[go: up one dir, main page]

CN114634353A - 一种低介低损耗近零温漂低温共烧陶瓷材料及其制备方法 - Google Patents

一种低介低损耗近零温漂低温共烧陶瓷材料及其制备方法 Download PDF

Info

Publication number
CN114634353A
CN114634353A CN202011487765.4A CN202011487765A CN114634353A CN 114634353 A CN114634353 A CN 114634353A CN 202011487765 A CN202011487765 A CN 202011487765A CN 114634353 A CN114634353 A CN 114634353A
Authority
CN
China
Prior art keywords
low
temperature
fired ceramic
ceramic material
dielectric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202011487765.4A
Other languages
English (en)
Other versions
CN114634353B (zh
Inventor
宋锡滨
闫鑫升
朱恒
刘振锋
奚洪亮
艾辽东
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maxtor Technology Innovation Shandong Co ltd
Original Assignee
Shandong Sinocera Functional Material Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shandong Sinocera Functional Material Co Ltd filed Critical Shandong Sinocera Functional Material Co Ltd
Priority to CN202011487765.4A priority Critical patent/CN114634353B/zh
Priority to TW110133109A priority patent/TW202225113A/zh
Publication of CN114634353A publication Critical patent/CN114634353A/zh
Application granted granted Critical
Publication of CN114634353B publication Critical patent/CN114634353B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/062Glass compositions containing silica with less than 40% silica by weight
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62625Wet mixtures
    • C04B35/6263Wet mixtures characterised by their solids loadings, i.e. the percentage of solids
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3227Lanthanum oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3229Cerium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3251Niobium oxides, niobates, tantalum oxides, tantalates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/36Glass starting materials for making ceramics, e.g. silica glass
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6583Oxygen containing atmosphere, e.g. with changing oxygen pressures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Inorganic Insulating Materials (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

本发明涉及电子陶瓷材料及其制造技术领域,具体涉及一种具有低介低损耗近零温漂性能的低温共烧陶瓷材料,并进一步公开其制备方法。本发明所述低介低损耗近零温漂的低温共烧陶瓷材料由ZnO‑SiO2‑Al2O3玻璃、Al2O3、稀土氧化物制备而成,使用SPDR测试方法,在室温以及测试频率20GHz下,介电常数为7±0.5,介电损耗<2×10‑3;在‑40℃~110℃温度范围内以及测试频率20GHz下,温漂为±3ppm/℃以内;此外,低温共烧陶瓷材料的抗弯强度>150MPa,可应用于5G通讯毫米波天线模组。

Description

一种低介低损耗近零温漂低温共烧陶瓷材料及其制备方法
技术领域
本发明涉及电子陶瓷材料及其制造技术领域,具体涉及一种具有低介低损耗近零温漂性能的低温共烧陶瓷材料,并进一步公开其制备方法。
背景技术
近年来,在半导体技术飞速发展的带动下,电子元器件不断向小型化、集成化和高频化方向发展。选择适当的能与银等导电材料在不超过900℃的温度下低温共烧的陶瓷,从而制作多层元件或把无源器件埋入多层电路基板中,成为上述趋势的必然要求,作为无源集成元件主要介质材料的低温共烧陶瓷也因此成为一种重要的发展趋势。
低温共烧陶瓷LTCC(Low Temperature Co-fired Ceramic)材料主要是将适量烧结助剂引入介质陶瓷系统后,利用液相烧结机制促进材料的致密化,所述烧结助剂通常为低熔点氧化物或低熔点玻璃,例如,在CaO-B2O3体系中加入B2O3、Bi2O3等可使烧结温度下降至950℃。低温共烧陶瓷技术具有阻抗可控、传输损耗低、组装密度高、功能模块丰富等优点,是微波/毫米波电路组件实现小型化、多功能化、高可靠性化、低成本化不可或缺的关键技术。
研究表明,高频低介低损耗LTCC基板材料的开发是LTCC技术能否在微波/毫米波领域成功应用的关键。目前,国内外广泛应用的LTCC基板材料主要分为两大类:玻璃/陶瓷体系和微晶玻璃体系。玻璃/陶瓷体系的理化性能主要由添加的陶瓷相决定,具有性能稳定、工艺适应性好等优点;但其组成含有近50%的玻璃相,导致基板的高频介电损耗大,限制了其高频应用,如硼硅酸铅玻璃/氧化铝体系的应用频率一般在8GHz以下。微晶玻璃体系的理化性能由析出的晶体种类与数量控制,这类基板材料烧结后残余玻璃相极少,故具有优良的高频性能,如CaO-B2O3-SiO2微晶玻璃的应用频率可达100GHz;但微晶玻璃体系的析晶行为对烧结工艺极其敏感,导致产品工艺控制难度大,产品性能稳定性差。
国防科技大学的陈兴宇等人以无铅低软化点的La2O3-B2O3-Al2O3(LBA)微晶玻璃和Al2O3制备了新型微晶玻璃/陶瓷复合材料,并在900℃烧结的60%-LBA玻璃+40%-Al2O3复合材料,其在8.1GHz下介电常数为7.91,介电损耗为2.12×10-3。又如中国专利CN109608050A中方案,其以60%MO-BAS(碱土金属氧化物-BaO-Al2O3-SiO2)微晶玻璃与40%Al2O3复合制得的微晶玻璃/陶瓷系LTCC基板材料,在875℃烧结3.5h后,所得材料在9-11GHz下介电常数为5.82,介电损耗为7.52×10-3,抗弯强度为102.7MPa。虽然该材料的烧结温度达到使用要求,但是介电损耗仍然较大,不适用于毫米波天线模组等5G通讯领域。
发明内容
为此,本发明所要解决的技术问题在于提供一种低介低损耗近零温漂的低温共烧陶瓷材料,以满足5G通讯中毫米波天线模组的性能要求;
本发明所要解决的第二个技术问题在于提供所述低介低损耗近零温漂的低温共烧陶瓷材料的制备方法。
为解决上述技术问题,本发明所述的一种低介低损耗近零温漂低温共烧陶瓷材料,以所述材料的总量计,包括如下质量含量的组分:
ZnO-SiO2-Al2O3玻璃 45-65wt%;
Al2O3 35-50wt%;
稀土氧化物 0-15wt%。
具体的,所述ZnO-SiO2-Al2O3玻璃包括如下质量含量的原料成分:
Figure BDA0002839828940000021
Figure BDA0002839828940000031
其中,x为1或2,y为1、2、3或5;
所述R元素选自Zr元素、Ba元素、Sb元素、Cu元素或Ti元素中的至少一种。
具体的,所述稀土氧化物包括CeO2、Pr6O11、La2O3、Nb2O5中的至少一种。
具体的,所述低温共烧陶瓷材料中,控制所述Al2O3组分的含量与所述玻璃中Al2O3的含量之和占所述低温共烧陶瓷材料总量的43-63wt%。
具体的,所述低温共烧陶瓷材料中,控制所述玻璃粉中的ZnO、SiO2、RxOy分别占所述低温共烧陶瓷材料总量的26.55-39.55%、8.55-13.65%、0.045-0.65%。
具体的,本发明所述低温共烧陶瓷材料使用SPDR测试方法,在室温以及测试频率20GHz下,介电常数为7±0.5,介电损耗<2×10-3,温漂(谐振频率温度系数)为±3以内,强度>150MPa。
具体的,本发明所述低温共烧陶瓷材料的制备方法,包括按照选定的含量比例取所述ZnO-SiO2-Al2O3玻璃、氧化铝和选定稀土氧化物混合的步骤,进一步经球磨、烘干及过筛处理,得到配方粉。
本发明还公开了一种低介低损耗近零温漂低温共烧陶瓷浆料,包括所述低温共烧陶瓷材料以及有机载体,其中,所述低温共烧陶瓷材料占所述浆料的质量含量为37-48wt%。
具体的,本发明所述低介低损耗近零温漂低温共烧陶瓷浆料的制备方法,则包括将所述低温共烧陶瓷材料与所述有机载体进行充分混合的步骤。
具体的,所述有机载体包括粘结剂、增塑剂及溶解剂,进一步包括分散剂、消泡剂。
具体的,所述粘结剂包括PVA、PVB、聚丙烯酸甲脂、乙基纤维素、丙烯酸乳剂、聚丙烯酸胺盐中一种;
所述增塑剂包括聚乙二醇、邻苯二甲酸脂、乙二醇中一种;
所述溶解剂包括水、乙醇、甲乙酮、三氯乙烯、甲苯、二甲苯中的一种;
所述分散剂包括聚丙烯酸铵、磷酸脂、乙氧基化合物、鲜鱼油中的一种;
所述消泡剂包括乳化硅油、高碳醇脂肪酸酯复合物、聚氧乙烯聚氧丙烯季戊四醇醚、聚氧乙烯聚氧丙醇胺醚、聚氧丙烯甘油醚、聚氧丙烯中的一种。
本发明还公开了一种低介低损耗近零温漂低温共烧陶瓷生瓷带,由所述低温共烧陶瓷浆料制备形成。
具体的,本发明所述低介低损耗近零温漂低温共烧陶瓷生瓷带的制备方法,则包括将所述的低温共烧陶瓷材料基于流延法制备所需生瓷带的步骤。
本发明公开了一种低介低损耗近零温漂低温共烧陶瓷基板,由所述低温共烧陶瓷材料制成。
本发明还公开了一种低介低损耗近零温漂低温共烧陶瓷基板,由所述低温共烧陶瓷生瓷带经烧结制得。
具体的,本发明还公开了一种制备所述低介低损耗近零温漂低温共烧陶瓷基板的方法,包括如下步骤:
(1)按照选定的含量比例取所述ZnO-SiO2-Al2O3玻璃、氧化铝和选定稀土氧化物混合,经球磨、烘干及过筛处理,得到配方粉,备用;
(2)将所得配方粉制成生瓷带,经烧结处理,即得所需低介低损耗近零温漂低温共烧陶瓷基板。
具体的,所述步骤(1)中,所述球磨步骤中,控制所述原料、水和氧化锆球的质量比为1:1.2-1.5:2.4-3;
控制氧化锆球直径为1.5mm,控制球磨转速为300-350r/min,球磨时间为2-5h。
控制烘干步骤的温度为80-180℃,烘干时间为3-12h。
控制过筛步骤的筛网为80目。
具体的,所述步骤(2)中,所述烧结步骤包括:控制所述生瓷带在含氧气氛下,自室温升至230-270℃,再自230-270℃升温至330-370℃,最后自330-370℃升温至840-890℃。
具体的,控制各梯度温度阶段的升温速率彼此独立的为1-5℃/min。
优选的,控制所述烧结步骤保温烧结的时间为2-4h。
所述步骤(2)中,所述制备生瓷带的步骤包括流延法,具体包括将所述配方粉制成所需低温共烧陶瓷浆料的步骤。
具体的,本发明所述低介低损耗近零温漂低温共烧陶瓷材料、浆料、生瓷带和基板的制备方法中,还包括制备选定成分及含量的所述ZnO-SiO2-Al2O3玻璃的步骤,即按照选定的成分和含量,取各原料成分混合,经高温熔制成玻璃熔浆,并经冷却对辊成片状玻璃,再经陶瓷对辊成粗玻璃,然后经过干式粉碎和气流粉碎将粗玻璃制成所需ZnO-SiO2-Al2O3玻璃。
本发明还公开了所述低介低损耗近零温漂低温共烧陶瓷材料用于制备LTCC器件的用途。
本发明所述低介低损耗近零温漂的低温共烧陶瓷材料包括ZnO-SiO2-Al2O3玻璃、Al2O3、稀土氧化物。本发明所使用的ZnO-SiO2-Al2O3玻璃,其中ZnO中的Zn2+属于过渡金属离子结构,外层有18个电子,电子云容易变形,可以通过极化增加其共价成分,与玻璃网络形成体离子争夺氧离子的能力更强,并容易引起[SiO4]四面体聚会合结构的解聚,从而降低玻璃熔体的粘度,增强玻璃熔化效果;而SiO2和Al2O3属于玻璃网络的形成体和中间体,结合能高,在外电场作用下不易产生极化,因此玻璃能表现出较低的介电常数和介电损耗,同时还可以抑制玻璃的析晶;RxOy的加入主要起到提高玻璃的热稳定性、化学稳定性和机械强度的作用。另外,本方面所述陶瓷材料所加入的稀土氧化物可以与氧化铝形成固溶体,由于离子半径的不同,导致得到不同的容差因子,引起不同程度的氧八面体畸变,从而达到降低温漂的作用。
本发明所述低介低损耗近零温漂的低温共烧陶瓷材料,使用SPDR测试方法,在室温以及测试频率介电常数为7±0.5,介电损耗<2×10-3,在-40℃~110℃温度范围内以及测试频率20GHz下,温漂(谐振频率温度系数)为±3以内;此外,所述低温共烧陶瓷材料的强度>150MPa。所述低温共烧陶瓷材料可应用于5G通讯毫米波天线模组。
具体实施方式
制备例1-5
分别按照下表1中记载的质量百分比进行选定成分的配料,将选定原材料共混,经高温熔制成玻璃熔浆,并经冷却对辊成片状玻璃,再经陶瓷对辊成粗玻璃,然后经过干式粉碎和气流粉碎将粗玻璃制成所需组分的ZnO-SiO2-Al2O3玻璃。
表1所述ZnO-SiO2-Al2O3玻璃成分配料表(wt%)
Figure BDA0002839828940000061
Figure BDA0002839828940000071
实施例1
本实施例所述低介低损耗近零温漂低温共烧陶瓷基板的制备方法,包括如下步骤:
(1)按照下表2中所述的成分及质量百分比含量进行配料,取制备例1中得到的ZnO-SiO2-Al2O3玻璃、Al2O3以及选定稀土氧化物混合,并按照制备原料物料:水:氧化锆球质量比为1:1.4:2.8的比例加入水和氧化锆球,控制氧化锆球直径为1.5mm,控制球磨转速为300r/min,进行球磨5h,随后经180℃烘干3h至完全烘干后,使用80目筛网过筛,得到配方粉,备用;
(2)将所得配方粉,经轧膜/流延将过筛后的配方粉制成膜片/生瓷带,随后所述生瓷带在空气气氛下,控制升温速率为3℃/min,自室温升至250℃,再控制升温速率为1℃/min,自250℃升温至350℃,最后控制升温速率为4℃/min,自350℃升温至840℃,并进行保温烧结4h,经烧结处理后将所述生瓷带制成基板,即得所需低温共烧陶瓷基板。
实施例2
本实施例所述低介低损耗近零温漂低温共烧陶瓷基板的制备方法,包括如下步骤:
(1)按照下表2中所述的成分及质量百分比含量进行配料,取制备例2中得到的ZnO-SiO2-Al2O3玻璃、Al2O3以及选定稀土氧化物混合,并按照制备原料物料:水:氧化锆球质量比为1:1.5:3的比例加入水和氧化锆球,控制氧化锆球直径为1.5mm,控制球磨转速为320r/min,进行球磨4h,随后经150℃烘干6h至完全烘干后,使用80目筛网过筛,得到配方粉,备用;
(2)将所得配方粉,经轧膜/流延将过筛后的配方粉制成膜片/生瓷带,随后所述生瓷带在空气气氛下,控制升温速率为3℃/min,自室温升至250℃,再控制升温速率为1℃/min,自250℃升温至350℃,最后控制升温速率为4℃/min,自350℃升温至850℃,并进行保温烧结3h,经烧结处理后将所述生瓷带制成基板,即得所需低温共烧陶瓷基板。
实施例3
本实施例所述低介低损耗近零温漂低温共烧陶瓷基板的制备方法,包括如下步骤:
(1)按照下表2中所述的成分及质量百分比含量进行配料,取制备例3中得到的ZnO-SiO2-Al2O3玻璃、Al2O3以及选定稀土氧化物混合,并按照制备原料物料:水:氧化锆球质量比为1:1.2:2.4的比例加入水和氧化锆球,控制氧化锆球直径为1.5mm,控制球磨转速为340r/min,进行球磨4h,随后经120℃烘干10h至完全烘干后,使用80目筛网过筛,得到配方粉,备用;
(2)将所得配方粉,经轧膜/流延将过筛后的配方粉制成膜片/生瓷带,随后所述生瓷带在空气气氛下,控制升温速率为3℃/min,自室温升至250℃,再控制升温速率为1℃/min,自250℃升温至350℃,最后控制升温速率为4℃/min,自350℃升温至870℃,并进行保温烧结3h,经烧结处理后将所述生瓷带制成基板,即得所需低温共烧陶瓷基板。
实施例4
本实施例所述低介低损耗近零温漂低温共烧陶瓷基板的制备方法,包括如下步骤:
(1)按照下表2中所述的成分及质量百分比含量进行配料,取制备例4中得到的ZnO-SiO2-Al2O3玻璃、Al2O3以及选定稀土氧化物混合,并按照制备原料物料:水:氧化锆球质量比为1:1.3:2.6的比例加入水和氧化锆球,控制氧化锆球直径为1.5mm,控制球磨转速为350r/min,进行球磨2.5h,随后经80℃烘干12h至完全烘干后,使用80目筛网过筛,得到配方粉,备用;
(2)将所得配方粉,经轧膜/流延将过筛后的配方粉制成膜片/生瓷带,随后所述生瓷带在空气气氛下,控制升温速率为3℃/min,自室温升至250℃,再控制升温速率为1℃/min,自250℃升温至350℃,最后控制升温速率为4℃/min,自350℃升温至890℃,并进行保温烧结2.5h,经烧结处理后将所述生瓷带制成基板,即得所需低温共烧陶瓷基板。
实施例5
本实施例所述低介低损耗近零温漂低温共烧陶瓷基板的制备方法同实施例3,其区别仅在于,配方粉中稀土氧化物的添加量不同,具体如表2所示。
实施例6
本实施例所述低介低损耗近零温漂低温共烧陶瓷基板的制备方法同实施例3,其区别仅在于,配方粉中稀土氧化物的添加量不同,具体如表2所示。
实施例7
本实施例所述低介低损耗近零温漂低温共烧陶瓷基板的制备方法同实施例3,其区别仅在于,配方粉中稀土氧化物的添加量不同,具体如表2所示。
实施例8
本实施例所述低介低损耗近零温漂低温共烧陶瓷基板的制备方法同实施例3,其区别仅在于,采用制备例1中制得所述ZnO-SiO2-Al2O3玻璃。
实施例9
本实施例所述低介低损耗近零温漂低温共烧陶瓷基板的制备方法同实施例3,其区别仅在于,采用制备例2中制得所述ZnO-SiO2-Al2O3玻璃。
实施例10
本实施例所述低介低损耗近零温漂低温共烧陶瓷基板的制备方法同实施例3,其区别仅在于,采用制备例4中制得所述ZnO-SiO2-Al2O3玻璃。
实施例11
本实施例所述低介低损耗近零温漂低温共烧陶瓷基板的制备方法同实施例3,其区别仅在于,采用制备例5中制得所述ZnO-SiO2-Al2O3玻璃。
表2各实施例所述配方粉的组分及质量比(wt%)
实施例 玻璃粉 Al<sub>2</sub>O<sub>3</sub> La<sub>2</sub>O<sub>3</sub> CeO<sub>2</sub> Pr<sub>6</sub>O<sub>11</sub> Nb<sub>2</sub>O<sub>5</sub>
1 60 40 - - - -
2 50 40 10 - - -
3 55 35 5 - 5 -
4 52.5 35 5 5 - 2.5
5 55 35 10 - - -
6 55 35 - 10 - -
7 55 35 - 5 - 5
8 55 35 5 - - -
9 55 35 5 - - -
10 55 35 5 - - -
11 45 50 5 - - -
对比例1
本对比例所述低温共烧陶瓷基板的制备同实施例3,其区别仅在于,所述玻璃为含硼硅酸盐玻璃粉,其成分为B2O3(67.5wt%)、SiO2(15.1wt%)、Al2O3(14.3wt%)、ZnO(2.7%)、CaO(0.4wt%)。
实验例
分别对上述实施例1-11及对比例1中制备的低温共烧陶瓷基板的性能进行测试,测试结果见下表3所示。
在室温以及测试频率20GHz下,使用SPDR测试方法,以测试所述低温共烧陶瓷材料的介电常数和介电损耗;在室温-40℃~110℃温度范围内以及测试频率20GHz下测试低温共烧陶瓷材料的温漂;同时还测试了低温共烧陶瓷材料的抗弯强度。
表3各实施例中烧结样品的性能
编号 介电常数 损耗角正切 温漂(ppm/℃) 抗弯强度(MPa)
实施例1 6.6 1.6×10<sup>-3</sup> 2.8 213
实施例2 7.4 8.3×10<sup>-4</sup> 1.2 179
实施例3 6.9 1.3×10<sup>-3</sup> 0.9 194
实施例4 7.2 1.1×10<sup>-3</sup> 0.7 188
实施例5 7.0 1.5×10<sup>-3</sup> 1.3 190
实施例6 7.1 1.6×10<sup>-3</sup> 2.5 185
实施例7 7.1 1.5×10<sup>-3</sup> 2.3 180
实施例8 6.6 1.1×10<sup>-3</sup> 1.0 195
实施例9 6.8 1.2×10<sup>-3</sup> 1.1 192
实施例10 7.2 1.7×10<sup>-3</sup> 0.9 186
实施例11 7.5 1.2×10<sup>-3</sup> 2.7 152
对比例1 8.1 5.2×10<sup>-3</sup> 12 160
可见,本发明所述低介低损耗近零温漂的低温共烧陶瓷材料,在室温以及测试频率20GHz下,介电常数为7±0.5,介电损耗<2×10-3;在室温-40℃~110℃温度范围内以及测试频率20GHz下温漂为±3ppm/℃以内;此外,低温共烧陶瓷材料的抗弯强度>150MPa,可应用于5G通讯中毫米波天线模组。
显然,上述实施例仅仅是为清楚地说明所作的举例,而并非对实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动。这里无需也无法对所有的实施方式予以穷举。而由此所引伸出的显而易见的变化或变动仍处于本发明创造的保护范围之中。

Claims (17)

1.一种低介低损耗近零温漂低温共烧陶瓷材料,其特征在于,以所述材料的总量计,包括如下质量含量的组分:
ZnO-SiO2-Al2O3玻璃 45-65wt%;
Al2O3 35-50wt%;
稀土氧化物 0-15wt%。
2.根据权利要求1所述的低介低损耗近零温漂低温共烧陶瓷材料,其特征在于,所述ZnO-SiO2-Al2O3玻璃包括如下质量含量的原料成分:
Figure FDA0002839828930000011
其中,x为1或2,y为1、2、3或5;
所述R元素选自Zr元素、Ba元素、Sb元素、Cu元素或Ti元素中的至少一种。
3.根据权利要求2所述的低介低损耗近零温漂低温共烧陶瓷材料,其特征在于,所述稀土氧化物包括CeO2、Pr6O11、La2O3、Nb2O5中的至少一种。
4.根据权利要求1-3任一项所述的低介低损耗近零温漂低温共烧陶瓷材料,其特征在于,所述低温共烧陶瓷材料中,控制所述Al2O3组分的含量与所述玻璃中Al2O3的含量之和占所述低温共烧陶瓷材料总量的43-63wt%。
5.根据权利要求1-4任一项所述的低介低损耗近零温漂低温共烧陶瓷材料,其特征在于,所述低温共烧陶瓷材料中,控制所述玻璃粉中ZnO、SiO2、RxOy分别占所述低温共烧陶瓷材料总量的26.55-39.55%、8.55-13.65%、0.045-0.65%。
6.根据权利要求1-5任一项所述的低介低损耗近零温漂低温共烧陶瓷材料,其特征在于,所述低温共烧陶瓷材料在室温以及测试频率20GHz下,介电常数为7±0.5。
7.根据权利要求1-5任一项所述的低介低损耗近零温漂低温共烧陶瓷材料,其特征在于,所述低温共烧陶瓷材料在室温以及测试频率20GHz下,介电损耗<2×10-3
8.根据权利要求1-5任一项所述的低介低损耗近零温漂低温共烧陶瓷材料,其特征在于,所述低温共烧陶瓷材料在-40℃~110℃温度范围内以及测试频率20GHz下,温漂为±3ppm/℃以内。
9.根据权利要求1-5任一项所述的低介低损耗近零温漂低温共烧陶瓷材料,其特征在于,所述低温共烧陶瓷材料的抗弯强度>150MPa。
10.一种低介低损耗近零温漂低温共烧陶瓷浆料,其特征在于,包括如权利要求1-9任一项所述低温共烧陶瓷材料以及有机载体,其中,所述低温共烧陶瓷材料占所述浆料的质量含量为37-48wt%。
11.根据权利要求10所述低介低损耗近零温漂低温共烧陶瓷浆料,其特征在于,所述有机载体包括粘结剂、增塑剂及溶解剂。
12.根据权利要求11所述低介低损耗近零温漂低温共烧陶瓷浆料,其特征在于,所述有机载体还包括分散剂和消泡剂。
13.根据权利要求11所述低介低损耗近零温漂低温共烧陶瓷浆料,其特征在于:
所述粘结剂包括PVA、PVB、聚丙烯酸甲脂、乙基纤维素、丙烯酸乳剂、聚丙烯酸胺盐中一种;
所述增塑剂包括聚乙二醇、邻苯二甲酸脂、乙二醇中一种;
所述溶解剂包括水、乙醇、甲乙酮、三氯乙烯、甲苯、二甲苯中的一种。
14.根据权利要求12所述低介低损耗近零温漂低温共烧陶瓷浆料,其特征在于:
所述分散剂包括聚丙烯酸铵、磷酸脂、乙氧基化合物、鲜鱼油中的一种;
所述消泡剂包括乳化硅油、高碳醇脂肪酸酯复合物、聚氧乙烯聚氧丙烯季戊四醇醚、聚氧乙烯聚氧丙醇胺醚、聚氧丙烯甘油醚、聚氧丙烯中的一种。
15.一种低介低损耗近零温漂低温共烧陶瓷生瓷带,其特征在于,由权利要求10-14任一项所述低温共烧陶瓷浆料制备形成。
16.一种低介低损耗近零温漂低温共烧陶瓷基板,其特征在于,由权利要求1-9任一项所述低温共烧陶瓷材料制成。
17.一种低介低损耗近零温漂低温共烧陶瓷基板,其特征在于,由权利要求15所述低温共烧陶瓷生瓷带经烧结制得。
CN202011487765.4A 2020-12-16 2020-12-16 一种低介低损耗近零温漂低温共烧陶瓷材料及其制备方法 Active CN114634353B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202011487765.4A CN114634353B (zh) 2020-12-16 2020-12-16 一种低介低损耗近零温漂低温共烧陶瓷材料及其制备方法
TW110133109A TW202225113A (zh) 2020-12-16 2021-09-06 一種低介低損耗近零溫漂低溫共燒陶瓷材料及其製備方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011487765.4A CN114634353B (zh) 2020-12-16 2020-12-16 一种低介低损耗近零温漂低温共烧陶瓷材料及其制备方法

Publications (2)

Publication Number Publication Date
CN114634353A true CN114634353A (zh) 2022-06-17
CN114634353B CN114634353B (zh) 2023-04-18

Family

ID=81944796

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011487765.4A Active CN114634353B (zh) 2020-12-16 2020-12-16 一种低介低损耗近零温漂低温共烧陶瓷材料及其制备方法

Country Status (2)

Country Link
CN (1) CN114634353B (zh)
TW (1) TW202225113A (zh)

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3609803A1 (de) * 1985-03-26 1986-10-09 Kabushiki Kaisha Ohara, Sagamihara, Kanagawa Optisches glas
US4714687A (en) * 1986-10-27 1987-12-22 Corning Glass Works Glass-ceramics suitable for dielectric substrates
US5216207A (en) * 1991-02-27 1993-06-01 David Sarnoff Research Center, Inc. Low temperature co-fired multilayer ceramic circuit boards with silver conductors
JPH11335156A (ja) * 1998-05-27 1999-12-07 Kyocera Corp 低温焼成磁器組成物および磁器の製造方法
JP2001213637A (ja) * 2000-01-27 2001-08-07 Three M Innovative Properties Co 成形用組成物及びプラズマディスプレイパネル用基板
JP2003512281A (ja) * 1999-10-18 2003-04-02 コーニング・インコーポレーテッド α−及びβ−ウィレマイト基透明ガラスセラミック
JP2003192385A (ja) * 2001-12-19 2003-07-09 Ohara Inc ガラスセラミックス及び温度補償部材
JP2004026529A (ja) * 2002-06-21 2004-01-29 Ferro Enamels Japan Ltd 低温焼成基板用ガラス組成物およびそれを用いたガラスセラミックス
KR100638888B1 (ko) * 2005-09-05 2006-10-27 삼성전기주식회사 Q특성이 우수한 저유전율을 갖는 저온동시소성 자기조성물
JP2009023895A (ja) * 2007-07-23 2009-02-05 Tdk Corp セラミックス基板及びその製造方法
TW200932701A (en) * 2008-01-17 2009-08-01 Kuo-Chin Lo Unleaded low temperature co-firing electric ceramic composition of matter and ceramic product of method
JP2011230965A (ja) * 2010-04-28 2011-11-17 Asahi Glass Co Ltd ガラスセラミックス組成物および素子搭載用基板
CN110256060A (zh) * 2019-07-09 2019-09-20 嘉兴佳利电子有限公司 一种高频低介电常数低温共烧陶瓷材料以及制备方法

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3609803A1 (de) * 1985-03-26 1986-10-09 Kabushiki Kaisha Ohara, Sagamihara, Kanagawa Optisches glas
US4714687A (en) * 1986-10-27 1987-12-22 Corning Glass Works Glass-ceramics suitable for dielectric substrates
US5216207A (en) * 1991-02-27 1993-06-01 David Sarnoff Research Center, Inc. Low temperature co-fired multilayer ceramic circuit boards with silver conductors
JPH11335156A (ja) * 1998-05-27 1999-12-07 Kyocera Corp 低温焼成磁器組成物および磁器の製造方法
JP2003512281A (ja) * 1999-10-18 2003-04-02 コーニング・インコーポレーテッド α−及びβ−ウィレマイト基透明ガラスセラミック
JP2001213637A (ja) * 2000-01-27 2001-08-07 Three M Innovative Properties Co 成形用組成物及びプラズマディスプレイパネル用基板
JP2003192385A (ja) * 2001-12-19 2003-07-09 Ohara Inc ガラスセラミックス及び温度補償部材
JP2004026529A (ja) * 2002-06-21 2004-01-29 Ferro Enamels Japan Ltd 低温焼成基板用ガラス組成物およびそれを用いたガラスセラミックス
KR100638888B1 (ko) * 2005-09-05 2006-10-27 삼성전기주식회사 Q특성이 우수한 저유전율을 갖는 저온동시소성 자기조성물
JP2009023895A (ja) * 2007-07-23 2009-02-05 Tdk Corp セラミックス基板及びその製造方法
TW200932701A (en) * 2008-01-17 2009-08-01 Kuo-Chin Lo Unleaded low temperature co-firing electric ceramic composition of matter and ceramic product of method
JP2011230965A (ja) * 2010-04-28 2011-11-17 Asahi Glass Co Ltd ガラスセラミックス組成物および素子搭載用基板
CN110256060A (zh) * 2019-07-09 2019-09-20 嘉兴佳利电子有限公司 一种高频低介电常数低温共烧陶瓷材料以及制备方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
ANJANA,PS: "microwave dielectric properties and loe temperature sintering of cerium oxide for LTCC APPLICATIONS", 《JOURNAL OF THE AMERICAN CERAMIC SOCIETY》 *
李悦彤等: "氧化铝陶瓷低温烧结助剂的研究进展", 《硅酸盐通报》 *
杨鑫: "低介电LTCC氧化铝基陶瓷配方及流延研究", 《中国优秀硕士学位论文全文数据库工程科技Ⅰ辑》 *
胡一晨;徐庭;王雯;王中俭;金硕;: "CaO-ZnO-B_2O_3-SiO_2玻璃/Al_2O_3低温共烧复合陶瓷基板研究" *

Also Published As

Publication number Publication date
TW202225113A (zh) 2022-07-01
CN114634353B (zh) 2023-04-18

Similar Documents

Publication Publication Date Title
CN109608050B (zh) 一种高频低介低损耗微晶玻璃/陶瓷系ltcc基板材料及其制备方法
CN107602088B (zh) 一种与高温导电银浆高匹配的低温共烧陶瓷材料及其制备方法
CN110256060B (zh) 一种高频低介电常数低温共烧陶瓷材料以及制备方法
CN110790568A (zh) 一种低介ltcc生瓷带及其制备方法和用途
CN110171963B (zh) 一种低温共烧陶瓷微波与毫米波介电粉末
CN107986774B (zh) 低温烧结高介电常数微波介质陶瓷材料及其制备方法
CN109721340A (zh) 一种高强度低损耗ltcc材料及其制备方法
CN114573333A (zh) 一种低介电硅灰石系低温共烧陶瓷材料及其制备方法
CN113501708A (zh) 一种Li系尖晶石微波铁氧体材料及其制备方法
CN112225462B (zh) 电子浆料用低膨胀系数低介电常数微晶玻璃粉及其制备方法
CN110171962B (zh) 一种低温共烧陶瓷微波与毫米波材料
CN107176793B (zh) Ltcc陶瓷材料及其制备方法
KR20030039574A (ko) 유전체 세라믹 조성물
CN1872753A (zh) 微晶玻璃陶瓷材料及其制备方法
CN102887708B (zh) 可低温烧结的微波介电陶瓷NaCa2(Mg1-xZnx)2V3O12及制备方法
CN112608144B (zh) 一种锂基微波介质陶瓷材料、其制备方法和锂基微波介质陶瓷
JP2000272960A (ja) マイクロ波用誘電体磁器組成物およびその製造方法ならびにマイクロ波用誘電体磁器組成物を用いたマイクロ波用電子部品
CN114634353B (zh) 一种低介低损耗近零温漂低温共烧陶瓷材料及其制备方法
CN107056277B (zh) 一种低温烧结中介电常数微波介质材料及其制备方法
CN112079631B (zh) 一种近零温度系数低介ltcc材料及其制备方法
CN112592160B (zh) 一种复相低温共烧陶瓷材料及其制备方法
TWI761286B (zh) 一種具有中低介電常數的玻璃陶瓷材料及其製備方法
CN114685152B (zh) 一种毫米波天线模组用低温共烧陶瓷材料及其制备方法
CN102030527B (zh) 一种BaO-TiO 2系微波电容器介质材料及其制备方法
CN111548128A (zh) 一种低温共烧陶瓷及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20240823

Address after: Room 501, Building 6, No. 61 Liuyanghe Road, Dongying Development Zone, Shandong Province, China 257092

Patentee after: Maxtor Technology Innovation (Shandong) Co.,Ltd.

Country or region after: China

Address before: 257091 No.24, Liaohe Road, economic development zone, Dongying City, Shandong Province

Patentee before: SHANDONG SINOCERA FUNCTIONAL MATERIAL Co.,Ltd.

Country or region before: China

TR01 Transfer of patent right