CN114621956B - A drought-resistant lncRNA and its application - Google Patents
A drought-resistant lncRNA and its application Download PDFInfo
- Publication number
- CN114621956B CN114621956B CN202210432493.0A CN202210432493A CN114621956B CN 114621956 B CN114621956 B CN 114621956B CN 202210432493 A CN202210432493 A CN 202210432493A CN 114621956 B CN114621956 B CN 114621956B
- Authority
- CN
- China
- Prior art keywords
- lncrna
- gene
- cassava
- drought
- plants
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/11—DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
- C12N15/113—Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/82—Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
- C12N15/8241—Phenotypically and genetically modified plants via recombinant DNA technology
- C12N15/8261—Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
- C12N15/8271—Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance
- C12N15/8273—Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for drought, cold, salt resistance
Landscapes
- Health & Medical Sciences (AREA)
- Genetics & Genomics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Molecular Biology (AREA)
- Biotechnology (AREA)
- General Engineering & Computer Science (AREA)
- Zoology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Wood Science & Technology (AREA)
- Microbiology (AREA)
- Plant Pathology (AREA)
- Biophysics (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Physics & Mathematics (AREA)
- Cell Biology (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
- Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
Abstract
Description
技术领域technical field
本发明属于生物技术领域,具体涉及一种抗旱lncRNA及应用。The invention belongs to the field of biotechnology, and in particular relates to a drought-resistant lncRNA and its application.
背景技术Background technique
木薯是全球重要的粮食和经济作物,具有耐旱、耐贫瘠、高产且不与主粮作物争地的优点,因此在全球100多个国家和地区广泛种植。我国自引种木薯以来,木薯广泛种植于我国的热带和亚热带区域。木薯的亩产高,木薯块根含有大量的淀粉,是生产淀粉和工业酒精、氨基酸、果糖、葡萄糖的主要原材料之一。我国木薯淀粉需求量的不断增加,对木薯产量、品质和抗逆性等提出了更高的要求。同时,我国南方区域性旱灾频发,干旱可以影响木薯的植株形态、光合效率、生物质积累、体内各种酶的活性及含量,造成木薯品质降低、产量损失,是木薯栽培生产上面临的一大问题。传统的杂交育种筛选周期长,经费耗费大,已经不能满足人们对木薯品种的迫切需要,随着高通量技术和基因工程技术在植物研究方面的广泛运用,运用新的技术来研究木薯的抗旱分子机理和培育木薯种质资源能大大加速木薯优质品种的选育。Cassava is an important food and economic crop in the world. It has the advantages of drought tolerance, barren tolerance, high yield and no land competition with staple crops. Therefore, it is widely planted in more than 100 countries and regions around the world. Since the introduction of cassava in my country, cassava has been widely planted in tropical and subtropical regions of my country. The yield per mu of cassava is high, and cassava root contains a lot of starch, which is one of the main raw materials for the production of starch and industrial alcohol, amino acids, fructose, and glucose. The increasing demand for cassava starch in my country puts forward higher requirements for the yield, quality and stress resistance of cassava. At the same time, regional droughts frequently occur in southern my country. Drought can affect cassava plant morphology, photosynthetic efficiency, biomass accumulation, and the activity and content of various enzymes in the body, resulting in lower cassava quality and yield loss. This is a major challenge for cassava cultivation and production. big problem. Traditional hybrid breeding has a long screening cycle and high cost, which can no longer meet people's urgent needs for cassava varieties. With the wide application of high-throughput technology and genetic engineering technology in plant research, new technologies are used to study the drought resistance of cassava. The molecular mechanism and the cultivation of cassava germplasm resources can greatly accelerate the selection of high-quality cassava varieties.
植物固定的状态决定了其生活方式的静止性,植物主要通过光合作用生产有机质和获取生长发育所需的能量。通过对模式植物的研究发现,干旱胁迫条件下,植物一方面能通过渗透调节、脱水保护、以及活性氧清除等途径在生理水平做出抗逆性反应,同时通过细胞对干旱信号的感知和转导、调节基因表达、调控蛋白质的活性进而在分子水平上做出响应。近年来,研究人员对具有不同抗旱性的木薯品种进行转录组测序,对其响应基因进行了分析并筛选了一些与胁迫响应有关的基因。随着木薯有关干旱胁迫研究的不断深入进行,人们对木薯是如何响应干旱胁迫也有了初步的了解,然而想要更加深入了解木薯是如何响应干旱胁迫及获得更多耐旱且高产的优质木薯资源,我们还需要加强与国际间研究木薯的科研团队相互合作,更加深入彻底的了解木薯的抗旱机制。The stationary state of plants determines the stasis of their lifestyle. Plants mainly produce organic matter and obtain the energy needed for growth and development through photosynthesis. Studies on model plants have found that under drought stress, plants can respond to stress at the physiological level through osmotic adjustment, dehydration protection, and active oxygen scavenging. Guide, regulate gene expression, regulate protein activity and respond at the molecular level. In recent years, researchers have sequenced transcriptomes of cassava varieties with different drought resistance, analyzed their response genes and screened some genes related to stress response. With the deepening of cassava research on drought stress, people have a preliminary understanding of how cassava responds to drought stress. However, they want to learn more about how cassava responds to drought stress and obtain more drought-tolerant and high-yield high-quality cassava resources. , we also need to strengthen mutual cooperation with international cassava research teams to gain a more in-depth and thorough understanding of cassava's drought resistance mechanism.
长链非编码RNA(long noncoding RNA,lncRNA)是一类长度大于200nt且不具备蛋白质编码能力的RNA。因为其不编码蛋白质,很长一段时间,人们误以为lncRNA是翻译过程中的“噪音”。随着对lncRNA的深入研究,发现lncRNA是动、植物体内重要的调节子,其可以在转录、翻译、生长发育,参与非生物胁迫等多个水平上调控基因的表达,成为当前研究的热点。本发明通过筛选和分析鉴定出在逆境条件下特异性表达的lncRNA,并成功将该lncRNA插入到木薯基因组中,为lncRNA在木薯体内功能的研究提供了种质资源。通过研究lncRNA在木薯体内如何表达和如何行使功能来了解和发掘其在植物抗旱胁迫中的作用,并获得抗旱的优质木薯植株,可以为木薯种质创新提供优质的种苗。Long noncoding RNA (long noncoding RNA, lncRNA) is a type of RNA with a length greater than 200nt and no protein coding ability. Because they do not encode proteins, lncRNAs have long been misunderstood as "noise" during translation. With the in-depth study of lncRNA, it has been found that lncRNA is an important regulator in animals and plants, which can regulate gene expression at multiple levels such as transcription, translation, growth and development, and participate in abiotic stress, which has become a current research hotspot. The present invention identifies lncRNA specifically expressed under stress conditions through screening and analysis, and successfully inserts the lncRNA into the cassava genome, providing germplasm resources for the study of the function of lncRNA in cassava. By studying how lncRNA expresses and functions in cassava, we can understand and explore its role in plant drought resistance, and obtain high-quality drought-resistant cassava plants, which can provide high-quality seedlings for cassava germplasm innovation.
发明内容Contents of the invention
本发明的目的在于克服现有技术中的不足,提供一种抗旱lncRNA及应用。The purpose of the present invention is to overcome the deficiencies in the prior art and provide a drought-resistant lncRNA and its application.
本发明的第一个方面是提供一种抗旱lncRNA对应的基因,命名为lncRNA-171基因,其核苷酸序列如SEQ ID NO:1所示。The first aspect of the present invention is to provide a gene corresponding to a drought-resistant lncRNA named lncRNA-171 gene, the nucleotide sequence of which is shown in SEQ ID NO:1.
本发明的第二个方面是提供一种抗旱lncRNA,命名为lncRNA-171,其核苷酸序列如SEQ ID NO:2所示。所述lncRNA-171是本申请第一个方面所述的抗旱lncRNA对应的基因经BamH I和Sal I两限制性内切酶去除酶切位点后序列转录的RNA。The second aspect of the present invention is to provide a drought-resistant lncRNA named lncRNA-171, the nucleotide sequence of which is shown in SEQ ID NO:2. The lncRNA-171 is the RNA transcribed from the gene corresponding to the drought-resistant lncRNA described in the first aspect of the present application after the restriction endonucleases BamH I and Sal I remove the cleavage sites.
本发明的第三个方面是提供一种重组载体,其包含原始载体和lncRNA对应的基因,命名为LncRNA-171基因,其核苷酸序列如SEQ ID NO.1所示。The third aspect of the present invention is to provide a recombinant vector, which includes the original vector and the gene corresponding to the lncRNA, named LncRNA-171 gene, and its nucleotide sequence is shown in SEQ ID NO.1.
其中,所述原始载体可以采用基因重组领域中常用的载体,例如病毒、质粒等。本发明对此不进行限定。在本发明的一个具体实施方式中,所述原始载体采用pCambia1301载体质粒,但应当理解的是,本发明还可以采用其他质粒、或者病毒等。Wherein, the original vector can be a vector commonly used in the field of gene recombination, such as virus, plasmid and the like. The present invention is not limited thereto. In a specific embodiment of the present invention, the pCambia1301 vector plasmid is used as the original vector, but it should be understood that other plasmids or viruses can also be used in the present invention.
优选地,所述原始载体为pCambia1301载体质粒,本发明第一个方面所述的基因与pCambia1301载体质粒经BamH I和Sal I两限制性内切酶双酶切连接。Preferably, the original vector is a pCambia1301 vector plasmid, and the gene described in the first aspect of the present invention is ligated with the pCambia1301 vector plasmid by two restriction endonucleases BamH I and Sal I.
本发明的第四个方面是提供如本发明第一个方面所述的基因、或者本发明第二个方面所述的lncRNA、或者本发明第三个方面所述的重组载体在提高植物干旱耐受性中的应用。The fourth aspect of the present invention is to provide genes as described in the first aspect of the present invention, or the lncRNA described in the second aspect of the present invention, or the recombinant vector described in the third aspect of the present invention in improving plant drought tolerance applications in receptivity.
其中,如本发明第一个方面所述的基因、或者本发明第二个方面所述的lncRNA、或者本发明第三个方面所述的重组载体在提高植物干旱耐受性的同时不影响植物生长发育。Wherein, the gene as described in the first aspect of the present invention, or the lncRNA as described in the second aspect of the present invention, or the recombinant vector as described in the third aspect of the present invention does not affect the plant drought tolerance while improving the plant drought tolerance. growth and development.
例如,在本发明的具体实施方式中,采用木薯进行实验,本发明第一个方面所述的基因、或者本发明第二个方面所述的lncRNA、或者本发明第三个方面所述的重组载体在提高木薯干旱耐受性的同时,木薯植株及块根生长发育并没有受到影响。For example, in a specific embodiment of the present invention, cassava is used for experiments, the gene described in the first aspect of the present invention, or the lncRNA described in the second aspect of the present invention, or the recombination described in the third aspect of the present invention While the carrier improves the drought tolerance of cassava, the growth and development of cassava plants and tubers are not affected.
本发明的第五个方面是提供一种本发明第一个方面所述的基因的扩增方法,包括以下步骤:以木薯叶片为材料提取总RNA,以PolyT进行反转录获得的cDNA为模板,以lnc171-SBamH I(SEQ ID NO:3):CGGGATCCAACCCTAAATCTCTCTCAAC和lnc171-A Sal I(SEQID NO:4):ACGCGTCGACTTACAGAGAAACCACATAGAA为引物,通过PCR方法扩增获得本发明第一个方面所述的lncRNA对应的基因,其序列如SEQ ID NO:1所示。The fifth aspect of the present invention is to provide a method for amplifying the gene described in the first aspect of the present invention, comprising the following steps: using cassava leaves as materials to extract total RNA, and using PolyT to reverse transcribe cDNA obtained as a template , using lnc171-SBamH I (SEQ ID NO: 3): CGGGATCCAACCCTAAATCTCCTTCAAC and lnc171-A Sal I (SEQ ID NO: 4): ACGCGTCGACTTACAGAGAAACCACATAGAA as primers, amplified by PCR to obtain the lncRNA corresponding to the first aspect of the present invention Gene, the sequence of which is shown in SEQ ID NO:1.
本发明的第六个方面是提供一种引物对,其组成为:lnc171-S BamH I:CGGGATCCAACCCTAAATCTCTCTCAAC和lnc171-A Sal I:ACGCGTCGACTTACAGAGAAACCACATAGAA。The sixth aspect of the present invention is to provide a primer pair, which consists of: lnc171-S BamH I: CGGGATCCAACCCTAAATCCTCTCTCAAC and lnc171-A Sal I: ACGCGTCGACTTACAGAGAAACCACATAGAA.
本发明的lncRNA对应的基因(命名为lncRNA-171基因)及其转录的lncRNA(命名为lncRNA-171)可特异地响应干旱胁迫反应且不影响植物生长发育。进一步将所述lncRNA-171基因转到木薯中,获得木薯lncRNA-171高表达株系,发现lncRNA-171高表达株系与非转基因株系相比,植株发育不受影响,但对干旱胁迫更加耐受。同时,lncRNA-171高表达株系中脯氨酸含量显著提高,在干旱处理后丙二醛(MDA)的含量显著降低,表明lncRNA-171及lncRNA-171基因可以提高植物的干旱耐受性,且不影响植株发育及块根产量。将来可利用lncRNA-171及lncRNA-171基因对植物进行遗传改良,为提高植物干旱耐受性提供有效的资源。The gene corresponding to the lncRNA of the present invention (named lncRNA-171 gene) and its transcribed lncRNA (named lncRNA-171) can specifically respond to drought stress without affecting plant growth and development. The lncRNA-171 gene was further transferred to cassava to obtain cassava lncRNA-171 highly expressed strains, and it was found that compared with non-transgenic strains, the lncRNA-171 highly expressed strains had no effect on plant development, but were more sensitive to drought stress. tolerance. At the same time, the content of proline in the high-expression lines of lncRNA-171 was significantly increased, and the content of malondialdehyde (MDA) was significantly reduced after drought treatment, indicating that lncRNA-171 and lncRNA-171 genes can improve the drought tolerance of plants, And does not affect plant development and root yield. In the future, lncRNA-171 and lncRNA-171 genes can be used to genetically improve plants and provide effective resources for improving plant drought tolerance.
附图说明Description of drawings
图1为木薯干旱响应lncRNA-171表达鉴定结果。Figure 1 shows the identification results of cassava drought-responsive lncRNA-171 expression.
图2为RNA fold软件预测的lncRNA-171二级结构。Figure 2 shows the secondary structure of lncRNA-171 predicted by RNA fold software.
图3为lncRNA-171转基因木薯的筛选结果,其中,OE#1~6为6个转基因木薯株系。Fig. 3 is the screening result of lncRNA-171 transgenic cassava, wherein OE#1-6 are 6 transgenic cassava lines.
图4为转基因木薯lncRNA-171高表达株系胁迫处理后生理指标的测定结果。Fig. 4 is the measurement results of physiological indexes of transgenic cassava lncRNA-171 high-expression lines after stress treatment.
图5为lncRNA-171调控的下游基因鉴定结果。Figure 5 shows the identification results of downstream genes regulated by lncRNA-171.
具体实施方式Detailed ways
下面参照附图,结合具体的实施例对本发明作进一步的说明,以更好地理解本发明。实施例中未注明具体技术或条件者,按照本领域内的文献所描述的技术或条件或者按照产品说明书进行。所用试剂或仪器未注明生产厂商者,均为可以通过市购获得的常规产品。Referring to the accompanying drawings, the present invention will be further described in conjunction with specific embodiments, so as to better understand the present invention. If no specific technique or condition is indicated in the examples, it shall be carried out according to the technique or condition described in the literature in this field or according to the product specification. The reagents or instruments used were not indicated by the manufacturer, and they were all commercially available conventional products.
1、lncRNA-171的筛选鉴定1. Screening and identification of lncRNA-171
对木薯进行干旱胁迫处理(免浇水直至叶片及顶端萎蔫后复水),采集处理前后的样品进行转录组测序,鉴定到一个lncRNA,将其命名为lncRNA-171。在对lncRNA-171的qPCR检测中发现,lncRNA-171在地上部分如茎、叶片和顶端中表达丰度较高,根部表达量较低(图1A)。重新对木薯苗进行干旱胁迫,检测lncRNA-171在不同干旱节点下的表达,在干旱胁迫下lncRNA-171的表达水平为对照组的10-20倍。在干旱胁迫处理的7天后,lncRNA-171的表达水平逐渐升高,在11天时表达量达到最高(图1B)。Cassava was subjected to drought stress treatment (no watering until the leaves and tops wilted and then rewatered). Samples before and after treatment were collected for transcriptome sequencing, and an lncRNA was identified and named lncRNA-171. In the qPCR detection of lncRNA-171, it was found that the expression abundance of lncRNA-171 was higher in aboveground parts such as stems, leaves and tops, and the expression level in roots was lower (Figure 1A). The cassava seedlings were subjected to drought stress again, and the expression of lncRNA-171 was detected under different drought nodes. The expression level of lncRNA-171 under drought stress was 10-20 times that of the control group. After 7 days of drought stress treatment, the expression level of lncRNA-171 gradually increased, reaching the highest expression level at 11 days (Fig. 1B).
2、lncRNA-171二级结构的预测2. Prediction of the secondary structure of lncRNA-171
单链的RNA通过自身折叠配对形成螺旋区和环,对RNA二级结构的预测是生物信息学领域的研究焦点问题。运用最小自由能原则,对lncRNA-171的二级结构进行预测,结果如图2所示,从上图中可以看出,lncRNA-171二级结构是多茎环发夹结构,其中,结构预测有4个主要的分支,主要包含12个茎环、2个凸环结构。蓝色区域是5'端,红色的则是3'端。二级结构中的蓝色区域表示碱基对的匹配程度较高,自由能值低,稳定性好。研究表明RNA的茎环结构在RNA与结合蛋白相互作用过程中发挥着至关重要的作用。因此,对lncRNA-171二级结构的预测,可以为研究其功能和作用机制等提供重要参考。Single-stranded RNA forms helical regions and loops through self-folding and pairing. The prediction of RNA secondary structure is a research focus in the field of bioinformatics. Using the principle of minimum free energy, the secondary structure of lncRNA-171 was predicted, and the results are shown in Figure 2. From the above figure, it can be seen that the secondary structure of lncRNA-171 is a multi-stem-loop hairpin structure. Among them, the structure prediction There are 4 main branches, mainly including 12 stem loops and 2 convex ring structures. The blue area is the 5' end, and the red area is the 3' end. The blue area in the secondary structure indicates a high degree of base pair matching, low free energy value, and good stability. Studies have shown that the stem-loop structure of RNA plays a crucial role in the interaction between RNA and binding proteins. Therefore, the prediction of the secondary structure of lncRNA-171 can provide an important reference for the study of its function and mechanism of action.
3、lncRNA对应的基因(lncRNA-171基因)的获得3. Acquisition of the gene corresponding to lncRNA (lncRNA-171 gene)
以木薯叶片为材料提取总RNA,以PolyT进行反转录获得的cDNA为模板,以lnc171-SBamH I:CGGGATCCAACCCTAAATCTCTCTCAAC和lnc171-A Sal I:ACGCGTCGACTTACAGAGAAACCACATAGAA为引物,通过PCR方法扩增获得lncRNA-171基因,其序列如SEQ ID No:1所示(带有BamH I和Sal I两限制性内切酶的酶切位点)。将lncRNA-171基因在NCBI数据库中进行比对分析,没有发现lncRNA-171基因的同源性基因(基因序列相似性≥80%)。The total RNA was extracted from cassava leaves, the cDNA obtained by reverse transcription of PolyT was used as a template, lnc171-SBamH I: CGGGATCCAACCCTAAATCTCTCTCAAC and lnc171-A Sal I: ACGCGTCGACTTACAGAGAAACCACATAGAA were used as primers, and the lncRNA-171 gene was amplified by PCR method. Its sequence is shown in SEQ ID No: 1 (with restriction endonuclease cutting sites of BamH I and Sal I). The lncRNA-171 gene was compared and analyzed in the NCBI database, and no homologous genes (gene sequence similarity ≥ 80%) were found for the lncRNA-171 gene.
PCR扩增反应体系如下:The PCR amplification reaction system is as follows:
PCR扩增程序:98℃5分钟;98℃10秒钟,55℃5秒,72℃15秒,32个循环;72℃5分钟。PCR amplification program: 98°C for 5 minutes; 98°C for 10 seconds, 55°C for 5 seconds, 72°C for 15 seconds, 32 cycles; 72°C for 5 minutes.
4、转基因木薯的筛选4. Screening of transgenic cassava
将“3、lncRNA对应的基因(lncRNA-171基因)的获得”得到的扩增产物经BamH I和Sal I双酶切后连接到经相同内切酶切后的表达载体pCambia1301中,通过测序鉴定目的序列的完整性和连接顺序的正确性。包含35s和终止子及lncRNA-171的DNA序列如SEQ ID NO:5所示。The amplified product obtained in "3. Obtaining the gene corresponding to the lncRNA (lncRNA-171 gene)" was double-digested with BamH I and Sal I and connected to the expression vector pCambia1301 after the same endonuclease digestion, and identified by sequencing The integrity of the target sequence and the correctness of the connection sequence. The DNA sequence comprising 35s and terminator and lncRNA-171 is shown in SEQ ID NO:5.
将构建的lncRNA基因过表达载体,转化木薯胚性愈伤,以获得阳性转基因木薯株系。在对6个转基因木薯株系的qPCR验证中(图3A),在OE#3和OE#6转基因株系中lncRNA-171的表达水平最高,相对表达水平约是对照组的80倍和120倍。说明lncRNA-171在转基因木薯内高水平表达,通过Sourthern杂交检测到在OE#3和OE#6是以双拷贝插入,因此后续lncRNA-171的功能和表型验证主要选择OE#3和OE#6这两个株系(图3B)。The constructed lncRNA gene overexpression vector was transformed into cassava embryogenic callus to obtain positive transgenic cassava lines. In the qPCR validation of six transgenic cassava lines (Fig. 3A), the expression level of lncRNA-171 was the highest in
5、转基因木薯表型验证5. Phenotype verification of transgenic cassava
将转基因木薯栽种于大田中种植,在栽培初期(栽培2个月后),转基因木薯植株与对照组无差别,在栽培后期(栽培8个月后)块根数量及大小与野生型相比也没有明显差异(图3C)。说明lncRNA-171在不影响木薯植株及块根发育。The transgenic cassava was planted in the field. At the initial stage of cultivation (after 2 months of cultivation), there was no difference between the transgenic cassava plants and the control group. In the later stage of cultivation (after 8 months of cultivation), the number and size of tubers were no different from those of the wild type. Significant difference (Fig. 3C). It shows that lncRNA-171 does not affect the development of cassava plants and roots.
6、胁迫处理和生理指标的测定6. Determination of stress treatment and physiological indicators
对转基因木薯的转基因苗(盆栽扦插苗,1月龄)进行干旱胁迫处理(免浇水直至叶片及顶端萎蔫后复水),经过干旱胁迫后对照组木薯植株顶芽萎蔫,而转基因植株的木薯苗对干旱胁迫表现出优良的抗性,经过干旱胁迫的转基因木薯苗仅靠近根部的三片叶子枯萎,重新浇水后植株迅速恢复生长,顶芽开始生长,叶片浓绿,转基因植株对干旱胁迫表现出优良的耐受性(图4A)。The transgenic seedlings of transgenic cassava (potted cutting seedlings, 1 month old) were subjected to drought stress treatment (no watering until the leaves and tops wilted and then rewatered). Seedlings showed excellent resistance to drought stress. After drought stress, only three leaves near the root of the transgenic cassava seedlings withered. After re-watering, the plants quickly recovered and the terminal buds began to grow. Excellent tolerance was shown (Fig. 4A).
另取转基因木薯的转基因苗(大田扦插苗,8月龄)的叶片在室温下(25℃)放置,分别测定离体叶片放置不同时间的含水量,发现相同时间下,转基因株系的叶片含水量显著高于较野生型(图4B)。In addition, the leaves of transgenic cassava transgenic seedlings (field cutting seedlings, 8 months old) were placed at room temperature (25°C), and the water content of detached leaves were measured at different times. It was found that at the same time, the leaves of transgenic lines contained The amount of water was significantly higher than that of the wild type (Fig. 4B).
在植物的应激反应中,丙二醛和脯氨酸发挥着重要的作用,丙二醛含量的升高会对植物细胞膜造成损害,丙二醛含量的高可以在一定程度上反映出植物细胞受损比较严重,与此同时脯氨酸对植物细胞具有一定的保护作用。取转基因木薯的转基因苗(盆栽扦插苗,2月龄)进行干旱胁迫处理(免浇水直至叶片及顶端萎蔫),测定叶片中脯氨酸和丙二醛的含量。发现,在干旱处理后,转基因木薯的脯氨酸的含量均较对照组高(图4C),与此同时,转基因植株OE#3和OE#6中丙二醛的含量均较野生型低(图4D)。实验结果表明转基因木薯在干旱胁迫处理下受到的影响较对照组小,在受到干旱处理时表现出更好的耐受性。In the stress response of plants, malondialdehyde and proline play an important role. The increase of malondialdehyde content will cause damage to plant cell membranes. The high content of malondialdehyde can reflect the The damage is more serious, and at the same time proline has a certain protective effect on plant cells. The transgenic seedlings of transgenic cassava (potted cuttings, 2 months old) were subjected to drought stress treatment (no watering until the leaves and tops wilted), and the contents of proline and malondialdehyde in the leaves were determined. It was found that after drought treatment, the content of proline in the transgenic cassava was higher than that in the control group (Fig. 4C), and at the same time, the content of malondialdehyde in the transgenic
7、木薯lncRNA-171特异性调控多个蛋白质编码基因的表达7. Cassava lncRNA-171 specifically regulates the expression of multiple protein-coding genes
为了解析受lncRNA-171调控的下游关键基因和遗传通路,我们对木薯野生型和转lncRNA-171基因的株系进行了干旱处理(免浇水直至叶片及顶端萎蔫),并采集处理前后植株的叶片和顶端,进行了转录组测序。对数据分析后,我们采用DEseq进行下游基因差异表达分析,通过比较处理前后转基因株系与对照组,并选取|log2Ratio|≥1和q<0.05的基因作为差异表达下游基因。分析发现对照组木薯、转基因木薯OE#3和转基因木薯OE#6在受到干旱胁迫后上调基因共1246个,下调基因有987个(图5A)。在干旱胁迫下,共有25个基因始终受lnc RNA171上调表达,而有49个个基因始终受lnc RNA171下调表达,(图5B)。对这些基因进行聚类分析,发现它们在次生代谢、逆境响应等途径发挥功能(图5C)。In order to analyze the downstream key genes and genetic pathways regulated by lncRNA-171, we carried out drought treatment on cassava wild-type and lncRNA-171 transgenic lines (without watering until the leaves and tops wilted), and collected the plants before and after treatment. For leaves and tops, transcriptome sequencing was performed. After data analysis, we used DEseq to analyze the differential expression of downstream genes. By comparing the transgenic lines before and after treatment with the control group, we selected genes with |log2Ratio|≥1 and q<0.05 as differentially expressed downstream genes. The analysis found that the control cassava, transgenic
以上对本发明的具体实施例进行了详细描述,但其只是作为范例,本发明并不限制于以上描述的具体实施例。对于本领域技术人员而言,任何对本发明进行的等同修改和替代也都在本发明的范畴之中。因此,在不脱离本发明的精神和范围下所作的均等变换和修改,都应涵盖在本发明的范围内。The specific embodiments of the present invention have been described in detail above, but they are only examples, and the present invention is not limited to the specific embodiments described above. For those skilled in the art, any equivalent modifications and substitutions to the present invention are also within the scope of the present invention. Therefore, equivalent changes and modifications made without departing from the spirit and scope of the present invention shall fall within the scope of the present invention.
序列表sequence listing
<110> 中国热带农业科学院热带生物技术研究所<110> Institute of Tropical Biotechnology, Chinese Academy of Tropical Agricultural Sciences
<120> 一种抗旱lncRNA 及应用<120> A drought-resistant lncRNA and its application
<160> 5<160> 5
<170> SIPOSequenceListing 1.0<170> SIPOSequenceListing 1.0
<210> 1<210> 1
<211> 876<211> 876
<212> DNA<212>DNA
<213> Artificial<213> Artificial
<400> 1<400> 1
cgggatccaa ccctaaatct ctctcaactc tcaagtctac tgccgccctc ccctccccca 60cgggatccaa ccctaaatct ctctcaactc tcaagtctac tgccgccctc ccctccccca 60
ttcggcctct ccgtcactcg tctgttacac tcgtctgtta caaccgtgcg cctctcgccg 120ttcggcctct ccgtcactcg tctgttacac tcgtctgtta caaccgtgcg cctctcgccg 120
atcgttcctc tgctccacgc tgtcaacgtc gtccggttcc tgcgtccgct ggtctgcttg 180atcgttcctc tgctccacgc tgtcaacgtc gtccggttcc tgcgtccgct ggtctgcttg 180
cttctttgct cttctccgcc gcttcctctg ctccagtctt gccgtccggt gctgctcctc 240cttctttgct cttctccgcc gcttcctctg ctccagtctt gccgtccggt gctgctcctc 240
gccgcgtcct cagtcactgc atgataatct tttgaaggaa gagtttccat ctctcgatca 300gccgcgtcct cagtcactgc atgataatct tttgaaggaa gagtttccat ctctcgatca 300
atcactacat ttgcagaaag caagcccaca acttgtgcac caaatattca caccatcaat 360atcactacat ttgcagaaag caagcccaca acttgtgcac caaatattca caccatcaat 360
ctcttcttct tcctcaatct tcctcctctc tctaaattga agcacctttg gattgtgaac 420ctcttcttct tcctcaatct tcctcctctc tctaaattga agcacctttg gattgtgaac 420
attgaagagc tcgaatccct acctccagat ggactgcgaa atctcacttg tcttcaagaa 480attgaagagc tcgaatccct acctccagat ggactgcgaa atctcacttg tcttcaagaa 480
ttaagtttct ggtcttgccc ggcattgaag tgtctgcctc aagattgcat tccctcacct 540ttaagtttct ggtcttgccc ggcattgaag tgtctgcctc aagattgcat tccctcacct 540
ctttacgaat gttggatatc cgggactgtc cccaattgaa gaacagatgt ggaaataaaa 600ctttacgaat gttggatatc cgggactgtc cccaattgaa gaacagatgt ggaaataaaa 600
aggggtcatc cattttgctg gctgggtaat tctttgaact gggcattgag aggctgtagg 660aggggtcatc cattttgctg gctgggtaat tctttgaact gggcattgag aggctgtagg 660
aaccatggca ggcattataa gaaagttgct atgaattagt ccataagaaa atttcagatc 720aaccatggca ggcattataa gaaagttgct atgaattagt ccataagaaa atttcagatc 720
tatgtactgg cttttagggg gagccaagag ccagctgtta ataagctcaa ggagcccatt 780tatgtactgg cttttagggg gagccaagag ccagctgtta ataagctcaa ggagcccatt 780
ttagatgaaa ttacagctac actagtgagc cgttttgagc ttaattttac aagacaggac 840ttagatgaaa ttacagctac actagtgagc cgttttgagc ttaattttac aagacaggac 840
actgcttcta tgtggtttct ctgtaagtcg acgcgt 876actgcttcta tgtggtttct ctgtaagtcg acgcgt 876
<210> 2<210> 2
<211> 861<211> 861
<212> RNA<212> RNA
<213> Artificial<213> Artificial
<400> 2<400> 2
ccaacccuaa aucucucuca acucucaagu cuacugccgc ccuccccucc cccauucggc 60ccaacccuaa aucuccuca acucucaagu cuacugccgc ccuccccucc cccauucggc 60
cucuccguca cucgucuguu acacucgucu guuacaaccg ugcgccucuc gccgaucguu 120cucuccguca cucgucuguu acacucgucu guuacaaccg ugcgccucuc gccgaucguu 120
ccucugcucc acgcugucaa cgucguccgg uuccugcguc cgcuggucug cuugcuucuu 180ccucugcucc acgcugucaa cgucguccgg uuccugcguc cgcuggucug cuugcuucuu 180
ugcucuucuc cgccgcuucc ucugcuccag ucuugccguc cggugcugcu ccucgccgcg 240ugcucuucuc cgccgcuucc ucugcuccag ucuugccguc cggugcugcu ccucgccgcg 240
uccucaguca cugcaugaua aucuuuugaa ggaagaguuu ccaucucucg aucaaucacu 300uccucaguca cugcaugaua aucuuuugaa ggaagaguuu ccaucucucg aucaaucacu 300
acauuugcag aaagcaagcc cacaacuugu gcaccaaaua uucacaccau caaucucuuc 360acauuugcag aaagcaagcc cacaacuugu gcaccaaaua uucacaccau caaucucuuc 360
uucuuccuca aucuuccucc ucucucuaaa uugaagcacc uuuggauugu gaacauugaa 420uucuuccuca aucuuccucc ucucucuaaa uugaagcacc uuuggauugu gaacauugaa 420
gagcucgaau cccuaccucc agauggacug cgaaaucuca cuugucuuca agaauuaagu 480gagcucgaau cccuaccucc agauggacug cgaaaucuca cuugucuuca agaauuaagu 480
uucuggucuu gcccggcauu gaagugucug ccucaagauu gcauucccuc accucuuuac 540uucuggucuu gcccggcauu gaagugucug ccucaagauu gcauucccuc accucuuuac 540
gaauguugga uauccgggac uguccccaau ugaagaacag auguggaaau aaaaaggggu 600gaauguugga uauccgggac uguccccaau ugaagaacag auguggaaau aaaaaggggu 600
cauccauuuu gcuggcuggg uaauucuuug aacugggcau ugagaggcug uaggaaccau 660cauccauuuu gcuggcuggg uaauucuuug aacugggcau ugagaggcug uaggaaccau 660
ggcaggcauu auaagaaagu ugcuaugaau uaguccauaa gaaaauuuca gaucuaugua 720ggcaggcauu auaagaaagu ugcuaugaau uaguccauaa gaaaauuuca gaucuaugua 720
cuggcuuuua gggggagcca agagccagcu guuaauaagc ucaaggagcc cauuuuagau 780cuggcuuuua gggggagcca agagccagcu guuaauaagc ucaaggagcc cauuuuagau 780
gaaauuacag cuacacuagu gagccguuuu gagcuuaauu uuacaagaca ggacacugcu 840gaaauuacag cuacacuagu gagccguuuu gagcuuaauu uuacaagaca ggacacugcu 840
ucuauguggu uucucuguaa g 861ucuauguggu uucucuguaa g 861
<210> 3<210> 3
<211> 28<211> 28
<212> DNA<212>DNA
<213> Artificial<213> Artificial
<400> 3<400> 3
cgggatccaa ccctaaatct ctctcaac 28cgggatccaa ccctaaatct ctctcaac 28
<210> 4<210> 4
<211> 31<211> 31
<212> DNA<212>DNA
<213> Artificial<213> Artificial
<400> 4<400> 4
acgcgtcgac ttacagagaa accacataga a 31acgcgtcgac ttacagagaa accacataga a 31
<210> 5<210> 5
<211> 1689<211> 1689
<212> DNA<212>DNA
<213> Artificial<213> Artificial
<400> 5<400> 5
gaattcccat ggagtcaaag attcaaatag aggacctaac agaactcgcc gtaaagactg 60gaattcccat ggagtcaaag attcaaatag aggacctaac agaactcgcc gtaaagactg 60
gcgaacagtt catacagagt ctcttacgac tcaatgacaa gaagaaaatc ttcgtcaaca 120gcgaacagtt catacagagt ctcttacgac tcaatgacaa gaagaaaatc ttcgtcaaca 120
tggtggagca cgacacgctt gtctactcca aaaatatcaa agatacagtc tcagaagacc 180tggtggagca cgacacgctt gtctactcca aaaatatcaa agatacagtc tcagaagacc 180
aaagggcaat tgagactttt caacaaaggg taatatccgg aaacctcctc ggattccatt 240aaagggcaat tgagactttt caacaaaggg taatatccgg aaacctcctc ggattccatt 240
gcccagctat ctgtcacttt attgtgaaga tagtggaaaa ggaaggtggc tcctacaaat 300gcccagctat ctgtcacttt attgtgaaga tagtggaaaa ggaaggtggc tcctacaaat 300
gccatcattg cgataaagga aaggccatcg ttgaagatgc ctctgccgac agtggtccca 360gccatcattg cgataaagga aaggccatcg ttgaagatgc ctctgccgac agtggtccca 360
aagatggacc cccacccacg aggagcatcg tggaaaaaga agacgttcca accacgtctt 420aagatggacc cccaccacg aggagcatcg tggaaaaaga agacgttcca accacgtctt 420
caaagcaagt ggattgatgt gatatctcca ctgacgtaag ggatgacgca caatcccact 480caaagcaagt ggattgatgt gatatctcca ctgacgtaag ggatgacgca caatcccact 480
atccttcgca agacccttcc tctatataag gaagttcatt tcatttggag aggacagggt 540atccttcgca agacccttcc tctatataag gaagttcatt tcatttggag aggacagggt 540
acccggggat ccaaccctaa atctctctca actctcaagt ctactgccgc cctcccctcc 600acccggggat ccaaccctaa atctctctca actctcaagt ctactgccgc cctcccctcc 600
cccattcggc ctctccgtca ctcgtctgtt acactcgtct gttacaaccg tgcgcctctc 660cccattcggc ctctccgtca ctcgtctgtt acactcgtct gttacaaccg tgcgcctctc 660
gccgatcgtt cctctgctcc acgctgtcaa cgtcgtccgg ttcctgcgtc cgctggtctg 720gccgatcgtt cctctgctcc acgctgtcaa cgtcgtccgg ttcctgcgtc cgctggtctg 720
cttgcttctt tgctcttctc cgccgcttcc tctgctccag tcttgccgtc cggtgctgct 780cttgcttctt tgctcttctc cgccgcttcc tctgctccag tcttgccgtc cggtgctgct 780
cctcgccgcg tcctcagtca ctgcatgata atcttttgaa ggaagagttt ccatctctcg 840cctcgccgcg tcctcagtca ctgcatgata atcttttgaa ggaagagttt ccatctctcg 840
atcaatcact acatttgcag aaagcaagcc cacaacttgt gcaccaaata ttcacaccat 900atcaatcact atatttgcag aaagcaagcc cacaacttgt gcaccaaata ttcacaccat 900
caatctcttc ttcttcctca atcttcctcc tctctctaaa ttgaagcacc tttggattgt 960caatctcttc ttcttcctca atcttcctcc tctctctaaa ttgaagcacc tttggattgt 960
gaacattgaa gagctcgaat ccctacctcc agatggactg cgaaatctca cttgtcttca 1020gaacattgaa gagctcgaat ccctacctcc agatggactg cgaaatctca cttgtcttca 1020
agaattaagt ttctggtctt gcccggcatt gaagtgtctg cctcaagatt gcattccctc 1080agaattaagt ttctggtctt gcccggcatt gaagtgtctg cctcaagatt gcattccctc 1080
acctctttac gaatgttgga tatccgggac tgtccccaat tgaagaacag atgtggaaat 1140acctctttac gaatgttgga tatccgggac tgtccccaat tgaagaacag atgtggaaat 1140
aaaaaggggt catccatttt gctggctggg taattctttg aactgggcat tgagaggctg 1200aaaaaggggt catccatttt gctggctggg taattctttg aactgggcat tgagaggctg 1200
taggaaccat ggcaggcatt ataagaaagt tgctatgaat tagtccataa gaaaatttca 1260taggaaccat ggcaggcatt ataagaaagt tgctatgaat tagtccataa gaaaatttca 1260
gatctatgta ctggctttta gggggagcca agagccagct gttaataagc tcaaggagcc 1320gatctatgta ctggctttta gggggagcca agagccagct gttaataagc tcaaggagcc 1320
cattttagat gaaattacag ctacactagt gagccgtttt gagcttaatt ttacaagaca 1380cattttagat gaaattacag ctacactagt gagccgtttt gagcttaatt ttacaagaca 1380
ggacactgct tctatgtggt ttctctgtaa ggtcgacctg caggcgttca aacatttggc 1440ggacactgct tctatgtggt ttctctgtaa ggtcgacctg caggcgttca aacatttggc 1440
aataaagttt cttaagattg aatcctgttg ccggtcttgc gatgattatc atataatttc 1500aataaagttt cttaagattg aatcctgttg ccggtcttgc gatgattatc atataatttc 1500
tgttgaatta cgttaagcat gtaataatta acatgtaatg catgacgtta tttatgagat 1560tgttgaatta cgttaagcat gtaataatta acatgtaatg catgacgtta tttatgagat 1560
gggtttttat gattagagtc ccgcaattat acatttaata cgcgatagaa aacaaaatat 1620gggtttttat gattagagtc ccgcaattat acatttaata cgcgatagaa aacaaaatat 1620
agcgcgcaaa ctaggataaa ttatcgcgcg cggtgtcatc tatgttacta gatcgggaat 1680agcgcgcaaa ctaggataaa ttatcgcgcg cggtgtcatc tatgttacta gatcgggaat 1680
tgccaagct 1689tgccaagct 1689
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210432493.0A CN114621956B (en) | 2022-04-23 | 2022-04-23 | A drought-resistant lncRNA and its application |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210432493.0A CN114621956B (en) | 2022-04-23 | 2022-04-23 | A drought-resistant lncRNA and its application |
Publications (2)
Publication Number | Publication Date |
---|---|
CN114621956A CN114621956A (en) | 2022-06-14 |
CN114621956B true CN114621956B (en) | 2023-05-19 |
Family
ID=81906401
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210432493.0A Active CN114621956B (en) | 2022-04-23 | 2022-04-23 | A drought-resistant lncRNA and its application |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114621956B (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113201549B (en) * | 2021-06-11 | 2023-03-24 | 中国热带农业科学院热带生物技术研究所 | RNA for improving low-temperature tolerance of plants and application thereof |
CN118813626B (en) * | 2024-09-19 | 2024-11-15 | 中国热带农业科学院三亚研究院 | Cold-resistant Lnc RNA and application thereof |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101600342A (en) * | 2006-12-15 | 2009-12-09 | 农业经济有限责任公司 | The production of plant with oil, albumen or fiber content of change |
WO2017106663A1 (en) * | 2015-12-18 | 2017-06-22 | Pioneer Hi-Bred International, Inc. | Methods for identification of novel genes for modulating plant agronomic traits |
WO2018204777A2 (en) * | 2017-05-05 | 2018-11-08 | The Broad Institute, Inc. | Methods for identification and modification of lncrna associated with target genotypes and phenotypes |
CN113201549A (en) * | 2021-06-11 | 2021-08-03 | 中国热带农业科学院热带生物技术研究所 | RNA for improving low-temperature tolerance of plants and application thereof |
CN113444727A (en) * | 2021-06-30 | 2021-09-28 | 中国热带农业科学院热带生物技术研究所 | LncRNA and application thereof |
-
2022
- 2022-04-23 CN CN202210432493.0A patent/CN114621956B/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101600342A (en) * | 2006-12-15 | 2009-12-09 | 农业经济有限责任公司 | The production of plant with oil, albumen or fiber content of change |
WO2017106663A1 (en) * | 2015-12-18 | 2017-06-22 | Pioneer Hi-Bred International, Inc. | Methods for identification of novel genes for modulating plant agronomic traits |
WO2018204777A2 (en) * | 2017-05-05 | 2018-11-08 | The Broad Institute, Inc. | Methods for identification and modification of lncrna associated with target genotypes and phenotypes |
CN113201549A (en) * | 2021-06-11 | 2021-08-03 | 中国热带农业科学院热带生物技术研究所 | RNA for improving low-temperature tolerance of plants and application thereof |
CN113444727A (en) * | 2021-06-30 | 2021-09-28 | 中国热带农业科学院热带生物技术研究所 | LncRNA and application thereof |
Non-Patent Citations (7)
Title |
---|
Genome-wide identification and functional prediction of cold and/or drought-responsive lncRNAs in cassava;Li S等;Sci Rep;第7卷;doi: 10.1038/srep45981 * |
Mechanisms and approaches towards enhanced drought tolerance in cassava (Manihot esculenta);Skma B等;ScienceDirect;第28卷;doi.org/10.1016 * |
PREDICTED: Manihot esculenta uncharacterized LOC110601023 (LOC110601023), transcript variant X20, misc_RNA;GenBank Database;GenBank Database;Accession No.XR_006348772.1 * |
Strand-specific RNA-seq based identification and functional prediction of drought-responsive lncRNAs in cassava;Ding Z等;BMC Genomics;第20卷(第1期);214 * |
拟南芥lncRNA-At5NC056820过表达载体构建及其转基因植株的抗旱性研究;毋若楠等;西北植物学报;第37卷(第10期);1904-1909 * |
木薯低温响应长链非编码RNA-CRR1的功能研究;沈婕;中国优秀硕士学位论文全文数据库农业科技辑(第6期);D047-119 * |
木薯蛋白磷酸酶基因MePP2C24/26在ABA介导的干旱应答中的功能研究;吴春来;中国学位论文全文数据库;全文 * |
Also Published As
Publication number | Publication date |
---|---|
CN114621956A (en) | 2022-06-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Dinesh Babu et al. | A short review on sugarcane: its domestication, molecular manipulations and future perspectives | |
CN114621956B (en) | A drought-resistant lncRNA and its application | |
CN113444727B (en) | A kind of LncRNA and its application | |
CN113201549B (en) | RNA for improving low-temperature tolerance of plants and application thereof | |
WO2023065966A1 (en) | Application of bfne gene in tomato plant type improvement and biological yield increase | |
CN107722112B (en) | Rice Stripe Blight Resistance Gene Stv-bi and Its Application | |
US20240158787A1 (en) | USE OF miRNA408 IN REGULATION OF CADMIUM ACCUMULATION IN CROP | |
WO2020156367A1 (en) | Method for improving oryza sativa yield and/or blast resistance and protein used thereby | |
CN117587047A (en) | Application of GhMPK9 gene in improving verticillium wilt resistance of cotton | |
WO2023070936A1 (en) | Protein vapbp2-l for enhancing drought resistance of plant and use thereof | |
CN105985954A (en) | Application of paddy rice miR160b gene in regulation and control on tillering angle | |
CN106496313A (en) | Disease-resistance-related protein IbSWEET10 and its encoding gene and application | |
CN103012570B (en) | Plant stress resistance related protein PpLEA3-21 and its coding gene and application | |
CN117625634A (en) | FSCB gene for controlling synthesis of capsicum stalk lignin, protein, primer pair and application thereof | |
CN114921473B (en) | A gene that negatively regulates the synthesis of endogenous salicylic acid in cassava and its application | |
CN101704882B (en) | Plant yellow dwarf resistance related protein and coding gene and application thereof | |
CN109943579A (en) | A kind of Minjiang lily LrCCoAOMT gene and its application | |
WO2022213453A1 (en) | Use of aluminum ion receptor alr1 gene or protein for regulating aluminum resistance of plant | |
CN114591984A (en) | Application of OsAP79 gene to induce brown planthopper resistance in rice | |
CN114107334A (en) | A mulberry resveratrol synthase gene and a method for using the same to enhance the drought tolerance of mulberry and increase the content of resveratrol in mulberry white bark | |
CN118813626B (en) | Cold-resistant Lnc RNA and application thereof | |
CN101280008B (en) | Protein related to cold resistance of plant, coding genes and application thereof | |
CN116814644B (en) | A gene OsMADS22 controlling tillering number and flowering period in rice and its application | |
CN102964438B (en) | Stress-resistance-related protein PpLEA3-23 of plant as well as coding gene and application of protein | |
CN104910264B (en) | A kind of brassinosteroid receptor protein of moso bamboo and its coding gene and application |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |