CN114643365B - A Method of Interface-Induced Synthesis of Ordered L10 Structured Permanent Magnetic Nanoparticles - Google Patents
A Method of Interface-Induced Synthesis of Ordered L10 Structured Permanent Magnetic Nanoparticles Download PDFInfo
- Publication number
- CN114643365B CN114643365B CN202210309658.5A CN202210309658A CN114643365B CN 114643365 B CN114643365 B CN 114643365B CN 202210309658 A CN202210309658 A CN 202210309658A CN 114643365 B CN114643365 B CN 114643365B
- Authority
- CN
- China
- Prior art keywords
- metal precursor
- source
- mixed solution
- mixed solvent
- solvent
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims abstract description 51
- 239000002122 magnetic nanoparticle Substances 0.000 title claims abstract description 18
- 230000015572 biosynthetic process Effects 0.000 title claims abstract description 13
- 238000003786 synthesis reaction Methods 0.000 title claims abstract description 13
- 229910052751 metal Inorganic materials 0.000 claims abstract description 244
- 239000002184 metal Substances 0.000 claims abstract description 244
- 239000002243 precursor Substances 0.000 claims abstract description 202
- 239000000843 powder Substances 0.000 claims abstract description 183
- 239000011259 mixed solution Substances 0.000 claims abstract description 174
- 239000013078 crystal Substances 0.000 claims abstract description 109
- 239000003638 chemical reducing agent Substances 0.000 claims abstract description 89
- 239000002904 solvent Substances 0.000 claims abstract description 82
- 239000004094 surface-active agent Substances 0.000 claims abstract description 55
- 238000004140 cleaning Methods 0.000 claims abstract description 53
- 230000006698 induction Effects 0.000 claims abstract description 13
- 239000012046 mixed solvent Substances 0.000 claims description 230
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 92
- 238000005119 centrifugation Methods 0.000 claims description 89
- 238000010438 heat treatment Methods 0.000 claims description 78
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 77
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 58
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 claims description 48
- 239000011572 manganese Substances 0.000 claims description 34
- 229910021645 metal ion Inorganic materials 0.000 claims description 32
- 238000006243 chemical reaction Methods 0.000 claims description 31
- 229910052742 iron Inorganic materials 0.000 claims description 30
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 claims description 30
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 claims description 29
- 229910052748 manganese Inorganic materials 0.000 claims description 29
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical group O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 29
- 229910002546 FeCo Inorganic materials 0.000 claims description 27
- 239000012298 atmosphere Substances 0.000 claims description 27
- 229910052759 nickel Inorganic materials 0.000 claims description 27
- 230000001681 protective effect Effects 0.000 claims description 26
- WRIDQFICGBMAFQ-UHFFFAOYSA-N (E)-8-Octadecenoic acid Natural products CCCCCCCCCC=CCCCCCCC(O)=O WRIDQFICGBMAFQ-UHFFFAOYSA-N 0.000 claims description 25
- LQJBNNIYVWPHFW-UHFFFAOYSA-N 20:1omega9c fatty acid Natural products CCCCCCCCCCC=CCCCCCCCC(O)=O LQJBNNIYVWPHFW-UHFFFAOYSA-N 0.000 claims description 25
- QSBYPNXLFMSGKH-UHFFFAOYSA-N 9-Heptadecensaeure Natural products CCCCCCCC=CCCCCCCCC(O)=O QSBYPNXLFMSGKH-UHFFFAOYSA-N 0.000 claims description 25
- 239000005642 Oleic acid Substances 0.000 claims description 25
- ZQPPMHVWECSIRJ-UHFFFAOYSA-N Oleic acid Natural products CCCCCCCCC=CCCCCCCCC(O)=O ZQPPMHVWECSIRJ-UHFFFAOYSA-N 0.000 claims description 25
- 229910052786 argon Inorganic materials 0.000 claims description 25
- QXJSBBXBKPUZAA-UHFFFAOYSA-N isooleic acid Natural products CCCCCCCC=CCCCCCCCCC(O)=O QXJSBBXBKPUZAA-UHFFFAOYSA-N 0.000 claims description 25
- ZQPPMHVWECSIRJ-KTKRTIGZSA-N oleic acid Chemical compound CCCCCCCC\C=C/CCCCCCCC(O)=O ZQPPMHVWECSIRJ-KTKRTIGZSA-N 0.000 claims description 25
- 239000008367 deionised water Substances 0.000 claims description 24
- 229910021641 deionized water Inorganic materials 0.000 claims description 24
- 239000007788 liquid Substances 0.000 claims description 23
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical group [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 claims description 21
- 230000009471 action Effects 0.000 claims description 21
- 229910052700 potassium Inorganic materials 0.000 claims description 21
- 239000011591 potassium Substances 0.000 claims description 21
- 238000000926 separation method Methods 0.000 claims description 21
- VBICKXHEKHSIBG-UHFFFAOYSA-N 1-monostearoylglycerol Chemical compound CCCCCCCCCCCCCCCCCC(=O)OCC(O)CO VBICKXHEKHSIBG-UHFFFAOYSA-N 0.000 claims description 20
- 239000010949 copper Substances 0.000 claims description 19
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 claims description 19
- 229910052737 gold Inorganic materials 0.000 claims description 19
- 239000010931 gold Substances 0.000 claims description 19
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 17
- 229910052802 copper Inorganic materials 0.000 claims description 17
- 229910052697 platinum Inorganic materials 0.000 claims description 15
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 14
- 239000002253 acid Substances 0.000 claims description 14
- IIZPXYDJLKNOIY-JXPKJXOSSA-N 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine Chemical compound CCCCCCCCCCCCCCCC(=O)OC[C@H](COP([O-])(=O)OCC[N+](C)(C)C)OC(=O)CCC\C=C/C\C=C/C\C=C/C\C=C/CCCCC IIZPXYDJLKNOIY-JXPKJXOSSA-N 0.000 claims description 13
- 239000000787 lecithin Substances 0.000 claims description 13
- 229940067606 lecithin Drugs 0.000 claims description 13
- 235000010445 lecithin Nutrition 0.000 claims description 13
- 229910021578 Iron(III) chloride Inorganic materials 0.000 claims description 12
- RBTARNINKXHZNM-UHFFFAOYSA-K iron trichloride Chemical compound Cl[Fe](Cl)Cl RBTARNINKXHZNM-UHFFFAOYSA-K 0.000 claims description 12
- 229940071125 manganese acetate Drugs 0.000 claims description 12
- UOGMEBQRZBEZQT-UHFFFAOYSA-L manganese(2+);diacetate Chemical group [Mn+2].CC([O-])=O.CC([O-])=O UOGMEBQRZBEZQT-UHFFFAOYSA-L 0.000 claims description 12
- BMGNSKKZFQMGDH-FDGPNNRMSA-L nickel(2+);(z)-4-oxopent-2-en-2-olate Chemical compound [Ni+2].C\C([O-])=C\C(C)=O.C\C([O-])=C\C(C)=O BMGNSKKZFQMGDH-FDGPNNRMSA-L 0.000 claims description 12
- HYZQBNDRDQEWAN-LNTINUHCSA-N (z)-4-hydroxypent-3-en-2-one;manganese(3+) Chemical compound [Mn+3].C\C(O)=C\C(C)=O.C\C(O)=C\C(C)=O.C\C(O)=C\C(C)=O HYZQBNDRDQEWAN-LNTINUHCSA-N 0.000 claims description 11
- 229910021380 Manganese Chloride Inorganic materials 0.000 claims description 11
- GLFNIEUTAYBVOC-UHFFFAOYSA-L Manganese chloride Chemical compound Cl[Mn]Cl GLFNIEUTAYBVOC-UHFFFAOYSA-L 0.000 claims description 11
- 235000002867 manganese chloride Nutrition 0.000 claims description 11
- 239000011565 manganese chloride Substances 0.000 claims description 11
- 229940099607 manganese chloride Drugs 0.000 claims description 11
- 239000012279 sodium borohydride Substances 0.000 claims description 11
- 229910000033 sodium borohydride Inorganic materials 0.000 claims description 11
- 229910017052 cobalt Inorganic materials 0.000 claims description 10
- 239000010941 cobalt Substances 0.000 claims description 10
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 claims description 10
- 229940075507 glyceryl monostearate Drugs 0.000 claims description 10
- 150000002739 metals Chemical class 0.000 claims description 10
- 239000001788 mono and diglycerides of fatty acids Substances 0.000 claims description 10
- BEOOHQFXGBMRKU-UHFFFAOYSA-N sodium cyanoborohydride Chemical compound [Na+].[B-]C#N BEOOHQFXGBMRKU-UHFFFAOYSA-N 0.000 claims description 10
- FJLUATLTXUNBOT-UHFFFAOYSA-N 1-Hexadecylamine Chemical group CCCCCCCCCCCCCCCCN FJLUATLTXUNBOT-UHFFFAOYSA-N 0.000 claims description 9
- 229910021586 Nickel(II) chloride Inorganic materials 0.000 claims description 9
- QMMRZOWCJAIUJA-UHFFFAOYSA-L nickel dichloride Chemical compound Cl[Ni]Cl QMMRZOWCJAIUJA-UHFFFAOYSA-L 0.000 claims description 9
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 claims description 8
- -1 Lithium aluminum hydride Chemical compound 0.000 claims description 8
- VSCWAEJMTAWNJL-UHFFFAOYSA-K aluminium trichloride Chemical group Cl[Al](Cl)Cl VSCWAEJMTAWNJL-UHFFFAOYSA-K 0.000 claims description 8
- FJDJVBXSSLDNJB-LNTINUHCSA-N cobalt;(z)-4-hydroxypent-3-en-2-one Chemical group [Co].C\C(O)=C\C(C)=O.C\C(O)=C\C(C)=O.C\C(O)=C\C(C)=O FJDJVBXSSLDNJB-LNTINUHCSA-N 0.000 claims description 8
- 229910052733 gallium Inorganic materials 0.000 claims description 8
- 239000000203 mixture Substances 0.000 claims description 8
- XTAZYLNFDRKIHJ-UHFFFAOYSA-N n,n-dioctyloctan-1-amine Chemical compound CCCCCCCCN(CCCCCCCC)CCCCCCCC XTAZYLNFDRKIHJ-UHFFFAOYSA-N 0.000 claims description 8
- LGQLOGILCSXPEA-UHFFFAOYSA-L nickel sulfate Chemical compound [Ni+2].[O-]S([O-])(=O)=O LGQLOGILCSXPEA-UHFFFAOYSA-L 0.000 claims description 8
- 229910000363 nickel(II) sulfate Inorganic materials 0.000 claims description 8
- KBJMLQFLOWQJNF-UHFFFAOYSA-N nickel(ii) nitrate Chemical compound [Ni+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O KBJMLQFLOWQJNF-UHFFFAOYSA-N 0.000 claims description 8
- REYJJPSVUYRZGE-UHFFFAOYSA-N Octadecylamine Chemical compound CCCCCCCCCCCCCCCCCCN REYJJPSVUYRZGE-UHFFFAOYSA-N 0.000 claims description 7
- MQRWBMAEBQOWAF-UHFFFAOYSA-N acetic acid;nickel Chemical group [Ni].CC(O)=O.CC(O)=O MQRWBMAEBQOWAF-UHFFFAOYSA-N 0.000 claims description 7
- 239000012280 lithium aluminium hydride Substances 0.000 claims description 7
- 229940078494 nickel acetate Drugs 0.000 claims description 7
- 229910052757 nitrogen Inorganic materials 0.000 claims description 7
- 229940071240 tetrachloroaurate Drugs 0.000 claims description 7
- 229910015371 AuCu Inorganic materials 0.000 claims description 6
- 208000005156 Dehydration Diseases 0.000 claims description 6
- 229910005335 FePt Inorganic materials 0.000 claims description 6
- CUJRVFIICFDLGR-UHFFFAOYSA-N acetylacetonate Chemical compound CC(=O)[CH-]C(C)=O CUJRVFIICFDLGR-UHFFFAOYSA-N 0.000 claims description 6
- 229910052782 aluminium Inorganic materials 0.000 claims description 6
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 6
- 238000001816 cooling Methods 0.000 claims description 6
- 230000018044 dehydration Effects 0.000 claims description 6
- 238000006297 dehydration reaction Methods 0.000 claims description 6
- HOIQWTMREPWSJY-GNOQXXQHSA-K iron(3+);(z)-octadec-9-enoate Chemical compound [Fe+3].CCCCCCCC\C=C/CCCCCCCC([O-])=O.CCCCCCCC\C=C/CCCCCCCC([O-])=O.CCCCCCCC\C=C/CCCCCCCC([O-])=O HOIQWTMREPWSJY-GNOQXXQHSA-K 0.000 claims description 6
- 239000000126 substance Substances 0.000 claims description 6
- UPWPDUACHOATKO-UHFFFAOYSA-K gallium trichloride Chemical compound Cl[Ga](Cl)Cl UPWPDUACHOATKO-UHFFFAOYSA-K 0.000 claims description 5
- VNNDVNZCGCCIPA-FDGPNNRMSA-N (z)-4-hydroxypent-3-en-2-one;manganese Chemical compound [Mn].C\C(O)=C\C(C)=O.C\C(O)=C\C(C)=O VNNDVNZCGCCIPA-FDGPNNRMSA-N 0.000 claims description 4
- KLFRPGNCEJNEKU-FDGPNNRMSA-L (z)-4-oxopent-2-en-2-olate;platinum(2+) Chemical compound [Pt+2].C\C([O-])=C\C(C)=O.C\C([O-])=C\C(C)=O KLFRPGNCEJNEKU-FDGPNNRMSA-L 0.000 claims description 4
- XBIUWALDKXACEA-UHFFFAOYSA-N 3-[bis(2,4-dioxopentan-3-yl)alumanyl]pentane-2,4-dione Chemical compound CC(=O)C(C(C)=O)[Al](C(C(C)=O)C(C)=O)C(C(C)=O)C(C)=O XBIUWALDKXACEA-UHFFFAOYSA-N 0.000 claims description 4
- 229940011182 cobalt acetate Drugs 0.000 claims description 4
- QAHREYKOYSIQPH-UHFFFAOYSA-L cobalt(II) acetate Chemical compound [Co+2].CC([O-])=O.CC([O-])=O QAHREYKOYSIQPH-UHFFFAOYSA-L 0.000 claims description 4
- FYWVTSQYJIPZLW-UHFFFAOYSA-K diacetyloxygallanyl acetate Chemical group [Ga+3].CC([O-])=O.CC([O-])=O.CC([O-])=O FYWVTSQYJIPZLW-UHFFFAOYSA-K 0.000 claims description 4
- 229910001092 metal group alloy Inorganic materials 0.000 claims description 4
- OPQARKPSCNTWTJ-UHFFFAOYSA-L copper(ii) acetate Chemical group [Cu+2].CC([O-])=O.CC([O-])=O OPQARKPSCNTWTJ-UHFFFAOYSA-L 0.000 claims description 3
- BUHXFUSLEBPCEB-UHFFFAOYSA-N icosan-1-amine Chemical compound CCCCCCCCCCCCCCCCCCCCN BUHXFUSLEBPCEB-UHFFFAOYSA-N 0.000 claims description 3
- 238000004321 preservation Methods 0.000 claims description 3
- 238000005303 weighing Methods 0.000 claims description 3
- VEJOYRPGKZZTJW-FDGPNNRMSA-N (z)-4-hydroxypent-3-en-2-one;platinum Chemical compound [Pt].C\C(O)=C\C(C)=O.C\C(O)=C\C(C)=O VEJOYRPGKZZTJW-FDGPNNRMSA-N 0.000 claims description 2
- 238000013313 FeNO test Methods 0.000 claims description 2
- 229910010082 LiAlH Inorganic materials 0.000 claims description 2
- 150000001412 amines Chemical group 0.000 claims description 2
- XOYLJNJLGBYDTH-UHFFFAOYSA-M chlorogallium Chemical compound [Ga]Cl XOYLJNJLGBYDTH-UHFFFAOYSA-M 0.000 claims description 2
- BKFAZDGHFACXKY-UHFFFAOYSA-N cobalt(II) bis(acetylacetonate) Chemical compound [Co+2].CC(=O)[CH-]C(C)=O.CC(=O)[CH-]C(C)=O BKFAZDGHFACXKY-UHFFFAOYSA-N 0.000 claims description 2
- OXBLHERUFWYNTN-UHFFFAOYSA-M copper(I) chloride Chemical compound [Cu]Cl OXBLHERUFWYNTN-UHFFFAOYSA-M 0.000 claims description 2
- MVFCKEFYUDZOCX-UHFFFAOYSA-N iron(2+);dinitrate Chemical compound [Fe+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O MVFCKEFYUDZOCX-UHFFFAOYSA-N 0.000 claims description 2
- POILWHVDKZOXJZ-ARJAWSKDSA-M (z)-4-oxopent-2-en-2-olate Chemical compound C\C([O-])=C\C(C)=O POILWHVDKZOXJZ-ARJAWSKDSA-M 0.000 claims 3
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 claims 1
- 239000002086 nanomaterial Substances 0.000 abstract description 8
- 239000000463 material Substances 0.000 abstract description 3
- 230000002194 synthesizing effect Effects 0.000 abstract description 3
- QGLWBTPVKHMVHM-KTKRTIGZSA-N (z)-octadec-9-en-1-amine Chemical compound CCCCCCCC\C=C/CCCCCCCCN QGLWBTPVKHMVHM-KTKRTIGZSA-N 0.000 description 32
- 238000002441 X-ray diffraction Methods 0.000 description 28
- 229910002555 FeNi Inorganic materials 0.000 description 25
- 239000011258 core-shell material Substances 0.000 description 25
- 230000005415 magnetization Effects 0.000 description 23
- 229910016583 MnAl Inorganic materials 0.000 description 20
- 239000002105 nanoparticle Substances 0.000 description 18
- 238000004627 transmission electron microscopy Methods 0.000 description 18
- 229910000765 intermetallic Inorganic materials 0.000 description 17
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 14
- 230000008569 process Effects 0.000 description 13
- BTOOAFQCTJZDRC-UHFFFAOYSA-N 1,2-hexadecanediol Chemical compound CCCCCCCCCCCCCCC(O)CO BTOOAFQCTJZDRC-UHFFFAOYSA-N 0.000 description 9
- 125000001453 quaternary ammonium group Chemical group 0.000 description 9
- ZKXWKVVCCTZOLD-UHFFFAOYSA-N copper;4-hydroxypent-3-en-2-one Chemical group [Cu].CC(O)=CC(C)=O.CC(O)=CC(C)=O ZKXWKVVCCTZOLD-UHFFFAOYSA-N 0.000 description 7
- LZKLAOYSENRNKR-LNTINUHCSA-N iron;(z)-4-oxoniumylidenepent-2-en-2-olate Chemical compound [Fe].C\C(O)=C\C(C)=O.C\C(O)=C\C(C)=O.C\C(O)=C\C(C)=O LZKLAOYSENRNKR-LNTINUHCSA-N 0.000 description 7
- 238000003917 TEM image Methods 0.000 description 6
- 229910016897 MnNi Inorganic materials 0.000 description 5
- 230000009467 reduction Effects 0.000 description 5
- 230000007704 transition Effects 0.000 description 5
- ZVYYAYJIGYODSD-LNTINUHCSA-K (z)-4-bis[[(z)-4-oxopent-2-en-2-yl]oxy]gallanyloxypent-3-en-2-one Chemical compound [Ga+3].C\C([O-])=C\C(C)=O.C\C([O-])=C\C(C)=O.C\C([O-])=C\C(C)=O ZVYYAYJIGYODSD-LNTINUHCSA-K 0.000 description 4
- 229910045601 alloy Inorganic materials 0.000 description 4
- 239000000956 alloy Substances 0.000 description 4
- 230000005540 biological transmission Effects 0.000 description 4
- ORTQZVOHEJQUHG-UHFFFAOYSA-L copper(II) chloride Chemical compound Cl[Cu]Cl ORTQZVOHEJQUHG-UHFFFAOYSA-L 0.000 description 4
- VCJMYUPGQJHHFU-UHFFFAOYSA-N iron(3+);trinitrate Chemical compound [Fe+3].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O VCJMYUPGQJHHFU-UHFFFAOYSA-N 0.000 description 4
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- MQIKJSYMMJWAMP-UHFFFAOYSA-N dicobalt octacarbonyl Chemical group [Co+2].[Co+2].[O+]#[C-].[O+]#[C-].[O+]#[C-].[O+]#[C-].[O+]#[C-].[O+]#[C-].[O+]#[C-].[O+]#[C-] MQIKJSYMMJWAMP-UHFFFAOYSA-N 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 230000006911 nucleation Effects 0.000 description 3
- 238000010899 nucleation Methods 0.000 description 3
- 239000002245 particle Substances 0.000 description 3
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 2
- 239000003153 chemical reaction reagent Substances 0.000 description 2
- RKTYLMNFRDHKIL-UHFFFAOYSA-N copper;5,10,15,20-tetraphenylporphyrin-22,24-diide Chemical compound [Cu+2].C1=CC(C(=C2C=CC([N-]2)=C(C=2C=CC=CC=2)C=2C=CC(N=2)=C(C=2C=CC=CC=2)C2=CC=C3[N-]2)C=2C=CC=CC=2)=NC1=C3C1=CC=CC=C1 RKTYLMNFRDHKIL-UHFFFAOYSA-N 0.000 description 2
- 239000006185 dispersion Substances 0.000 description 2
- ACCCMOQWYVYDOT-UHFFFAOYSA-N hexane-1,1-diol Chemical compound CCCCCC(O)O ACCCMOQWYVYDOT-UHFFFAOYSA-N 0.000 description 2
- 229910000358 iron sulfate Inorganic materials 0.000 description 2
- BAUYGSIQEAFULO-UHFFFAOYSA-L iron(2+) sulfate (anhydrous) Chemical compound [Fe+2].[O-]S([O-])(=O)=O BAUYGSIQEAFULO-UHFFFAOYSA-L 0.000 description 2
- RUTXIHLAWFEWGM-UHFFFAOYSA-H iron(3+) sulfate Chemical compound [Fe+3].[Fe+3].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O RUTXIHLAWFEWGM-UHFFFAOYSA-H 0.000 description 2
- 229910000360 iron(III) sulfate Inorganic materials 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 238000005406 washing Methods 0.000 description 2
- CDVAIHNNWWJFJW-UHFFFAOYSA-N 3,5-diethoxycarbonyl-1,4-dihydrocollidine Chemical compound CCOC(=O)C1=C(C)NC(C)=C(C(=O)OCC)C1C CDVAIHNNWWJFJW-UHFFFAOYSA-N 0.000 description 1
- 229910021591 Copper(I) chloride Inorganic materials 0.000 description 1
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- KEAYESYHFKHZAL-UHFFFAOYSA-N Sodium Chemical compound [Na] KEAYESYHFKHZAL-UHFFFAOYSA-N 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- XMOKRCSXICGIDD-UHFFFAOYSA-N acetic acid;nickel Chemical compound [Ni].CC(O)=O XMOKRCSXICGIDD-UHFFFAOYSA-N 0.000 description 1
- 238000004220 aggregation Methods 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- DCAYPVUWAIABOU-UHFFFAOYSA-N alpha-n-hexadecene Natural products CCCCCCCCCCCCCCCC DCAYPVUWAIABOU-UHFFFAOYSA-N 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000006555 catalytic reaction Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 229940079721 copper chloride Drugs 0.000 description 1
- ZKXWKVVCCTZOLD-FDGPNNRMSA-N copper;(z)-4-hydroxypent-3-en-2-one Chemical compound [Cu].C\C(O)=C\C(C)=O.C\C(O)=C\C(C)=O ZKXWKVVCCTZOLD-FDGPNNRMSA-N 0.000 description 1
- KXRNYDKIPJKLTD-UHFFFAOYSA-N cyanoboron Chemical compound [B]C#N KXRNYDKIPJKLTD-UHFFFAOYSA-N 0.000 description 1
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 1
- 230000005308 ferrimagnetism Effects 0.000 description 1
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 1
- 229940087654 iron carbonyl Drugs 0.000 description 1
- FBAFATDZDUQKNH-UHFFFAOYSA-M iron chloride Chemical compound [Cl-].[Fe] FBAFATDZDUQKNH-UHFFFAOYSA-M 0.000 description 1
- 239000000696 magnetic material Substances 0.000 description 1
- 230000005389 magnetism Effects 0.000 description 1
- 238000010907 mechanical stirring Methods 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- QPINXQCQOKBINJ-UHFFFAOYSA-K potassium;platinum(2+);trichloride Chemical compound [Cl-].[Cl-].[Cl-].[K+].[Pt+2] QPINXQCQOKBINJ-UHFFFAOYSA-K 0.000 description 1
- 238000010791 quenching Methods 0.000 description 1
- 230000000171 quenching effect Effects 0.000 description 1
- 229910052761 rare earth metal Inorganic materials 0.000 description 1
- 230000035484 reaction time Effects 0.000 description 1
- 229910000104 sodium hydride Inorganic materials 0.000 description 1
- 239000012312 sodium hydride Substances 0.000 description 1
- PVGBHEUCHKGFQP-UHFFFAOYSA-N sodium;n-[5-amino-2-(4-aminophenyl)sulfonylphenyl]sulfonylacetamide Chemical compound [Na+].CC(=O)NS(=O)(=O)C1=CC(N)=CC=C1S(=O)(=O)C1=CC=C(N)C=C1 PVGBHEUCHKGFQP-UHFFFAOYSA-N 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F9/00—Making metallic powder or suspensions thereof
- B22F9/16—Making metallic powder or suspensions thereof using chemical processes
- B22F9/18—Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
- B22F9/24—Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from liquid metal compounds, e.g. solutions
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y40/00—Manufacture or treatment of nanostructures
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Nanotechnology (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Crystallography & Structural Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Manufacture Of Metal Powder And Suspensions Thereof (AREA)
- Powder Metallurgy (AREA)
Abstract
本发明属于磁性纳米材料技术领域,具体涉及一种界面诱导合成有序L10结构永磁纳米粒子的方法。首先将一定比例的晶种核心金属前驱体、表面活性剂和还原剂加入溶剂中,将混合溶液升温至一定温度下进行保温,然后降温至室温后,晶种核心金属前驱体被还原,形成晶种核心。之后加入一定比例的外壳金属前驱体,缓慢升温至一定温度下,然后保温后冷却至室温,外壳金属前驱体被还原剂还原,并在晶种核心的界面诱导下生长,形成L10结构的外壳,最后进行离心清洗,获得有序L10结构的永磁纳米粒子黑色粉体。通过有序金属晶种界面诱导合成了单分散的高矫顽力的有序L10结构纳米材料,合成温度较低,操作简单。
The invention belongs to the technical field of magnetic nanometer materials, and in particular relates to a method for synthesizing ordered L10 structure permanent magnetic nanoparticles by interface induction. First, add a certain proportion of seed crystal core metal precursor, surfactant and reducing agent into the solvent, heat the mixed solution to a certain temperature and keep it warm, and then cool down to room temperature, the seed crystal core metal precursor is reduced to form crystal kind of core. Then add a certain proportion of the shell metal precursor, slowly raise the temperature to a certain temperature, then keep warm and cool to room temperature, the shell metal precursor is reduced by the reducing agent, and grows under the induction of the interface of the seed core to form the shell of the L1 0 structure , and finally perform centrifugal cleaning to obtain a black powder of permanent magnetic nanoparticles with an ordered L1 0 structure. The monodisperse high coercive force ordered L1 0 structure nanomaterials were synthesized by ordering the metal seed interface induction, the synthesis temperature is low, and the operation is simple.
Description
技术领域:Technical field:
本发明属于磁性纳米材料技术领域,具体涉及一种界面诱导合成有序L10结构永磁纳米粒子的方法。The invention belongs to the technical field of magnetic nanometer materials, and in particular relates to a method for synthesizing ordered L10 structure permanent magnetic nanoparticles by interface induction.
背景技术:Background technique:
有些过渡族金属间化合物,具有丰富的相结构和多样的内秉磁性,如:通常FeCo、FeNi 具有A2、B2结构,表现高饱和磁化强度和低矫顽力,是良好的软磁材料;常见的MnAl、MnGa具有τ相结构,呈现亚铁磁性。如果能将这些金属间化合物做成化学有序的L10四方相,L10-FeCo、L10-FeNi、L10-MnAl、L10-MnGa,它们的晶体结构会具有高的对称性,呈现大的磁晶各向异性、高居里温度和高矫顽力,是优良的永磁材料,该类金属间化合物不含稀土元素、成本低廉,具有广阔的应用前景,将该类合金做成纳米粒子,在高密度磁存储、电化学催化、微纳器件以及生物医学等方面更具有重要应用价值。Some transition group intermetallic compounds have rich phase structures and diverse intrinsic magnetism, such as: FeCo and FeNi usually have A2 and B2 structures, exhibit high saturation magnetization and low coercive force, and are good soft magnetic materials; common MnAl and MnGa have a τ phase structure and exhibit ferrimagnetism. If these intermetallic compounds can be made into a chemically ordered L1 0 tetragonal phase, L1 0 -FeCo, L1 0 -FeNi, L1 0 -MnAl, L1 0 -MnGa, their crystal structures will have high symmetry, showing Large magnetocrystalline anisotropy, high Curie temperature and high coercive force are excellent permanent magnet materials. This type of intermetallic compound does not contain rare earth elements and is low in cost. It has broad application prospects. This type of alloy can be made into nano Particles have more important application value in high-density magnetic storage, electrochemical catalysis, micro-nano devices, and biomedicine.
然而,通常直接制备的FeCo、FeNi、MnAl、MnGa纳米粒子,难以获得具有高磁晶各向异性的有序四方相,这是因为获得该结构合金的工艺窗口很窄,例如:L10-MnAl是由富含Mn的ε相经过淬火和随后的退火(通常在500℃)形成的一种亚稳相,易分解成非磁性相。L10-FeNi相在有序-无序转变温度为593K时扩散缓慢,L10-FeNi只存在于经过数十亿年以极低的冷却速率冷却的陨石中。L10-FeCo具有比L10-FeNi更理想的磁性能,但是由于对相形成热力学的认识有限,L10-FeCo的制备方法仍有待研究,迄今为止,还没有在任何实验室中成功合成L10-FeCo相。而现有的化学合成方法普遍直接将金属前驱体还原,原子在一定反应环境中形成FeCo、FeNi、MnAl或MnGa合金核,然后生长成FeCo、FeNi、MnAl或MnGa纳米粒子,由于在生长过程中,金属原子随机堆垛,因此难以控制形成有序结构,所以通过普通工艺难以制备出L10结构的FeCo、FeNi、MnAl、MnGa纳米材料。如何诱导原子在形核生长过程中,有序生长,制备出可控性好、有序度高的L10-FeCo、FeNi、MnAl、MnGa纳米粒子是该领域的瓶颈问题。However, FeCo, FeNi, MnAl, and MnGa nanoparticles usually prepared directly are difficult to obtain ordered tetragonal phases with high magnetocrystalline anisotropy, because the process window for obtaining alloys with this structure is very narrow, such as: L1 0 -MnAl It is a metastable phase formed by quenching and subsequent annealing (usually at 500°C) of the Mn-rich ε phase, which is easily decomposed into a non-magnetic phase. The L1 0 -FeNi phase diffuses slowly at the order-disorder transition temperature of 593K, and L1 0 -FeNi only exists in meteorites that have been cooled at extremely low cooling rates for billions of years. L1 0 -FeCo has more desirable magnetic properties than L1 0 -FeNi, but due to the limited understanding of the thermodynamics of phase formation, the preparation of L1 0 -FeCo remains to be studied, and so far, L1 has not been successfully synthesized in any laboratory 0 -FeCo phase. However, the existing chemical synthesis methods generally directly reduce the metal precursors, and the atoms form FeCo, FeNi, MnAl or MnGa alloy nuclei in a certain reaction environment, and then grow into FeCo, FeNi, MnAl or MnGa nanoparticles. , Metal atoms are randomly stacked, so it is difficult to control the formation of an ordered structure, so it is difficult to prepare FeCo, FeNi, MnAl, and MnGa nanomaterials with L1 0 structure by ordinary processes. How to induce orderly growth of atoms in the process of nucleation and growth, and prepare L1 0 -FeCo, FeNi, MnAl, MnGa nanoparticles with good controllability and high degree of order is the bottleneck problem in this field.
发明内容:Invention content:
本发明目的是提供一种界面诱导合成有序L10结构永磁纳米粒子的方法,本发明所述的有序L10结构永磁纳米粒子,是指过渡族金属间化合物纳米粒子,特别是通过常规方法很难形成有序L10结构的金属间化合物,具体来说,包括FeCo、FeNi、MnAl、MnGa等金属间化合物永磁纳米粒子。The purpose of the present invention is to provide a method for interface-induced synthesis of ordered L1 0 structure permanent magnet nanoparticles, the order L1 0 structure permanent magnet nanoparticles of the present invention refers to transition group intermetallic compound nanoparticles, especially through It is difficult to form intermetallic compounds with an ordered L1 0 structure by conventional methods, specifically, permanent magnetic nanoparticles of intermetallic compounds such as FeCo, FeNi, MnAl, and MnGa.
本发明专利的构思如下:The design of the patent of the present invention is as follows:
L10结构的FeCo、FeNi、MnAl、MnGa等纳米粒子难以通过直接合成获得,因此需要在合成过程中诱导其形成有序结构。化学合成纳米粒子通常以形核生长的方式进行,首先形成晶核,然后生长成大尺寸的粒子或各种纳米材料。生长过程中,通常不同原子会沿晶核的表面堆垛,沿界面外延生长是主要生长方式,因此晶核的结构对合成的纳米粒子具有遗传性。如果将具有L10结构的晶种放入反应体系,这些晶种作为非均质形核的质点,这些被还原的原子沿晶种核心表面堆垛,当晶种的晶格常数与要合成的粒子晶格常数接近,它们的晶格点阵匹配度较高,这些原子就会沿原有晶面外延生长,从而继续生长成有序L10结构的纳米粒子。Nanoparticles such as FeCo, FeNi, MnAl, and MnGa with the L1 0 structure are difficult to obtain by direct synthesis, so they need to be induced to form an ordered structure during the synthesis process. Chemically synthesized nanoparticles are usually carried out in the form of nucleation and growth. Firstly, crystal nuclei are formed, and then grow into large-sized particles or various nanomaterials. During the growth process, usually different atoms will stack along the surface of the crystal nucleus, and epitaxial growth along the interface is the main growth mode, so the structure of the crystal nucleus is hereditary to the synthesized nanoparticles. If seeds with the L1 0 structure are put into the reaction system, these seeds serve as heterogeneous nucleation particles, and these reduced atoms are stacked along the surface of the seed crystal core. When the lattice constant of the seed crystal is the same as that of the The lattice constants of the particles are close, and their lattice lattices have a high degree of matching, and these atoms will grow epitaxially along the original crystal plane, thereby continuing to grow into nanoparticles with an ordered L1 0 structure.
AuCu、MnNi、FePt等金属间化合物在较低的温度下稳定存在,容易通过化学合成获得,并且它们的晶格点阵与有序L10-FeCo、FeNi、MnAl、MnGa的晶格点阵具有较高的匹配度,易于形成外延生长。因此可以首先合成出L10结构的AuCu、MnNi、FePt作为晶种,然后以这些晶种为核心,通过它们晶格的界面诱导,可以获得有序的L10结构的这些过渡族金属间化合物(例如上文所述的FeCo、FeNi、MnAl、MnGa等)的永磁纳米粒子。Intermetallic compounds such as AuCu, MnNi, and FePt exist stably at lower temperatures and are easily obtained by chemical synthesis, and their lattice lattices are similar to those of ordered L1 0 -FeCo, FeNi, MnAl, and MnGa High matching degree, easy to form epitaxial growth. Therefore, AuCu, MnNi, and FePt with L1 0 structure can be synthesized first as seed crystals, and then these transition group intermetallic compounds with ordered L1 0 structure can be obtained by using these seeds as the core and through the interface induction of their lattices ( For example, permanent magnetic nanoparticles of FeCo, FeNi, MnAl, MnGa, etc. as described above.
这样形成的永磁纳米粒子以L10结构的AuCu、MnNi、FePt等金属间化合物晶种为核心,以L10结构的FeCo、FeNi、MnAl、MnGa等过渡族金属间化合物为外壳,通过调节前驱体比例,控制产物化学成分,以及改变反应温度和反应时间等,可以控制产物的形貌、有序度、磁性能。The permanent magnetic nanoparticles formed in this way have intermetallic compound seeds such as AuCu, MnNi, and FePt with L1 0 structure as the core, and transition group intermetallic compounds such as FeCo, FeNi, MnAl, and MnGa with L1 0 structure as the outer shell. The morphology, degree of order, and magnetic properties of the product can be controlled by controlling the volume ratio, controlling the chemical composition of the product, and changing the reaction temperature and reaction time.
为实现上述目的,本发明采用一种界面诱导合成有序L10结构永磁纳米粒子的方法。首先将一定比例的晶种核心金属前驱体、表面活性剂和还原剂加入溶剂中,将混合溶液升温至一定温度下进行保温,然后降温至室温后,晶种核心金属前驱体被还原,形成L10结构的AuCu、 MnNi、FePt等金属间化合物的晶种核心。之后加入一定比例的FeCo、FeNi、MnAl或MnGa 外壳金属前驱体,缓慢升温至一定温度,然后保温后移除加热源,冷却至室温,外壳金属前驱体被还原剂还原,并在晶种核心的界面诱导下生长,形成L10结构的FeCo、FeNi、MnAl 或MnGa外壳,最后进行离心清洗,获得有序L10结构的永磁纳米粒子黑色粉体。To achieve the above object, the present invention adopts a method for synthesizing permanent magnetic nanoparticles with ordered L1 0 structure by interface induction. First, add a certain proportion of seed crystal core metal precursor, surfactant and reducing agent into the solvent, heat the mixed solution to a certain temperature and keep it warm, and then cool down to room temperature, the seed crystal core metal precursor is reduced to form L1 0 structure of AuCu, MnNi, FePt and other intermetallic compound seed core. Then add a certain proportion of FeCo, FeNi, MnAl or MnGa shell metal precursor, slowly heat up to a certain temperature, then remove the heating source after keeping warm, cool to room temperature, the shell metal precursor is reduced by the reducing agent, and in the core of the seed crystal Growth is induced by the interface to form a FeCo, FeNi, MnAl or MnGa shell with an L1 0 structure, and finally centrifuged to obtain a black powder of permanent magnetic nanoparticles with an ordered L1 0 structure.
本发明方法具体包括以下步骤:The inventive method specifically comprises the following steps:
S1:称量晶种核心金属前驱体和还原剂。S1: Weigh the seed core metal precursor and reducing agent.
所述晶种核心金属前驱体为能构成高有序结构L10金属合金的两种金属的金属源混合物,可以在还原生成L10结构的晶种核心。具体来说,作为晶种核心的金属间化合物或者说金属合金可以是AuCu、MnNi、FePt,因此晶种核心金属前驱体可以是金源和铜源、锰源和镍源或者铁源和铂源的混合物,两种金属源中的金属离子的摩尔比优选为(0.1~1):(0.1~1)。The seed crystal core metal precursor is a metal source mixture of two metals capable of forming an L1 0 metal alloy with a highly ordered structure, and can generate a seed crystal core with an L1 0 structure after reduction. Specifically, the intermetallic compound or metal alloy as the seed core can be AuCu, MnNi, FePt, so the seed core metal precursor can be gold source and copper source, manganese source and nickel source or iron source and platinum source The mixture of metal ions in the two metal sources is preferably (0.1~1):(0.1~1) in molar ratio.
具体来说,所述晶种核心金属前驱体中:金源为氯金酸HAuCl4、四氯金酸钾KAuCl4的一种或几种;铜源为乙酰丙酮铜Cu(acac)2、乙酸铜Cu(Ac)2、氯化铜CuCl2的一种或几种;锰源为乙酸锰Mn(Ac)2、氯化锰MnCl2、乙酰丙酮锰Mn(acac)2的一种或几种;镍源为乙酸镍Ni(Ac)2、硝酸镍Fe(NO3)3、硫酸镍Fe2(SO4)3、氯化镍NiCl2、乙酰丙酮镍Ni(acac)2的一种或几种;铁源为氯化铁FeCl3、硝酸铁FeNO3、硫酸铁Fe2(SO4)3、乙酰丙酮铁Fe(acac)3的一种或几种;铂源为氯铂酸H2PtCl6、乙酰丙酮铂Pt(acac)2、氯钾铂酸K2PtCl6的一种或几种。Specifically, in the seed crystal core metal precursor: the gold source is one or more of chloroauric acid HAuCl 4 , potassium tetrachloroaurate KAuCl 4 ; the copper source is copper acetylacetonate Cu(acac) 2 , acetic acid One or more of copper Cu(Ac) 2 , copper chloride CuCl 2 ; manganese source is one or more of manganese acetate Mn(Ac) 2 , manganese chloride MnCl 2 , manganese acetylacetonate Mn(acac) 2 The nickel source is one or more of nickel acetate Ni(Ac) 2 , nickel nitrate Fe(NO 3 ) 3 , nickel sulfate Fe 2 (SO 4 ) 3 , nickel chloride NiCl 2 , nickel acetylacetonate Ni(acac) 2 species; iron source is one or more of ferric chloride FeCl 3 , ferric nitrate FeNO 3 , ferric sulfate Fe 2 (SO 4 ) 3 , iron acetylacetonate Fe(acac) 3 ; platinum source is chloroplatinic acid H 2 PtCl 6. One or more of platinum acetylacetonate Pt(acac) 2 , potassium chloride platinum acid K 2 PtCl 6 .
所述还原剂为硼氢化钾KBH4、硼氢化钠NaBH4、1,2-十六烷二醇C16H34O2、氢化铝锂LiAlH、氰基硼氢化钠CH3BNNa中的一种或几种。所述还原剂的实际总加入量不小于理论加入量,所述还原剂的理论加入量为能将晶种核心金属前驱体和外壳金属前驱体中的金属离子全部还原成0价金属的量。具体地,还原剂实际加入量与理论加入量的比例可以是(1~10): 1。The reducing agent is one of potassium borohydride KBH 4 , sodium borohydride NaBH 4 , 1,2-hexadecanediol C 16 H 34 O 2 , lithium aluminum hydride LiAlH, sodium cyanoborohydride CH 3 BNNa or several. The actual total addition amount of the reducing agent is not less than the theoretical addition amount, and the theoretical addition amount of the reducing agent is an amount capable of reducing all metal ions in the seed crystal core metal precursor and the shell metal precursor to zero-valent metals. Specifically, the ratio of the actual addition amount of the reducing agent to the theoretical addition amount may be (1-10):1.
S2:将晶种核心金属前驱体加入到溶剂中,在保护气氛作用下进行除水处理,除水处理后加入表面活性剂,形成混合溶液。S2: adding the seed crystal core metal precursor into the solvent, performing water removal treatment under the action of a protective atmosphere, and adding a surfactant after the water removal treatment to form a mixed solution.
优选地,所述溶剂为十六胺C16H35N、三辛胺C24H51N、十八胺C18H39N、二十胺C20H43N、油胺C18H37N中的一种或几种,表面活性剂为溴化十烃季胺C16H38Br2N2、卵磷脂C42H80NO8P、单硬脂酸甘油酯C21H42O4、油胺C18H37N和油酸C18H34O2中的两种物质混合,表面活性剂的两种物质按体积比(0.1~1):(0.1~1)混合后加入。上述溶剂和表面活性剂可以促进晶种核心金属前驱体被还原之后生成的金属原子更有利的生长成L10结构,也促进外壳金属前驱体被还原后的金属原子更好的在晶种核心的晶格界面诱导下生长成L10结构。溶剂为二者的生长提供了一个很好的平台,表面活性剂可以最大程度的保留合成L10结构的表面活性,其表面所存在的各种基团,为后续的各种应用提供保障。Preferably, the solvent is hexadecylamine C 16 H 35 N, trioctylamine C 24 H 51 N, octadecylamine C 18 H 39 N, eicosylamine C 20 H 43 N, oleylamine C 18 H 37 N One or more of them, the surfactant is brominated quaternary amine C 16 H 38 Br 2 N 2 , lecithin C 42 H 80 NO 8 P, glyceryl monostearate C 21 H 42 O 4 , The two substances in oleylamine C 18 H 37 N and oleic acid C 18 H 34 O 2 are mixed, and the two substances of surfactant are mixed according to the volume ratio (0.1-1): (0.1-1) and then added. The above-mentioned solvents and surfactants can promote the metal atoms generated after the reduction of the seed core metal precursor to grow into an L1 0 structure more favorably, and also promote the metal atoms of the shell metal precursor to be better in the core of the seed crystal. L1 0 structure was grown under the induction of lattice interface. The solvent provides a good platform for the growth of the two, and the surfactant can retain the surface activity of the synthesized L1 0 structure to the greatest extent, and the various groups existing on the surface provide guarantee for various subsequent applications.
晶种核心金属前驱体中的金属离子与溶剂的摩尔比为1:(10~30),溶剂与表面活性剂(表面活性剂为两种物质总量)的摩尔比为10:(1.0~5.0)。The molar ratio of the metal ion to the solvent in the seed core metal precursor is 1: (10-30), and the molar ratio of the solvent to the surfactant (the surfactant is the total amount of the two substances) is 10: (1.0-5.0 ).
优选地,所述保护气氛为93%Ar+7%H2、95%Ar+5%H2、高纯氩气Ar或高纯氮气N2的一种。所述除水处理的方法为:在保护气氛作用下,以升温速率为1~10℃/min升温至100~120℃保温30~120min。除水处理更有利于表面活性剂发挥作用。Preferably, the protective atmosphere is one of 93% Ar+7% H 2 , 95% Ar+5% H 2 , high-purity argon Ar or high-purity nitrogen N 2 . The method of water removal treatment is as follows: under the action of a protective atmosphere, the temperature is raised to 100-120° C. at a heating rate of 1-10° C./min and kept for 30-120 minutes. Water removal treatment is more conducive to the role of surfactants.
S3:将混合溶液升温至第一反应温度保温,进行生成晶种核心的反应,之后冷却,称量并加入外壳金属前驱体。S3: Heating the mixed solution to the first reaction temperature and keeping it warm, performing a reaction to form a seed crystal core, cooling down, weighing and adding the shell metal precursor.
在升温和保温的过程中,晶种核心金属前驱体被还原成0价金属原子,并组装成金属间化合物,形成L10结构的晶种核心。因此在这一过程之前,即生成晶种核心的反应之前,需要保证溶液中有足量的还原剂。During the heating and heat preservation process, the seed core metal precursors were reduced to 0-valent metal atoms and assembled into intermetallic compounds to form the seed core of L1 0 structure. Therefore, before this process, that is, before the reaction of generating seed crystal cores, it is necessary to ensure that there is a sufficient amount of reducing agent in the solution.
优选地,所述的第一反应温度为280~360℃,保温时间为30~300min,反应后将混合溶液冷却至60~120℃。Preferably, the first reaction temperature is 280-360° C., the holding time is 30-300 minutes, and the mixed solution is cooled to 60-120° C. after the reaction.
所述外壳金属前驱体为构成要制备的有序L10结构永磁纳米粒子的两种金属的金属源混合物,例如FeCo、FeNi、MnAl或MnGa,因而具体来说,外壳金属前驱体可以是铁源和钴源、铁源和镍源、锰源和铝源或锰源和镓源的混合物。The shell metal precursor is a metal source mixture of two metals that constitute the ordered L10 structure permanent magnetic nanoparticles to be prepared, such as FeCo, FeNi, MnAl or MnGa , so specifically, the shell metal precursor can be Fe source and a source of cobalt, a source of iron and a source of nickel, a source of manganese and a source of aluminum or a source of manganese and a source of gallium.
如前文所述,这些金属在通常情况下很难形成有序L10结构的金属间化合物或者说合金纳米粒子,而在本发明中,在晶种核心存在并进行界面诱导的前提下,这种结构的金属间化合物的形成难度大大降低。As mentioned above, these metals are usually difficult to form intermetallic compounds or alloy nanoparticles with an ordered L1 0 structure, but in the present invention, under the premise that the seed core exists and the interface is induced, this The difficulty of forming intermetallic compounds of the structure is greatly reduced.
优选地,所述外壳金属前驱体金属源中的两种金属离子摩尔比为(0.2~1):(0.2~1)。在外壳金属前驱体中,铁源为氯化铁FeCl3、羰基铁Fe(CO)5、乙酰丙酮铁Fe(acac)3、油酸铁 C54H99FeO6中的一种或几种;钴源为乙酰丙酮钴Co(acac)2、八羰基二钴Co2(CO)8、乙酸钴 Co(Ac)2中的一种或几种;镍源为乙酸镍Ni(Ac)2、硝酸镍Fe(NO3)3、硫酸镍Fe2(SO4)3、氯化镍NiCl2、乙酰丙酮镍Ni(acac)2的一种或几种;锰源为乙酸锰Mn(Ac)2、氯化锰MnCl2、乙酰丙酮锰Mn(acac)2的一种或几种;铝源为氯化铝AlCl3、乙酰丙酮铝Al(acac)3的一种或几种;镓源为乙酸镓Ga(Ac)2、氯化镓GaCl2、乙酰丙酮镓Ga(acac)2的一种或几种。Preferably, the molar ratio of the two metal ions in the outer shell metal precursor metal source is (0.2-1): (0.2-1). In the shell metal precursor, the iron source is one or more of iron chloride FeCl 3 , iron carbonyl Fe(CO) 5 , iron acetylacetonate Fe(acac) 3 , iron oleate C 54 H 99 FeO 6 ; The cobalt source is one or more of cobalt acetylacetonate Co(acac) 2 , dicobalt octacarbonyl Co 2 (CO) 8 , and cobalt acetate Co(Ac) 2 ; the nickel source is nickel acetate Ni(Ac) 2 , nitric acid One or more of nickel Fe(NO 3 ) 3 , nickel sulfate Fe 2 (SO 4 ) 3 , nickel chloride NiCl 2 , nickel acetylacetonate Ni(acac) 2 ; manganese source is manganese acetate Mn(Ac) 2 , One or more of manganese chloride MnCl 2 and manganese acetylacetonate Mn(acac) 2 ; the aluminum source is one or more of aluminum chloride AlCl 3 and aluminum acetylacetonate Al(acac) 3 ; the gallium source is gallium acetate One or more of Ga(Ac) 2 , gallium chloride GaCl 2 , gallium acetylacetonate Ga(acac) 2 .
在向混合溶液中加入外壳金属前驱体时,所述外壳金属前驱体中金属离子总量与晶种核心金属前驱体中金属离子总量的摩尔比为(0.4~1):(0.2~1)。When adding the shell metal precursor to the mixed solution, the molar ratio of the total amount of metal ions in the shell metal precursor to the total amount of metal ions in the seed core metal precursor is (0.4-1): (0.2-1) .
S4:将混合溶液升温至第二反应温度保温,进行生成外壳的反应,之后冷却至室温,对混合溶液进行离心清洗,获得黑色粉体,即所述有序L10结构永磁纳米粒子。S4: Heating the mixed solution to the second reaction temperature and keeping it warm, performing a reaction to form a shell, and then cooling to room temperature, and performing centrifugal cleaning on the mixed solution to obtain black powder, that is, the ordered L1 0 structure permanent magnetic nanoparticles.
在这一升温和保温的过程中,外壳金属前驱体被还原成0价金属原子,并在晶种核心的界面诱导下形成有序L10结构的金属间化合物。因此在该过程之前,即生成外壳的反应之前,需要确保混合溶液中包含足量的还原剂。During this heating and holding process, the shell metal precursors are reduced to 0-valent metal atoms, and an intermetallic compound with an ordered L1 0 structure is formed under the interface induction of the seed core. Therefore, before this process, that is, before the reaction to form the shell, it is necessary to ensure that the mixed solution contains a sufficient amount of reducing agent.
优选的,所述第二反应温度为200~300℃,保温时间为10~60min。Preferably, the second reaction temperature is 200-300° C., and the holding time is 10-60 minutes.
优选的,所述步骤S3和步骤S4中,将混合溶液升温至反应温度均采用升温速率为1~10℃/min的缓慢升温方式,以确保前驱体的充分还原,并使金属间化合物有足够的生长时间。Preferably, in the steps S3 and S4, the mixed solution is heated up to the reaction temperature by a slow temperature rise method with a temperature rise rate of 1-10°C/min, so as to ensure sufficient reduction of the precursor and make the intermetallic compound sufficiently growth time.
下面介绍一种对于混合溶液进行离心清洗,获得黑色粉体的方法:The following describes a method of centrifugally cleaning the mixed solution to obtain a black powder:
采用两种混合溶剂进行离心清洗,混合溶剂A为无水乙醇和氯仿按体积比(1~5):(5~1) 的混合溶剂,混合溶剂B为去离子水和无水乙醇按体积比(1~5):(5~1)的混合溶剂。Use two mixed solvents for centrifugal cleaning, mixed solvent A is a mixed solvent of absolute ethanol and chloroform by volume ratio (1-5): (5-1), mixed solvent B is deionized water and absolute ethanol by volume ratio (1-5): a mixed solvent of (5-1).
首先通过混合溶剂A清洗混合溶液,混合溶剂A:混合溶液的体积比为(1~5):1,然后进行离心分离,离心分离后倒掉上层液体,获得黑色粉体;First, wash the mixed solution with mixed solvent A, the volume ratio of mixed solvent A: mixed solution is (1-5): 1, then perform centrifugation, and pour off the upper liquid after centrifugation to obtain black powder;
然后用混合溶剂A清洗黑色粉体并离心分离,重复3~5次;Then wash the black powder with mixed solvent A and centrifuge, repeat 3 to 5 times;
之后采用混合溶剂B和混合溶剂A轮流对黑色粉体进行清洗和离心分离,将混合溶剂B 清洗后离心分离+混合溶剂A清洗后离心分离的过程称为1次,重复该过程3~5次;Then use mixed solvent B and mixed solvent A to wash and centrifuge the black powder alternately. The process of washing with mixed solvent B and then centrifuging + washing with mixed solvent A is called 1 time, and repeat this process 3 to 5 times. ;
最终将最后一次清洗并离心分离后的黑色粉体存于无水乙醇中。Finally, the black powder after the last cleaning and centrifugation was stored in absolute ethanol.
上述方法中,离心分离的离心机转速为6000~12000rpm,每次离心时间在3~10min。In the above method, the rotational speed of the centrifuge for centrifugation is 6000-12000 rpm, and the centrifugation time is 3-10 minutes each time.
上述方法中,介绍了在步骤S3、步骤S4的生成晶种核心和生成外壳的反应中,需要确保混合溶液中有足量的还原剂。具体地,还原剂按以下两种方法中的一种加入:In the above method, it is introduced that in the reaction of forming the seed crystal core and forming the shell in step S3 and step S4, it is necessary to ensure that there is a sufficient amount of reducing agent in the mixed solution. Specifically, the reducing agent is added by one of the following two methods:
方法A:在步骤S3的生成晶种核心的反应之前加入所有还原剂,例如可以将所有还原剂在步骤S2和晶种核心金属前驱体一同加入溶剂中。Method A: adding all the reducing agent before the reaction of generating the seed crystal core in step S3, for example, all the reducing agent can be added into the solvent together with the seed crystal core metal precursor in step S2.
方法B:在步骤S3的生成晶种核心的反应之前加入第一部分还原剂,例如可以和晶种核心金属前驱体一起加入溶剂,第一部分加入量不小于能够将晶种核心金属前驱体全部还原的量,在步骤S4的生成外壳的反应之前加入第二部分剩余还原剂,例如可以和外壳金属前驱体一起加入,确保外壳金属前驱体的全部还原。Method B: Add the first part of the reducing agent before the reaction of generating the seed crystal core in step S3. For example, a solvent can be added together with the seed crystal core metal precursor. The amount, the second part of the remaining reducing agent is added before the reaction of forming the shell in step S4, for example, it can be added together with the shell metal precursor to ensure the complete reduction of the shell metal precursor.
通过上述方法,可利用界面诱导成功合成有序L10结构纳米粒子,产物的有序度为0.85~0.95。矫顽力Hc达到850.5~1500.8Oe,饱和磁化强度Ms达到61.2~185.8emu/g。Through the above method, ordered L1 0 structure nanoparticles can be successfully synthesized by interface induction, and the order degree of the product is 0.85-0.95. The coercive force Hc reaches 850.5-1500.8Oe, and the saturation magnetization Ms reaches 61.2-185.8emu/g.
本发明的有益效果:Beneficial effects of the present invention:
(1)通过有序金属晶种界面诱导合成了单分散的高矫顽力的有序L10结构纳米材料,合成温度较低,操作简单;(1) Monodisperse high-coercivity ordered L1 0 structured nanomaterials were synthesized through ordered metal seed interface induction, with low synthesis temperature and simple operation;
(2)通过优化合成工艺,可获得优异的分散性、高的有序度和优异的磁性能的有序L10结构纳米材料;(2) By optimizing the synthesis process, ordered L1 0 structure nanomaterials with excellent dispersion, high degree of order and excellent magnetic properties can be obtained;
(3)本发明目的是采用界面诱导制备高有序L10结构纳米粒子,避免热处理过程中导致的聚集、异常长大的现象,对于制备高有序L10结构纳米材料提供理论支撑和推动实用化进程。(3) The purpose of the present invention is to use interface induction to prepare highly ordered L1 0 structured nanoparticles, to avoid aggregation and abnormal growth during heat treatment, and to provide theoretical support and promote practical use for the preparation of highly ordered L1 0 structured nanomaterials process.
附图说明:Description of drawings:
图1为本发明方法实施例1合成产物的XRD图谱;Fig. 1 is the XRD collection of illustrative plates of the synthesis product of embodiment 1 of the method of the present invention;
图2为本发明方法实施例1合成产物的磁滞回线;Fig. 2 is the hysteresis loop of the synthesis product of the method embodiment 1 of the present invention;
图3为本发明方法实施例1合成产物的TEM图像;Fig. 3 is the TEM image of the synthetic product of the method embodiment 1 of the present invention;
图4为本发明方法实施例2合成产物的XRD图谱;Fig. 4 is the XRD collection of illustrative plates of the synthetic product of embodiment 2 of the method of the present invention;
图5为本发明方法实施例2合成产物的磁滞回线;Fig. 5 is the hysteresis loop of the synthetic product of the method embodiment 2 of the present invention;
图6为本发明方法实施例2合成产物的TEM图像;Fig. 6 is the TEM image of the synthetic product of the method embodiment 2 of the present invention;
图7为本发明方法实施例3合成产物的XRD图谱;Fig. 7 is the XRD pattern of the synthesis product of the method embodiment 3 of the present invention;
图8为本发明方法实施例3合成产物的磁滞回线;Fig. 8 is the hysteresis loop of the synthetic product of the method embodiment 3 of the present invention;
图9为本发明方法实施例3合成产物的TEM图像。Fig. 9 is a TEM image of the product synthesized in Example 3 of the method of the present invention.
具体实施方式:Detailed ways:
下面结合实施例对本发明作进一步的详细说明。The present invention will be described in further detail below in conjunction with embodiment.
以下实施例中:In the following examples:
实验设备和仪器、实验试剂均为商业购买。Experimental equipment, instruments, and experimental reagents were purchased commercially.
实验设备和仪器包括:三颈烧瓶、冷凝管、电子天平、机械搅拌加热套和离心机等;Experimental equipment and instruments include: three-necked flask, condenser tube, electronic balance, mechanical stirring heating mantle and centrifuge, etc.;
实验试剂包括:氯金酸、四氯金酸钾、乙酰丙酮铜、乙酸铜、氯化铜、乙酸锰、氯化锰、乙酰丙酮锰、乙酸镍、硝酸镍、硫酸镍、氯化镍、乙酰丙酮镍、氯化铁、硝酸铁、硫酸铁、乙酰丙酮铁、氯铂酸、乙酰丙酮铂、氯铂酸钾、羰基铁、油酸铁、乙酰丙酮钴、八羰基二钴、乙酸钴、乙酸镍、硝酸镍、硫酸镍、氯化镍、乙酰丙酮镍、乙酸锰、氯化锰、乙酰丙酮锰、氯化锰、乙酰丙酮铝、乙酸镓、氯化镓、乙酰丙酮镓、硼氢化钾、硼氢化钠、1,2-十六烷二醇、氢化铝锂、氰基硼氢化钠、十六胺、三辛胺、十八胺、二十胺、油胺、油酸、93%Ar+7%H2、 95%Ar+5%H2、高纯氩气Ar、高纯氮气N2、氯仿、无水乙醇、去离子水,均为从市场购买。Experimental reagents include: chloroauric acid, potassium tetrachloroaurate, copper acetylacetonate, copper acetate, copper chloride, manganese acetate, manganese chloride, manganese acetylacetonate, nickel acetate, nickel nitrate, nickel sulfate, nickel chloride, acetyl Nickel acetone, ferric chloride, ferric nitrate, ferric sulfate, ferric acetylacetonate, chloroplatinic acid, platinum acetylacetonate, potassium chloroplatinate, carbonyl iron, ferric oleate, cobalt acetylacetonate, dicobalt octacarbonyl, cobalt acetate, acetic acid Nickel, nickel nitrate, nickel sulfate, nickel chloride, nickel acetylacetonate, manganese acetate, manganese chloride, manganese acetylacetonate, manganese chloride, aluminum acetylacetonate, gallium acetate, gallium chloride, gallium acetylacetonate, potassium borohydride, Sodium borohydride, 1,2-hexadecanediol, lithium aluminum hydride, sodium cyanoborohydride, hexadecylamine, trioctylamine, octadecylamine, eicosylamine, oleylamine, oleic acid, 93% Ar+ 7% H 2 , 95% Ar+5% H 2 , high-purity argon Ar, high-purity nitrogen N 2 , chloroform, absolute ethanol, and deionized water were purchased from the market.
利用振动样品强磁计(VSM)测定产物的磁性能,采用场发射透射电镜(TEM)观察产物的形貌,通过x射线衍射(XRD)分析产物的物相。The magnetic properties of the product were measured by vibrating sample magnetometer (VSM), the morphology of the product was observed by field emission transmission electron microscope (TEM), and the phase of the product was analyzed by X-ray diffraction (XRD).
以下实施例中,还原剂按以下两种方法中的一种加入:In the following examples, the reducing agent is added by one of the following two methods:
方法A:在生成晶种核心的反应之前加入所有还原剂,例如可以将所有还原剂在步骤S2 和晶种核心金属前驱体一同加入溶剂中。Method A: All reducing agents are added before the reaction for generating seed crystal cores, for example, all reducing agents can be added to the solvent together with the seed crystal core metal precursor in step S2.
方法B:在生成晶种核心的反应之前加入第一部分还原剂,例如可以和晶种核心金属前驱体一起加入溶剂,第一部分加入量不小于能够将晶种核心金属前驱体全部还原的量,在步骤S4的生成外壳的反应之前加入第二部分剩余还原剂,确保外壳金属前驱体的全部还原。Method B: Add the first part of the reducing agent before the reaction of generating the seed crystal core. For example, the solvent can be added together with the seed crystal core metal precursor. The amount of the first part added is not less than the amount that can completely reduce the seed crystal core metal precursor. A second part of the remaining reducing agent is added before the reaction for forming the outer shell in step S4 to ensure complete reduction of the outer shell metal precursor.
还原剂只要能够在生成晶种核心和生成外壳的两次反应中保证晶种核心金属前驱体和外壳金属前驱体中的金属源能够全部还原即可,故以下实施例中不具体记载还原剂具体的加入时机,只记载其种类和加入量。As long as the reducing agent can ensure that the metal sources in the seed crystal core metal precursor and the shell metal precursor can be fully reduced in the two reactions of generating the seed crystal core and the shell metal precursor, the specific details of the reducing agent are not specifically described in the following examples. Only the type and amount of addition are recorded.
实施例1:Example 1:
(1)首先采用电子天平称量晶种核心金属前驱体铜源乙酰丙酮铜和金源氯金酸,两者的摩尔比例为0.3:0.2,并称量还原剂1,2-十六烷二醇,还原剂用量理论值与实际值的比例关系为1:1。(1) First, use an electronic balance to weigh the seed crystal core metal precursor copper acetylacetonate and gold source chloroauric acid, the molar ratio of the two is 0.3:0.2, and weigh the reducing agent 1,2-hexadecane di For alcohol, the ratio between the theoretical value and the actual value of the amount of reducing agent is 1:1.
(2)将称量好的晶种核心金属前驱体粉末(铜源+金源)和还原剂1,2-十六烷二醇加入装有溶剂十六胺的三颈烧瓶中,其中晶种核心金属前驱体和溶剂的摩尔比为1:10。在保护气氛 93%Ar+7%H2作用下,以升温速率为10℃/min升温至120℃保温120min,进行去除水分处理,随后将表面活性剂(油胺+油酸)加入混合溶液,按体积比,油胺:油酸=1:1;按摩尔比,溶剂:表面活性剂=10:1.0。(2) Add the weighed seed crystal core metal precursor powder (copper source + gold source) and the reducing agent 1,2-hexadecanediol into a three-necked flask containing the solvent hexadecylamine, wherein the seed crystal The molar ratio of core metal precursor and solvent is 1:10. Under the action of a protective atmosphere of 93% Ar+7% H 2 , the temperature was raised to 120° C. at a heating rate of 10° C./min and kept at 120° C. for 120 minutes to remove moisture, and then a surfactant (oleylamine + oleic acid) was added to the mixed solution. By volume, oleylamine: oleic acid = 1:1; by molar ratio, solvent: surfactant = 10:1.0.
(3)将混合溶液以升温速率为1℃/min,缓慢升温至280℃保温300min,获得黑色混合溶液,随后冷却至60℃,向混合溶液中加入外壳金属前驱体粉末铁源氯化铁和钴源乙酰丙酮钴,外壳金属前驱体粉末与晶种核心金属前驱体粉末中金属摩尔比为1:0.5,外壳金属前驱体中两种金属离子的摩尔比例为0.5:0.5。(3) Slowly heat up the mixed solution to 280°C for 300 minutes at a heating rate of 1°C/min to obtain a black mixed solution, then cool it to 60°C, add shell metal precursor powder iron source ferric chloride and The cobalt source is cobalt acetylacetonate, the molar ratio of the metal in the shell metal precursor powder and the seed core metal precursor powder is 1:0.5, and the molar ratio of the two metal ions in the shell metal precursor is 0.5:0.5.
(4)将混合溶液以升温速率为1℃/min升温至300℃后保温60min,冷却至室温,获得黑色混合溶液。(4) The mixed solution was heated to 300° C. at a heating rate of 1° C./min, then kept at a temperature of 60 minutes, and cooled to room temperature to obtain a black mixed solution.
采用两种混合溶剂进行离心清洗,混合溶剂A为无水乙醇和氯仿按体积比5:1的混合溶剂,混合溶剂B为去离子水和无水乙醇按体积比1:5的混合溶剂;首先通过混合溶剂A清洗混合溶液,混合溶剂A:混合溶液的体积比为1:1,然后进行离心分离,离心分离后倒掉上层液体,获得黑色粉体;然后用混合溶剂A清洗黑色粉体并离心分离,重复3次;之后采用混合溶剂B和混合溶剂A轮流对黑色粉体进行清洗和离心分离,重复3次;最终将最后一次清洗并离心分离后的黑色粉体存于无水乙醇中;所述离心分离的离心机转速为12000 rpm,每次离心时间在10min。Two kinds of mixed solvents are used for centrifugal cleaning, mixed solvent A is a mixed solvent of absolute ethanol and chloroform in a volume ratio of 5:1, and mixed solvent B is a mixed solvent of deionized water and absolute alcohol in a volume ratio of 1:5; first Wash the mixed solution by mixed solvent A, the volume ratio of mixed solvent A: mixed solution is 1:1, then perform centrifugation, pour off the upper liquid after centrifugation, and obtain a black powder; then wash the black powder with mixed solvent A and remove Centrifuge, repeat 3 times; then use mixed solvent B and mixed solvent A to wash and centrifuge the black powder in turn, repeat 3 times; finally store the black powder after the last cleaning and centrifugation in absolute ethanol ; The centrifuge speed of the centrifugal separation is 12000 rpm, and each centrifugation time is 10min.
利用x射线衍射仪表征产物的物相为L10-FeCo,其中含有有序相特征峰(001)、(110)和 (002),有序度为0.92,XRD图谱如附图1所示。采用振动样品强磁计测量产物的室温下的磁滞回线,其矫顽力Hc为1175.6Oe,饱和磁化强度Ms为89.9emu/g,磁滞回线如附图2所示。通过场发射透射电镜观察产物形貌为均匀分散的核壳形貌,TEM图像如附图3所示。对比文献Nano Letters 2014,14,6493-6498.在380℃下热处理得到该核壳纳米粒子的矫顽力是846 Oe,与本实施例中结果相近。The phase of the product characterized by X-ray diffraction is L1 0 -FeCo, which contains ordered phase characteristic peaks (001), (110) and (002), and the degree of order is 0.92. The XRD pattern is shown in Figure 1. The hysteresis loop of the product at room temperature was measured by a vibrating sample ferromagnetometer. The coercive force Hc was 1175.6Oe , and the saturation magnetization Ms was 89.9emu/g. The hysteresis loop is shown in Figure 2. The morphology of the product was observed by a field emission transmission electron microscope as a uniformly dispersed core-shell morphology, and the TEM image is shown in Figure 3. Comparative literature Nano Letters 2014, 14, 6493-6498. The coercive force of the core-shell nanoparticles obtained by heat treatment at 380°C is 846 Oe, which is similar to the result in this example.
实施例2:Example 2:
(1)首先采用电子天平称量晶种核心金属前驱体铜源乙酸铜和金源四氯金酸钾,两者的摩尔比例为0.5:0.2,并称量一定量的还原剂硼氢化钾,还原剂用量理论值与实际值的比例关系为1:1。(1) First, use an electronic balance to weigh the seed core metal precursor copper acetate and gold source potassium tetrachloroaurate, the molar ratio of the two is 0.5:0.2, and weigh a certain amount of reducing agent potassium borohydride, The ratio between the theoretical value and the actual value of the amount of reducing agent is 1:1.
(2)将称量好的晶种核心金属前驱体粉末(铜源+金源)和还原剂硼氢化钾加入装有溶剂三辛胺的的三颈烧瓶中,其中晶种核心金属前驱体和溶剂的摩尔比为1:15。在保护气氛95%Ar +5%H2作用下,以升温速率为1℃/min升温至100℃保温120min,进行去除水分处理,随后将表面活性剂(溴化十烃季胺+油酸)加入混合溶液,按体积比,溴化十烃季胺:油酸=1:0.5;按摩尔比,溶剂:表面活性剂=10:2.0。(2) Add the weighed seed crystal core metal precursor powder (copper source+gold source) and reducing agent potassium borohydride into a three-necked flask equipped with solvent trioctylamine, wherein the seed crystal core metal precursor and The molar ratio of solvents is 1:15. Under the protective atmosphere of 95% Ar+5% H 2 , the temperature was raised to 100° C. for 120 minutes at a heating rate of 1° C./min to remove moisture, and then the surfactant (brominated quaternary ammonium bromide+oleic acid) Add the mixed solution, by volume ratio, quaternary ammonium bromide:oleic acid=1:0.5; by molar ratio, solvent:surfactant=10:2.0.
(3)将混合溶液以升温速率为2℃/min,缓慢升温至290℃保温200min,获得黑色混合溶液,随后冷却至120℃,向混合溶液中加入外壳金属前驱体粉末铁源羰基铁和钴源八羰基二钴,外壳金属前驱体粉末与晶种核心金属前驱体粉末中金属摩尔比为1:0.2,外壳金属前驱体中两种金属离子的摩尔比例为1:0.2。(3) Slowly heat up the mixed solution to 290°C for 200 minutes at a heating rate of 2°C/min to obtain a black mixed solution, then cool it to 120°C, and add shell metal precursor powder iron source carbonyl iron and cobalt to the mixed solution The source is dicobalt octacarbonyl, the metal molar ratio of the shell metal precursor powder and the seed core metal precursor powder is 1:0.2, and the molar ratio of the two metal ions in the shell metal precursor is 1:0.2.
(4)将混合溶液以升温速率为2℃/min升温至270℃后保温10min,冷却至室温,获得黑色混合溶液。(4) The mixed solution was heated up to 270° C. at a heating rate of 2° C./min, then kept for 10 minutes, and cooled to room temperature to obtain a black mixed solution.
采用两种混合溶剂进行离心清洗,混合溶剂A为无水乙醇和氯仿按体积比5:2的混合溶剂,混合溶剂B为去离子水和无水乙醇按体积比3:5的混合溶剂;首先通过混合溶剂A清洗混合溶液,混合溶剂A:混合溶液的体积比为2:1,然后进行离心分离,离心分离后倒掉上层液体,获得黑色粉体;然后用混合溶剂A清洗黑色粉体并离心分离,重复3次;之后采用混合溶剂B和混合溶剂A轮流对黑色粉体进行清洗和离心分离,重复3次;最终将最后一次清洗并离心分离后的黑色粉体存于无水乙醇中;所述离心分离的离心机转速为 8000~12000rpm,每次离心时间在3min。Two kinds of mixed solvents are used for centrifugal cleaning, mixed solvent A is a mixed solvent of absolute ethanol and chloroform in a volume ratio of 5:2, and mixed solvent B is a mixed solvent of deionized water and absolute alcohol in a volume ratio of 3:5; first Wash the mixed solution by mixed solvent A, the volume ratio of mixed solvent A: mixed solution is 2:1, then perform centrifugation, pour off the upper liquid after centrifugation, and obtain black powder; then wash the black powder with mixed solvent A and remove Centrifuge, repeat 3 times; then use mixed solvent B and mixed solvent A to wash and centrifuge the black powder in turn, repeat 3 times; finally store the black powder after the last cleaning and centrifugation in absolute ethanol The rotational speed of the centrifuge for the centrifugal separation is 8000-12000 rpm, and the centrifugation time is 3 minutes each time.
利用x射线衍射仪表征产物的物相为L10-FeCo,其中含有有序相特征峰(001)、(110)和 (002),有序度为0.90,XRD图谱如附图4所示。采用振动样品强磁计测量产物的室温下的磁滞回线,其矫顽力Hc为1028.9Oe,饱和磁化强度Ms为91.0emu/g,磁滞回线如附图5所示。通过场发射透射电镜观察产物形貌为均匀分散的核壳形貌,TEM图像如附图6所示。对比文献Nano Letters 2014,14,6493-6498.在380℃下热处理得到该核壳纳米粒子的矫顽力是846 Oe,与本实施例中结果相近。The phase of the product characterized by X-ray diffraction is L1 0 -FeCo, which contains ordered phase characteristic peaks (001), (110) and (002), and the degree of order is 0.90. The XRD pattern is shown in Figure 4. The hysteresis loop of the product at room temperature was measured by a vibrating sample ferromagnetometer. The coercive force Hc was 1028.9Oe , and the saturation magnetization Ms was 91.0emu/g. The hysteresis loop is shown in Figure 5. The morphology of the product was observed by a field emission transmission electron microscope as a uniformly dispersed core-shell morphology, and the TEM image is shown in Figure 6. Comparative literature Nano Letters 2014, 14, 6493-6498. The coercive force of the core-shell nanoparticles obtained by heat treatment at 380°C is 846 Oe, which is similar to the result in this example.
实施例3:Example 3:
(1)首先采用电子天平称量晶种核心金属前驱体铜源氯化铜和金源氯金酸,两者的摩尔比例为0.1:1,并称量一定量的还原剂硼氢化钠,还原剂用量理论值与实际值的比例关系为 1:2。(1) First, use an electronic balance to weigh the seed crystal core metal precursor copper source copper chloride and gold source chloroauric acid, the molar ratio of the two is 0.1:1, and weigh a certain amount of reducing agent sodium borohydride, reduce The ratio between the theoretical value and the actual value of dosage is 1:2.
(2)将称量好的晶种核心金属前驱体粉末(铜源+金源)和还原剂硼氢化钠加入装有溶剂三辛胺的三颈烧瓶中,其中晶种核心金属前驱体和溶剂的摩尔比为1:20。在保护气氛高纯氩气Ar作用下,以升温速率为2℃/min升温至105℃保温100min,进行去除水分处理,随后将表面活性剂(溴化十烃季胺+油酸)加入混合溶液,按体积比,溴化十烃季胺:油酸=0.4:1;按摩尔比,溶剂:表面活性剂=10:3.0。(2) Add the weighed seed crystal core metal precursor powder (copper source + gold source) and reducing agent sodium borohydride into a three-necked flask equipped with solvent trioctylamine, wherein the seed crystal core metal precursor and solvent The molar ratio is 1:20. Under the action of high-purity argon Ar in the protective atmosphere, the temperature was raised to 105°C at a heating rate of 2°C/min and kept for 100 minutes to remove moisture, and then the surfactant (brominated quaternary ammonium bromide + oleic acid) was added to the mixed solution , by volume ratio, quaternary ammonium bromide:oleic acid=0.4:1; by molar ratio, solvent:surfactant=10:3.0.
(3)将混合溶液以升温速率为3℃/min,缓慢升温至300℃保温250min,获得黑色混合溶液,随后冷却至100℃,向混合溶液中加入外壳金属前驱体粉末铁源乙酰丙酮铁和钴源乙酸钴,外壳金属前驱体粉末与晶种核心金属前驱体粉末中金属摩尔比为1:0.7,外壳金属前驱体中两种金属离子的摩尔比例为1:0.5。(3) Slowly heat up the mixed solution to 300°C for 250 minutes at a heating rate of 3°C/min to obtain a black mixed solution, then cool it to 100°C, add shell metal precursor powder iron source iron acetylacetonate and The cobalt source is cobalt acetate, the molar ratio of the metal in the shell metal precursor powder and the seed crystal core metal precursor powder is 1:0.7, and the molar ratio of the two metal ions in the shell metal precursor is 1:0.5.
(4)将混合溶液以升温速率为5℃/min升温至260℃后保温20min,冷却至室温,获得黑色混合溶液。(4) The mixed solution was heated to 260° C. at a heating rate of 5° C./min, then kept for 20 minutes, and cooled to room temperature to obtain a black mixed solution.
采用两种混合溶剂进行离心清洗,混合溶剂A为无水乙醇和氯仿按体积比5:4的混合溶剂,混合溶剂B为去离子水和无水乙醇按体积比5:5的混合溶剂;首先通过混合溶剂A清洗混合溶液,混合溶剂A:混合溶液的体积比为3:1,然后进行离心分离,离心分离后倒掉上层液体,获得黑色粉体;然后用混合溶剂A清洗黑色粉体并离心分离,重复4次;之后采用混合溶剂B和混合溶剂A轮流对黑色粉体进行清洗和离心分离,重复4次;最终将最后一次清洗并离心分离后的黑色粉体存于无水乙醇中;所述离心分离的离心机转速为 8000~10000rpm,每次离心时间在4~8min。Two kinds of mixed solvents are used for centrifugal cleaning, mixed solvent A is a mixed solvent of absolute ethanol and chloroform in a volume ratio of 5:4, and mixed solvent B is a mixed solvent of deionized water and absolute alcohol in a volume ratio of 5:5; first Wash the mixed solution by mixed solvent A, the volume ratio of mixed solvent A: mixed solution is 3:1, then perform centrifugation, pour off the upper liquid after centrifugation, and obtain black powder; then wash the black powder with mixed solvent A and remove Centrifuge, repeat 4 times; then use mixed solvent B and mixed solvent A to wash and centrifuge the black powder in turn, repeat 4 times; finally store the black powder after the last cleaning and centrifugation in absolute ethanol The rotational speed of the centrifuge for the centrifugal separation is 8000-10000 rpm, and the centrifugation time is 4-8 minutes each time.
利用x射线衍射仪表征产物的物相为L10-FeCo,其中含有有序相特征峰(001)、(110)和 (002),有序度为0.91,XRD图谱如附图7所示。采用振动样品强磁计测量产物的室温下的磁滞回线,其矫顽力Hc为1093.1Oe,饱和磁化强度Ms为76.4emu/g,磁滞回线如附图8所示。通过场发射透射电镜观察产物形貌为均匀分散的核壳形貌,TEM图像如附图9所示。对比文献Nano Letters 2014,14,6493-6498.在380℃下热处理得到该核壳纳米粒子的矫顽力是846 Oe,与本实施例中结果相近。The phase of the product characterized by X-ray diffraction is L1 0 -FeCo, which contains ordered phase characteristic peaks (001), (110) and (002), and the degree of order is 0.91. The XRD pattern is shown in Figure 7. The hysteresis loop of the product at room temperature was measured by a vibrating sample ferromagnetometer. The coercive force Hc was 1093.1Oe , and the saturation magnetization Ms was 76.4emu/g. The hysteresis loop is shown in Figure 8. The morphology of the product was observed by a field emission transmission electron microscope as a uniformly dispersed core-shell morphology, and the TEM image is shown in Figure 9. Comparative literature Nano Letters 2014, 14, 6493-6498. The coercive force of the core-shell nanoparticles obtained by heat treatment at 380°C is 846 Oe, which is similar to the result in this example.
实施例4:Example 4:
(1)首先采用电子天平称量晶种核心金属前驱体铜源乙酰丙酮铜和金源四氯金酸钾,两者的摩尔比例为0.5:1,并称量一定量的还原剂1,2-十六烷二醇,还原剂用量理论值与实际值的比例关系为1:2。(1) First, use an electronic balance to weigh the seed core metal precursor copper acetylacetonate and gold source potassium tetrachloroaurate, the molar ratio of the two is 0.5:1, and weigh a certain amount of reducing agent1,2 - For cetanediol, the ratio between the theoretical value and the actual value of the amount of reducing agent is 1:2.
(2)将称量好的晶种核心金属前驱体粉末(铜源+金源)和还原剂1,2-十六烷二醇加入装有溶剂十八胺的三颈烧瓶中,其中晶种核心金属前驱体和溶剂的摩尔比为1:25。在保护气氛高纯氮气N2作用下,以升温速率为10℃/min升温至110℃保温80min,进行去除水分处理,随后将表面活性剂(油胺+卵磷脂)加入混合溶液,按体积比,油胺:卵磷脂=0.3:1;按摩尔比,溶剂:表面活性剂=10:4.0。(2) Add the weighed seed crystal core metal precursor powder (copper source + gold source) and the reducing agent 1,2-hexadecanediol into a three-necked flask containing the solvent octadecylamine, wherein the seed crystal The molar ratio of core metal precursor and solvent is 1:25. Under the action of high-purity nitrogen N2 in the protective atmosphere, the temperature was raised to 110°C at a heating rate of 10°C/min and kept at 110°C for 80 minutes to remove moisture, and then surfactants (oleylamine + lecithin) were added to the mixed solution. , oleylamine: lecithin = 0.3: 1; in molar ratio, solvent: surfactant = 10: 4.0.
(3)将混合溶液以升温速率为5℃/min,缓慢升温至320℃保温150min,获得黑色混合溶液,随后冷却至90℃,向混合溶液中加入外壳金属前驱体粉末铁源油酸铁和钴源乙酰丙酮钴,外壳金属前驱体粉末与晶种核心金属前驱体粉末中金属摩尔比为1:0.5,外壳金属前驱体中两种金属离子的摩尔比例为1:1。(3) Slowly heat up the mixed solution to 320°C for 150 minutes at a heating rate of 5°C/min to obtain a black mixed solution, then cool it to 90°C, add shell metal precursor powder iron source iron oleate and The cobalt source is cobalt acetylacetonate, the metal molar ratio of the shell metal precursor powder and the seed core metal precursor powder is 1:0.5, and the molar ratio of the two metal ions in the shell metal precursor is 1:1.
(4)将混合溶液以升温速率为1℃/min升温至200℃后保温30min,冷却至室温,获得黑色混合溶液。(4) The mixed solution was heated up to 200° C. at a heating rate of 1° C./min, then kept for 30 minutes, and cooled to room temperature to obtain a black mixed solution.
采用两种混合溶剂进行离心清洗,混合溶剂A为无水乙醇和氯仿按体积比4:5的混合溶剂,混合溶剂B为去离子水和无水乙醇按体积比5:4的混合溶剂;首先通过混合溶剂A清洗混合溶液,混合溶剂A:混合溶液的体积比为4:1,然后进行离心分离,离心分离后倒掉上层液体,获得黑色粉体;然后用混合溶剂A清洗黑色粉体并离心分离,重复4次;之后采用混合溶剂B和混合溶剂A轮流对黑色粉体进行清洗和离心分离,重复4次;最终将最后一次清洗并离心分离后的黑色粉体存于无水乙醇中;所述离心分离的离心机转速为 8000~10000rpm,每次离心时间在6~8min。Two kinds of mixed solvents are used for centrifugal cleaning, mixed solvent A is a mixed solvent of absolute ethanol and chloroform in a volume ratio of 4:5, and mixed solvent B is a mixed solvent of deionized water and absolute alcohol in a volume ratio of 5:4; first Wash the mixed solution by mixed solvent A, the volume ratio of mixed solvent A: mixed solution is 4:1, then perform centrifugation, pour off the upper liquid after centrifugation, and obtain a black powder; then wash the black powder with mixed solvent A and remove Centrifuge, repeat 4 times; then use mixed solvent B and mixed solvent A to wash and centrifuge the black powder in turn, repeat 4 times; finally store the black powder after the last cleaning and centrifugation in absolute ethanol The rotational speed of the centrifuge for the centrifugation is 8000-10000 rpm, and the centrifugation time is 6-8 minutes each time.
利用x射线衍射仪表征产物的物相为L10-FeCo,其中含有有序相特征峰(001)、(110)和 (002),有序度为0.95。采用振动样品强磁计测量产物的室温下的磁滞回线,其矫顽力Hc为 1405.5Oe,饱和磁化强度Ms为92.5emu/g。通过场发射透射电镜观察产物形貌为均匀分散的核壳形貌。The phase of the product characterized by X-ray diffraction is L1 0 -FeCo, which contains ordered phase characteristic peaks (001), (110) and (002), and the degree of order is 0.95. The hysteresis loop of the product at room temperature was measured by a vibrating sample ferromagnetometer, and its coercive force Hc was 1405.5Oe , and the saturation magnetization Ms was 92.5emu/g. The morphology of the product was observed by field emission transmission electron microscopy as a uniformly dispersed core-shell morphology.
实施例5:Example 5:
(1)首先采用电子天平称量晶种核心金属前驱体锰源乙酸锰和镍源乙酸镍,两者的摩尔比例为0.3:1,并称量一定量的还原剂氢化铝锂,还原剂用量理论值与实际值的比例关系为 1:3。(1) First use an electronic balance to weigh the seed crystal core metal precursor manganese source manganese acetate and nickel source nickel acetate, the molar ratio of the two is 0.3:1, and weigh a certain amount of reducing agent lithium aluminum hydride, the amount of reducing agent The ratio between theoretical value and actual value is 1:3.
(2)将称量好的晶种核心金属前驱体粉末(锰源+镍源)和还原剂氢化铝锂加入装有溶剂二十胺的三颈烧瓶中,其中晶种核心金属前驱体和溶剂的摩尔比为1:30。在保护气氛高纯氩气Ar作用下,以升温速率为5℃/min升温至115℃保温50min,进行去除水分处理,随后将表面活性剂(油胺+单硬脂酸甘油酯)加入混合溶液,按体积比,油胺:单硬脂酸甘油酯=1:0.3;按摩尔比,溶剂:表面活性剂=10:5.0。(2) Add the weighed seed crystal core metal precursor powder (manganese source + nickel source) and reducing agent lithium aluminum hydride into a three-necked flask equipped with solvent eicosamine, wherein the seed crystal core metal precursor and solvent The molar ratio is 1:30. Under the action of high-purity argon Ar in a protective atmosphere, the temperature was raised to 115°C at a heating rate of 5°C/min and kept for 50 minutes to remove moisture, and then the surfactant (oleylamine + glyceryl monostearate) was added to the mixed solution , by volume, oleylamine:glyceryl monostearate=1:0.3; by molar ratio, solvent:surfactant=10:5.0.
(3)将混合溶液以升温速率为8℃/min,缓慢升温至340℃保温100min,获得黑色混合溶液,随后冷却至80℃,向混合溶液中加入外壳金属前驱体粉末镍源乙酸镍和铁源油酸铁,外壳金属前驱体粉末与晶种核心金属前驱体粉末中金属摩尔比为1:0.4,外壳金属前驱体中两种金属离子的摩尔比例为0.5:1。(3) Slowly heat up the mixed solution to 340°C for 100 minutes at a heating rate of 8°C/min to obtain a black mixed solution, then cool to 80°C, and add shell metal precursor powder nickel source nickel acetate and iron to the mixed solution The source iron oleate, the molar ratio of the metal in the shell metal precursor powder and the seed crystal core metal precursor powder is 1:0.4, and the molar ratio of the two metal ions in the shell metal precursor is 0.5:1.
(4)将混合溶液以升温速率为8℃/min升温至245℃后保温40min,冷却至室温,获得黑色混合溶液。(4) The mixed solution was heated up to 245° C. at a heating rate of 8° C./min, then kept for 40 minutes, and cooled to room temperature to obtain a black mixed solution.
采用两种混合溶剂进行离心清洗,混合溶剂A为无水乙醇和氯仿按体积比2:5的混合溶剂,混合溶剂B为去离子水和无水乙醇按体积比5:2的混合溶剂;首先通过混合溶剂A清洗混合溶液,混合溶剂A:混合溶液的体积比为5:1,然后进行离心分离,离心分离后倒掉上层液体,获得黑色粉体;然后用混合溶剂A清洗黑色粉体并离心分离,重复5次;之后采用混合溶剂B和混合溶剂A轮流对黑色粉体进行清洗和离心分离,重复3次;最终将最后一次清洗并离心分离后的黑色粉体存于无水乙醇中;所述离心分离的离心机转速为8000~10000rpm,每次离心时间在3~10min。Two kinds of mixed solvents are used for centrifugal cleaning, mixed solvent A is a mixed solvent of absolute ethanol and chloroform in a volume ratio of 2:5, and mixed solvent B is a mixed solvent of deionized water and absolute alcohol in a volume ratio of 5:2; first The mixed solution is cleaned by mixed solvent A, the volume ratio of mixed solvent A: mixed solution is 5:1, and then centrifuged, after centrifuged, the upper liquid is poured off to obtain a black powder; then the black powder is washed with mixed solvent A and removed Centrifuge,
利用x射线衍射仪表征产物的物相为L10-FeNi,其中含有有序相特征峰(001)、(110)和 (002),有序度为0.95。采用振动样品强磁计测量产物的室温下的磁滞回线,其矫顽力Hc为1405.5Oe,饱和磁化强度Ms为92.5emu/g。通过场发射透射电镜观察产物形貌为均匀分散的核壳形貌。The phase of the product characterized by X-ray diffraction is L1 0 -FeNi, which contains ordered phase characteristic peaks (001), (110) and (002), and the order degree is 0.95. The hysteresis loop of the product at room temperature was measured by a vibrating sample ferromagnetometer, and its coercive force Hc was 1405.5Oe , and the saturation magnetization Ms was 92.5emu/g. The morphology of the product was observed by field emission transmission electron microscopy as a uniformly dispersed core-shell morphology.
实施例6:Embodiment 6:
(1)首先采用电子天平称量晶种核心金属前驱体锰源氯化锰和镍源硝酸镍,两者的摩尔比例为1:0.5,并称量一定量的还原剂氰基硼氢化钠,还原剂用量理论值与实际值的比例关系为1:4。(1) First use an electronic balance to weigh the seed crystal core metal precursor manganese source manganese chloride and nickel source nickel nitrate, the molar ratio of the two is 1:0.5, and weigh a certain amount of reducing agent sodium cyanoborohydride, The ratio between the theoretical value and the actual value of the amount of reducing agent is 1:4.
(2)将称量好的晶种核心金属前驱体粉末(锰源+镍源)和还原剂氰基硼氢化钠加入装有溶剂油胺的三颈烧瓶中,其中晶种核心金属前驱体和溶剂的摩尔比为1:25。在保护气氛95%Ar +5%H2作用下,以升温速率为8℃/min升温至120℃保温30min,进行去除水分处理,随后将表面活性剂(溴化十烃季胺+卵磷脂)加入混合溶液,按体积比,溴化十烃季胺:卵磷脂=1: 1;按摩尔比,溶剂:表面活性剂=10:2.0。(2) Add the weighed seed crystal core metal precursor powder (manganese source+nickel source) and reducing agent sodium cyanoborohydride into a three-necked flask equipped with solvent oleylamine, wherein the seed crystal core metal precursor and The molar ratio of solvents is 1:25. Under the protection atmosphere 95% Ar + 5 % H Under the action, be heated up to 120 ℃ and keep warm for 30min with the heating rate of 8 ℃/min, carry out dehydration treatment, then surfactant (brominated decalkane quaternary ammonium+lecithin) Add the mixed solution, by volume, quaternary ammonium bromide:lecithin=1:1; by mole ratio, solvent:surfactant=10:2.0.
(3)将混合溶液以升温速率为10℃/min,缓慢升温至360℃保温30min,获得黑色混合溶液,随后冷却至60℃,向混合溶液中加入外壳金属前驱体粉末铁源乙酰丙酮铁和镍源硝酸镍,外壳金属前驱体粉末与晶种核心金属前驱体粉末中金属摩尔比为1:1,外壳金属前驱体中两种金属离子的摩尔比例为0.2:1。(3) Slowly heat up the mixed solution to 360°C for 30 minutes at a heating rate of 10°C/min to obtain a black mixed solution, then cool it to 60°C, and add shell metal precursor powder iron source iron acetylacetonate and The nickel source is nickel nitrate, the metal molar ratio of the shell metal precursor powder and the seed core metal precursor powder is 1:1, and the molar ratio of the two metal ions in the shell metal precursor is 0.2:1.
(4)将混合溶液以升温速率为10℃/min升温至240℃后保温50min,冷却至室温,获得黑色混合溶液。(4) The mixed solution was heated up to 240° C. at a heating rate of 10° C./min, then kept for 50 minutes, and cooled to room temperature to obtain a black mixed solution.
采用两种混合溶剂进行离心清洗,混合溶剂A为无水乙醇和氯仿按体积比1:5的混合溶剂,混合溶剂B为去离子水和无水乙醇按体积比5:1的混合溶剂;首先通过混合溶剂A清洗混合溶液,混合溶剂A:混合溶液的体积比为5:1,然后进行离心分离,离心分离后倒掉上层液体,获得黑色粉体;然后用混合溶剂A清洗黑色粉体并离心分离,重复5次;之后采用混合溶剂B和混合溶剂A轮流对黑色粉体进行清洗和离心分离,重复5次;最终将最后一次清洗并离心分离后的黑色粉体存于无水乙醇中;所述离心分离的离心机转速为 6000~12000rpm,每次离心时间在3~10min。Adopt two kinds of mixed solvents to carry out centrifugal cleaning, mixed solvent A is the mixed solvent of absolute ethanol and chloroform by volume ratio 1:5, mixed solvent B is the mixed solvent of deionized water and absolute alcohol by volume ratio 5:1; First The mixed solution is cleaned by mixed solvent A, the volume ratio of mixed solvent A: mixed solution is 5:1, and then centrifuged, after centrifuged, the upper liquid is poured off to obtain a black powder; then the black powder is washed with mixed solvent A and removed Centrifugal separation,
利用x射线衍射仪表征产物的物相为L10-FeNi,其中含有有序相特征峰(001)、(110)和 (002),有序度为0.95。采用振动样品强磁计测量产物的室温下的磁滞回线,其矫顽力Hc为 1500.8Oe,饱和磁化强度Ms为85.6emu/g。通过场发射透射电镜观察产物形貌为均匀分散的核壳形貌。The phase of the product characterized by X-ray diffraction is L1 0 -FeNi, which contains ordered phase characteristic peaks (001), (110) and (002), and the order degree is 0.95. The hysteresis loop of the product at room temperature was measured by a vibrating sample ferromagnetometer. The coercive force Hc was 1500.8Oe , and the saturation magnetization Ms was 85.6emu/g. The morphology of the product was observed by field emission transmission electron microscopy as a uniformly dispersed core-shell morphology.
实施例7:Embodiment 7:
(1)首先采用电子天平称量晶种核心金属前驱体锰源乙酰丙酮锰和镍源硫酸镍,两者的摩尔比例为1:0.2,并称量一定量的还原剂1,2-十六烷二醇,还原剂用量理论值与实际值的比例关系为1:3。(1) First, use an electronic balance to weigh the seed crystal core metal precursor manganese source manganese acetylacetonate and nickel source nickel sulfate, the molar ratio of the two is 1:0.2, and weigh a certain amount of reducing agent 1,2-16 For alkanediol, the ratio between the theoretical value and the actual value of the amount of reducing agent is 1:3.
(2)将称量好的晶种核心金属前驱体粉末(锰源+镍源)和还原剂1,2-十六烷二醇加入装有溶剂十六胺的三颈烧瓶中,其中晶种核心金属前驱体和溶剂的摩尔比为1:10。在保护气氛 93%Ar+7%H2作用下,以升温速率为1℃/min升温至100℃保温30min,进行去除水分处理,随后将表面活性剂(油胺+油酸)加入混合溶液,按体积比,油胺:油酸=1:1;按摩尔比,溶剂:表面活性剂=10:1.0。(2) Add the weighed seed crystal core metal precursor powder (manganese source + nickel source) and the reducing agent 1,2-hexadecanediol into a three-necked flask containing the solvent cetylamine, in which the seed crystal The molar ratio of core metal precursor and solvent is 1:10. Under the action of a protective atmosphere of 93% Ar+7% H 2 , the temperature was raised to 100° C. at a heating rate of 1° C./min and kept for 30 minutes to remove moisture, and then a surfactant (oleylamine + oleic acid) was added to the mixed solution. By volume, oleylamine: oleic acid = 1:1; by molar ratio, solvent: surfactant = 10:1.0.
(3)将混合溶液以升温速率为1℃/min,缓慢升温至280℃保温30min,获得黑色混合溶液,随后冷却至60℃,向混合溶液中加入外壳金属前驱体粉末铁源羰基铁和镍源硫酸镍,外壳金属前驱体粉末与晶种核心金属前驱体粉末中金属摩尔比为0.8:1,外壳金属前驱体中两种金属离子的摩尔比例为0.5:0.5。(3) Slowly heat up the mixed solution to 280°C for 30 minutes at a heating rate of 1°C/min to obtain a black mixed solution, then cool it to 60°C, and add shell metal precursor powder iron source carbonyl iron and nickel to the mixed solution The source of nickel sulfate, the metal molar ratio of the shell metal precursor powder and the seed core metal precursor powder is 0.8:1, and the molar ratio of the two metal ions in the shell metal precursor is 0.5:0.5.
(4)将混合溶液以升温速率为1℃/min升温至280℃后保温60min,冷却至室温,获得黑色混合溶液。(4) The mixed solution was heated up to 280° C. at a heating rate of 1° C./min, then kept for 60 minutes, and cooled to room temperature to obtain a black mixed solution.
采用两种混合溶剂进行离心清洗,混合溶剂A为无水乙醇和氯仿按体积比1:5的混合溶剂,混合溶剂B为去离子水和无水乙醇按体积比1:5的混合溶剂;首先通过混合溶剂A清洗混合溶液,混合溶剂A:混合溶液的体积比为1:1,然后进行离心分离,离心分离后倒掉上层液体,获得黑色粉体;然后用混合溶剂A清洗黑色粉体并离心分离,重复3次;之后采用混合溶剂B和混合溶剂A轮流对黑色粉体进行清洗和离心分离,重复3次;最终将最后一次清洗并离心分离后的黑色粉体存于无水乙醇中;所述离心分离的离心机转速为6000rpm,每次离心时间在3min。Two kinds of mixed solvents are used for centrifugal cleaning, mixed solvent A is a mixed solvent of absolute ethanol and chloroform in a volume ratio of 1:5, and mixed solvent B is a mixed solvent of deionized water and absolute alcohol in a volume ratio of 1:5; first Wash the mixed solution by mixed solvent A, the volume ratio of mixed solvent A: mixed solution is 1:1, then perform centrifugation, pour off the upper liquid after centrifugation, and obtain a black powder; then wash the black powder with mixed solvent A and remove Centrifuge, repeat 3 times; then use mixed solvent B and mixed solvent A to wash and centrifuge the black powder in turn, repeat 3 times; finally store the black powder after the last cleaning and centrifugation in absolute ethanol The centrifuge rotating speed of described centrifugation is 6000rpm, and each centrifugation time is at 3min.
利用x射线衍射仪表征产物的物相为L10-FeNi,其中含有有序相特征峰(001)、(110)和 (002),有序度为0.86。采用振动样品强磁计测量产物的室温下的磁滞回线,其矫顽力Hc为 896.8Oe,饱和磁化强度Ms为163.8emu/g。通过场发射透射电镜观察产物形貌为均匀分散的核壳形貌。The phase of the product characterized by X-ray diffraction is L1 0 -FeNi, which contains ordered phase characteristic peaks (001), (110) and (002), and the degree of order is 0.86. The hysteresis loop of the product at room temperature was measured by a vibrating sample ferromagnetometer. The coercive force Hc was 896.8Oe , and the saturation magnetization Ms was 163.8emu/g. The morphology of the product was observed by field emission transmission electron microscopy as a uniformly dispersed core-shell morphology.
实施例8:Embodiment 8:
(1)首先采用电子天平称量晶种核心金属前驱体锰源氯化锰和镍源氯化镍,两者的摩尔比例为0.5:1,并称量一定量的还原剂硼氢化钾,还原剂用量理论值与实际值的比例关系为 1:7。(1) First, use an electronic balance to weigh the seed crystal core metal precursor manganese source manganese chloride and nickel source nickel chloride, the molar ratio of the two is 0.5:1, and weigh a certain amount of reducing agent potassium borohydride, reduce The ratio between the theoretical value and the actual value of dosage is 1:7.
(2)将称量好的晶种核心金属前驱体粉末(锰源+镍源)和还原剂硼氢化钾加入装有溶剂十八胺的三颈烧瓶中,其中晶种核心金属前驱体和溶剂的摩尔比为1:30。在保护气氛高纯氩气作用下,以升温速率为10℃/min升温至120℃保温120min,进行去除水分处理,随后将表面活性剂(油胺+卵磷脂)加入混合溶液,按体积比,油胺:卵磷脂=0.1:1;按摩尔比,溶剂:表面活性剂=10:5.0。(2) Add the weighed seed crystal core metal precursor powder (manganese source + nickel source) and reducing agent potassium borohydride into a three-necked flask equipped with solvent octadecylamine, wherein the seed crystal core metal precursor and solvent The molar ratio is 1:30. Under the action of high-purity argon in the protective atmosphere, the temperature was raised to 120°C at a heating rate of 10°C/min and kept at 120°C for 120 minutes to remove moisture, and then surfactants (oleylamine + lecithin) were added to the mixed solution. Oleylamine:lecithin=0.1:1; in molar ratio, solvent:surfactant=10:5.0.
(3)将混合溶液以升温速率为10℃/min,缓慢升温至360℃保温300min,获得黑色混合溶液,随后冷却至120℃,向混合溶液中加入外壳金属前驱体粉末铁源氯化铁和镍源氯化镍,外壳金属前驱体粉末与晶种核心金属前驱体粉末中金属摩尔比为1:1,外壳金属前驱体中两种金属离子的摩尔比例为0.2:1。(3) Slowly heat up the mixed solution to 360°C for 300 minutes at a heating rate of 10°C/min to obtain a black mixed solution, then cool it to 120°C, add shell metal precursor powder iron source ferric chloride and The nickel source is nickel chloride, the metal molar ratio of the shell metal precursor powder and the seed crystal core metal precursor powder is 1:1, and the molar ratio of the two metal ions in the shell metal precursor is 0.2:1.
(4)将混合溶液以升温速率为10℃/min升温至340℃后保温60min,冷却至室温,获得黑色混合溶液。(4) The mixed solution was heated up to 340° C. at a heating rate of 10° C./min, then kept for 60 minutes, and cooled to room temperature to obtain a black mixed solution.
采用两种混合溶剂进行离心清洗,混合溶剂A为无水乙醇和氯仿按体积比1:1的混合溶剂,混合溶剂B为去离子水和无水乙醇按体积比1:1的混合溶剂;首先通过混合溶剂A清洗混合溶液,混合溶剂A:混合溶液的体积比为5:1,然后进行离心分离,离心分离后倒掉上层液体,获得黑色粉体;然后用混合溶剂A清洗黑色粉体并离心分离,重复5次;之后采用混合溶剂B和混合溶剂A轮流对黑色粉体进行清洗和离心分离,重复4次;最终将最后一次清洗并离心分离后的黑色粉体存于无水乙醇中;所述离心分离的离心机转速为12000 rpm,每次离心时间在10min。Two kinds of mixed solvents are used for centrifugal cleaning, mixed solvent A is a mixed solvent of absolute ethanol and chloroform in a volume ratio of 1:1, and mixed solvent B is a mixed solvent of deionized water and absolute alcohol in a volume ratio of 1:1; first The mixed solution is cleaned by mixed solvent A, the volume ratio of mixed solvent A: mixed solution is 5:1, and then centrifuged, after centrifuged, the upper liquid is poured off to obtain a black powder; then the black powder is washed with mixed solvent A and removed Centrifuge,
利用x射线衍射仪表征产物的物相为L10-FeNi,其中含有有序相特征峰(001)、(110)和 (002),有序度为0.89。采用振动样品强磁计测量产物的室温下的磁滞回线,其矫顽力Hc为 1096.8Oe,饱和磁化强度Ms为185.8emu/g。通过场发射透射电镜观察产物形貌为均匀分散的核壳形貌。The phase of the product characterized by X-ray diffraction is L1 0 -FeNi, which contains ordered phase characteristic peaks (001), (110) and (002), and the degree of order is 0.89. The hysteresis loop of the product at room temperature was measured by a vibrating sample ferromagnetometer. The coercive force Hc was 1096.8Oe , and the saturation magnetization Ms was 185.8emu/g. The morphology of the product was observed by field emission transmission electron microscopy as a uniformly dispersed core-shell morphology.
实施例9:Embodiment 9:
(1)首先采用电子天平称量晶种核心金属前驱体锰源乙酰丙酮锰和镍源乙酰丙酮镍,两者的摩尔比例为0.8:1,并称量一定量的还原剂硼氢化钠,还原剂用量理论值与实际值的比例关系为1:2。(1) First, use an electronic balance to weigh the seed crystal core metal precursor manganese source manganese acetylacetonate and nickel source nickel acetylacetonate, the molar ratio of the two is 0.8:1, and weigh a certain amount of reducing agent sodium borohydride, reduce The ratio between the theoretical value and the actual value of dosage is 1:2.
(2)将称量好的晶种核心金属前驱体粉末(锰源+镍源)和还原剂硼氢化钠加入装有溶剂三辛胺的三颈烧瓶中,其中晶种核心金属前驱体和溶剂的摩尔比为1:20。在保护气氛高纯氮气作用下,以升温速率为5℃/min升温至110℃保温75min,进行去除水分处理,随后将表面活性剂(溴化十烃季胺+油酸)加入混合溶液,按体积比,溴化十烃季胺:油酸=1:0.1;按摩尔比,溶剂:表面活性剂=10:3.0。(2) Add the weighed seed crystal core metal precursor powder (manganese source + nickel source) and reducing agent sodium borohydride into a three-necked flask equipped with solvent trioctylamine, wherein the seed crystal core metal precursor and solvent The molar ratio is 1:20. Under the action of high-purity nitrogen in a protective atmosphere, the temperature was raised to 110°C at a heating rate of 5°C/min and kept for 75 minutes to remove moisture, and then a surfactant (quaternary ammonium bromide + oleic acid) was added to the mixed solution. Volume ratio, decacene quaternary ammonium bromide:oleic acid=1:0.1; molar ratio, solvent:surfactant=10:3.0.
(3)将混合溶液以升温速率为5℃/min,缓慢升温至320℃保温150min,获得黑色混合溶液,随后冷却至90℃,向混合溶液中加入外壳金属前驱体粉末铁源油酸铁和镍源乙酰丙酮镍,外壳金属前驱体粉末与晶种核心金属前驱体粉末中金属摩尔比为1:0.7,外壳金属前驱体中两种金属离子的摩尔比例为1:0.2。(3) Slowly heat up the mixed solution to 320°C for 150 minutes at a heating rate of 5°C/min to obtain a black mixed solution, then cool it to 90°C, add shell metal precursor powder iron source iron oleate and The nickel source is nickel acetylacetonate, the metal molar ratio of the shell metal precursor powder and the seed core metal precursor powder is 1:0.7, and the molar ratio of the two metal ions in the shell metal precursor is 1:0.2.
(4)将混合溶液以升温速率为5℃/min升温至300℃后保温30min,冷却至室温,获得黑色混合溶液。(4) The mixed solution was heated up to 300° C. at a heating rate of 5° C./min, then kept at a temperature of 30 minutes, and cooled to room temperature to obtain a black mixed solution.
采用两种混合溶剂进行离心清洗,混合溶剂A为无水乙醇和氯仿按体积比5:1的混合溶剂,混合溶剂B为去离子水和无水乙醇按体积比5:1的混合溶剂;首先通过混合溶剂A清洗混合溶液,混合溶剂A:混合溶液的体积比为1:1,然后进行离心分离,离心分离后倒掉上层液体,获得黑色粉体;然后用混合溶剂A清洗黑色粉体并离心分离,重复4次;之后采用混合溶剂B和混合溶剂A轮流对黑色粉体进行清洗和离心分离,重复4次;最终将最后一次清洗并离心分离后的黑色粉体存于无水乙醇中;所述离心分离的离心机转速为9000rpm,每次离心时间在6min。Adopt two kinds of mixed solvents to carry out centrifugal cleaning, mixed solvent A is the mixed solvent of absolute ethanol and chloroform by volume ratio 5:1, mixed solvent B is the mixed solvent of deionized water and absolute alcohol by volume ratio 5:1; First Wash the mixed solution by mixed solvent A, the volume ratio of mixed solvent A: mixed solution is 1:1, then perform centrifugation, pour off the upper liquid after centrifugation, and obtain a black powder; then wash the black powder with mixed solvent A and remove Centrifuge, repeat 4 times; then use mixed solvent B and mixed solvent A to wash and centrifuge the black powder in turn, repeat 4 times; finally store the black powder after the last cleaning and centrifugation in absolute ethanol The centrifuge rotating speed of described centrifugation is 9000rpm, and each centrifugation time is at 6min.
利用x射线衍射仪表征产物的物相为L10-FeNi,其中含有有序相特征峰(001)、(110)和 (002),有序度为0.90。采用振动样品强磁计测量产物的室温下的磁滞回线,其矫顽力Hc为 1206.7Oe,饱和磁化强度Ms为61.2emu/g。通过场发射透射电镜观察产物形貌为均匀分散的核壳形貌。The phase of the product characterized by X-ray diffraction is L1 0 -FeNi, which contains ordered phase characteristic peaks (001), (110) and (002), and the degree of order is 0.90. The hysteresis loop of the product at room temperature was measured by a vibrating sample ferromagnetometer, and its coercive force Hc was 1206.7Oe , and the saturation magnetization Ms was 61.2emu/g. The morphology of the product was observed by field emission transmission electron microscopy as a uniformly dispersed core-shell morphology.
实施例10:Example 10:
(1)首先采用电子天平称量晶种核心金属前驱体锰源乙酸锰和镍源氯化镍,两者的摩尔比例为0.7:1,并称量一定量的还原剂氰基硼氢化钠,还原剂用量理论值与实际值的比例关系为1:1。(1) First, use an electronic balance to weigh the seed crystal core metal precursor manganese source manganese acetate and nickel source nickel chloride, the molar ratio of the two is 0.7:1, and weigh a certain amount of reducing agent sodium cyanoborohydride, The ratio between the theoretical value and the actual value of the amount of reducing agent is 1:1.
(2)将称量好的晶种核心金属前驱体粉末(锰源+镍源)和还原剂氰基硼氢化钠加入装有溶剂二十胺的三颈烧瓶中,其中晶种核心金属前驱体和溶剂的摩尔比为1:10。在保护气氛93%Ar +7%H2作用下,以升温速率为10℃/min升温至120℃保温120min,进行去除水分处理,随后将表面活性剂(油胺+单硬脂酸甘油酯)加入混合溶液,按体积比,油胺:单硬脂酸甘油酯=1: 1;按摩尔比,溶剂:表面活性剂=10:1.0。(2) Add the weighed seed crystal core metal precursor powder (manganese source + nickel source) and reducing agent sodium cyanoborohydride into a three-necked flask equipped with solvent eicosamine, wherein the seed crystal core metal precursor The molar ratio of solvent and solvent is 1:10. Under protective atmosphere 93%Ar+7%H 2Under the effect, be that 10 ℃/min heat up to 120 ℃ and keep warm for 120min with the heating rate, carry out dehydration treatment, then surfactant (oleylamine+glyceryl monostearate) Add the mixed solution, by volume, oleylamine:glyceryl monostearate=1:1; by molar ratio, solvent:surfactant=10:1.0.
(3)将混合溶液以升温速率为1℃/min,缓慢升温至280℃保温300min,获得黑色混合溶液,随后冷却至60℃,向混合溶液中加入外壳金属前驱体粉末锰源乙酸锰和铝源氯化铝,外壳金属前驱体粉末与晶种核心金属前驱体粉末中金属摩尔比为0.4:1,外壳金属前驱体中两种金属离子的摩尔比例为0.5:0.5。(3) Slowly heat up the mixed solution to 280°C for 300 minutes at a heating rate of 1°C/min to obtain a black mixed solution, then cool it to 60°C, and add the shell metal precursor powder manganese source manganese acetate and aluminum to the mixed solution The source of aluminum chloride, the metal molar ratio of the shell metal precursor powder and the seed crystal core metal precursor powder is 0.4:1, and the molar ratio of the two metal ions in the shell metal precursor is 0.5:0.5.
(4)将混合溶液以升温速率为1℃/min升温至280℃后保温60min,冷却至室温,获得黑色混合溶液。(4) The mixed solution was heated up to 280° C. at a heating rate of 1° C./min, then kept for 60 minutes, and cooled to room temperature to obtain a black mixed solution.
采用两种混合溶剂进行离心清洗,混合溶剂A为无水乙醇和氯仿按体积比5:1的混合溶剂,混合溶剂B为去离子水和无水乙醇按体积比1:5的混合溶剂;首先通过混合溶剂A清洗混合溶液,混合溶剂A:混合溶液的体积比为1:1,然后进行离心分离,离心分离后倒掉上层液体,获得黑色粉体;然后用混合溶剂A清洗黑色粉体并离心分离,重复3次;之后采用混合溶剂B和混合溶剂A轮流对黑色粉体进行清洗和离心分离,重复5次;最终将最后一次清洗并离心分离后的黑色粉体存于无水乙醇中;所述离心分离的离心机转速为 6000~12000rpm,每次离心时间在10min。Two kinds of mixed solvents are used for centrifugal cleaning, mixed solvent A is a mixed solvent of absolute ethanol and chloroform in a volume ratio of 5:1, and mixed solvent B is a mixed solvent of deionized water and absolute alcohol in a volume ratio of 1:5; first Wash the mixed solution by mixed solvent A, the volume ratio of mixed solvent A: mixed solution is 1:1, then perform centrifugation, pour off the upper liquid after centrifugation, and obtain a black powder; then wash the black powder with mixed solvent A and remove Centrifugal separation, repeat 3 times; then use mixed solvent B and mixed solvent A to wash and centrifuge the black powder in turn,
利用x射线衍射仪表征产物的物相为L10-MnAl,其中含有有序相特征峰(001)、(110)和 (002),有序度为0.92。采用振动样品强磁计测量产物的室温下的磁滞回线,其矫顽力Hc为 1231.8Oe,饱和磁化强度Ms为75.8emu/g。通过场发射透射电镜观察产物形貌为均匀分散的核壳形貌。The phase of the product characterized by X-ray diffraction is L1 0 -MnAl, which contains ordered phase characteristic peaks (001), (110) and (002), and the degree of order is 0.92. The hysteresis loop of the product at room temperature was measured by a vibrating sample ferromagnetometer. The coercive force Hc was 1231.8Oe , and the saturation magnetization Ms was 75.8emu/g. The morphology of the product was observed by field emission transmission electron microscopy as a uniformly dispersed core-shell morphology.
实施例11:Example 11:
(1)首先采用电子天平称量晶种核心金属前驱体金源氯金酸和铜源氯化铜,两者的摩尔比例为1:0.7,并称量一定量的还原剂1,2-十六烷二醇,还原剂用量理论值与实际值的比例关系为1:6。(1) First, use an electronic balance to weigh the core metal precursor gold source chloroauric acid and copper source copper chloride, the molar ratio of the two is 1:0.7, and weigh a certain amount of reducing agent 1,2-deca For hexanediol, the ratio between the theoretical value and the actual value of the amount of reducing agent is 1:6.
(2)将称量好的晶种核心金属前驱体粉末(金源+铜源)和还原剂1,2-十六烷二醇加入装有溶剂十六胺的三颈烧瓶中,其中晶种核心金属前驱体和溶剂的摩尔比为1:10。在保护气氛 93%Ar+7%H2作用下,以升温速率为8℃/min升温至120℃保温120min,进行去除水分处理,随后将表面活性剂(油胺+油酸)加入混合溶液,按体积比,油胺:油酸=1:1;按摩尔比,溶剂:表面活性剂=10:1.0。(2) Add the weighed seed crystal core metal precursor powder (gold source + copper source) and the reducing agent 1,2-hexadecanediol into a three-necked flask containing the solvent cetylamine, in which the seed crystal The molar ratio of core metal precursor and solvent is 1:10. Under the action of a protective atmosphere of 93% Ar+7% H 2 , the temperature was raised to 120°C at a heating rate of 8°C/min and kept at 120°C for 120min to remove moisture, and then a surfactant (oleylamine+oleic acid) was added to the mixed solution, By volume, oleylamine: oleic acid = 1:1; by molar ratio, solvent: surfactant = 10:1.0.
(3)将混合溶液以升温速率为1℃/min,缓慢升温至280℃保温300min,获得黑色混合溶液,随后冷却至60℃,向混合溶液中加入外壳金属前驱体粉末锰源氯化锰和铝源氯化铝,外壳金属前驱体粉末与晶种核心金属前驱体粉末中金属摩尔比为1:0.6,外壳金属前驱体中两种金属离子的摩尔比例为1:0.2。(3) Slowly raise the temperature of the mixed solution to 280°C for 300min at a heating rate of 1°C/min to obtain a black mixed solution, then cool it to 60°C, and add the shell metal precursor powder manganese source manganese chloride and The aluminum source is aluminum chloride, the molar ratio of the metal in the shell metal precursor powder and the seed crystal core metal precursor powder is 1:0.6, and the molar ratio of the two metal ions in the shell metal precursor is 1:0.2.
(4)将混合溶液以升温速率为1℃/min升温至280℃后保温60min,冷却至室温,获得黑色混合溶液。(4) The mixed solution was heated up to 280° C. at a heating rate of 1° C./min, then kept for 60 minutes, and cooled to room temperature to obtain a black mixed solution.
采用两种混合溶剂进行离心清洗,混合溶剂A为无水乙醇和氯仿按体积比5:1的混合溶剂,混合溶剂B为去离子水和无水乙醇按体积比1:5的混合溶剂;首先通过混合溶剂A清洗混合溶液,混合溶剂A:混合溶液的体积比为1:1,然后进行离心分离,离心分离后倒掉上层液体,获得黑色粉体;然后用混合溶剂A清洗黑色粉体并离心分离,重复3次;之后采用混合溶剂B和混合溶剂A轮流对黑色粉体进行清洗和离心分离,重复3次;最终将最后一次清洗并离心分离后的黑色粉体存于无水乙醇中;所述离心分离的离心机转速为9000rpm,每次离心时间在10min。Two kinds of mixed solvents are used for centrifugal cleaning, mixed solvent A is a mixed solvent of absolute ethanol and chloroform in a volume ratio of 5:1, and mixed solvent B is a mixed solvent of deionized water and absolute alcohol in a volume ratio of 1:5; first Wash the mixed solution by mixed solvent A, the volume ratio of mixed solvent A: mixed solution is 1:1, then perform centrifugation, pour off the upper liquid after centrifugation, and obtain a black powder; then wash the black powder with mixed solvent A and remove Centrifuge, repeat 3 times; then use mixed solvent B and mixed solvent A to wash and centrifuge the black powder in turn, repeat 3 times; finally store the black powder after the last cleaning and centrifugation in absolute ethanol The centrifuge rotating speed of described centrifugation is 9000rpm, and each centrifugation time is 10min.
利用x射线衍射仪表征产物的物相为L10-MnAl,其中含有有序相特征峰(001)、(110)和 (002),有序度为0.93。采用振动样品强磁计测量产物的室温下的磁滞回线,其矫顽力Hc为 1332.7Oe,饱和磁化强度Ms为71.5emu/g。通过场发射透射电镜观察产物形貌为均匀分散的核壳形貌。The phase of the product characterized by X-ray diffraction is L1 0 -MnAl, which contains ordered phase characteristic peaks (001), (110) and (002), and the order degree is 0.93. The hysteresis loop of the product at room temperature was measured by a vibrating sample ferromagnetometer. The coercive force H c was 1332.7 Oe, and the saturation magnetization Ms was 71.5 emu/g. The morphology of the product was observed by field emission transmission electron microscopy as a uniformly dispersed core-shell morphology.
实施例12:Example 12:
(1)首先采用电子天平称量晶种核心金属前驱体金源四氯金酸钾和铜源乙酰丙酮铜,两者的摩尔比例为1:0.2,并称量一定量的还原剂1,2-十六烷二醇,还原剂用量理论值与实际值的比例关系为1:9。(1) First, use an electronic balance to weigh the core metal precursor gold source potassium tetrachloroaurate and the copper source copper acetylacetonate, the molar ratio of the two is 1:0.2, and weigh a certain amount of reducing agent 1,2 - Hexadecane glycol, the ratio between the theoretical value and the actual value of the amount of reducing agent is 1:9.
(2)将称量好的晶种核心金属前驱体粉末(金源+铜源)和还原剂1,2-十六烷二醇加入装有溶剂十六胺的三颈烧瓶中,其中晶种核心金属前驱体和溶剂的摩尔比为1:10。在保护气氛 93%Ar+7%H2作用下,以升温速率为1℃/min升温至100℃保温30min,进行去除水分处理,随后将表面活性剂(油胺+油酸)加入混合溶液,按体积比,油胺:油酸=1:1;按摩尔比,溶剂:表面活性剂=10:1.0。(2) Add the weighed seed crystal core metal precursor powder (gold source + copper source) and the reducing agent 1,2-hexadecanediol into a three-necked flask containing the solvent cetylamine, in which the seed crystal The molar ratio of core metal precursor and solvent is 1:10. Under the action of a protective atmosphere of 93% Ar+7% H 2 , the temperature was raised to 100° C. at a heating rate of 1° C./min and kept for 30 minutes to remove moisture, and then a surfactant (oleylamine + oleic acid) was added to the mixed solution. By volume, oleylamine: oleic acid = 1:1; by molar ratio, solvent: surfactant = 10:1.0.
(3)将混合溶液以升温速率为1℃/min,缓慢升温至280℃保温30min,获得黑色混合溶液,随后冷却至60℃,向混合溶液中加入外壳金属前驱体粉末锰源乙酰丙酮锰和铝源乙酰丙酮铝,外壳金属前驱体粉末与晶种核心金属前驱体粉末中金属摩尔比为0.8:1,外壳金属前驱体中两种金属离子的摩尔比例为0.5:0.5。(3) Slowly heat up the mixed solution to 280°C for 30 minutes at a heating rate of 1°C/min to obtain a black mixed solution, then cool it to 60°C, add shell metal precursor powder manganese source manganese acetylacetonate and The aluminum source is aluminum acetylacetonate, the molar ratio of the metal in the shell metal precursor powder and the seed crystal core metal precursor powder is 0.8:1, and the molar ratio of the two metal ions in the shell metal precursor is 0.5:0.5.
(4)将混合溶液以升温速率为1℃/min升温至280℃后保温60min,冷却至室温,获得黑色混合溶液。(4) The mixed solution was heated up to 280° C. at a heating rate of 1° C./min, then kept for 60 minutes, and cooled to room temperature to obtain a black mixed solution.
采用两种混合溶剂进行离心清洗,混合溶剂A为无水乙醇和氯仿按体积比1:5的混合溶剂,混合溶剂B为去离子水和无水乙醇按体积比1:5的混合溶剂;首先通过混合溶剂A清洗混合溶液,混合溶剂A:混合溶液的体积比为1:1,然后进行离心分离,离心分离后倒掉上层液体,获得黑色粉体;然后用混合溶剂A清洗黑色粉体并离心分离,重复3次;之后采用混合溶剂B和混合溶剂A轮流对黑色粉体进行清洗和离心分离,重复3次;最终将最后一次清洗并离心分离后的黑色粉体存于无水乙醇中;所述离心分离的离心机转速为6000rpm,每次离心时间在3min。Two kinds of mixed solvents are used for centrifugal cleaning, mixed solvent A is a mixed solvent of absolute ethanol and chloroform in a volume ratio of 1:5, and mixed solvent B is a mixed solvent of deionized water and absolute alcohol in a volume ratio of 1:5; first Wash the mixed solution by mixed solvent A, the volume ratio of mixed solvent A: mixed solution is 1:1, then perform centrifugation, pour off the upper liquid after centrifugation, and obtain a black powder; then wash the black powder with mixed solvent A and remove Centrifuge, repeat 3 times; then use mixed solvent B and mixed solvent A to wash and centrifuge the black powder in turn, repeat 3 times; finally store the black powder after the last cleaning and centrifugation in absolute ethanol The centrifuge rotating speed of described centrifugation is 6000rpm, and each centrifugation time is at 3min.
利用x射线衍射仪表征产物的物相为L10-MnAl,其中含有有序相特征峰(001)、(110)和 (002),有序度为0.94。采用振动样品强磁计测量产物的室温下的磁滞回线,其矫顽力Hc为 1231.8Oe,饱和磁化强度Ms为75.8emu/g。通过场发射透射电镜观察产物形貌为均匀分散的核壳形貌。The phase of the product characterized by X-ray diffraction is L1 0 -MnAl, which contains ordered phase characteristic peaks (001), (110) and (002), and the order degree is 0.94. The hysteresis loop of the product at room temperature was measured by a vibrating sample ferromagnetometer. The coercive force Hc was 1231.8Oe , and the saturation magnetization Ms was 75.8emu/g. The morphology of the product was observed by field emission transmission electron microscopy as a uniformly dispersed core-shell morphology.
实施例13:Example 13:
(1)首先采用电子天平称量晶种核心金属前驱体铁源氯化铁和铂源乙酰丙酮铂,两者的摩尔比例为0.5:1,并称量一定量的还原剂硼氢化钾,还原剂用量理论值与实际值的比例关系为1:2。(1) First, use an electronic balance to weigh the seed crystal core metal precursor iron source ferric chloride and platinum source platinum acetylacetonate, the molar ratio of the two is 0.5:1, and weigh a certain amount of reducing agent potassium borohydride, reduce The ratio between the theoretical value and the actual value of dosage is 1:2.
(2)将称量好的晶种核心金属前驱体粉末(铁源+铂源)和还原剂硼氢化钾加入装有溶剂十八胺的三颈烧瓶中,其中晶种核心金属前驱体和溶剂的摩尔比为1:30。在保护气氛高纯氩气作用下,以升温速率为10℃/min升温至120℃保温120min,进行去除水分处理,随后将表面活性剂(油胺+卵磷脂)加入混合溶液,按体积比,油胺:卵磷脂=0.1:1;按摩尔比,溶剂:表面活性剂=10:5.0。(2) Add the weighed seed crystal core metal precursor powder (iron source + platinum source) and reducing agent potassium borohydride into a three-necked flask equipped with solvent octadecylamine, wherein the seed crystal core metal precursor and solvent The molar ratio is 1:30. Under the action of high-purity argon in the protective atmosphere, the temperature was raised to 120°C at a heating rate of 10°C/min and kept at 120°C for 120 minutes to remove moisture, and then surfactants (oleylamine + lecithin) were added to the mixed solution. Oleylamine:lecithin=0.1:1; in molar ratio, solvent:surfactant=10:5.0.
(3)将混合溶液以升温速率为10℃/min,缓慢升温至360℃保温300min,获得黑色混合溶液,随后冷却至120℃,向混合溶液中加入外壳金属前驱体粉末锰源乙酰丙酮锰和镓源乙酸镓,外壳金属前驱体粉末与晶种核心金属前驱体粉末中金属摩尔比为1:1,外壳金属前驱体中两种金属离子的摩尔比例为0.2:1。(3) Slowly heat up the mixed solution to 360°C for 300 minutes at a heating rate of 10°C/min to obtain a black mixed solution, then cool it to 120°C, add shell metal precursor powder manganese source manganese acetylacetonate and The gallium source is gallium acetate, the molar ratio of the metals in the shell metal precursor powder to the seed core metal precursor powder is 1:1, and the molar ratio of the two metal ions in the shell metal precursor is 0.2:1.
(4)将混合溶液以升温速率为10℃/min升温至340℃后保温60min,冷却至室温,获得黑色混合溶液。(4) The mixed solution was heated up to 340° C. at a heating rate of 10° C./min, then kept for 60 minutes, and cooled to room temperature to obtain a black mixed solution.
采用两种混合溶剂进行离心清洗,混合溶剂A为无水乙醇和氯仿按体积比1:1的混合溶剂,混合溶剂B为去离子水和无水乙醇按体积比1:1的混合溶剂;首先通过混合溶剂A清洗混合溶液,混合溶剂A:混合溶液的体积比为5:1,然后进行离心分离,离心分离后倒掉上层液体,获得黑色粉体;然后用混合溶剂A清洗黑色粉体并离心分离,重复5次;之后采用混合溶剂B和混合溶剂A轮流对黑色粉体进行清洗和离心分离,重复5次;最终将最后一次清洗并离心分离后的黑色粉体存于无水乙醇中;所述离心分离的离心机转速为12000 rpm,每次离心时间在10min。Two kinds of mixed solvents are used for centrifugal cleaning, mixed solvent A is a mixed solvent of absolute ethanol and chloroform in a volume ratio of 1:1, and mixed solvent B is a mixed solvent of deionized water and absolute alcohol in a volume ratio of 1:1; first The mixed solution is cleaned by mixed solvent A, the volume ratio of mixed solvent A: mixed solution is 5:1, and then centrifuged, after centrifuged, the upper liquid is poured off to obtain a black powder; then the black powder is washed with mixed solvent A and removed Centrifugal separation,
利用x射线衍射仪表征产物的物相为L10-MnGa,其中含有有序相特征峰(001)、(110)和 (002),有序度为0.95。采用振动样品强磁计测量产物的室温下的磁滞回线,其矫顽力Hc为 1450.5Oe,饱和磁化强度Ms为85.9emu/g。通过场发射透射电镜观察产物形貌为均匀分散的核壳形貌。The phase of the product characterized by X-ray diffraction is L1 0 -MnGa, which contains ordered phase characteristic peaks (001), (110) and (002), and the order degree is 0.95. The hysteresis loop of the product at room temperature was measured by a vibrating sample ferromagnetometer. The coercive force Hc was 1450.5Oe , and the saturation magnetization Ms was 85.9emu/g. The morphology of the product was observed by field emission transmission electron microscopy as a uniformly dispersed core-shell morphology.
实施例14:Example 14:
(1)首先采用电子天平称量晶种核心金属前驱体铁源硝酸铁和铂源氯铂酸,两者的摩尔比例为0.8:1,并称量一定量的还原剂硼氢化钠,还原剂用量理论值与实际值的比例关系为 1:2。(1) First, use an electronic balance to weigh the seed crystal core metal precursor iron source iron nitrate and platinum source chloroplatinic acid, the molar ratio of the two is 0.8:1, and weigh a certain amount of reducing agent sodium borohydride, reducing agent The ratio between theoretical value and actual value is 1:2.
(2)将称量好的晶种核心金属前驱体粉末(铁源+铂源)和还原剂硼氢化钠加入装有溶剂三辛胺的三颈烧瓶中,其中晶种核心金属前驱体和溶剂的摩尔比为1:20。在保护气氛高纯氮气作用下,以升温速率为5℃/min升温至110℃保温75min,进行去除水分处理,随后将表面活性剂(溴化十烃季胺+油酸)加入混合溶液,按体积比,溴化十烃季胺:油酸=1:0.1;按摩尔比,溶剂:表面活性剂=10:3.0。(2) Add the weighed seed crystal core metal precursor powder (iron source + platinum source) and reducing agent sodium borohydride into a three-necked flask equipped with solvent trioctylamine, wherein the seed crystal core metal precursor and solvent The molar ratio is 1:20. Under the action of high-purity nitrogen in a protective atmosphere, the temperature was raised to 110°C at a heating rate of 5°C/min and kept for 75 minutes to remove moisture, and then a surfactant (quaternary ammonium bromide + oleic acid) was added to the mixed solution. Volume ratio, decacene quaternary ammonium bromide:oleic acid=1:0.1; molar ratio, solvent:surfactant=10:3.0.
(3)将混合溶液以升温速率为5℃/min,缓慢升温至320℃保温150min,获得黑色混合溶液,随后冷却至90℃,向混合溶液中加入外壳金属前驱体粉末锰源乙酸锰和镓源氯化镓,外壳金属前驱体粉末与晶种核心金属前驱体粉末中金属摩尔比为1:0.7,外壳金属前驱体中两种金属离子的摩尔比例为1:0.2。(3) Slowly heat up the mixed solution to 320°C for 150 minutes at a heating rate of 5°C/min to obtain a black mixed solution, then cool to 90°C, and add shell metal precursor powder manganese source manganese acetate and gallium to the mixed solution Source gallium chloride, the metal molar ratio of the shell metal precursor powder and the seed crystal core metal precursor powder is 1:0.7, and the molar ratio of the two metal ions in the shell metal precursor is 1:0.2.
(4)将混合溶液以升温速率为5℃/min升温至300℃后保温30min,冷却至室温,获得黑色混合溶液。(4) The mixed solution was heated up to 300° C. at a heating rate of 5° C./min, then kept at a temperature of 30 minutes, and cooled to room temperature to obtain a black mixed solution.
采用两种混合溶剂进行离心清洗,混合溶剂A为无水乙醇和氯仿按体积比5:1的混合溶剂,混合溶剂B为去离子水和无水乙醇按体积比5:1的混合溶剂;首先通过混合溶剂A清洗混合溶液,混合溶剂A:混合溶液的体积比为1:1,然后进行离心分离,离心分离后倒掉上层液体,获得黑色粉体;然后用混合溶剂A清洗黑色粉体并离心分离,重复4次;之后采用混合溶剂B和混合溶剂A轮流对黑色粉体进行清洗和离心分离,重复4次;最终将最后一次清洗并离心分离后的黑色粉体存于无水乙醇中;所述离心分离的离心机转速为9000rpm,每次离心时间在6min。Adopt two kinds of mixed solvents to carry out centrifugal cleaning, mixed solvent A is the mixed solvent of absolute ethanol and chloroform by volume ratio 5:1, mixed solvent B is the mixed solvent of deionized water and absolute alcohol by volume ratio 5:1; First Wash the mixed solution by mixed solvent A, the volume ratio of mixed solvent A: mixed solution is 1:1, then perform centrifugation, pour off the upper liquid after centrifugation, and obtain a black powder; then wash the black powder with mixed solvent A and remove Centrifuge, repeat 4 times; then use mixed solvent B and mixed solvent A to wash and centrifuge the black powder in turn, repeat 4 times; finally store the black powder after the last cleaning and centrifugation in absolute ethanol The centrifuge rotating speed of described centrifugation is 9000rpm, and each centrifugation time is at 6min.
利用x射线衍射仪表征产物的物相为L10-MnGa,其中含有有序相特征峰(001)、(110)和 (002),有序度为0.90。采用振动样品强磁计测量产物的室温下的磁滞回线,其矫顽力Hc为 1460.8Oe,饱和磁化强度Ms为160.5emu/g。通过场发射透射电镜观察产物形貌为均匀分散的核壳形貌。The phase of the product characterized by X-ray diffraction is L1 0 -MnGa, which contains ordered phase characteristic peaks (001), (110) and (002), and the degree of order is 0.90. The hysteresis loop of the product at room temperature was measured by a vibrating sample ferromagnetometer. The coercive force Hc was 1460.8Oe , and the saturation magnetization Ms was 160.5emu/g. The morphology of the product was observed by field emission transmission electron microscopy as a uniformly dispersed core-shell morphology.
实施例15:Example 15:
(1)首先采用电子天平称量晶种核心金属前驱体铁源硫酸铁和铂源氯铂酸钾,两者的摩尔比例为0.7:1,并称量一定量的还原剂氰基硼氢化钠,还原剂用量理论值与实际值的比例关系为1:6。(1) First use an electronic balance to weigh the seed core metal precursor iron source iron sulfate and platinum source potassium chloroplatinate, the molar ratio of the two is 0.7:1, and weigh a certain amount of reducing agent sodium cyanoborohydride , The ratio between the theoretical value and the actual value of the amount of reducing agent is 1:6.
(2)将称量好的晶种核心金属前驱体粉末(铁源+铂源)和还原剂氰基硼氢化钠加入装有溶剂二十胺的三颈烧瓶中,其中晶种核心金属前驱体和溶剂的摩尔比为1:10。在保护气氛93%Ar +7%H2作用下,以升温速率为10℃/min升温至120℃保温120min,进行去除水分处理,随后将表面活性剂(油胺+单硬脂酸甘油酯)加入混合溶液,按体积比,油胺:单硬脂酸甘油酯=1: 1;按摩尔比,溶剂:表面活性剂=10:1.0。(2) Add the weighed seed crystal core metal precursor powder (iron source + platinum source) and reducing agent sodium cyanoborohydride into a three-necked flask equipped with solvent eicosamine, wherein the seed crystal core metal precursor The molar ratio of solvent and solvent is 1:10. Under protective atmosphere 93%Ar+7%H 2Under the effect, be that 10 ℃/min heat up to 120 ℃ and keep warm for 120min with the heating rate, carry out dehydration treatment, then surfactant (oleylamine+glyceryl monostearate) Add the mixed solution, by volume, oleylamine:glyceryl monostearate=1:1; by molar ratio, solvent:surfactant=10:1.0.
(3)将混合溶液以升温速率为1℃/min,缓慢升温至280℃保温300min,获得黑色混合溶液,随后冷却至60℃,向混合溶液中加入外壳金属前驱体粉末锰源氯化锰和镓源乙酰丙酮镓,外壳金属前驱体粉末与晶种核心金属前驱体粉末中金属摩尔比为0.4:1,外壳金属前驱体中两种金属离子的摩尔比例为0.5:0.5。(3) Slowly raise the temperature of the mixed solution to 280°C for 300min at a heating rate of 1°C/min to obtain a black mixed solution, then cool it to 60°C, and add the shell metal precursor powder manganese source manganese chloride and The gallium source is gallium acetylacetonate, the molar ratio of the metals in the shell metal precursor powder to the seed core metal precursor powder is 0.4:1, and the molar ratio of the two metal ions in the shell metal precursor is 0.5:0.5.
(4)将混合溶液以升温速率为1℃/min升温至200℃后保温60min,冷却至室温,获得黑色混合溶液。(4) The mixed solution was heated up to 200° C. at a heating rate of 1° C./min, then kept for 60 minutes, and cooled to room temperature to obtain a black mixed solution.
采用两种混合溶剂进行离心清洗,混合溶剂A为无水乙醇和氯仿按体积比5:1的混合溶剂,混合溶剂B为去离子水和无水乙醇按体积比1:5的混合溶剂;首先通过混合溶剂A清洗混合溶液,混合溶剂A:混合溶液的体积比为1:1,然后进行离心分离,离心分离后倒掉上层液体,获得黑色粉体;然后用混合溶剂A清洗黑色粉体并离心分离,重复3次;之后采用混合溶剂B和混合溶剂A轮流对黑色粉体进行清洗和离心分离,重复5次;最终将最后一次清洗并离心分离后的黑色粉体存于无水乙醇中;所述离心分离的离心机转速为 6000~12000rpm,每次离心时间在10min。Two kinds of mixed solvents are used for centrifugal cleaning, mixed solvent A is a mixed solvent of absolute ethanol and chloroform in a volume ratio of 5:1, and mixed solvent B is a mixed solvent of deionized water and absolute alcohol in a volume ratio of 1:5; first Wash the mixed solution by mixed solvent A, the volume ratio of mixed solvent A: mixed solution is 1:1, then perform centrifugation, pour off the upper liquid after centrifugation, and obtain a black powder; then wash the black powder with mixed solvent A and remove Centrifugal separation, repeat 3 times; then use mixed solvent B and mixed solvent A to wash and centrifuge the black powder in turn,
利用x射线衍射仪表征产物的物相为L10-MnGa,其中含有有序相特征峰(001)、(110)和 (002),有序度为0.92。采用振动样品强磁计测量产物的室温下的磁滞回线,其矫顽力Hc为 1492.4Oe,饱和磁化强度Ms为126.8emu/g。通过场发射透射电镜观察产物形貌为均匀分散的核壳形貌。The phase of the product characterized by X-ray diffraction is L1 0 -MnGa, which contains ordered phase characteristic peaks (001), (110) and (002), and the degree of order is 0.92. The hysteresis loop of the product at room temperature was measured by a vibrating sample ferromagnetometer. The coercive force Hc was 1492.4Oe , and the saturation magnetization Ms was 126.8emu/g. The morphology of the product was observed by field emission transmission electron microscopy as a uniformly dispersed core-shell morphology.
实施例16:Example 16:
(1)首先采用电子天平称量晶种核心金属前驱体铁源乙酰丙酮铁和铂源氯铂酸,两者的摩尔比例为0.2:0.3,并称量一定量的还原剂1,2-十六烷二醇,还原剂用量理论值与实际值的比例关系为1:4。(1) First, use an electronic balance to weigh the seed crystal core metal precursor iron acetylacetonate and platinum source chloroplatinic acid, the molar ratio of the two is 0.2:0.3, and weigh a certain amount of reducing agent 1,2-deca For hexanediol, the ratio between the theoretical value and the actual value of the amount of reducing agent is 1:4.
(2)将称量好的晶种核心金属前驱体粉末(铁源+铂源)和还原剂1,2-十六烷二醇加入装有溶剂十六胺的三颈烧瓶中,其中晶种核心金属前驱体和溶剂的摩尔比为1:10。在保护气氛 93%Ar+7%H2作用下,以升温速率为1℃/min升温至100℃保温120min,进行去除水分处理,随后将表面活性剂(油胺+油酸)加入混合溶液,按体积比,油胺:油酸=0.2:1;按摩尔比,溶剂:表面活性剂=10:1.0。(2) Add the weighed seed crystal core metal precursor powder (iron source + platinum source) and the reducing agent 1,2-hexadecanediol into a three-necked flask containing the solvent hexadecylamine, in which the seed crystal The molar ratio of core metal precursor and solvent is 1:10. Under the action of a protective atmosphere of 93% Ar+7% H 2 , the temperature was raised to 100° C. at a heating rate of 1° C./min and kept for 120 minutes to remove moisture, and then a surfactant (oleylamine + oleic acid) was added to the mixed solution. By volume, oleylamine:oleic acid=0.2:1; by molar ratio, solvent:surfactant=10:1.0.
(3)将混合溶液以升温速率为10℃/min,缓慢升温至280℃保温200min,获得黑色混合溶液,随后冷却至60℃,向混合溶液中加入外壳金属前驱体粉末锰源乙酸锰和镓源乙酰丙酮镓,外壳金属前驱体粉末与晶种核心金属前驱体粉末中金属摩尔比为1:0.5,外壳金属前驱体中两种金属离子的摩尔比例为0.5:0.5。(3) Slowly heat up the mixed solution to 280°C for 200 minutes at a heating rate of 10°C/min to obtain a black mixed solution, then cool it to 60°C, and add manganese source powder manganese acetate and gallium to the mixed solution The source gallium acetylacetonate, the metal molar ratio of the shell metal precursor powder and the seed crystal core metal precursor powder is 1:0.5, and the molar ratio of the two metal ions in the shell metal precursor is 0.5:0.5.
(4)将混合溶液以升温速率为10℃/min升温至280℃后保温15min,冷却至室温,获得黑色混合溶液。(4) The mixed solution was heated up to 280° C. at a heating rate of 10° C./min, then kept for 15 minutes, and cooled to room temperature to obtain a black mixed solution.
采用两种混合溶剂进行离心清洗,混合溶剂A为无水乙醇和氯仿按体积比5:1的混合溶剂,混合溶剂B为去离子水和无水乙醇按体积比1:5的混合溶剂;首先通过混合溶剂A清洗混合溶液,混合溶剂A:混合溶液的体积比为1:1,然后进行离心分离,离心分离后倒掉上层液体,获得黑色粉体;然后用混合溶剂A清洗黑色粉体并离心分离,重复3次;之后采用混合溶剂B和混合溶剂A轮流对黑色粉体进行清洗和离心分离,重复3次;最终将最后一次清洗并离心分离后的黑色粉体存于无水乙醇中;所述离心分离的离心机转速为 6000~12000rpm,每次离心时间在10min。Two kinds of mixed solvents are used for centrifugal cleaning, mixed solvent A is a mixed solvent of absolute ethanol and chloroform in a volume ratio of 5:1, and mixed solvent B is a mixed solvent of deionized water and absolute alcohol in a volume ratio of 1:5; first Wash the mixed solution by mixed solvent A, the volume ratio of mixed solvent A: mixed solution is 1:1, then perform centrifugation, pour off the upper liquid after centrifugation, and obtain a black powder; then wash the black powder with mixed solvent A and remove Centrifuge, repeat 3 times; then use mixed solvent B and mixed solvent A to wash and centrifuge the black powder in turn, repeat 3 times; finally store the black powder after the last cleaning and centrifugation in absolute ethanol The rotational speed of the centrifuge for the centrifugation is 6000-12000 rpm, and the centrifugation time is 10 minutes each time.
利用x射线衍射仪表征产物的物相为L10-MnGa,其中含有有序相特征峰(001)、(110)和 (002),有序度为0.91。采用振动样品强磁计测量产物的室温下的磁滞回线,其矫顽力Hc为 1358.6Oe,饱和磁化强度Ms为143.8emu/g。通过场发射透射电镜观察产物形貌为均匀分散的核壳形貌。The phase of the product characterized by X-ray diffraction is L1 0 -MnGa, which contains ordered phase characteristic peaks (001), (110) and (002), and the order degree is 0.91. The hysteresis loop of the product at room temperature was measured by a vibrating sample ferromagnetometer. The coercive force Hc was 1358.6Oe , and the saturation magnetization Ms was 143.8emu/g. The morphology of the product was observed by field emission transmission electron microscopy as a uniformly dispersed core-shell morphology.
实施例17:Example 17:
(1)首先采用电子天平称量晶种核心金属前驱体铁源硫酸铁和铂源氯铂酸钾,两者的摩尔比例为0.2:1,并称量一定量的还原剂硼氢化钾,还原剂用量理论值与实际值的比例关系为1:1。(1) First, use an electronic balance to weigh the seed core metal precursor iron source iron sulfate and platinum source potassium chloroplatinate, the molar ratio of the two is 0.2:1, and weigh a certain amount of reducing agent potassium borohydride, reduce The ratio between the theoretical value and the actual value of dosage is 1:1.
(2)将称量好的晶种核心金属前驱体粉末(铁源+铂源)和还原剂硼氢化钾加入装有溶剂三辛胺的三颈烧瓶中,其中晶种核心金属前驱体和溶剂的摩尔比为1:10。在保护气氛95%Ar+ 5%H2作用下,以升温速率为3℃/min升温至120℃保温100min,进行去除水分处理,随后将表面活性剂(溴化十烃季胺+油酸)加入混合溶液,按体积比,溴化十烃季胺:油酸=0.8:1;按摩尔比,溶剂:表面活性剂=10:4.1。(2) Add the weighed seed crystal core metal precursor powder (iron source + platinum source) and reducing agent potassium borohydride into a three-necked flask equipped with solvent trioctylamine, wherein the seed crystal core metal precursor and solvent The molar ratio is 1:10. Under the action of protective atmosphere 95% Ar + 5% H 2 , the temperature was raised to 120° C. for 100 minutes at a heating rate of 3° C./min, and the water removal treatment was carried out, and then the surfactant (brominated quaternary ammonium bromide + oleic acid) was added For the mixed solution, by volume ratio, decacene quaternary ammonium bromide:oleic acid=0.8:1; by molar ratio, solvent:surfactant=10:4.1.
(3)将混合溶液以升温速率为7℃/min,缓慢升温至320℃保温300min,获得黑色混合溶液,随后冷却至120℃,向混合溶液中加入外壳金属前驱体粉末铁源氯化铁和钴源乙酰丙酮钴,外壳金属前驱体粉末与晶种核心金属前驱体粉末中金属摩尔比为1:0.8,外壳金属前驱体中两种金属离子的摩尔比例为0.2:1。(3) Slowly heat up the mixed solution to 320°C for 300 minutes at a heating rate of 7°C/min to obtain a black mixed solution, then cool it to 120°C, add shell metal precursor powder iron source ferric chloride and The cobalt source is cobalt acetylacetonate, the molar ratio of the metal in the shell metal precursor powder and the seed core metal precursor powder is 1:0.8, and the molar ratio of the two metal ions in the shell metal precursor is 0.2:1.
(4)将混合溶液以升温速率为1℃/min升温至220℃后保温60min,冷却至室温,获得黑色混合溶液。(4) The mixed solution was heated up to 220° C. at a heating rate of 1° C./min, then kept for 60 minutes, and cooled to room temperature to obtain a black mixed solution.
采用两种混合溶剂进行离心清洗,混合溶剂A为无水乙醇和氯仿按体积比1:5的混合溶剂,混合溶剂B为去离子水和无水乙醇按体积比5:1的混合溶剂;首先通过混合溶剂A清洗混合溶液,混合溶剂A:混合溶液的体积比为5:1,然后进行离心分离,离心分离后倒掉上层液体,获得黑色粉体;然后用混合溶剂A清洗黑色粉体并离心分离,重复5次;之后采用混合溶剂B和混合溶剂A轮流对黑色粉体进行清洗和离心分离,重复5次;最终将最后一次清洗并离心分离后的黑色粉体存于无水乙醇中;所述离心分离的离心机转速为 6000~12000rpm,每次离心时间在3~4min。Adopt two kinds of mixed solvents to carry out centrifugal cleaning, mixed solvent A is the mixed solvent of absolute ethanol and chloroform by volume ratio 1:5, mixed solvent B is the mixed solvent of deionized water and absolute alcohol by volume ratio 5:1; First The mixed solution is cleaned by mixed solvent A, the volume ratio of mixed solvent A: mixed solution is 5:1, and then centrifuged, after centrifuged, the upper liquid is poured off to obtain a black powder; then the black powder is washed with mixed solvent A and removed Centrifugal separation,
利用x射线衍射仪表征产物的物相为L10-FeCo,其中含有有序相特征峰(001)、(110)和 (002),有序度为0.93。采用振动样品强磁计测量产物的室温下的磁滞回线,其矫顽力Hc为 1434.5Oe,饱和磁化强度Ms为120.7emu/g。通过场发射透射电镜观察产物形貌为均匀分散的核壳形貌。The phase of the product characterized by X-ray diffraction is L1 0 -FeCo, which contains ordered phase characteristic peaks (001), (110) and (002), and the degree of order is 0.93. The hysteresis loop of the product at room temperature was measured by a vibrating sample ferromagnetometer. The coercive force H c was 1434.5 Oe, and the saturation magnetization Ms was 120.7 emu/g. The morphology of the product was observed by field emission transmission electron microscopy as a uniformly dispersed core-shell morphology.
实施例18:Example 18:
(1)首先采用电子天平称量晶种核心金属前驱体金源氯金酸和铜源乙酰丙酮铜,两者的摩尔比例为1:0.4,并称量一定量的还原剂硼氢化钠,还原剂用量理论值与实际值的比例关系为1:3。(1) First, use an electronic balance to weigh the seed core metal precursor gold source chloroauric acid and copper source copper acetylacetonate, the molar ratio of the two is 1:0.4, and weigh a certain amount of reducing agent sodium borohydride, reduce The ratio between the theoretical value and the actual value of dosage is 1:3.
(2)将称量好的晶种核心金属前驱体粉末(金源+铜源)和还原剂硼氢化钠加入装有溶剂十八胺的三颈烧瓶中,其中晶种核心金属前驱体和溶剂的摩尔比为1:10。在保护气氛高纯氩气Ar作用下,以升温速率为5℃/min升温至110℃保温30min,进行去除水分处理,随后将表面活性剂(油胺+卵磷脂)加入混合溶液,按体积比,油胺:卵磷脂=1:0.1;按摩尔比,溶剂:表面活性剂=10:3.8。(2) Add the weighed seed crystal core metal precursor powder (gold source + copper source) and reducing agent sodium borohydride into a three-necked flask equipped with solvent octadecylamine, wherein the seed crystal core metal precursor and solvent The molar ratio is 1:10. Under the action of high-purity argon Ar in the protective atmosphere, the temperature was raised to 110°C at a heating rate of 5°C/min and kept for 30 minutes, and the moisture was removed. , oleylamine: lecithin = 1:0.1; in molar ratio, solvent: surfactant = 10:3.8.
(3)将混合溶液以升温速率为9℃/min,缓慢升温至360℃保温100min,获得黑色混合溶液,随后冷却至110℃,向混合溶液中加入外壳金属前驱体粉末铁源氯化铁和钴源乙酰丙酮钴,外壳金属前驱体粉末与晶种核心金属前驱体粉末中金属摩尔比为1:0.8,外壳金属前驱体中两种金属离子的摩尔比例为1:0.9。(3) Slowly heat up the mixed solution to 360°C for 100 minutes at a heating rate of 9°C/min to obtain a black mixed solution, then cool it to 110°C, add shell metal precursor powder iron source ferric chloride and The cobalt source is cobalt acetylacetonate, the molar ratio of the metal in the shell metal precursor powder and the seed crystal core metal precursor powder is 1:0.8, and the molar ratio of the two metal ions in the shell metal precursor is 1:0.9.
(4)将混合溶液以升温速率为7℃/min升温至240℃后保温10min,冷却至室温,获得黑色混合溶液。(4) The mixed solution was heated up to 240° C. at a heating rate of 7° C./min, then kept for 10 minutes, and cooled to room temperature to obtain a black mixed solution.
采用两种混合溶剂进行离心清洗,混合溶剂A为无水乙醇和氯仿按体积比3:4的混合溶剂,混合溶剂B为去离子水和无水乙醇按体积比1:4的混合溶剂;首先通过混合溶剂A清洗混合溶液,混合溶剂A:混合溶液的体积比为2:1,然后进行离心分离,离心分离后倒掉上层液体,获得黑色粉体;然后用混合溶剂A清洗黑色粉体并离心分离,重复3次;之后采用混合溶剂B和混合溶剂A轮流对黑色粉体进行清洗和离心分离,重复4次;最终将最后一次清洗并离心分离后的黑色粉体存于无水乙醇中;所述离心分离的离心机转速为 7000~10000rpm,每次离心时间在3~7min。Two kinds of mixed solvents are used for centrifugal cleaning, mixed solvent A is a mixed solvent of absolute ethanol and chloroform in a volume ratio of 3:4, and mixed solvent B is a mixed solvent of deionized water and absolute alcohol in a volume ratio of 1:4; first Wash the mixed solution by mixed solvent A, the volume ratio of mixed solvent A: mixed solution is 2:1, then perform centrifugation, pour off the upper liquid after centrifugation, and obtain black powder; then wash the black powder with mixed solvent A and remove Centrifuge, repeat 3 times; then use mixed solvent B and mixed solvent A to wash and centrifuge the black powder in turn, repeat 4 times; finally store the black powder after the last cleaning and centrifugation in absolute ethanol ; The rotational speed of the centrifuge for the centrifugal separation is 7000-10000 rpm, and the centrifugation time is 3-7 minutes each time.
利用x射线衍射仪表征产物的物相为L10-FeCo,其中含有有序相特征峰(001)、(110)和 (002),有序度为0.86。采用振动样品强磁计测量产物的室温下的磁滞回线,其矫顽力Hc为952.8Oe,饱和磁化强度Ms为85.2emu/g。通过场发射透射电镜观察产物形貌为均匀分散的核壳形貌。The phase of the product characterized by X-ray diffraction is L1 0 -FeCo, which contains ordered phase characteristic peaks (001), (110) and (002), and the degree of order is 0.86. The hysteresis loop of the product at room temperature was measured by a vibrating sample ferromagnetometer. The coercive force Hc was 952.8Oe , and the saturation magnetization Ms was 85.2emu/g. The morphology of the product was observed by field emission transmission electron microscopy as a uniformly dispersed core-shell morphology.
实施例19:Example 19:
(1)首先采用电子天平称量晶种核心金属前驱体锰源乙酸锰和镍源乙酰丙酮镍,两者的摩尔比例为1:0.1,并称量一定量的还原剂1,2-十六烷二醇,还原剂用量理论值与实际值的比例关系为1:5。(1) First, use an electronic balance to weigh the seed crystal core metal precursor manganese source manganese acetate and nickel source nickel acetylacetonate, the molar ratio of the two is 1:0.1, and weigh a certain amount of reducing agent 1,2-16 For alkanediol, the ratio between the theoretical value and the actual value of the amount of reducing agent is 1:5.
(2)将称量好的晶种核心金属前驱体粉末(锰源+镍源)和还原剂1,2-十六烷二醇加入装有溶剂二十胺的三颈烧瓶中,其中晶种核心金属前驱体和溶剂的摩尔比为1:10。在保护气氛高纯氮气N2作用下,以升温速率为7℃/min升温至117℃保温70min,进行去除水分处理,随后将表面活性剂(油胺+单硬脂酸甘油酯)加入混合溶液,按体积比,油胺:单硬脂酸甘油酯=1:0.5;按摩尔比,溶剂:表面活性剂=10:1.9。(2) Add the weighed seed crystal core metal precursor powder (manganese source + nickel source) and the reducing agent 1,2-hexadecanediol into a three-necked flask containing the solvent eicosamine, in which the seed crystal The molar ratio of core metal precursor and solvent is 1:10. Under the action of high-purity nitrogen N2 in the protective atmosphere, the temperature was raised to 117°C at a heating rate of 7°C/min and kept for 70 minutes to remove moisture, and then the surfactant (oleylamine + glyceryl monostearate) was added to the mixed solution , by volume, oleylamine:glyceryl monostearate=1:0.5; by molar ratio, solvent:surfactant=10:1.9.
(3)将混合溶液以升温速率为1℃/min,缓慢升温至300℃保温20min,获得黑色混合溶液,随后冷却至90℃,向混合溶液中加入外壳金属前驱体粉末铁源氯化铁和钴源乙酰丙酮钴,外壳金属前驱体粉末与晶种核心金属前驱体粉末中金属摩尔比为1:0.8,外壳金属前驱体中两种金属离子的摩尔比例为1:0.2。(3) Slowly heat up the mixed solution to 300°C for 20 minutes at a heating rate of 1°C/min to obtain a black mixed solution, then cool it to 90°C, add shell metal precursor powder iron source ferric chloride and The cobalt source is cobalt acetylacetonate, the molar ratio of the metal in the shell metal precursor powder and the seed crystal core metal precursor powder is 1:0.8, and the molar ratio of the two metal ions in the shell metal precursor is 1:0.2.
(4)将混合溶液以升温速率为5℃/min升温至260℃后保温40min,冷却至室温,获得黑色混合溶液。(4) The mixed solution was heated up to 260° C. at a heating rate of 5° C./min, then kept for 40 minutes, and cooled to room temperature to obtain a black mixed solution.
采用两种混合溶剂进行离心清洗,混合溶剂A为无水乙醇和氯仿按体积比5:2的混合溶剂,混合溶剂B为去离子水和无水乙醇按体积比4:1的混合溶剂;首先通过混合溶剂A清洗混合溶液,混合溶剂A:混合溶液的体积比为3:1,然后进行离心分离,离心分离后倒掉上层液体,获得黑色粉体;然后用混合溶剂A清洗黑色粉体并离心分离,重复4次;之后采用混合溶剂B和混合溶剂A轮流对黑色粉体进行清洗和离心分离,重复5次;最终将最后一次清洗并离心分离后的黑色粉体存于无水乙醇中;所述离心分离的离心机转速为 7000~8000rpm,每次离心时间在5~7min。Adopt two kinds of mixed solvents to carry out centrifugal cleaning, mixed solvent A is the mixed solvent of absolute ethanol and chloroform by volume ratio 5:2, mixed solvent B is the mixed solvent of deionized water and absolute alcohol by volume ratio 4:1; First Wash the mixed solution by mixed solvent A, the volume ratio of mixed solvent A: mixed solution is 3:1, then perform centrifugation, pour off the upper liquid after centrifugation, and obtain black powder; then wash the black powder with mixed solvent A and remove Centrifuge, repeat 4 times; then use mixed solvent B and mixed solvent A to wash and centrifuge the black powder alternately,
利用x射线衍射仪表征产物的物相为L10-FeCo,其中含有有序相特征峰(001)、(110)和 (002),有序度为0.93。采用振动样品强磁计测量产物的室温下的磁滞回线,其矫顽力Hc为 1168.4Oe,饱和磁化强度Ms为106.8emu/g。通过场发射透射电镜观察产物形貌为均匀分散的核壳形貌。The phase of the product characterized by X-ray diffraction is L1 0 -FeCo, which contains ordered phase characteristic peaks (001), (110) and (002), and the degree of order is 0.93. The hysteresis loop of the product at room temperature was measured by a vibrating sample ferromagnetometer, and its coercive force Hc was 1168.4Oe , and the saturation magnetization Ms was 106.8emu/g. The morphology of the product was observed by field emission transmission electron microscopy as a uniformly dispersed core-shell morphology.
实施例20:Example 20:
(1)首先采用电子天平称量晶种核心金属前驱体铁源氯化铁和铂源氯铂酸,两者的摩尔比例为0.9:1,并称量一定量的还原剂氢化铝锂,还原剂用量理论值与实际值的比例关系为1:3。(1) First, use an electronic balance to weigh the seed crystal core metal precursor iron source ferric chloride and platinum source chloroplatinic acid, the molar ratio of the two is 0.9:1, and weigh a certain amount of reducing agent lithium aluminum hydride, reduce The ratio between the theoretical value and the actual value of dosage is 1:3.
(2)将称量好的晶种核心金属前驱体粉末(铁源+铂源)和还原剂氢化铝锂加入装有溶剂油胺的三颈烧瓶中,其中晶种核心金属前驱体和溶剂的摩尔比为1:10。在保护气氛93%Ar+ 7%H2作用下,以升温速率为10℃/min升温至105℃保温50min,进行去除水分处理,随后将表面活性剂(溴化十烃季胺+卵磷脂)加入混合溶液,按体积比,溴化十烃季胺:卵磷脂=1: 0.1;按摩尔比,溶剂:表面活性剂=10:5.0。(2) Add the weighed seed crystal core metal precursor powder (iron source + platinum source) and reducing agent lithium aluminum hydride into a three-necked flask equipped with solvent oleylamine, wherein the seed crystal core metal precursor and solvent The molar ratio is 1:10. Under the protective atmosphere of 93% Ar+7% H 2 , the temperature was raised to 105°C at a rate of 10°C/min and kept at 105°C for 50min, followed by dehydration treatment, followed by addition of surfactant (brominated decacene quaternary ammonium+lecithin) For the mixed solution, by volume ratio, decacene quaternary ammonium bromide:lecithin=1:0.1; by molar ratio, solvent:surfactant=10:5.0.
(3)将混合溶液以升温速率为3℃/min,缓慢升温至340℃保温30min,获得黑色混合溶液,随后冷却至70℃,向混合溶液中加入外壳金属前驱体粉末铁源氯化铁和镍源硝酸镍,外壳金属前驱体粉末与晶种核心金属前驱体粉末中金属摩尔比为1:0.8,外壳金属前驱体中两种金属离子的摩尔比例为0.9:1。(3) Slowly heat up the mixed solution to 340°C for 30 minutes at a heating rate of 3°C/min to obtain a black mixed solution, then cool it to 70°C, add shell metal precursor powder iron source ferric chloride and The nickel source is nickel nitrate, the metal molar ratio of the shell metal precursor powder to the seed core metal precursor powder is 1:0.8, and the molar ratio of the two metal ions in the shell metal precursor is 0.9:1.
(4)将混合溶液以升温速率为4℃/min升温至265℃后保温60min,冷却至室温,获得黑色混合溶液。(4) The mixed solution was heated up to 265° C. at a heating rate of 4° C./min, then kept for 60 minutes, and cooled to room temperature to obtain a black mixed solution.
采用两种混合溶剂进行离心清洗,混合溶剂A为无水乙醇和氯仿按体积比3:5的混合溶剂,混合溶剂B为去离子水和无水乙醇按体积比2:5的混合溶剂;首先通过混合溶剂A清洗混合溶液,混合溶剂A:混合溶液的体积比为4:1,然后进行离心分离,离心分离后倒掉上层液体,获得黑色粉体;然后用混合溶剂A清洗黑色粉体并离心分离,重复5次;之后采用混合溶剂B和混合溶剂A轮流对黑色粉体进行清洗和离心分离,重复3次;最终将最后一次清洗并离心分离后的黑色粉体存于无水乙醇中;所述离心分离的离心机转速为9000rpm,每次离心时间在5~9min。Two kinds of mixed solvents are used for centrifugal cleaning, mixed solvent A is a mixed solvent of absolute ethanol and chloroform in a volume ratio of 3:5, and mixed solvent B is a mixed solvent of deionized water and absolute alcohol in a volume ratio of 2:5; first Wash the mixed solution by mixed solvent A, the volume ratio of mixed solvent A: mixed solution is 4:1, then perform centrifugation, pour off the upper liquid after centrifugation, and obtain a black powder; then wash the black powder with mixed solvent A and remove Centrifuge,
利用x射线衍射仪表征产物的物相为L10-FeNi,其中含有有序相特征峰(001)、(110)和 (002),有序度为0.93。采用振动样品强磁计测量产物的室温下的磁滞回线,其矫顽力Hc为 1069.5Oe,饱和磁化强度Ms为86.5emu/g。通过场发射透射电镜观察产物形貌为均匀分散的核壳形貌。The phase of the product characterized by X-ray diffraction is L1 0 -FeNi, which contains ordered phase characteristic peaks (001), (110) and (002), and the degree of order is 0.93. The hysteresis loop of the product at room temperature was measured by a vibrating sample ferromagnetometer. The coercive force Hc was 1069.5Oe , and the saturation magnetization Ms was 86.5emu/g. The morphology of the product was observed by field emission transmission electron microscopy as a uniformly dispersed core-shell morphology.
实施例21:Example 21:
(1)首先采用电子天平称量晶种核心金属前驱体金源四氯金酸钾和铜源乙酰丙酮铜,两者的摩尔比例为0.3:0.8,并称量一定量的还原剂氰基硼氢化钠,还原剂用量理论值与实际值的比例关系为1:1。(1) First, use an electronic balance to weigh the core metal precursor gold source potassium tetrachloroaurate and the copper source copper acetylacetonate, the molar ratio of the two is 0.3:0.8, and weigh a certain amount of reducing agent cyanoboron For sodium hydride, the ratio between the theoretical value and the actual value of the amount of reducing agent is 1:1.
(2)将称量好的晶种核心金属前驱体粉末(金源+铜源)和还原剂氰基硼氢化钠加入装有溶剂十六胺的三颈烧瓶中,其中晶种核心金属前驱体和溶剂的摩尔比为1:10。在保护气氛95%Ar +5%H2作用下,以升温速率为8℃/min升温至113℃保温60min,进行去除水分处理,随后将表面活性剂(油胺+油酸)加入混合溶液,按体积比,油胺:油酸=0.8:1;按摩尔比,溶剂:表面活性剂=10:2.2。(2) Add the weighed seed crystal core metal precursor powder (gold source + copper source) and reducing agent sodium cyanoborohydride into a three-necked flask equipped with solvent hexadecylamine, wherein the seed crystal core metal precursor The molar ratio of solvent and solvent is 1:10. Under the action of a protective atmosphere of 95% Ar + 5% H 2 , the temperature was raised to 113° C. at a heating rate of 8° C./min and kept for 60 minutes to remove moisture, and then a surfactant (oleylamine + oleic acid) was added to the mixed solution. By volume, oleylamine:oleic acid=0.8:1; by molar ratio, solvent:surfactant=10:2.2.
(3)将混合溶液以升温速率为4℃/min,缓慢升温至350℃保温120min,获得黑色混合溶液,随后冷却至80℃,向混合溶液中加入外壳金属前驱体粉末锰源乙酰丙酮锰和镓源氯化镓,外壳金属前驱体粉末与晶种核心金属前驱体粉末中金属摩尔比为1:0.4,外壳金属前驱体中两种金属离子的摩尔比例为0.5:1。(3) Slowly raise the temperature of the mixed solution to 350°C for 120min at a heating rate of 4°C/min to obtain a black mixed solution, then cool it to 80°C, and add shell metal precursor powder manganese source manganese acetylacetonate and Gallium source gallium chloride, the metal molar ratio of the outer shell metal precursor powder and the seed crystal core metal precursor powder is 1:0.4, and the molar ratio of the two metal ions in the outer shell metal precursor is 0.5:1.
(4)将混合溶液以升温速率为9℃/min升温至235℃后保温50min,冷却至室温,获得黑色混合溶液。(4) The mixed solution was heated up to 235° C. at a heating rate of 9° C./min, then kept for 50 minutes, and cooled to room temperature to obtain a black mixed solution.
采用两种混合溶剂进行离心清洗,混合溶剂A为无水乙醇和氯仿按体积比2:3的混合溶剂,混合溶剂B为去离子水和无水乙醇按体积比3:2的混合溶剂;首先通过混合溶剂A清洗混合溶液,混合溶剂A:混合溶液的体积比为3.2:1,然后进行离心分离,离心分离后倒掉上层液体,获得黑色粉体;然后用混合溶剂A清洗黑色粉体并离心分离,重复3次;之后采用混合溶剂B和混合溶剂A轮流对黑色粉体进行清洗和离心分离,重复5次;最终将最后一次清洗并离心分离后的黑色粉体存于无水乙醇中;所述离心分离的离心机转速为 7500~10000rpm,每次离心时间在6~9min。Two kinds of mixed solvents are used for centrifugal cleaning, mixed solvent A is a mixed solvent of absolute ethanol and chloroform in a volume ratio of 2:3, and mixed solvent B is a mixed solvent of deionized water and absolute alcohol in a volume ratio of 3:2; first The mixed solution is cleaned by mixed solvent A, the volume ratio of mixed solvent A: mixed solution is 3.2:1, and then centrifuged, after centrifuged, the upper liquid is poured off to obtain a black powder; then the black powder is cleaned with mixed solvent A and removed Centrifugal separation, repeat 3 times; then use mixed solvent B and mixed solvent A to wash and centrifuge the black powder in turn,
利用x射线衍射仪表征产物的物相为L10-MnGa,其中含有有序相特征峰(001)、(110)和 (002),有序度为0.92。采用振动样品强磁计测量产物的室温下的磁滞回线,其矫顽力Hc为 1086.7Oe,饱和磁化强度Ms为96.5emu/g。通过场发射透射电镜观察产物形貌为均匀分散的核壳形貌。The phase of the product characterized by X-ray diffraction is L1 0 -MnGa, which contains ordered phase characteristic peaks (001), (110) and (002), and the degree of order is 0.92. The hysteresis loop of the product at room temperature was measured by a vibrating sample ferromagnetometer, and its coercive force Hc was 1086.7Oe , and the saturation magnetization Ms was 96.5emu/g. The morphology of the product was observed by field emission transmission electron microscopy as a uniformly dispersed core-shell morphology.
通过上述实施例可以看出,通过利用有序纳米粒子界面诱导成功合成了L10-FeCo、 L10-FeNi、L10-MnAl、L10-MnGa纳米材料,该核壳纳米材料具有优异的分散性、高的有序度和优异的磁性能。It can be seen from the above examples that L1 0 -FeCo, L1 0 -FeNi, L1 0 -MnAl, L1 0 -MnGa nanomaterials have been successfully synthesized by using ordered nanoparticle interface induction, and the core-shell nanomaterials have excellent dispersion properties, high degree of order and excellent magnetic properties.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210309658.5A CN114643365B (en) | 2022-03-28 | 2022-03-28 | A Method of Interface-Induced Synthesis of Ordered L10 Structured Permanent Magnetic Nanoparticles |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210309658.5A CN114643365B (en) | 2022-03-28 | 2022-03-28 | A Method of Interface-Induced Synthesis of Ordered L10 Structured Permanent Magnetic Nanoparticles |
Publications (2)
Publication Number | Publication Date |
---|---|
CN114643365A CN114643365A (en) | 2022-06-21 |
CN114643365B true CN114643365B (en) | 2023-01-24 |
Family
ID=81996343
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210309658.5A Active CN114643365B (en) | 2022-03-28 | 2022-03-28 | A Method of Interface-Induced Synthesis of Ordered L10 Structured Permanent Magnetic Nanoparticles |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114643365B (en) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005183898A (en) * | 2003-09-12 | 2005-07-07 | Fuji Photo Film Co Ltd | Magnetic particle, method of producing the same, and magnetic recording medium |
JP2007118147A (en) * | 2005-10-28 | 2007-05-17 | Toyota Motor Corp | Method for producing core / shell composite nanoparticles |
CN102218543A (en) * | 2011-05-20 | 2011-10-19 | 湖北大学 | Method for one-step synthesis of FePt nanoparticles with an fct (face centered tetragonal) structure and product thereof |
CN104625046A (en) * | 2015-02-06 | 2015-05-20 | 南京大学 | Manufacturing method of micrometer and nanometer composite spherical metal powder of core-shell structure |
JP2016153519A (en) * | 2015-02-20 | 2016-08-25 | 新日鉄住金化学株式会社 | Metal composite particles and method for producing the same |
CN108031840A (en) * | 2018-01-15 | 2018-05-15 | 国家纳米科学中心 | A kind of heterogeneous nano-superstructure of self-supporting metal and its preparation method and application |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6262129B1 (en) * | 1998-07-31 | 2001-07-17 | International Business Machines Corporation | Method for producing nanoparticles of transition metals |
KR100438408B1 (en) * | 2001-08-16 | 2004-07-02 | 한국과학기술원 | Method for Synthesis of Core-Shell type and Solid Solution type Metallic Alloy Nanoparticles via Transmetalation Reactions and Their Applications |
JP2003257719A (en) * | 2002-02-27 | 2003-09-12 | Fuji Photo Film Co Ltd | Method of manufacturing hard magnetic regular alloy phase nano-particle |
US8133332B2 (en) * | 2009-02-12 | 2012-03-13 | Seagate Technology Llc | Method for preparing FePt media at low ordering temperature and fabrication of exchange coupled composite media and gradient anisotropy media for magnetic recording |
JP5920643B2 (en) * | 2012-04-23 | 2016-05-18 | エルジー・ケム・リミテッド | Method for producing core-shell particles |
CN102699346A (en) * | 2012-06-14 | 2012-10-03 | 西北工业大学 | A chemical method for synthesizing L10-FePt by sequentially coating nano-powder nuclei |
CN105664951B (en) * | 2016-02-18 | 2018-07-31 | 厦门大学 | Cupro-nickel-zinc oxide compound nano crystalline substance photochemical catalyst and the preparation method and application thereof |
CN112893834B (en) * | 2021-01-20 | 2021-12-21 | 东北大学 | L10-FePt@PtBi2/Bi core-shell nanoparticles and their one-step synthesis |
-
2022
- 2022-03-28 CN CN202210309658.5A patent/CN114643365B/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005183898A (en) * | 2003-09-12 | 2005-07-07 | Fuji Photo Film Co Ltd | Magnetic particle, method of producing the same, and magnetic recording medium |
JP2007118147A (en) * | 2005-10-28 | 2007-05-17 | Toyota Motor Corp | Method for producing core / shell composite nanoparticles |
CN102218543A (en) * | 2011-05-20 | 2011-10-19 | 湖北大学 | Method for one-step synthesis of FePt nanoparticles with an fct (face centered tetragonal) structure and product thereof |
CN104625046A (en) * | 2015-02-06 | 2015-05-20 | 南京大学 | Manufacturing method of micrometer and nanometer composite spherical metal powder of core-shell structure |
JP2016153519A (en) * | 2015-02-20 | 2016-08-25 | 新日鉄住金化学株式会社 | Metal composite particles and method for producing the same |
CN108031840A (en) * | 2018-01-15 | 2018-05-15 | 国家纳米科学中心 | A kind of heterogeneous nano-superstructure of self-supporting metal and its preparation method and application |
Non-Patent Citations (1)
Title |
---|
核壳结构双金属纳米粒子的研究与应用;王锐等;《化学进展》;20100324;第22卷;第358-366页 * |
Also Published As
Publication number | Publication date |
---|---|
CN114643365A (en) | 2022-06-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10332661B2 (en) | Rare earth-free permanent magnetic material | |
JP5766637B2 (en) | bcc-type FeCo alloy particles, method for producing the same, and magnet | |
Lei et al. | Cu induced low temperature ordering of fct-FePtCu nanoparticles prepared by solution phase synthesis | |
Zhao et al. | Synthesis of super-fine L10-FePt nanoparticles with high ordering degree by two-step sintering under high magnetic field | |
Gao et al. | Solvothermal synthesis and characterization of size-controlled monodisperse Fe 3 O 4 nanoparticles | |
Gandha et al. | Effect of ${\rm RuCl} _ {3} $ on Morphology and Magnetic Properties of CoNi Nanowires | |
Zhang et al. | Structural, morphological, and magnetic study of nanocrystalline cobalt–nickel–copper particles | |
Liu et al. | Synthesis and magnetic properties of shuriken-like nickel nanoparticles | |
Wu et al. | Effects of high magnetic field on the growth and magnetic property of L10-FePtCu nanoparticles | |
JP2014231624A (en) | METHOD FOR PRODUCING Fe-Ni ALLOY POWDER, Fe-Ni ALLOY POWDER AND MAGNET | |
JP6427061B2 (en) | Method of preparing core-shell-shell FeCo / SiO2 / MnBi nanoparticles, and core-shell-shell FeCo / SiO2 / MnBi nanoparticles | |
US7964013B2 (en) | FeRh-FePt core shell nanostructure for ultra-high density storage media | |
JP2009215583A (en) | Sm-Co-BASED ALLOY NANOPARTICLE, AND METHOD FOR PRODUCING THE SAME | |
CN114643365B (en) | A Method of Interface-Induced Synthesis of Ordered L10 Structured Permanent Magnetic Nanoparticles | |
EP1638719A1 (en) | Magnetic nanoparticles | |
JPH118109A (en) | Rare earth permanent magnet material and its manufacture | |
WO2008065537A2 (en) | PRODUCTION METHOD FOR FePT-Fe-NANOCOMPOSITE METAL MAGNETIC | |
Chang et al. | Operating interfaces to synthesize L1 0-FePt@ Bi-rich nanoparticles by modifying the heating process | |
CN109867310B (en) | In-situ preparation of SmCo5/Sm2Co17Method for preparing biphase composite magnetic nano particles with core-shell structure | |
US20170069412A1 (en) | Ligand passivated core-shell fept@co nanomagnets exhibiting enhanced energy product | |
JP2013151710A (en) | Method of manufacturing magnetic alloy powder | |
Najarzadegan et al. | The effect of reduction process parameters on magnetic and structural properties of SmCo/Co nanocomposites | |
CN113441729B (en) | A method for direct synthesis of non-precious metal nanowires with high coercivity by wet chemical method | |
JP3763774B2 (en) | Quenched alloy for iron-based rare earth alloy magnet and method for producing iron-based rare earth alloy magnet | |
US8753530B2 (en) | Magnetic particle and method of preparing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
OL01 | Intention to license declared | ||
OL01 | Intention to license declared |