶液中钒浓度,过滤取滤液备用;S2, take roasting clinker, according to the ratio of solid-to-liquid ratio of 1:2, leaching with water to the vanadium content in the leaching residue as low as possible, if necessary, use countercurrent washing to improve the washing efficiency and increase the concentration of vanadium in the solution, filter to obtain the filtrate spare;
S3、向滤液中依次加入氯化钙、聚合氯化铝除磷、硅,氯化钙的加入量为杂质磷的2-3倍(摩尔比),聚合氯化铝加入量为杂质硅的1.5倍(摩尔比),过滤备用;S3. Add calcium chloride and polyaluminum chloride to the filtrate in turn to remove phosphorus and silicon. The addition amount of calcium chloride is 2-3 times (molar ratio) of impurity phosphorus, and the addition amount of polyaluminum chloride is 1.5 times that of impurity silicon. times (molar ratio), filtered for use;
S4、向步骤S3的滤液中加入氯化铵,沉淀出偏钒酸铵,过滤,得偏钒酸铵成品,剩余滤液为制碱原料,氯化铵的加入量为钒当量的3倍(摩尔比);S4, in the filtrate of step S3, add ammonium chloride, precipitate out ammonium metavanadate, filter, obtain ammonium metavanadate finished product, remaining filtrate is raw material for making alkali, and the add-on of ammonium chloride is 3 times (molar) of vanadium equivalent Compare);
S5、用盐酸调节步骤S4的滤液pH到酸性,然后加入三氯化铁除钒,三氯化铁的加入量为尾液中钒当量的1/3(摩尔当量);得到的钒酸铁沉淀返回前述钠化焙烧,滤液再加氯化亚铁(加入量为铬当量的30-40倍,铬含量越低,加入当量越高)还原铬后,用氢氧化钠调节pH至中性,过滤除去铬,滤液备用;S5, adjust the pH of the filtrate of step S4 to acidity with hydrochloric acid, then add ferric chloride to remove vanadium, and the addition of ferric chloride is 1/3 (molar equivalent) of vanadium equivalent in the tail liquor; the ferric vanadate precipitation obtained Return to the aforementioned sodium roasting, add ferrous chloride to the filtrate (the amount added is 30-40 times the equivalent of chromium, the lower the chromium content, the higher the equivalent), after reducing the chromium, adjust the pH to neutrality with sodium hydroxide, filter Remove chromium, the filtrate is ready for use;
S6、蒸发浓缩步骤S5的滤液至接近饱和,然后按钠离子浓度摩尔比1:1.1—1.3加入碳酸氢铵,反应半小时后过滤得碳酸氢钠,滤液备用;S6, the filtrate of evaporation concentration step S5 is nearly saturated, then adds ammonium bicarbonate by sodium ion concentration molar ratio 1:1.1-1.3, reacts after half an hour to filter to obtain sodium bicarbonate, and the filtrate is for subsequent use;
S7、向步骤S6的滤液中加盐酸调节pH除碳后,蒸发至过饱和,冷却析出得到氯化铵晶体;S7, in the filtrate of step S6, add hydrochloric acid to adjust pH after decarbonization, evaporate to supersaturation, cool and separate out to obtain ammonium chloride crystal;
S8、重复上述步骤,用得到的碳酸氢钠和氯化铵为辅料进行钠化提钒,所得的偏钒酸铵焙烧成五氧化二钒(片钒)后经检验,符合国家标准。S8, repeat the above steps, use the obtained sodium bicarbonate and ammonium chloride as auxiliary materials to carry out sodium extraction of vanadium, after the obtained ammonium metavanadate is roasted into vanadium pentoxide (vanadium sheet), after inspection, it meets the national standard.
上述实验过程中,钒焙烧转化率>90%,与现行工艺基本一致,钒总收率可达85%以上,略高于现行工艺,由于脱磷渣与除硅渣返回浸出系统与浸出渣混合一起,因此每处理1t钒渣,浸出渣量(含水20-25%)约为1吨左右,钠的收率约为50%,氨氮收率约为67%(单循环)。本工艺节省了蒸汽成本,后续的蒸发结晶的成本,亦可被辅料采购成本所覆盖,所得五氧化二钒(如图2所示)融片后经检验,其质量指标符合YB/T5304-2017中98%牌号的质量要求。由于脱磷渣与除硅渣返回浸出系统与浸出渣混合一起,因此每处理1t钒渣,浸出渣量(含水20-25%)约为1吨左右,钠的收率约为50%,氨氮收率约为67%(单循环)。In the above experimental process, the conversion rate of vanadium roasting is >90%, which is basically consistent with the current process, and the total yield of vanadium can reach more than 85%, which is slightly higher than the current process. Because the dephosphorization slag and desiliconization slag are returned to the leaching system and mixed with the leaching slag At the same time, for each 1 ton of vanadium slag treated, the amount of leaching slag (20-25% water content) is about 1 ton, the yield of sodium is about 50%, and the yield of ammonia nitrogen is about 67% (single cycle). This process saves the cost of steam, and the cost of subsequent evaporation and crystallization can also be covered by the purchase cost of auxiliary materials. The obtained vanadium pentoxide (as shown in Figure 2) is melted and inspected, and its quality index conforms to YB/T5304-2017 The quality requirements of 98% of the grades. Since the dephosphorization slag and the desiliconization slag are returned to the leaching system and mixed with the leaching slag, the amount of leaching slag (with water content of 20-25%) is about 1 ton per ton of vanadium slag treated, and the yield of sodium is about 50%. The yield was about 67% (single cycle).
实施例2Example 2
本实施例以废旧含钒石油催化剂(固体,以质量百分比计,废旧含钒石油催化剂的主要成分包括:水分5-10%、废油10-15%、钒5-7%、氧化铝30%、钴<2%、镍<2%)作为钒渣原料,采用上述工艺进行试验,包括以下步骤:In this example, the waste vanadium-containing petroleum catalyst (solid, in mass percentage), the main components of the waste vanadium-containing petroleum catalyst include: moisture 5-10%, waste oil 10-15%, vanadium 5-7%, alumina 30% , cobalt<2%, nickel<2%) as vanadium slag raw material, adopt the above-mentioned process to carry out the test, including the following steps:
S1、将废旧含钒石油催化剂破碎磨细过100目筛后与碳酸钠混合,混合质量比为100:35,经850℃焙烧1.5小时后,取出得到焙烧熟料;S1, the waste and old vanadium-containing petroleum catalyst is crushed and ground and mixed with sodium carbonate after passing through a 100-mesh sieve, and the mixing mass ratio is 100:35, and after 1.5 hours of roasting at 850 °C, take out to obtain roasted clinker;
S2、取焙烧熟料,按照质固液比1:2的比例,用水浸出至浸出渣中的钒含量尽可能低,必要时采用逆流洗涤,以提高洗涤效率和增加溶液中钒浓度,过滤取滤液备用;S2. Take the roasted clinker, according to the ratio of mass-solid-to-liquid ratio of 1:2, leaching with water until the vanadium content in the leaching slag is as low as possible, and if necessary, use countercurrent washing to improve the washing efficiency and increase the vanadium concentration in the solution. Filtrate backup;
S3、向滤液中依次加入氯化钙、聚合氯化铝除磷、硅,氯化钙的加入量为氯化钙的加入量为杂质磷的2-3倍(摩尔比),聚合氯化铝加入量为杂质硅的1.5倍(摩尔比),过滤备用;S3. Add calcium chloride, polyaluminum chloride to remove phosphorus and silicon in turn into the filtrate. The amount of calcium chloride added is 2-3 times (molar ratio) of impurity phosphorus, and the amount of calcium chloride The amount of addition is 1.5 times (molar ratio) of impurity silicon, and it is filtered for subsequent use;
S4、向步骤S3的滤液中加入氯化铵,沉淀出偏钒酸铵,过滤,得偏钒酸铵成品,剩余滤液为制碱原料,钒当量的3倍(摩尔比);S4, in the filtrate of step S3, add ammonium chloride, precipitate out ammonium metavanadate, filter, obtain ammonium metavanadate finished product, and the remaining filtrate is raw material for making alkali, 3 times (mol ratio) of vanadium equivalent;
S5、用盐酸调节步骤S4的滤液pH到酸性,然后加入三氯化铁除钒,三氯化铁的加入量为尾液中钒当量的1/3(摩尔当量);得到的钒酸铁沉淀返回前述钠化焙烧,滤液再加氯化亚铁(加入量为铬当量的30-40倍,铬含量越低,加入当量越高)还原铬后,用氢氧化钠调节pH至中性,过滤除去铬,滤液备用;S5, adjust the pH of the filtrate of step S4 to acidity with hydrochloric acid, then add ferric chloride to remove vanadium, and the addition of ferric chloride is 1/3 (molar equivalent) of vanadium equivalent in the tail liquor; the ferric vanadate precipitation obtained Return to the aforementioned sodium roasting, add ferrous chloride to the filtrate (the amount added is 30-40 times the equivalent of chromium, the lower the chromium content, the higher the equivalent), after reducing the chromium, adjust the pH to neutrality with sodium hydroxide, filter Remove chromium, the filtrate is ready for use;
S6、蒸发浓缩步骤S5的滤液至接近饱和,然后按钠离子浓度摩尔比1:1.1—1.3加入碳酸氢铵,反应半小时后过滤得碳酸氢钠,滤液备用;S6, the filtrate of evaporation concentration step S5 is nearly saturated, then adds ammonium bicarbonate by sodium ion concentration molar ratio 1:1.1-1.3, reacts after half an hour to filter to obtain sodium bicarbonate, and the filtrate is for subsequent use;
S7、向步骤S6的滤液中加盐酸调节pH除碳后,蒸发至过饱和,冷却析出得到氯化铵晶体;S7, in the filtrate of step S6, add hydrochloric acid to adjust pH after decarbonization, evaporate to supersaturation, cool and separate out to obtain ammonium chloride crystal;
S8、重复上述步骤,用得到的碳酸氢钠和氯化铵为辅料进行钠化提钒,所得的偏钒酸铵焙烧成五氧化二钒(片钒)后经检验,符合国家标准。S8, repeat the above steps, use the obtained sodium bicarbonate and ammonium chloride as auxiliary materials to carry out sodium extraction of vanadium, after the obtained ammonium metavanadate is roasted into vanadium pentoxide (vanadium sheet), after inspection, it meets the national standard.
上述实验过程中,钒的焙烧转化率可达92%,高于现行的88%的转化率,总收率可达90%以上,亦高于现行工艺85%的收率水平,其中,由于脱磷渣与除硅渣返回浸出系统与浸出渣混合一起,因此每处理1t钒渣,浸出渣量(含水20-25%)约为1吨左右,钠的收率约为50%,氨氮收率约为67%(单循环)。本工艺完全实现了钠化提钒工艺的钠离子和水的循环利用以及部分铵的循环利用(50%),降低了生产成本,在提高生产效率的同时,减少了对环境的污染,所得五氧化二钒融片后经检验,其质量指标符合YB/T5304-2017中98%牌号的质量要求。In the above-mentioned experimental process, the roasting conversion rate of vanadium can reach 92%, which is higher than the current conversion rate of 88%, and the total yield can reach more than 90%, which is also higher than the yield level of 85% in the current process. Phosphorus slag and desiliconization slag are returned to the leaching system and mixed with leaching slag. Therefore, for each 1 ton of vanadium slag treated, the leaching slag content (20-25% water content) is about 1 ton, the yield of sodium is about 50%, and the yield of ammonia nitrogen is about 50%. About 67% (single cycle). This process completely realizes the recycling of sodium ions and water and the recycling of part of ammonium (50%) in the sodium vanadium extraction process, reduces the production cost, reduces the environmental pollution while improving the production efficiency, and the obtained five After the vanadium oxide is melted, the quality index meets the quality requirements of 98% of the grades in YB/T5304-2017.
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。The above descriptions are only preferred embodiments of the present invention and are not intended to limit the present invention. Any modifications, equivalent replacements and improvements made within the spirit and principles of the present invention shall be included in the protection of the present invention. within the range.
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210241452.3A CN114644357A (en) | 2022-03-11 | 2022-03-11 | Method for preparing ammonium metavanadate by sodium modification vanadium extraction combined alkali preparation and low-cost vanadium slag utilization |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210241452.3A CN114644357A (en) | 2022-03-11 | 2022-03-11 | Method for preparing ammonium metavanadate by sodium modification vanadium extraction combined alkali preparation and low-cost vanadium slag utilization |
Publications (1)
Publication Number | Publication Date |
---|---|
CN114644357A true CN114644357A (en) | 2022-06-21 |
Family
ID=81993583
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210241452.3A Pending CN114644357A (en) | 2022-03-11 | 2022-03-11 | Method for preparing ammonium metavanadate by sodium modification vanadium extraction combined alkali preparation and low-cost vanadium slag utilization |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114644357A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116555591A (en) * | 2023-04-23 | 2023-08-08 | 成都先进金属材料产业技术研究院股份有限公司 | Iron removing method for carbonating vanadium immersion liquid |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101323914A (en) * | 2008-07-29 | 2008-12-17 | 旺苍县振华矿业有限公司 | Process for extracting vanadic anhydride by high calcium calcination |
CN101412539A (en) * | 2008-11-18 | 2009-04-22 | 攀钢集团研究院有限公司 | Clean production process for vanadium oxide |
CN103667710A (en) * | 2013-12-04 | 2014-03-26 | 四川省川威集团有限公司 | Technology for clean production of vanadium pentoxide employing high-calcium vanadium slag |
CN105087940A (en) * | 2015-08-27 | 2015-11-25 | 河北钢铁股份有限公司承德分公司 | Method for producing vanadium oxide achieving waste water zero discharge in sodium salt roasting process |
CN109837384A (en) * | 2019-03-14 | 2019-06-04 | 广东省稀有金属研究所 | A kind of sodium roasting vanadium-extracting technique |
CN110106346A (en) * | 2019-06-24 | 2019-08-09 | 攀钢集团研究院有限公司 | The method that Sodium Carbonate Leaching roasting clinker prepares vanadium oxide |
CN110408772A (en) * | 2018-04-27 | 2019-11-05 | 中国科学院过程工程研究所 | A method for vanadium slag roasting clean extraction vanadium |
CN111748702A (en) * | 2020-07-06 | 2020-10-09 | 攀钢集团研究院有限公司 | Method for preparing vanadium oxide and circulating sodium and ammonium by using vanadium solution |
-
2022
- 2022-03-11 CN CN202210241452.3A patent/CN114644357A/en active Pending
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101323914A (en) * | 2008-07-29 | 2008-12-17 | 旺苍县振华矿业有限公司 | Process for extracting vanadic anhydride by high calcium calcination |
CN101412539A (en) * | 2008-11-18 | 2009-04-22 | 攀钢集团研究院有限公司 | Clean production process for vanadium oxide |
WO2010057410A1 (en) * | 2008-11-18 | 2010-05-27 | Panzhihua New Steel & Vanadium Co., Ltd. | Clean production method of vanadium oxide |
CN103667710A (en) * | 2013-12-04 | 2014-03-26 | 四川省川威集团有限公司 | Technology for clean production of vanadium pentoxide employing high-calcium vanadium slag |
CN105087940A (en) * | 2015-08-27 | 2015-11-25 | 河北钢铁股份有限公司承德分公司 | Method for producing vanadium oxide achieving waste water zero discharge in sodium salt roasting process |
CN110408772A (en) * | 2018-04-27 | 2019-11-05 | 中国科学院过程工程研究所 | A method for vanadium slag roasting clean extraction vanadium |
CN109837384A (en) * | 2019-03-14 | 2019-06-04 | 广东省稀有金属研究所 | A kind of sodium roasting vanadium-extracting technique |
CN110106346A (en) * | 2019-06-24 | 2019-08-09 | 攀钢集团研究院有限公司 | The method that Sodium Carbonate Leaching roasting clinker prepares vanadium oxide |
CN111748702A (en) * | 2020-07-06 | 2020-10-09 | 攀钢集团研究院有限公司 | Method for preparing vanadium oxide and circulating sodium and ammonium by using vanadium solution |
Non-Patent Citations (1)
Title |
---|
朱燕;贺慧琴;邓方;刘大银;: "钒渣中钒的浸出特性", 环境科学与技术, vol. 29, no. 12, pages 116 - 18 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116555591A (en) * | 2023-04-23 | 2023-08-08 | 成都先进金属材料产业技术研究院股份有限公司 | Iron removing method for carbonating vanadium immersion liquid |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101812593B (en) | Method of utilizing vanadium extraction tailings and acidic ammonium salt precipitation vanadium wastewater | |
RU2454369C1 (en) | Method of producing vanadium oxide | |
RU2736539C1 (en) | Method of producing vanadium oxide of a battery grade | |
CN105506285B (en) | A kind of method that vanadium and chromium are separated and recovered from the solution containing vanadium or/and chromium | |
CN103145187B (en) | Production technology of harmless high-purity vanadium pentoxide | |
CN106893877A (en) | A kind of method that vanadium chromium is extracted in the chromic acid mixed salt solution from vanadium | |
CN108707748B (en) | Method for purifying stone coal pickle liquor and recovering aluminum, potassium and iron | |
CN104120271B (en) | A kind of process of vanadium slag carbon alkali leaching hydrogen reduction method clean manufacturing barium oxide | |
CN103194611A (en) | Method for producing vanadium oxide | |
CN102127657A (en) | Comprehensive recovery method for extracting ferrovanadium from stone coal acid immersion liquid | |
CN110004294B (en) | Method for treating scheelite alkali decomposition slag | |
JP2013094780A (en) | Treatment method for vanadium oxide production waste water | |
CN102337411A (en) | Method for recycling vanadium and chromium from high-chromium low-vanadium vanadium precipitation wastewater | |
CN106430307A (en) | Preparation method of high-purity vanadium pentoxide | |
CN113073202B (en) | A method for comprehensive treatment of liquid after vanadium slag extraction of vanadium acid ammonium salt and vanadium precipitation | |
CN101709376B (en) | Purification method of alkaline vanadium leaching solution | |
CN102649588A (en) | Method for producing iron oxide red by using ferrous sulfate as titanium dioxide byproduct | |
CN110016548A (en) | Method for extracting vanadium by roasting and extracting vanadium titanomagnetite concentrate | |
CN113979474A (en) | Method for internal circulation of ammonium carbonate medium in process of preparing vanadium pentoxide from calcium vanadate | |
CN108754161A (en) | A kind of method of containing vanadium and chromium acid salt solution separation and recovery chromium | |
CN103014378A (en) | Vanadium liquid purification method | |
CN114644357A (en) | Method for preparing ammonium metavanadate by sodium modification vanadium extraction combined alkali preparation and low-cost vanadium slag utilization | |
CN116397112A (en) | Method for extracting vanadium from Bayer process seed precipitation mother liquor crystallization vanadium slag | |
CN115108584B (en) | Method for efficiently preparing vanadium pentoxide and calcium carbonate by utilizing calcium vanadate | |
CN117385201A (en) | A method of processing scheelite |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20220621 |
|
RJ01 | Rejection of invention patent application after publication |