[go: up one dir, main page]

CN114634938A - 植物乳杆菌基因fol KE在叶酸生物合成中的应用 - Google Patents

植物乳杆菌基因fol KE在叶酸生物合成中的应用 Download PDF

Info

Publication number
CN114634938A
CN114634938A CN202210212625.9A CN202210212625A CN114634938A CN 114634938 A CN114634938 A CN 114634938A CN 202210212625 A CN202210212625 A CN 202210212625A CN 114634938 A CN114634938 A CN 114634938A
Authority
CN
China
Prior art keywords
folic acid
fol
gene
strain
lactobacillus plantarum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210212625.9A
Other languages
English (en)
Inventor
柳陈坚
孙洪琪
李晓然
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kunming University of Science and Technology
Original Assignee
Kunming University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kunming University of Science and Technology filed Critical Kunming University of Science and Technology
Priority to CN202210212625.9A priority Critical patent/CN114634938A/zh
Publication of CN114634938A publication Critical patent/CN114634938A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/195Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria
    • C07K14/335Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria from Lactobacillus (G)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/74Vectors or expression systems specially adapted for prokaryotic hosts other than E. coli, e.g. Lactobacillus, Micromonospora
    • C12N15/746Vectors or expression systems specially adapted for prokaryotic hosts other than E. coli, e.g. Lactobacillus, Micromonospora for lactic acid bacteria (Streptococcus; Lactococcus; Lactobacillus; Pediococcus; Enterococcus; Leuconostoc; Propionibacterium; Bifidobacterium; Sporolactobacillus)

Landscapes

  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Molecular Biology (AREA)
  • Wood Science & Technology (AREA)
  • Biophysics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biochemistry (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Plant Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Microbiology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Medicinal Chemistry (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

本发明公开了一种植物乳杆菌(Lactobacillus plantarum)基因folKE的新用途,即其在叶酸生物合成中的应用,所述基因folKE的核苷酸序列如SEQ ID NO:1所示;本发明利用温度敏感型质粒pFED760通过同源重组技术构建了fol KE基因的敲除菌株Δfol KE,观察其细胞形态及菌株生长状态,并测定菌株产叶酸能力,结果显示,与野生型菌株相比,Δfol KE菌株产叶酸量显著减少,fol KE基因在叶酸合成中起关键作用,本发明通过探究叶酸合成中的关键基因的地位,有助于提高叶酸产量,为叶酸食品的开发奠定前期基础。

Description

植物乳杆菌基因fol KE在叶酸生物合成中的应用
技术领域
本发明属于叶酸生物合成应用领域,具体涉及一种植物乳杆菌基因folKE在植物乳杆菌叶酸生物合成中的应用。
背景技术
叶酸(Folic acid),又称蝶酰谷氨酸、维生素B9、抗贫血因子、维生素M、维生素Bc等,是一种水溶性维生素。叶酸为黄色结晶,微溶于水,不溶于乙醇,见光易分解。叶酸的缺乏会引起多种疾病,常见的为巨幼细胞贫血、唇腭裂及抑郁症。
天然叶酸虽然广泛存在,但由于其自身的不稳定性以及烹制过程高损失率使得日常摄入不能满足人体所需,尤其是孕妇。另外,由于地理位置因素,更多生活在偏远地区的人群更加无法摄入每日所需。因此,开发富含叶酸的食品或者相关制剂是解决问题的最佳方案。
叶酸能够通过工业生产来合成,但为了保护环境,多家工厂被关闭,因此寻求对环境友好的合成方法势在必行。生物合成叶酸有着其无可比拟的优势,最为突出的就是天然叶酸多以蝶酰多谷氨酸形式存在,与合成叶酸的蝶酰单谷氨酸相比,不易对叶酸形成依赖性。因为如果形成依赖性,势必会加重对肝脏的负担,因此,我们需要天然合成的叶酸来解决叶酸摄入不足的问题。
通过植物乳杆菌合成的叶酸因其安全性在市场上更具有竞争力,但同样也存在叶酸产量不高的问题。因此对植物乳杆菌生物合成叶酸的关键酶基因作用机理进行探究就很有必要,以期为将来叶酸食品的开发奠定基础。
发明内容
针对现有技术存在的不足,本发明提供了一种植物乳杆菌(Lactobacillusplantarum)基因 folKE 基因的用途,即基因folKE在植物乳杆菌叶酸合成中的用途,所述基因folKE的核苷酸序列如SEQ ID NO: 1所示。
本发明从植物乳杆菌(Lactobacillus plantarum)YM-4-3中分别用如下引物克隆基因 fol KE的上下游同源臂(分别为991 bp和 1000 bp):
up-KEF:5’- GCGTCGACACGCACTTTTTTCGGTTCC-3’和up-KER:5’- CCTGTATCCACTCAATCACCTAACTCACTCACATTTCT-3’;
down-KEF:5’- AGAAATGTGAGTGAGTTAGGTGATTGAGTGGATACAGG-3’和down-KER:5’-CGGAATTCGCCACTAGTGCTGCCATGC-3’;
将 fol KE基因的上下游同源臂与温度敏感型质粒 pFED760 分别用SalⅠ和EcoRⅠ酶切后再进行连接,获得敲除载体,然后将其电转入植物乳杆菌YM-4-3感受态细胞中,挑选转化子进行菌液验证后获得敲除菌株ΔfolKE,通过实验比较野生型菌株YM-4-3与敲除菌株 Δfol KE的菌株生长状态和叶酸产量,由此证明folKE基因在菌株生长状态及叶酸合成中起关键作用,本发明在叶酸生物合成的应用领域具有很大挖掘潜力。
与现有技术相比本发明具有以下优势:
1、基因来自于食源性植物乳杆菌,安全性高,可用于后期食品发酵领域;
2、利用食源性植物乳杆菌生成叶酸,降低生产成本,能提高经济效益;
3、与工业合成叶酸相比,生物合成叶酸具有较佳的环境友好性;
4、folKE基因在叶酸合成中的关键作用,为叶酸合成功能性食品的研发提供一定理论基础,本发明操作简单,适于工业化生产和市场推广应用。
附图说明
图1是本发明folKE基因敲除株的菌液PCR验证,其中泳道M:BM5000 DNA marker;泳道1、2、4和5:敲除菌株∆folKE基因组DNA为模板的PCR产物;泳道3:植物乳杆菌野生型菌株基因组DNA为模板的PCR产物;6为空白对照;
图2是本发明植物乳杆菌野生型菌株和敲除菌株∆fol KE的扫描及透射电镜图;A :野生型菌株扫描电镜图;B:敲除菌株∆fol KE扫描电镜图;C:野生型菌株透射电镜图;D:敲除菌株∆fol KE透射电镜图;
图3是本发明植物乳杆菌野生型菌株(A)和敲除菌株∆folKE(B)的菌液生长状态;
图4是本发明植物乳杆菌野生型菌株和敲除菌株∆folKE的OD600和叶酸含量。
具体实施方式
下面结合附图和实施例对本发明作进一步详细说明,但本发明保护范围不局限于所述内容,实施例中使用的试剂和方法,如无特殊说明,均采用常规试剂和使用常规方法。温度敏感型质粒pFED760由伊利诺伊大学Michael J Federle 博士惠赠;下述实施例中的结果如无特别说明,均为三次重复的平均值。
实施例1:基因folKE上下游同源臂克隆
1、PCR扩增上下游同源臂
使用CTAB/酶法提取食源性植物乳杆菌YM-4-3基因组总DNA,以提取基因组为模板,利用引物对up-KEF(5’- GCGTCGACACGCACTTTTTTCGGTTCC-3’,下划线为SalⅠ酶切位点)+up-KER(5’- CCTGTATCCACTCAATCACCTAACTCACTCACATTTCT-3’)和down-KEF(5’- AGAAATGTGAGTGAGTTAGGTGATTGAGTGGATACAGG-3’)+ down-KER(5’-CGGAATTCGCCACTAGTGCTGCCATGC-3’,下划线为EcoRⅠ酶切位点)分别扩增folKE基因的上下游同源臂,PCR反应体系及扩增条件如下:
(1)PCR反应体系
Figure DEST_PATH_IMAGE001
(2)PCR扩增条件
95℃预变性3min;95℃变性15s;60~63℃退火30s;72℃延伸1min;循环30次;72℃延伸5min,12℃保存(上游退火温度60℃,下游退火温度63℃),反应完成后取5µL,在1%琼脂糖凝胶中进行电泳分析,folKE基因的上下游同源臂的核苷酸序列如SEQ ID NO: 2、SEQ IDNO: 3所示。
2、基因敲除片段克隆与测序
以上下游同源臂PCR产物各1μL为模板,up-KEF和down-KER为引物,按照上述PCR反应体系和扩增条件(退火温度为 61℃,延伸时间改为2min)进行重叠PCR。切胶回收预期大小PCR产物(即基因敲除片段),按照大连宝生物公司(中国)TA克隆试剂盒说明书,将PCR产物连接至pMD19-T载体中。通过热激转化法将连接产物导入大肠杆菌DH5α感受态细胞中,涂布于Amp-LB平板上。37℃过夜培养后,随机选取10~15单菌落,提取其细胞中质粒,并用SalⅠ和EcoRⅠ进行酶切验证,阳性质粒送测序公司测序。
实施例2:fol KE基因敲除载体构建
使用限制性内切酶SalⅠ和EcoRⅠ分别对测序正确的基因敲除片段和温度敏感型质粒pFED760进行同步酶切,酶切体系为:SalⅠ,1 µL;EcoRⅠ,1 µL;10×H buffer,2 µL;基因敲除片段或pFED760,10~16µL;加灭菌去离子水到20µL,37℃酶切4h;回收酶切产物,按照目的基因:载体= 4:1~2:1(摩尔比)加样后,加入T4 DNA连接酶在16℃连接12~16h。利用热激转化法将连接产物导入大肠杆菌DH5α感受态细胞中,随后涂布于红霉素-LB固体平板上。28℃过夜培养后,提取10~15单菌落细胞中质粒,并用SalⅠ和EcoRⅠ酶切验证以获得阳性质粒,命名为pFED760-folKE。
实施例3:folKE基因敲除菌株构建
1、folKE基因敲除载体导入植物乳杆菌感受态细胞
植物乳杆菌感受态细胞的制备如下:将植物乳杆菌YM4-3菌株解冻后按4‰接种量接种至MRS肉汤培养基中,37℃静置培养12h,取1mL接种于含有2.5%甘氨酸的50mL MRS肉汤培养基中,在培养6h后,测其OD600值达到0.6时停止培养。4℃、4000 rpm/min条件下离心10min收集菌液,之后用25mL灭菌的无菌水洗涤两次,再次离心,注意全程低温操作。弃上清,将菌体重悬于0.05mol/L的EDTA溶液中,冰浴5min,再加入25mL冰冷的灭菌水,于4℃、8000rpm/min下离心5min,再次用25mL冰冷的灭菌水洗涤后,用25mL电击缓冲液(0.5mol/L蔗糖、10%甘油),在4℃,8000rpm/min下离心10min,重复上述步骤一次,最后将菌体重悬于0.8mL电击缓冲液中,将上述混合液按每个90μL的体积分装于灭菌的1.5mL的离心管中(注意分装时在冰上操作),-80℃保存。
在90μL植物乳杆菌YM-4-3感受态细胞中加入10μL基因敲除载体pFED760-folKE,轻轻混匀,冰浴5min后转入预冷电击杯中(间距2mm)进行电击。电击完成后迅速向电转杯中加入900μL的新鲜MRS培养液,用枪头轻轻吹打混匀后,将混合液转移至无菌、1.5mL离心管中,28℃静止培养2.5~3h使细胞复苏;培养后菌液8000rpm离心3min,弃900μL上清液,用剩余上清液重悬菌体,涂布于含有5μg/mL红霉素MRS固体平板上,28℃静置培养。
2、folKE基因敲除菌株的筛选和验证
随机选取2~3个单菌落,转接于含有5μg/mL红霉素的MRS液体培养基中,28℃静置培养直至菌液OD600为0.2~0.3时,将菌液转移至37℃继续静置培养过夜,该培养菌液稀释103~105倍后涂布于含有5µg/mL红霉素的MRS固体平板上,37℃静置培养24h,挑取单克隆,接种至1mL含有5µg/mL红霉素的MRS液体培养基中37℃静置培养过夜,该培养菌液按1%接种至不含抗生素的MRS液体培养基中,28℃静置培养过夜,然后菌液稀释103~105倍后涂布于无抗生素的MRS固体平板,37℃静置培养至长出单克隆,挑取较小单菌落一一对应划线于含有5µg/mL红霉素和不含抗生素的MRS固体平板上,37℃静置培养24h,挑取在含抗生素的MRS琼脂平板上无法生长,而在不含抗生素的平板上可以生长的菌落进行菌液PCR验证。菌液PCR验证:pFED760FF:5’- CTAAAAATCAGTTTCATCAAGCAAT-3’;folKE-RR:5’-CATCGCAGCCGTGGTCATA-3’;野生型菌株PCR片段比敲除菌株大570bp,结果见图1。
实施例4:ΔfolKE菌株细胞形态及生长状态检测
1、细胞形态观察
分别取1.5mL培养好的植物乳杆菌野生型菌株和基因敲除菌株ΔfolKE,5000rpm离心5min,弃上清后,菌体先用3.5%戊二醛固定液固定,随后按照下述步骤处理电镜观察样品。
(1)扫描电镜样品制备
戊二醛前固定后→磷酸缓冲液清洗→1%锇酸固定→磷酸缓冲液清洗→不同梯度乙醇脱水→叔丁醇置换→临界点冷冻干燥→离子溅射金→扫描电镜观察。
(2)投射电镜样品制备
戊二醛前固定后→磷酸缓冲液清洗→1%锇酸固定→磷酸缓冲液清洗→乙醇、丙酮逐级脱水→环氧树脂618渗透→包埋→半薄切片→光镜定位,修块→Leica-R型超薄切片机切片→柠檬酸铅-醋酸铀双染色→透射电镜观察。
由图2A可知,野生株细胞呈杆状,表面光滑、形状完整,且质壁未发生分离。与植物乳杆菌野生型菌株相比,扫描电镜发现,基因敲除菌株ΔfolKE的胞质出现皱缩,发生质壁分离,菌株之间粘附性增强,有些菌体形态呈不规则杆状,甚至出现凹陷(图2B);另外,透射电镜结果显示,基因敲除菌株ΔfolKE部分细胞的细胞壁变薄,胞内容物凝集成颗粒状,甚至有的细胞细胞壁发生破裂,内容物外泄(图2C和图2D);这些结果说明folKE基因敲除改变了细胞结构形态,folKE基因与植物乳杆菌细胞形态维持密切相关。
2、宏观菌液状态观察
将活化后的植物乳杆菌野生型菌株和基因敲除菌株ΔfolKE按相同接种量接种至5mL新鲜MRS液体培养基中,37℃静置培养18h;菌株生长情况如图3所示,相比于野生型菌株,敲除菌株ΔfolKE生长速度明显变慢,菌体明显沉降于液体底部,即沉淀生长,所以敲除folKE基因后改变了菌株生长状态。
3、基因敲除菌株ΔfolKE动态生长监测
将菌株活化计数后,按照1.0×106CFU/mL接种量接种至300mL新鲜MRS液体培养基中,37℃静置培养120h,每隔2h取样,利用分光光度计测定OD600,结果见图4,通过比较OD600发现,基因敲除菌株ΔfolKE生长缓慢,野生型YM-4-3菌株的OD600在8h-12h期间急剧上升,在24h之后保持相对稳定,OD600的最大值为7.709。敲除株Δfol KE的OD600在36h前一直平稳上升,上升幅度相对较小,之后上下稍有波动,基本维持在2.5左右,与野生型菌株相差较大。
实施例5:基因敲除菌株ΔfolKE叶酸含量测定
将活化后的植物乳杆菌野生型菌株和基因敲除菌株ΔfolKE按1.0×107 CFU/mL浓度接种于30mL FACM液体培养基中,37℃静置培养72h,每隔12h取出5mL菌液,避光超声破碎处理20min,12000rpm离心10min后,取1mL上清液冷冻干燥;随后加入1mL 1%氨水溶解,超声5min,12000rpm离心10min,上清液用于HPLC分析叶酸含量。
(1)色谱条件:色谱柱,Waters ACQUITY UPLC BEH Amide柱(2.1mm × 100mm,1.7µm);流动相为甲醇(含5mmol/L甲酸铵)和水(含5mmol/L甲酸铵);梯度洗脱:0~5min,98%~95%甲醇;5~10min,95%~55%甲醇;10~12min,55%甲醇;12~14min,55%~98%甲醇;14~20min,98%甲醇。流速为0.2 mL/min,柱温为35℃,进样量为5µL。
(2)质谱条件:4500QTrap质谱参数设置如下:气帘气(CUR)25,碰撞气(CAD)中等,离子源气1(GS1)45,离子源气2(GS2)50,电喷雾电压5500 V,加热器温度350℃,选用正离子模式进行检测,离子源为ESI电离源。
由图4可知,植物乳杆菌野生型菌株和基因敲除菌株ΔfolKE发酵液中叶酸含量呈波动式增减;随后基因敲除菌株ΔfolKE叶酸含量虽有波动,但一直比野生型菌种低,该结果说明folKE基因敲除致使生长缓慢,验证了之前OD600的变化,同时严重影响了菌株叶酸产量,证明folKE基因在植物乳杆菌叶酸合成中发挥关键作用,因此,后续可通过对基因folKE的改变提高叶酸产量,为植物乳杆菌YM-4-3菌株及其代谢产物在工业上的应用提供理论基础。
序列表
<110> 昆明理工大学
<120> 植物乳杆菌基因 fol KE在叶酸生物合成中的应用
<160> 9
<170> SIPOSequenceListing 1.0
<210> 1
<211> 570
<212> DNA
<213> 植物乳杆菌YM 4-3(Lactobacillus plantarum YM 4-3)
<400> 1
atgattgatg agaagaacca agcaaagatt gagcatgcag tacgagaaat tttaagtgca 60
gttggtgaag atcctgaccg accgggatta gtagaaacac cagcacgggt tgcacgaatg 120
tatgcggaag ttttcgctac taagaccgcc gcaccatttg ataattataa actgttcaag 180
gttgagcatc cgactgaaat ggtattactt aaggatattc cattctattc gatgtgtgag 240
catcaccttt tgccgttttt tggcacggtt caagttgctt atgtgccgca gcatgaacaa 300
gtgattggct tgagtaagat tcctcgcttg attgactatt gcagtcaaca gccgaacgtt 360
caggagcggt tgacagtttc cattgcaaca gaattacaac gaattcttga cccggctggg 420
atcgcggtct caatcacggc gcggcacatg tgcatggaga tgcggggtgt tagcaaaccg 480
ggtgtgcata cggaaagtag ctattacagt ggtcaattca agacggattt agacttgaaa 540
cgagaattct tacagcgaat cgcaaagtag 570
<210> 2
<211> 991
<212> DNA
<213> 植物乳杆菌YM 4-3(Lactobacillus plantarum YM 4-3)
<400> 2
acgcactttt ttcggttccc gaacgattgc tagtttttat ggggttattt ggctgattac 60
tatcatattg agcgtccttc atgctatgat tataagtaaa aatgagcaag aaagaggctg 120
ggatacttat gggcatgatt cgaattaata atttacgctt tcacacgttt aacggggtac 180
ttccggaaga acggcgtaat ggtcaacaac tagggctaga tattgccatt aaatatccta 240
tcgaaaccaa ggttcaacac gatgacgttc acgagaccat caattacgcg gcggtccgta 300
acgtggtcga tgaatttgta acgacccatt catacaagtt gattgaatcg ctagctaacc 360
acttattgca gacgttattg acaagttttc ccgcggcgga tgcaatcaat attaaaattc 420
gtaaatatag cgtaccaatg cctggaatct ttgatgatgt ggaaattgag gtggagggga 480
cgccgaatgg caagtaggga agaacgggtt tatttgagtg ttggttccaa tattcatccg 540
cgcgtccaaa atattcagca agcccttagc cgattacgag ccgtcaatgg ggtaaacgtg 600
attgacgaat ctcattggta tgagactcaa ccgtggggaa agcgtgatca ggccaatttt 660
tacaatgttt cggtatcctt aacgactaat ttgacaccag aagaactatt ggatgaatta 720
catacaattg agcaggcggg ccaccgccaa cgcttggttc actggggacc acgtacgatt 780
gatttggaca ttattttttg gggcgaccgg caaatcaaca cagcgacgct gacgattccg 840
catgcgcagg cagctaagcg caactttgtg ctactgccaa ctgctgaaat cgccaaaact 900
gatgtgttag ttggaccaca agtggcccaa ttgattgcgg ctaatcagga tcagagttgg 960
attaaaaaag taagaaatgt gagtgagtta g 991
<210> 3
<211> 1000
<212> DNA
<213> 植物乳杆菌YM 4-3(Lactobacillus plantarum YM 4-3)
<400> 3
gtgattgagt ggatacaggg acgattgaac aacgttatca ggacttatta gcccaactaa 60
atcaagccat gttagccaat aatcatcagc gtgttccgtt attacggcgc atcatggcac 120
atcttggcca ccctgaccat tattaccatg tgatccatat cgctggaact aatggcaaag 180
gctctacggg agccatgtta gccagtatcc tgcgggcgca agggtatcaa gttggccgct 240
tcagcagtcc cgcgattaat gatgcgcgtg aacaactgca atgcaatggg acgtggatca 300
gtccagcgga atttatcgat acgtatcgtg aaattctacc ggttctgcaa aatatgggac 360
tgacggctag cgatgtctcc atctttgaat ggttctttct cattagtgtc gtttggtttc 420
ggaatcaaaa cgtgcaatgg gcggtcattg aagccggttt gggtggcttg tatgatgcga 480
ctaacgcctt agccagtccc caactcacgg tatttactaa gattgccctc gatcatacca 540
ccattcttgg gcccacaatc accgcgattg cgcaaaataa gtcaaagatc attaagcccc 600
atacaacagc agtgacattg gctgaccaac acccagaagc cctggctgtt ttgcagaccg 660
aagcgctcaa tcaaggtgtt cggctagtga ccgctaagca cgcgcaactg acggtgactg 720
ggcaaacact cacgcaaacc gtcgttgatg cgcacagtca gctttttgat tggacgcaat 780
taacggtcgg actgagtggc acctatcagc tacaaaatct gcggttggtt ttaactgtgg 840
ttgcagtact acaacagcaa caagttaact tgacgaacag tgcggttcgc cgaggcttgc 900
aacaagtttc cttgccaggc cggttgaccg tgttacagga gcaacctgtc attattgccg 960
atggggcgca taatccggat ggcatggcag cactagtggc 1000
<210> 4
<211> 27
<212> DNA
<213> 人工序列(Artificial)
<400> 4
gcgtcgacac gcactttttt cggttcc 27
<210> 5
<211> 38
<212> DNA
<213> 人工序列(Artificial)
<400> 5
cctgtatcca ctcaatcacc taactcactc acatttct 38
<210> 5
<211> 38
<212> DNA
<213> 人工序列(Artificial)
<400> 5
agaaatgtga gtgagttagg tgattgagtg gatacagg 38
<210> 6
<211> 27
<212> DNA
<213> 人工序列(Artificial)
<400> 6
cggaattcgc cactagtgct gccatgc 27
<210> 7
<211> 25
<212> DNA
<213> 人工序列(Artificial)
<400> 7
ctaaaaatca gtttcatcaa gcaat 25
<210> 8
<211> 19
<212> DNA
<213> 人工序列(Artificial)
<400> 8
catcgcagcc gtggtcata 19

Claims (1)

1. 一种植物乳杆菌(Lactobacillus plantarum)基因fol KE在叶酸生物合成中的应用,所述基因fol KE的核苷酸序列如SEQ ID NO: 1所示。
CN202210212625.9A 2022-03-06 2022-03-06 植物乳杆菌基因fol KE在叶酸生物合成中的应用 Pending CN114634938A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210212625.9A CN114634938A (zh) 2022-03-06 2022-03-06 植物乳杆菌基因fol KE在叶酸生物合成中的应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210212625.9A CN114634938A (zh) 2022-03-06 2022-03-06 植物乳杆菌基因fol KE在叶酸生物合成中的应用

Publications (1)

Publication Number Publication Date
CN114634938A true CN114634938A (zh) 2022-06-17

Family

ID=81947815

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210212625.9A Pending CN114634938A (zh) 2022-03-06 2022-03-06 植物乳杆菌基因fol KE在叶酸生物合成中的应用

Country Status (1)

Country Link
CN (1) CN114634938A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112961878A (zh) * 2021-03-08 2021-06-15 昆明理工大学 一种植物乳杆菌的基因在叶酸生物生成中的应用

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070031486A1 (en) * 2005-08-04 2007-02-08 Squashic Steven A Nutritional supplement for use under physiologically stressful conditions
CN101939441A (zh) * 2007-12-06 2011-01-05 食品和营养托浦研究所基金会 增加乳杆菌发酵瓜类汁液中的叶酸盐产生水平
US20140073598A1 (en) * 2012-09-11 2014-03-13 Jaymac Pharmaceuticals Llc Multiple folate formulation and use thereof
WO2015047199A2 (en) * 2013-09-30 2015-04-02 National Science And Technology Development Agency A bacterial surrogate for testing of antimalarials: thya knockout, fola knockout, folp knockout, and folk knockout bacteria for testing of inhibition of antifolate pathway
US20180166174A1 (en) * 2016-08-02 2018-06-14 Thomas J. Lewis Disease Mitigation and Elimination Health Learning Engine
CN109735556A (zh) * 2019-02-22 2019-05-10 昆明理工大学 引导糖基转移酶基因的用途
CN109810991A (zh) * 2019-03-02 2019-05-28 昆明理工大学 二氢蝶酸合酶基因folP的用途
CN111235169A (zh) * 2020-02-03 2020-06-05 昆明理工大学 一种GTP环化水解酶I基因folE及应用
CN112280795A (zh) * 2020-11-17 2021-01-29 昆明理工大学 糖基转移酶基因的用途
CN112795527A (zh) * 2021-03-05 2021-05-14 昆明理工大学 二氢蝶呤醛缩酶基因的用途
CN112813085A (zh) * 2021-03-05 2021-05-18 昆明理工大学 焦磷酸酶基因的用途
CN112852844A (zh) * 2021-03-05 2021-05-28 昆明理工大学 羟甲基二氢蝶呤焦磷酸激酶基因folK的用途
CN112961878A (zh) * 2021-03-08 2021-06-15 昆明理工大学 一种植物乳杆菌的基因在叶酸生物生成中的应用

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070031486A1 (en) * 2005-08-04 2007-02-08 Squashic Steven A Nutritional supplement for use under physiologically stressful conditions
CN101939441A (zh) * 2007-12-06 2011-01-05 食品和营养托浦研究所基金会 增加乳杆菌发酵瓜类汁液中的叶酸盐产生水平
US20110159148A1 (en) * 2007-12-06 2011-06-30 Hendrikus Wegkamp Increased folate production levels in lactobacillus fermenting melon juice
US20140073598A1 (en) * 2012-09-11 2014-03-13 Jaymac Pharmaceuticals Llc Multiple folate formulation and use thereof
WO2015047199A2 (en) * 2013-09-30 2015-04-02 National Science And Technology Development Agency A bacterial surrogate for testing of antimalarials: thya knockout, fola knockout, folp knockout, and folk knockout bacteria for testing of inhibition of antifolate pathway
US20180166174A1 (en) * 2016-08-02 2018-06-14 Thomas J. Lewis Disease Mitigation and Elimination Health Learning Engine
CN109735556A (zh) * 2019-02-22 2019-05-10 昆明理工大学 引导糖基转移酶基因的用途
CN109810991A (zh) * 2019-03-02 2019-05-28 昆明理工大学 二氢蝶酸合酶基因folP的用途
CN111235169A (zh) * 2020-02-03 2020-06-05 昆明理工大学 一种GTP环化水解酶I基因folE及应用
CN112280795A (zh) * 2020-11-17 2021-01-29 昆明理工大学 糖基转移酶基因的用途
CN112795527A (zh) * 2021-03-05 2021-05-14 昆明理工大学 二氢蝶呤醛缩酶基因的用途
CN112813085A (zh) * 2021-03-05 2021-05-18 昆明理工大学 焦磷酸酶基因的用途
CN112852844A (zh) * 2021-03-05 2021-05-28 昆明理工大学 羟甲基二氢蝶呤焦磷酸激酶基因folK的用途
CN112961878A (zh) * 2021-03-08 2021-06-15 昆明理工大学 一种植物乳杆菌的基因在叶酸生物生成中的应用

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
STOFILOVA,J.等: "Lactiplantibacillus plantarum strain LS/07 chromosome, complete genome" *
WILBERT SYBESMA等: "Increased Production of Folate by Metabolic Engineering of Lactococcus lactis" *
李书鸿: "植物乳杆菌YM-4-3菌株叶酸生物合成途径关键基因folP和folE的功能研究" *
李强坤;柳陈坚;罗义勇;杨恩;李晓然;: "发酵条件对植物乳杆菌叶酸合成的影响" *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112961878A (zh) * 2021-03-08 2021-06-15 昆明理工大学 一种植物乳杆菌的基因在叶酸生物生成中的应用
CN112961878B (zh) * 2021-03-08 2023-04-25 昆明理工大学 一种植物乳杆菌的基因在叶酸生物生成中的应用

Similar Documents

Publication Publication Date Title
CN111235169A (zh) 一种GTP环化水解酶I基因folE及应用
CN110157654B (zh) 一种纳豆芽孢杆菌重组菌及其构建方法与应用
CN109022476B (zh) 一种地衣芽孢杆菌CRISPR-Cas9基因编辑系统及其应用
CN103468581B (zh) 一种通过同源重组敲除ura5基因的高山被孢霉尿嘧啶营养缺陷型及其构建方法
CN109536463B (zh) 鸭瘟病毒gE和gI双基因无痕缺失株DPV CHv-ΔgE+ΔgI及其构建方法
CN107723252A (zh) 生产巴伦西亚橘烯和诺卡酮的重组解脂耶氏酵母菌及构建方法
CN106754466A (zh) 一种用于高效外源蛋白表达和高密度培养的枯草芽孢杆菌
CN101948794A (zh) 产植物类黄酮合成相关酶的工程乳酸菌及其构建和应用
CN114634938A (zh) 植物乳杆菌基因fol KE在叶酸生物合成中的应用
CN106191084A (zh) 一种α‑L‑鼠李糖苷酶基因的克隆、表达及应用
CN115478024B (zh) 一株非转基因高核酸酿酒酵母菌株及其应用
CN110079567B (zh) 一种过表达fimH基因的重组大肠杆菌在发酵生产氨基酸中的应用
CN108220219A (zh) 一套植物乳杆菌食品级表达系统及其在异源蛋白表达中的应用
CN110055205A (zh) 一种敲除fimH基因的重组大肠杆菌及其构建方法与应用
CN112852847B (zh) 一种重组酿酒酵母菌株及其构建方法与应用
CN112662576B (zh) 一株过表达Gis4的酿酒酵母基因工程菌及其构建方法和应用
CN109593730B (zh) 鸭瘟病毒Lorf5基因无痕缺失株DPV CHv-ΔLorf5及其构建方法
CN108018216A (zh) 提高柠檬酸发酵中糖利用率和柠檬酸产量的方法及应用
CN101654681A (zh) 一种乳酸菌食品级表达载体pMG36N及其制备方法
CN118028344A (zh) 一种动态调控角鲨烯合成的工程菌及其构建方法与应用
CN112662700B (zh) 用于谷胱甘肽生物合成的重组质粒的构建方法
CN113416739B (zh) 鲁氏酵母菌基因在提高微生物产hdmf的产量中的应用
CN108588107A (zh) 缺失asd及表达lacI的猪霍乱沙门菌C500株
CN119040231B (zh) 一种高自聚集能力的基因工程菌及其构建方法和应用
AU2020101881A4 (en) DPV CHv-ΔgI of gI gene-free strain of duck plague virus and its construction method

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20220617

RJ01 Rejection of invention patent application after publication