CN114639830A - Visual lithium ion electrode, application and visual lithium ion battery - Google Patents
Visual lithium ion electrode, application and visual lithium ion battery Download PDFInfo
- Publication number
- CN114639830A CN114639830A CN202011485951.4A CN202011485951A CN114639830A CN 114639830 A CN114639830 A CN 114639830A CN 202011485951 A CN202011485951 A CN 202011485951A CN 114639830 A CN114639830 A CN 114639830A
- Authority
- CN
- China
- Prior art keywords
- film
- lithium ion
- lithium
- visualized
- battery
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/64—Carriers or collectors
- H01M4/66—Selection of materials
- H01M4/661—Metal or alloys, e.g. alloy coatings
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/058—Construction or manufacture
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/64—Carriers or collectors
- H01M4/66—Selection of materials
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Secondary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
Description
技术领域technical field
本发明属于锂离子电池技术领域,具体地,涉及一种可视化锂离子电极和应用及可视化锂离子电池。The invention belongs to the technical field of lithium ion batteries, and in particular, relates to a visualized lithium ion electrode and application and a visualized lithium ion battery.
背景技术Background technique
锂离子电池是继镍氢等传统蓄电池之后的新一代可充电电池,其高容量长寿命特点被广泛应用于储能、电动汽车、便携式电子产品等领域。随着锂离子的发展特别是电动汽车的发展,对锂离子电池的比能量、寿命、安全性和价格提出了更高的要求。这促使了我们更进一步的研究电池中复杂的电化学传输机制。电化学机制与电极材料在充放电过程中结构演变息息相关。而现有技术很难原位监测电池的电化学机制与材料的相关性。最近,有学者制造出了一块功能性的透明电池,此透明电池有利于电池的基础研究。但这种透明电池的能量密度比普通锂电池低,应用范围有限。CN104037388A也公开了一种透明电池,该电池提出了具有一个或多个内部结构的至少一个电极材料且透明或半透明的固定器,然后根据固定器的形状沉积一层透明或半透明导电膜,导电膜上沉积正负极材料,正负极材料间由固体电解质隔开。此电池可操作性不强,其亦只能作为功能性电池,商业应用受限。Lithium-ion batteries are a new generation of rechargeable batteries following traditional batteries such as nickel-metal hydride batteries. Their high-capacity and long-life characteristics are widely used in energy storage, electric vehicles, and portable electronic products. With the development of lithium ion, especially the development of electric vehicles, higher requirements are placed on the specific energy, life, safety and price of lithium ion batteries. This motivates us to further investigate the complex electrochemical transport mechanism in batteries. The electrochemical mechanism is closely related to the structural evolution of electrode materials during charging and discharging. However, it is difficult to monitor the correlation between the electrochemical mechanism and the material of the battery in situ with the existing technology. Recently, some scholars have fabricated a functional transparent battery, which is beneficial to the basic research of batteries. However, the energy density of this transparent battery is lower than that of ordinary lithium batteries, and its application range is limited. CN104037388A also discloses a transparent battery, which proposes a transparent or translucent holder having at least one electrode material with one or more internal structures, and then deposits a transparent or translucent conductive film according to the shape of the holder, Positive and negative materials are deposited on the conductive film, and the positive and negative materials are separated by a solid electrolyte. The operability of this battery is not strong, and it can only be used as a functional battery, and its commercial application is limited.
因此,有必要提出一种新的可视化锂离子电极及电池。Therefore, it is necessary to propose a new visualized Li-ion electrode and battery.
发明内容SUMMARY OF THE INVENTION
本发明的目的是针对现有技术的不足,提出一种可视化锂离子电极和应用及可视化锂离子电池。本发明的一种可视化锂离子电池可以原位观测电池充放电过程中的电化学反应过程中的正极或负极材料的结构变化,颜色变化,产气情况及析锂情况。The purpose of the present invention is to provide a visualized lithium ion electrode and application and a visualized lithium ion battery in view of the deficiencies of the prior art. The visualized lithium ion battery of the present invention can observe the structure change, color change, gas production and lithium precipitation of the positive electrode or negative electrode material in the electrochemical reaction process in the battery charging and discharging process in situ.
为了实现上述目的,本发明第一方面提供了一种可视化锂离子电极,该电极包括透明集流体薄膜和涂覆于所述透明集流体薄膜表面的负极活性物质或正极活性物质。In order to achieve the above object, a first aspect of the present invention provides a visualized lithium ion electrode, which includes a transparent current collector film and a negative electrode active material or a positive electrode active material coated on the surface of the transparent current collector film.
本发明第二方面提供了所述的可视化锂离子电极在锂离子电池中的应用。The second aspect of the present invention provides the application of the visualized lithium ion electrode in a lithium ion battery.
本发明第三方面提供了一种可视化锂离子电池,所述电池包括一组或多组正极和负极、电解液和间隔于所述正极和所述负极之间的celgad隔膜;所述正极和负极均为所述的可视化锂离子电极;所述锂离子电池的封装为利用透明电池封装膜进行全封装,或,利用铝塑膜进行封装后,在所述铝塑膜上开设窗口,并在所述窗口部分利用所述透明电池封装膜进行封装。A third aspect of the present invention provides a visualized lithium-ion battery, the battery includes one or more sets of positive electrodes and negative electrodes, an electrolyte, and a celgad separator spaced between the positive electrodes and the negative electrodes; the positive electrodes and the negative electrodes All are the above-mentioned visible lithium ion electrodes; the encapsulation of the lithium ion battery is to use a transparent battery encapsulation film for full encapsulation, or, after encapsulation with an aluminum-plastic film, a window is opened on the aluminum-plastic film, and the The window portion is encapsulated with the transparent battery encapsulation film.
本发明第四方面提供了一种可视化锂离子电池,所述电池包括一组或多组正极和负极,电解液和间隔于所述正极和所述负极之间的隔膜;所述负极由非可视化锂离子负极和所述的可视化锂离子负极组成,所述正极为非可视化锂离子正极;所述非可视化锂离子负极和非可视化锂离子正极交叉叠片后,在交叉叠片后的电极组的两侧设置所述可视化锂离子负极,所述交叉叠片后的电极组与所述可视化锂离子负极间的隔膜为celgad隔膜;所述锂离子电池的封装为利用透明电池封装膜进行全封装,或,利用铝塑膜进行封装后,在所述铝塑膜上开设窗口,并在所述窗口部分利用所述透明电池封装膜进行封装。A fourth aspect of the present invention provides a visualized lithium-ion battery, the battery includes one or more sets of positive electrodes and negative electrodes, an electrolyte and a separator spaced between the positive electrodes and the negative electrodes; the negative electrodes are composed of non-visualized electrodes. The lithium ion negative electrode and the visible lithium ion negative electrode are composed, and the positive electrode is a non-visual lithium ion positive electrode; after the non-visual lithium ion negative electrode and the non-visual lithium ion positive electrode are cross-laminated, the electrode group after the cross-lamination is cross-laminated. The visualized lithium ion negative electrodes are arranged on both sides, and the diaphragm between the cross-laminated electrode group and the visualized lithium ion negative electrode is a celgad diaphragm; Or, after the aluminum-plastic film is used for packaging, a window is opened on the aluminum-plastic film, and the transparent battery packaging film is used for packaging at the window portion.
本发明的技术方案具有如下有益效果:The technical scheme of the present invention has the following beneficial effects:
(1)本发明的可视化锂离子电池可以原位观测电池充放电过程中的电化学反应过程中的正极或负极材料的结构变化,颜色变化,产气情况及析锂情况,且不影响电池能量密度。(1) The visualized lithium ion battery of the present invention can observe the structure change, color change, gas production and lithium precipitation of the positive electrode or negative electrode material in the electrochemical reaction process during the charging and discharging process of the battery in situ, and does not affect the battery energy. density.
(2)本发明的可视化锂离子电极可应用在一般的锂离子电池中,进行安全预警。(2) The visualized lithium ion electrode of the present invention can be applied to general lithium ion batteries for safety warning.
(3)本发明的可视化锂离子电池可应用于电化学机制研究和析锂研究,也可应用于3C领域。(3) The visualized lithium-ion battery of the present invention can be applied to electrochemical mechanism research and lithium precipitation research, and can also be applied to the field of 3C.
本发明的其它特征和优点将在随后具体实施方式部分予以详细说明。Other features and advantages of the present invention will be described in detail in the detailed description that follows.
附图说明Description of drawings
通过结合附图对本发明示例性实施方式进行更详细的描述,本发明的上述以及其它目的、特征和优势将变得更加明显,其中,在本发明示例性实施方式中,相同的参考标号通常代表相同部件。The above and other objects, features and advantages of the present invention will become more apparent from the more detailed description of the exemplary embodiments of the present invention in conjunction with the accompanying drawings, wherein the same reference numerals generally represent the exemplary embodiments of the present invention. same parts.
图1示出了本发明实施例1提供的一种可视化锂离子电池及电极的示意图。FIG. 1 shows a schematic diagram of a visualized lithium-ion battery and electrodes provided in
图2示出了本发明实施例1提供的一种可视化锂离子电池在预充抽气和未抽气充电过程的充容量(Capacity(Ah))-电压(Voltage(V))图。FIG. 2 shows a charging capacity (Capacity (Ah))-voltage (Voltage (V)) diagram of a visualized lithium-ion battery provided in
图3示出了本发明实施例1提供的一种可视化锂离子电池在预充抽气和未抽气充电过程的ICA图。(其中,横坐标Voltage表示电压,纵坐标dQ/dV/AhV-1表示电压平台变化)FIG. 3 shows an ICA diagram for visualizing the charging process of a lithium-ion battery during pre-charging and gas-pumping and without gas-pumping according to
图4示出了对本发明实施例1提供的一种可视化锂离子电池在未抽气充电后进行电池拆解后的正极表面均匀析锂图。FIG. 4 shows a graph of uniform lithium deposition on the surface of the positive electrode of a visualized lithium-ion battery provided in Example 1 of the present invention after the battery is disassembled after being charged without air extraction.
图5示出了本发明实施例2提供的一种3Ah复合极片可视化锂离子电池及电极的示意图。FIG. 5 shows a schematic diagram of a 3Ah composite pole piece visualized lithium ion battery and electrodes provided in Example 2 of the present invention.
图6示出了本发明实施例2提供的一种3Ah复合极片可视化锂离子电池与对比例1提供的一种非可视化锂离子电池的EIS(电化学阻抗谱)对比图。6 shows a comparison diagram of EIS (electrochemical impedance spectroscopy) of a 3Ah composite electrode visible lithium ion battery provided in Example 2 of the present invention and a non-visualized lithium ion battery provided in Comparative Example 1.
图7(a)示出了本发明实施例2提供的一种3Ah复合极片可视化锂离子电池与对比例1提供的一种非可视化锂离子电池在(DIS(放电)-DOD(放电状态))的HPPC功率(P/W)对比图。Fig. 7(a) shows a 3Ah composite pole piece visual lithium ion battery provided in Example 2 of the present invention and a non-visual lithium ion battery provided in Comparative Example 1 in (DIS (discharge)-DOD (discharge state) ) HPPC power (P/W) comparison chart.
图7(b)示出了本发明实施例2提供的一种3Ah复合极片可视化锂离子电池与对比例1提供的一种非可视化锂离子电池在(CHA(充电)-DOD(放电状态))的HPPC功率(P/W)对比图。Figure 7(b) shows a 3Ah composite pole piece visual lithium ion battery provided in Example 2 of the present invention and a non-visual lithium ion battery provided in Comparative Example 1 in (CHA (charge)-DOD (discharge state) ) HPPC power (P/W) comparison chart.
图8示出了本发明实施例2提供的一种3Ah复合极片可视化锂离子电池的充电前光学显微镜图像。FIG. 8 shows an optical microscope image before charging of a 3Ah composite pole piece visualized lithium ion battery provided in Example 2 of the present invention.
图9示出了本发明实施例2提供的一种3Ah复合极片可视化锂离子电池的充电后满电态的光学显微镜图像。FIG. 9 shows an optical microscope image of a fully charged state of a 3Ah composite pole piece visualized after charging of the lithium ion battery provided in Example 2 of the present invention.
图10示出了本发明实施例3提供的一种可视化锂离子电池及电极的示意图。FIG. 10 shows a schematic diagram of a visualized lithium ion battery and electrodes provided in
附图标记说明如下:The reference numerals are explained as follows:
1-可视化锂离子电池;1- Visualize Li-ion battery;
11-可视化锂离子负极;11- Visualize the lithium ion negative electrode;
12-可视化锂离子正极;12- Visualize the lithium ion positive electrode;
111-可视化锂离子负极的活性物质层;111 - Visualize the active material layer of the lithium ion negative electrode;
112-可视化锂离子负极的集流体;112- Visualize the current collector of the lithium ion negative electrode;
113-可视化锂离子负极的负极耳;113- visualize the negative lug of the lithium ion negative electrode;
121-可视化锂离子正极的活性物质层;121 - Visualize the active material layer of the lithium-ion cathode;
122-可视化锂离子正极的集流体;122 - Visualize the current collector of the lithium-ion cathode;
123-可视化锂离子正极的正极耳;123- Visualize the positive lug of the lithium-ion positive electrode;
2-3Ah复合极片可视化锂离子电池;2-3Ah composite pole piece visualized lithium-ion battery;
23-可视化锂离子负极;23- Visualize the lithium ion negative electrode;
24-非可视化锂离子正极;24-Non-visualized lithium-ion positive electrode;
25-非可视化锂离子负极;25-Non-visualized lithium ion negative electrode;
231-可视化锂离子负极的活性物质层;231 - Visualize the active material layer of the lithium ion negative electrode;
232-可视化锂离子负极的集流体;232 - Visualize the current collector of the lithium ion anode;
241-非可视化锂离子正极的活性物质层;241-active material layer of non-visualized lithium ion positive electrode;
242-非可视化锂离子正极的集流体;242 - Current collectors for non-visualized lithium-ion cathodes;
251-非可视化锂离子负极的活性物质层;251-active material layer of non-visualized lithium ion negative electrode;
252-非可视化锂离子负极的集流体;252 - Current collectors for non-visualized lithium ion anodes;
3-可视化锂离子电池;3- Visualization of Li-ion battery;
31-双面涂覆的可视化锂离子负极;31-Visible Li-ion negative electrode coated on both sides;
32-双面涂覆的可视化锂离子正极;32-Visible Li-ion cathode coated on both sides;
33-单面涂覆的可视化锂离子负极;33-Visible lithium ion negative electrode coated on one side;
311-双面涂覆的可视化锂离子正极的活性物质层;311 - The active material layer of the double-sided coated visualized lithium-ion positive electrode;
321-双面涂覆的可视化锂离子负极的负极耳;321 - the negative lug of the double-sided coated visualized Li-ion negative electrode;
322-双面涂覆的可视化锂离子正极的正极耳;322 - The positive lug of the double-sided coated visualized Li-ion positive electrode;
331-单面涂覆的可视化锂离子负极的活性物质层。331 - Active material layer of a single-sided coated visualized Li-ion anode.
具体实施方式Detailed ways
下面将更详细地描述本发明的优选实施方式。虽然以下描述了本发明的优选实施方式,然而应该理解,可以以各种形式实现本发明而不应被这里阐述的实施方式所限制。相反,提供这些实施方式是为了使本发明更加透彻和完整,并且能够将本发明的范围完整地传达给本领域的技术人员。Preferred embodiments of the present invention will be described in more detail below. While the preferred embodiments of the present invention are described below, it should be understood that the present invention may be embodied in various forms and should not be limited by the embodiments set forth herein. Rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey the scope of the present invention to those skilled in the art.
本发明第一方面提供了一种可视化锂离子电极,该电极包括透明集流体薄膜和涂覆于所述透明集流体薄膜表面的负极活性物质或正极活性物质。A first aspect of the present invention provides a visualized lithium ion electrode, which includes a transparent current collector film and a negative electrode active material or a positive electrode active material coated on the surface of the transparent current collector film.
本发明中,所述透明集流体薄膜为可导电的、耐酸的、耐电化学腐蚀的透明集流体薄膜,作为优选方案,所述透明集流体薄膜选自厚度为8-12nm的金属膜系、厚度为0.01-500μm的氧化物膜系或厚度为0.01-500μm的高分子膜系。In the present invention, the transparent current collector film is a conductive, acid-resistant and electrochemical corrosion-resistant transparent current collector film. As a preferred solution, the transparent current collector film is selected from metal films with a thickness of 8-12 nm Oxide films with a thickness of 0.01-500 μm or polymer films with a thickness of 0.01-500 μm.
根据本发明,优选地,According to the present invention, preferably,
所述金属膜系选自Au薄膜、Ag薄膜、Pt薄膜、Cu薄膜或Al薄膜;The metal film is selected from Au thin film, Ag thin film, Pt thin film, Cu thin film or Al thin film;
所述氧化物膜系选自In2O3薄膜、In2O3:Sn薄膜、SnO2薄膜、ZnO薄膜、ZnO:In(IZO)薄膜、ZnO:Ga薄膜、ZnO:Al薄膜或CdO薄膜;The oxide film is selected from In2O3 film, In2O3:Sn film, SnO2 film, ZnO film, ZnO:In(IZO) film, ZnO:Ga film, ZnO:Al film or CdO film;
所述高分子膜系选自聚3,4-烷撑二氧噻吩薄膜,聚3,4-乙撑二氧噻吩薄膜或聚苯乙烯磺酸薄膜。The polymer film is selected from a poly3,4-alkylene dioxythiophene film, a poly3,4-ethylenedioxythiophene film or a polystyrene sulfonic acid film.
根据本发明,优选地,所述活性物质单面涂覆或双面涂覆于所述透明集流体薄膜表面。According to the present invention, preferably, the active material is single-sided or double-coated on the surface of the transparent current collector film.
本发明中,所述单面涂覆可以观测所述透明集流体薄膜表面的锂离子在所述透明集流体薄膜表面的嵌入状态,亦可根据颜色变化观测所述可视化锂离子电极的电化学状态。In the present invention, the single-sided coating can observe the embedded state of lithium ions on the surface of the transparent current collector film, and can also observe the electrochemical state of the visualized lithium ion electrode according to the color change. .
根据本发明,优选地,所述活性物质涂覆于所述透明集流体薄膜表面的步骤包括:在所述透明集流体薄膜表面形成多个相同尺寸的沟槽,并将所述活性物质涂覆于其透明集流体薄膜的表面。According to the present invention, preferably, the step of coating the active material on the surface of the transparent current collector film includes: forming a plurality of grooves of the same size on the surface of the transparent current collector film, and coating the active material on the surface of its transparent current collector film.
本发明中,所述沟槽为根据所述透明导电薄膜的材质要求进行刻蚀、印刷等工艺形成的刻蚀槽或凹凸槽;所述沟槽不仅可增加负极活性物质或正极活性物质在所述透明导电薄膜上的粘附性,还能降低所述透明导电薄膜的质量提高电极能量密度。In the present invention, the groove is an etching groove or a concave-convex groove formed by etching, printing and other processes according to the material requirements of the transparent conductive film; the groove can not only increase the negative electrode active material or the positive electrode active material in the The adhesion on the transparent conductive film can also reduce the quality of the transparent conductive film and improve the energy density of the electrode.
根据本发明,优选地,所述沟槽的深度和宽度均为所述透明集流体薄膜厚度的0.02-0.05倍。According to the present invention, preferably, the depth and width of the groove are both 0.02-0.05 times the thickness of the transparent current collector film.
根据本发明,优选地,According to the present invention, preferably,
所述负极活性物质为钛酸锂、石墨、硅氧和硅碳中的至少一种;The negative electrode active material is at least one of lithium titanate, graphite, silicon oxygen and silicon carbon;
所述正极活性物质为锰酸锂、钴酸锂、磷酸铁锂和镍钴锰酸锂中的至少一种。The positive active material is at least one of lithium manganate, lithium cobaltate, lithium iron phosphate and lithium nickel cobalt manganate.
本发明第二方面提供了所述的可视化锂离子电极在锂离子电池中的应用。The second aspect of the present invention provides the application of the visualized lithium ion electrode in a lithium ion battery.
本发明第三方面提供了一种可视化锂离子电池,所述电池包括一组或多组正极和负极、电解液和间隔于所述正极和所述负极之间的celgad隔膜;所述正极和负极均为所述的可视化锂离子电极;所述锂离子电池的封装为利用透明电池封装膜进行全封装,或,利用铝塑膜进行封装后,在所述铝塑膜上开设窗口,并在所述窗口部分利用所述透明电池封装膜进行封装。A third aspect of the present invention provides a visualized lithium-ion battery, the battery includes one or more sets of positive electrodes and negative electrodes, an electrolyte, and a celgad separator spaced between the positive electrodes and the negative electrodes; the positive electrodes and the negative electrodes All are the above-mentioned visible lithium ion electrodes; the encapsulation of the lithium ion battery is to use a transparent battery encapsulation film for full encapsulation, or, after encapsulation with an aluminum-plastic film, a window is opened on the aluminum-plastic film, and the The window portion is encapsulated with the transparent battery encapsulation film.
本发明第四方面提供了一种可视化锂离子电池,所述电池包括一组或多组正极和负极,电解液和间隔于所述正极和所述负极之间的隔膜;所述负极由非可视化锂离子负极和所述的可视化锂离子负极组成,所述正极为非可视化锂离子正极;所述非可视化锂离子负极和非可视化锂离子正极交叉叠片后,在交叉叠片后的电极组的两侧设置所述可视化锂离子负极,所述交叉叠片后的电极组与所述可视化锂离子负极间的隔膜为celgad隔膜;所述锂离子电池的封装为利用透明电池封装膜进行全封装,或,利用铝塑膜进行封装后,在所述铝塑膜上开设窗口,并在所述窗口部分利用所述透明电池封装膜进行封装。A fourth aspect of the present invention provides a visualized lithium-ion battery, the battery includes one or more sets of positive electrodes and negative electrodes, an electrolyte and a separator spaced between the positive electrodes and the negative electrodes; the negative electrodes are composed of non-visualized electrodes. The lithium ion negative electrode and the visible lithium ion negative electrode are composed, and the positive electrode is a non-visual lithium ion positive electrode; after the non-visual lithium ion negative electrode and the non-visual lithium ion positive electrode are cross-laminated, the electrode group after the cross-lamination is cross-laminated. The visualized lithium ion negative electrodes are arranged on both sides, and the diaphragm between the cross-laminated electrode group and the visualized lithium ion negative electrode is a celgad diaphragm; Or, after the aluminum-plastic film is used for packaging, a window is opened on the aluminum-plastic film, and the transparent battery packaging film is used for packaging at the window portion.
本发明中,所述透明电池封装膜为耐高温、耐酸、绝缘、抗压的透明电池封装膜,作为优选方案,所述透明电池封装膜为透明聚酰亚胺膜、聚酯膜、聚酰胺酰亚胺膜、聚醚酰亚胺膜和热可塑性聚氨酯膜中的至少一种。In the present invention, the transparent battery packaging film is a transparent battery packaging film that is resistant to high temperature, acid, insulation and pressure. As a preferred solution, the transparent battery packaging film is a transparent polyimide film, polyester film, polyamide film At least one of an imide film, a polyetherimide film, and a thermoplastic polyurethane film.
以下通过实施例具体说明本发明。The present invention will be specifically described below by way of examples.
实施例1Example 1
本实施例用于说明本发明的可视化锂离子正极、可视化锂离子负极和可视化锂离子电池。This embodiment is used to illustrate the visualized lithium ion positive electrode, the visualized lithium ion negative electrode, and the visualized lithium ion battery of the present invention.
该可视化锂离子正极12的集流体122为厚度100μm的In2O3:Sn薄膜(ITO),并留出正极耳123;在该透明集流体122薄膜需涂覆LiNi0.5Co0.2Mn0.3O2正极活性物质121的表面刻蚀多个深度5μm、宽度5μm的沟槽,并将该正极活性物质121单面涂覆于该透明集流体122薄膜的具有所述沟槽的表面,70℃真空烘箱烘24h,形成可视化锂离子正极12,如图1所示。The
该可视化锂离子负极11的集流体112为厚度100μm的In2O3:Sn薄膜(ITO),并留出负极耳113;在该透明集流体112薄膜需涂覆石墨负极活性物质111的表面刻蚀多个深度5μm、宽度5μm的沟槽,并将该负极活性物质111单面涂覆于该透明集流体112薄膜的具有所述沟槽的表面,70℃真空烘箱烘24h,形成可视化锂离子负极11,如图1所示。The
该可视化锂离子电池1包括一组上述的可视化锂离子正极12和可视化锂离子负极11,上述的可视化锂离子正极12和可视化锂离子负极11之间的隔膜为celgad隔膜;用高温、绝缘、耐腐蚀的胶带将上述的可视化锂离子正极12、celgad隔膜、可视化锂离子负极11固定好组成电芯,将所述电芯在70℃真空烘箱烘24h后用透明聚酰亚胺膜(PIC)通过热压方式全封装,同时真空抽气,并注入电解液,得到所述可视化锂离子电池1,如图1所示。The visualized
实施例2Example 2
本实施例提供一种3Ah复合极片可视化锂离子电池2,所述电池2包括11张双面涂覆的非可视化锂离子正极24、10张双面涂覆的非可视化锂离子负极25和2张单面涂覆的可视化锂离子负极23;This embodiment provides a 3Ah composite pole piece visible
所述非可视化锂离子正极的集流体242为铝箔,正极活性物质241为LiNi0.5Co0.2Mn0.3O2;The current collector 242 of the non-visualized lithium ion positive electrode is aluminum foil, and the positive electrode
所述非可视化锂离子负极的集流体252为铜箔,负极活性物质251为石墨;The current collector 252 of the non-visual lithium ion negative electrode is copper foil, and the negative electrode
所述可视化锂离子负极与实施例1的相同。The visualized lithium ion negative electrode is the same as that of Example 1.
将所述非可视化锂离子负极25和非可视化锂离子正极24交叉叠片后,在交叉叠片后的电极组的两侧设置所述可视化锂离子负极23,所述交叉叠片后的电极组与所述可视化锂离子负极23间的隔膜为celgad隔膜;After the non-visible lithium ion
将有上述电极组成的电芯在70℃真空烘箱烘24h后用透明聚酰亚胺膜(PIC)通过热压方式全封装,同时真空抽气,并注入电解液,得到所述3Ah复合极片可视化锂离子电池2。The battery cell composed of the above electrodes was dried in a vacuum oven at 70°C for 24 hours and then fully encapsulated with a transparent polyimide film (PIC) by hot pressing, vacuumed at the same time, and injected with electrolyte to obtain the 3Ah composite pole piece Visualize Li-
实施例3Example 3
本实施例提供一种可视化锂离子电池3,所述电池3包括1张双面涂覆的可视化锂离子负极31、2张双面涂覆的可视化锂离子正极32和2张与实施例1相同的单面涂覆的可视化锂离子负极33;This embodiment provides a visualized
所述双面涂覆的步骤为在单面涂覆的可视化锂离子电极的另一面涂上相同的活性物质。The step of double-side coating is to coat the same active material on the other side of the single-side-coated visualized lithium ion electrode.
将所述双面涂覆的可视化锂离子负极31放在所述两张双面涂覆的可视化锂离子正极32中间,将所述两张与实施例1相同的单面涂覆的可视化锂离子负极33放在所述双面涂覆的可视化锂离子正极32的两边,电极之间的隔膜为celgad隔膜;Place the double-coated visualized lithium ion
将有上述电极组成的电芯在70℃真空烘箱烘24h后用透明聚酰亚胺膜(PIC)通过热压方式全封装,同时真空抽气,并注入电解液,得到所述可视化锂离子电池3,如图10所示。The battery cell composed of the above-mentioned electrodes is fully packaged with a transparent polyimide film (PIC) by hot pressing after being dried in a vacuum oven at 70°C for 24 hours, and at the same time, vacuumed and injected with an electrolyte to obtain the visualized lithium-ion battery. 3, as shown in Figure 10.
对比例1Comparative Example 1
本对比例提供一种非可视化锂离子电池,所述电池包括11张与实施例2相同的双面涂覆的非可视化锂离子正极和13张与实施例2相同的双面涂覆的非可视化锂离子负极,将有上述电极组成的电芯在70℃真空烘箱烘24h后用铝塑膜通过热压方式全封装,同时真空抽气,并注入电解液,得到所述非可视化锂离子电池。This comparative example provides a non-visualized lithium-ion battery, the battery includes 11 sheets of the same double-sided coated non-visual lithium ion positive electrode as in Example 2 and 13 sheets of the same double-sided coated non-visualized lithium ion positive electrode as in Example 2 For the lithium ion negative electrode, the battery cell composed of the above-mentioned electrodes was dried in a vacuum oven at 70°C for 24 hours and then fully packaged with aluminum-plastic film by hot pressing, vacuumed at the same time, and injected with electrolyte to obtain the non-visual lithium ion battery.
测试例1Test Example 1
取实施例1制备的两支可视化锂离子电池1,对其中一支可视化锂离子电池进行管式预充,管式预充过程中由氮气一直抽气,此过程可观察充电时负极活性物质由黑色变成棕色变成黄色,放电时颜色逆向恢复。对另一支可视化锂离子电池预充不进行氮气抽气,此过程可观察到随着充电进行,当电池充到一定程度,电池开始鼓胀,且未见可视化锂离子电池的负极集流体面发生颜色变化。Take two visualized lithium-
由图2可知,上述两支可视化锂离子电池充放电容量相当。It can be seen from Figure 2 that the charge and discharge capacities of the above two visualized lithium-ion batteries are equivalent.
由图3可知,上述两支可视化锂离子电池的电压平台差异较大。It can be seen from Figure 3 that the voltage platforms of the above two visualized lithium-ion batteries are quite different.
由图4可知,其预充不进行氮气抽气的可视化锂离子电池在进行电池拆解后,发现正极表面均匀析锂。It can be seen from Fig. 4 that the pre-charged visualized lithium-ion battery without nitrogen gas extraction found that lithium was uniformly deposited on the surface of the positive electrode after the battery was disassembled.
测试例2
对实施例2的3Ah复合极片可视化锂离子电池2和对比例1的非可视化锂离子电池均进行EIS和HPPC测试,其测试结果由图6和图7所示。由图6可知,实施例2和对比例1的电池内阻差异较小;由图7可知,实施例2和对比例1的电池功率差异较小。The EIS and HPPC tests were performed on the 3Ah composite pole piece visualized lithium-
本测试例还对实施例2的3Ah复合极片可视化锂离子电池2分别在充电前和充电后满电态进行了光学显微镜拍照,如图8和图9所示。由图8和图9可观察到实施例2的3Ah复合极片可视化锂离子电池2在充电后的负极截面的亮黄色锂离子。In this test example, optical microscope photographs were taken of the fully charged state of the 3Ah composite pole piece visualized lithium-
以上已经描述了本发明的各实施例,上述说明是示例性的,并非穷尽性的,并且也不限于所披露的各实施例。在不偏离所说明的各实施例的范围和精神的情况下,对于本技术领域的普通技术人员来说许多修改和变更都是显而易见的。Various embodiments of the present invention have been described above, and the foregoing descriptions are exemplary, not exhaustive, and not limiting of the disclosed embodiments. Numerous modifications and variations will be apparent to those of ordinary skill in the art without departing from the scope and spirit of the described embodiments.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011485951.4A CN114639830A (en) | 2020-12-16 | 2020-12-16 | Visual lithium ion electrode, application and visual lithium ion battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011485951.4A CN114639830A (en) | 2020-12-16 | 2020-12-16 | Visual lithium ion electrode, application and visual lithium ion battery |
Publications (1)
Publication Number | Publication Date |
---|---|
CN114639830A true CN114639830A (en) | 2022-06-17 |
Family
ID=81945541
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202011485951.4A Pending CN114639830A (en) | 2020-12-16 | 2020-12-16 | Visual lithium ion electrode, application and visual lithium ion battery |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114639830A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116068316A (en) * | 2023-02-03 | 2023-05-05 | 济南大学 | Application of a Color Difference Technology in Detecting the State of Energy Storage Devices |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2006028316A1 (en) * | 2004-09-11 | 2006-03-16 | Lg Chem, Ltd. | Method for improvement of performance of si thin film anode for lithium rechargeable battery |
US20060110661A1 (en) * | 2004-11-25 | 2006-05-25 | Lee Young G | Anode for lithium metal polymer secondary battery comprising surface patterned anodic current collector and method of preparing the same |
JP2006216336A (en) * | 2005-02-02 | 2006-08-17 | Geomatec Co Ltd | Thin film solid secondary battery |
KR20110034332A (en) * | 2009-09-28 | 2011-04-05 | 주식회사 엘지화학 | Electrode assembly for secondary battery and secondary battery comprising same |
CN109659566A (en) * | 2019-01-15 | 2019-04-19 | 北京理工大学 | A kind of conductive metal oxide current collector coatings for aluminium ion battery |
US20210313587A1 (en) * | 2018-12-03 | 2021-10-07 | Lg Chem, Ltd. | Flexible Electrode, Secondary Battery Including the Same, and Flexible Secondary Battery |
-
2020
- 2020-12-16 CN CN202011485951.4A patent/CN114639830A/en active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2006028316A1 (en) * | 2004-09-11 | 2006-03-16 | Lg Chem, Ltd. | Method for improvement of performance of si thin film anode for lithium rechargeable battery |
US20060110661A1 (en) * | 2004-11-25 | 2006-05-25 | Lee Young G | Anode for lithium metal polymer secondary battery comprising surface patterned anodic current collector and method of preparing the same |
JP2006216336A (en) * | 2005-02-02 | 2006-08-17 | Geomatec Co Ltd | Thin film solid secondary battery |
KR20110034332A (en) * | 2009-09-28 | 2011-04-05 | 주식회사 엘지화학 | Electrode assembly for secondary battery and secondary battery comprising same |
US20210313587A1 (en) * | 2018-12-03 | 2021-10-07 | Lg Chem, Ltd. | Flexible Electrode, Secondary Battery Including the Same, and Flexible Secondary Battery |
CN109659566A (en) * | 2019-01-15 | 2019-04-19 | 北京理工大学 | A kind of conductive metal oxide current collector coatings for aluminium ion battery |
Non-Patent Citations (2)
Title |
---|
田民波,刘德令: "薄膜科学与技术手册 下", 31 May 1991, 北京:机械工业出版社, pages: 599 * |
邢建东: "工程材料基础", 31 January 2004, 北京:机械工业出版社, pages: 280 - 282 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116068316A (en) * | 2023-02-03 | 2023-05-05 | 济南大学 | Application of a Color Difference Technology in Detecting the State of Energy Storage Devices |
CN116068316B (en) * | 2023-02-03 | 2023-09-29 | 济南大学 | Application of chromatic aberration technology in detecting state of energy storage device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11177479B2 (en) | Current collector, electrode plate including the same and electrochemical device | |
US10910652B2 (en) | Current collector, electrode plate including the same and electrochemical device | |
CN108427077A (en) | A kind of experimental method for analysing lithium using reference electrode monitoring cathode | |
CN111463403A (en) | Negative electrode material modified by composite artificial solid electrolyte interface film and battery application thereof | |
CN111430664A (en) | High-load electrode, preparation method and lithium ion battery thereof | |
CN111682181A (en) | Anode lithium supplement material with core-shell structure and preparation and application thereof | |
WO2022117080A1 (en) | Lithium ion battery and power vehicle | |
WO2022000308A1 (en) | Bipolar current collector, electrochemical device, and electronic device | |
CN115911246A (en) | Pole piece and secondary battery comprising same | |
US20180076458A1 (en) | Porous Silicon Materials and Conductive Polymer Binder Electrodes | |
CN115483365A (en) | A positive electrode sheet, core and battery | |
CN112290080A (en) | Lithium ion battery capable of being charged at low temperature | |
US20240079560A1 (en) | Method for manufacturing anode, and secondary battery with improved rapid charging performance, having anode according thereto | |
CN109786841B (en) | A kind of preparation method of lithium ion electrochemical energy storage device | |
CN214428670U (en) | Lithium ion battery capable of being charged at low temperature | |
US11137450B2 (en) | Method of determining a state or a state change of an electrochemical energy storage device and energy storage device prepared therefor | |
CN110808406A (en) | Integrated flexible lithium ion battery and preparation method thereof | |
CN110622344B (en) | Lithium secondary battery | |
CN111952537A (en) | A three-dimensional current collector of cellulose and transition metal carbon/nitride composite and its preparation method and application | |
JP7595085B2 (en) | Current collector, electrochemical device and electronic device including said current collector | |
US11670755B2 (en) | Modified electrolyte-anode interface for solid-state lithium batteries | |
CN110600285B (en) | A method for pre-insertion of lithium without precipitation of lithium ion electrochemical energy storage device negative electrode | |
CN115863739A (en) | Lithium metal battery and preparation method thereof | |
CN115792617A (en) | All-solid-state battery pole piece short circuit detection method | |
CN114639830A (en) | Visual lithium ion electrode, application and visual lithium ion battery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
WD01 | Invention patent application deemed withdrawn after publication | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20220617 |