CN114619021A - Method for casting integral equiaxial fine-grained blade disc by mechanical oscillation method - Google Patents
Method for casting integral equiaxial fine-grained blade disc by mechanical oscillation method Download PDFInfo
- Publication number
- CN114619021A CN114619021A CN202011456852.3A CN202011456852A CN114619021A CN 114619021 A CN114619021 A CN 114619021A CN 202011456852 A CN202011456852 A CN 202011456852A CN 114619021 A CN114619021 A CN 114619021A
- Authority
- CN
- China
- Prior art keywords
- fine
- casting
- integral
- grain
- molten steel
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000005266 casting Methods 0.000 title claims abstract description 49
- 238000000034 method Methods 0.000 title claims abstract description 43
- 230000010358 mechanical oscillation Effects 0.000 title claims abstract description 12
- 229910000831 Steel Inorganic materials 0.000 claims abstract description 22
- 239000010959 steel Substances 0.000 claims abstract description 22
- 230000006911 nucleation Effects 0.000 claims abstract description 4
- 238000010899 nucleation Methods 0.000 claims abstract description 4
- 239000010410 layer Substances 0.000 claims description 15
- 238000007670 refining Methods 0.000 claims description 7
- 229910018072 Al 2 O 3 Inorganic materials 0.000 claims description 6
- 238000003723 Smelting Methods 0.000 claims description 6
- 239000000843 powder Substances 0.000 claims description 6
- 230000002787 reinforcement Effects 0.000 claims description 6
- 230000010355 oscillation Effects 0.000 claims description 4
- 239000004576 sand Substances 0.000 claims description 4
- RMAQACBXLXPBSY-UHFFFAOYSA-N silicic acid Chemical compound O[Si](O)(O)O RMAQACBXLXPBSY-UHFFFAOYSA-N 0.000 claims description 4
- 210000000795 conjunctiva Anatomy 0.000 claims description 3
- CRHLEZORXKQUEI-UHFFFAOYSA-N dialuminum;cobalt(2+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Al+3].[Al+3].[Co+2].[Co+2] CRHLEZORXKQUEI-UHFFFAOYSA-N 0.000 claims description 3
- 238000007598 dipping method Methods 0.000 claims description 3
- 238000002360 preparation method Methods 0.000 claims description 3
- 239000011248 coating agent Substances 0.000 claims description 2
- 238000000576 coating method Methods 0.000 claims description 2
- 239000002344 surface layer Substances 0.000 claims description 2
- 238000007514 turning Methods 0.000 claims description 2
- 238000001035 drying Methods 0.000 claims 1
- 229910045601 alloy Inorganic materials 0.000 abstract description 7
- 239000000956 alloy Substances 0.000 abstract description 7
- 238000005495 investment casting Methods 0.000 abstract description 7
- 239000013078 crystal Substances 0.000 abstract description 6
- 238000002485 combustion reaction Methods 0.000 abstract description 2
- 230000005484 gravity Effects 0.000 description 5
- 229910000601 superalloy Inorganic materials 0.000 description 5
- 239000000126 substance Substances 0.000 description 4
- 238000001816 cooling Methods 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 239000000155 melt Substances 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- 238000000429 assembly Methods 0.000 description 2
- 230000000712 assembly Effects 0.000 description 2
- 239000006185 dispersion Substances 0.000 description 2
- 238000005242 forging Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000002667 nucleating agent Substances 0.000 description 2
- 238000005070 sampling Methods 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 210000001787 dendrite Anatomy 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 238000003754 machining Methods 0.000 description 1
- 238000010297 mechanical methods and process Methods 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 150000001247 metal acetylides Chemical class 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 239000003973 paint Substances 0.000 description 1
- 238000004321 preservation Methods 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D27/00—Treating the metal in the mould while it is molten or ductile ; Pressure or vacuum casting
- B22D27/08—Shaking, vibrating, or turning of moulds
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D27/00—Treating the metal in the mould while it is molten or ductile ; Pressure or vacuum casting
- B22D27/15—Treating the metal in the mould while it is molten or ductile ; Pressure or vacuum casting by using vacuum
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Mold Materials And Core Materials (AREA)
- Molds, Cores, And Manufacturing Methods Thereof (AREA)
Abstract
Description
技术领域technical field
本发明涉及铸造高温合金整体叶盘精铸技术领域,具体涉及一种采用机械震荡法铸造整体等轴细晶叶盘的方法。The invention relates to the technical field of casting superalloy integral blisk precision casting, in particular to a method for casting an integral equiaxed fine-grain blisk by using a mechanical oscillation method.
背景技术Background technique
铸造高温合金整体精铸技术是航空、航天铸造行业的一个重大发展,应用越来越广,从整体的涡轮转子、导向器叶轮、喷嘴环到结构复杂的扩压机匣、扩散机匣、燃烧室机匣、涡轮壳及风扇框架等都均可通过精密铸造成型。越来越多的整体精密铸件用于代替锻件、锻铸组合件及机械加工组合件,不仅可以改善部件的使用性能,有效减少发动机的重量,提高发动机的使用性能和可靠性,而且可以大大提高生产效率,降低制造成本,带来十分明显的经济效益。Casting superalloy integral precision casting technology is a major development in the aviation and aerospace casting industry, and its applications are becoming more and more extensive, from integral turbine rotors, guide impellers, nozzle rings to complex diffuser casings, diffusion casings, combustion The casing, turbine casing and fan frame can all be formed by precision casting. More and more integral precision castings are used to replace forgings, forging and casting assemblies and machining assemblies, which can not only improve the performance of parts, effectively reduce the weight of the engine, improve the performance and reliability of the engine, but also greatly improve the performance of the engine. Production efficiency, reduce manufacturing costs, and bring very obvious economic benefits.
从上世纪八十年代,国外有关高温合金整体精铸技术的发展和应用极为迅速,相继出现了镍基、钴基等高温合金的整体叶片铸造技术,但在真空下自然凝固所形成的盘体晶粒粗大,使得合金的性能不均匀,波动较大,且容易产生铸造疏松,Since the 1980s, the development and application of foreign superalloy integral precision casting technology has been extremely rapid, and the integral blade casting technology of nickel-based, cobalt-based and other superalloys has appeared one after another. Coarse grains make the performance of the alloy uneven, the fluctuation is large, and it is easy to produce loose casting.
为细化高温合金晶粒,国外先后开发了热控法、化学法和动力学法(机械法)等细化方法。热控法的特点是降低精炼温度和时间,保留碳化物,同时降低浇注温度,加速冷却,限制晶粒生长;化学法是向熔体中加入固体形核剂,形成大量非均质晶核;动力学法则是通过旋转铸型、机械振动来搅拌熔体,细化晶粒。但是上述工艺方法在应用上都存在着一定的局限性和缺陷,如热控法其缺点是不易排除气泡和夹杂,使铸件纯净度降低,铸造大件困难,由于极低的过热温度和严格的温度控制限制了它的应用。机械法应用中,利用机械力难以使熔体运动均匀而且受部件形状限制。化学法缺点是难于控制化学成份,且形核剂易形成氧化物造成疲劳源。总体来说,上述方法获得的细晶对合金性能提升效果不佳。In order to refine superalloy grains, refining methods such as thermal control method, chemical method and kinetic method (mechanical method) have been developed in foreign countries. The characteristics of the thermal control method are to reduce the refining temperature and time, retain the carbides, and at the same time reduce the pouring temperature, accelerate the cooling, and limit the grain growth; the chemical method is to add a solid nucleating agent to the melt to form a large number of heterogeneous crystal nuclei; The kinetic law is to agitate the melt by rotating the mold and mechanical vibration to refine the grains. However, there are certain limitations and defects in the application of the above process methods. For example, the thermal control method has the disadvantage that it is difficult to remove bubbles and inclusions, which reduces the purity of the casting and makes it difficult to cast large parts. Temperature control limits its application. In mechanical applications, it is difficult to use mechanical force to make the melt movement uniform and is limited by the shape of the part. The disadvantage of the chemical method is that it is difficult to control the chemical composition, and the nucleating agent is easy to form oxides and cause fatigue sources. In general, the fine grains obtained by the above methods are not effective in improving the properties of the alloy.
发明内容SUMMARY OF THE INVENTION
为了解决现有技术中存在的不能依靠动力学法制备整体铸造细晶叶片的难题,本发明的目的在于提供一种采用机械震荡法铸造整体等轴细晶叶盘的方法,该方法在真空下采用感应熔炼、浇注、旋转振荡、快速形核、快速冷却凝固制备多种精密细晶铸件。In order to solve the problem in the prior art that the integral casting fine-grained blade cannot be prepared by the dynamic method, the purpose of the present invention is to provide a method for casting the integral equiaxed fine-grained blisk by using the mechanical oscillation method. A variety of precision fine-grained castings are prepared by induction melting, pouring, rotary oscillation, rapid nucleation, and rapid cooling and solidification.
为实现上述目的,本发明所采用的技术方案如下:For achieving the above object, the technical scheme adopted in the present invention is as follows:
一种采用机械震荡法铸造整体等轴细晶叶盘的方法,该方法是采用机械旋转震荡细晶铸造炉及细晶铸造工艺制备整体等轴细晶叶盘,铸造过程中,在真空条件下通过模壳的正反向旋转并能紧急制动来破碎已凝固的枝晶组织,在未凝固的钢液中促进形核,达到整体细晶的目的,从而制备出整体等轴细晶叶盘。A method for casting an integral equiaxed fine-grain leaf disk by using a mechanical oscillation method. Through the forward and reverse rotation of the mold shell and emergency braking, the solidified dendrite structure can be broken, and the nucleation can be promoted in the unsolidified molten steel to achieve the purpose of overall fine grain, thereby preparing the overall equiaxed fine grain leaf disk .
所述机械旋转震荡细晶铸造炉包括可旋转水冷底盘,型壳固定于所述可旋转水冷底盘上方,通过水冷底盘的旋转和制动带动型壳的动作。The mechanically rotating and oscillating fine-grain casting furnace includes a rotatable water-cooled chassis, and a mold shell is fixed above the rotatable water-cooled chassis, and the action of the mold shell is driven by the rotation and braking of the water-cooled chassis.
所述型壳在底座的下表面设有空腔凸起,该空腔凸起与所述水冷底盘上的凹槽相适应,并通过螺栓将所述型壳的底座固定到水冷底盘上。The mold case is provided with a cavity protrusion on the lower surface of the base, and the cavity protrusion is adapted to the groove on the water-cooled chassis, and the base of the mold case is fixed on the water-cooled chassis by bolts.
所述型壳的制备方法为:在蜡模上制备第一层面层和之后的各加固层,型壳面层是由200目Al2O3粉和铝酸钴细化剂按照85:15的重量比例混合而成;加固层为80目Al2O3粉撒砂,每层砂之间采用硅溶胶沾浆,涂至十一层后,再采用硅溶胶沾浆,烘干脱蜡,所得型壳备用。The preparation method of the mold shell is as follows: the first layer and the subsequent reinforcement layers are prepared on the wax mold, and the mold shell surface layer is made of 200 mesh Al 2 O 3 powder and cobalt aluminate refiner according to 85:15. The reinforcement layer is sanded with 80 mesh Al 2 O 3 powder, and silica sol is used for dipping between each layer of sand. Spare shell.
所述细晶铸造工艺包括如下步骤:The fine-grain casting process includes the following steps:
(1)将型壳固定在旋转水冷底盘上,关闭炉门,将保温炉下降完全罩住型壳,炉内抽真空至3Pa以下,保温炉升温至1240℃,型壳保温2小时;(1) Fix the mold shell on the rotating water-cooled chassis, close the furnace door, lower the holding furnace to completely cover the mold shell, evacuate the furnace to below 3Pa, heat the holding furnace to 1240°C, and keep the mold shell for 2 hours;
(2)熔炼炉送电开始熔炼,当钢水全部化清后,待钢液温度达到1600℃时,精炼5分钟;(2) The smelting furnace is powered on to start smelting. When the molten steel is completely dissolved, when the molten steel temperature reaches 1600 °C, refining is performed for 5 minutes;
(3)精炼结束后停电降温,直至钢液凝固开始结膜,再次送电熔化钢液,待钢液升至1480-1510℃时进行浇注;(3) After the refining is finished, the power is cut off to cool down until the molten steel solidifies and begins to conjunctiva, and then the molten steel is powered on again to melt the molten steel. When the molten steel rises to 1480-1510 °C, pour it;
(4)浇注后钢液在型壳中静置3-15秒后,水冷底盘开始动作,单方向旋转30-180秒后,快速制动,制动时间1-5秒,然后反方向旋转震荡30-180秒,然后再次紧急制动,并再次反方向旋转,如此循环往复。(4) After pouring, the molten steel rests in the shell for 3-15 seconds, and the water-cooled chassis starts to move. After rotating in one direction for 30-180 seconds, brake quickly for 1-5 seconds, and then rotate in the opposite direction to oscillate. 30-180 seconds, then emergency braking again, and turning in the opposite direction again, and so on.
步骤(4)中,单向旋转速度为100-200转/分钟,总体旋转震荡时间为6-15分钟。In step (4), the unidirectional rotation speed is 100-200 rpm, and the overall rotation and oscillation time is 6-15 minutes.
采用本发明方法制备的整体细晶铸造叶盘,盘体平均晶粒尺寸小于2mm以下,晶粒均匀。The overall fine-grain casting leaf disk prepared by the method of the invention has an average crystal grain size of less than 2 mm and uniform crystal grains.
本发明的有益效果是:The beneficial effects of the present invention are:
1、采用本发明的整体细晶铸造叶盘工艺,可制备出平均晶粒尺寸小于2mm的细小等轴晶整体铸造叶盘,并消除叶片处在真空下重力铸造形成的倾斜柱状晶组织。1. By adopting the overall fine-grain casting leaf disk process of the present invention, a small equiaxed crystal integral casting leaf disk with an average grain size of less than 2 mm can be prepared, and the inclined columnar crystal structure formed by gravity casting of the blade under vacuum can be eliminated.
2、本发明的细晶铸造工艺制备的整体铸造叶盘经解剖取样,合金的中温性能与原重力铸造的叶盘解剖取样组织性能得到大幅提升,并分散度降低。2. The overall casting blisk prepared by the fine-grain casting process of the present invention is anatomically sampled, and the medium temperature performance of the alloy and the anatomical sampling structure performance of the original gravity casting blisk are greatly improved, and the dispersion degree is reduced.
3、本发明采用机械震荡细晶铸造炉,并结合特殊的铸造工艺可获得理想的整体细晶铸造叶盘,其细晶组织对高温合金铸件的中低温(≤760℃)使用性能的改善尤为明显,一方面可使铸件的低周疲劳寿命提高一倍以上,而且可有效改善合金组织和成分的均匀性,减少铸件力学性能数据的分散度,从而提高铸件的设计容限和使用的可靠性(数据见表1)。3. The present invention adopts the mechanical vibration fine-grained casting furnace, combined with the special casting process, to obtain an ideal overall fine-grained casting leaf disk, and its fine-grained structure can especially improve the service performance of high-temperature alloy castings at medium and low temperature (≤760°C). Obviously, on the one hand, the low-cycle fatigue life of the casting can be more than doubled, and the uniformity of the alloy structure and composition can be effectively improved, and the dispersion of the mechanical property data of the casting can be reduced, thereby improving the design tolerance and reliability of the casting. (see Table 1 for data).
附图说明:Description of drawings:
图1为本发明机械震荡细晶铸造炉中所用型壳。Fig. 1 is the mold shell used in the mechanically oscillating fine-grain casting furnace of the present invention.
图2为型壳与机械震荡细晶铸造炉中可旋转水冷盘固定连接。Figure 2 shows the fixed connection between the shell and the rotatable water-cooling plate in the mechanically oscillating fine-grain casting furnace.
图3为实施例1制备的铸造叶盘。FIG. 3 is the cast blisk prepared in Example 1. FIG.
图4为实施例2制备的铸造叶盘。FIG. 4 is the cast blisk prepared in Example 2. FIG.
图5为实施例3制备的铸造叶盘。FIG. 5 is the cast blisk prepared in Example 3. FIG.
图6为实施例4制备的铸造叶盘。FIG. 6 is the cast blisk prepared in Example 4. FIG.
图7为实施例5制备的铸造叶盘。FIG. 7 is the cast blisk prepared in Example 5. FIG.
图8为实施例6制备的铸造叶盘。FIG. 8 is the cast blisk prepared in Example 6. FIG.
图9为实施例7制备的铸造叶盘。FIG. 9 shows the cast blisk prepared in Example 7. FIG.
图10为实施例8制备的铸造叶盘。FIG. 10 is the cast blisk prepared in Example 8. FIG.
图11为实施例9制备的铸造叶盘。FIG. 11 is the cast blisk prepared in Example 9. FIG.
图12为真空下重力铸造整体铸造叶盘盘体解剖晶粒组织。Fig. 12 shows the anatomical grain structure of the integrally cast blisk body by gravity casting under vacuum.
具体实施方式:Detailed ways:
以下结合附图详述本发明。The present invention will be described in detail below with reference to the accompanying drawings.
本发明制备铸造等轴细晶叶盘所用装置为机械旋转震荡细晶铸造炉(该铸造炉结构参数申请号201110004318.3的专利),包括可旋转水冷转盘,型壳能够固定于所述旋转装置上,如图1-2所示,所述型壳的底座的下底面上设有带空腔的凸起,用于型壳固定到可旋转水冷底盘上。水冷底盘上部设有凹槽,带空腔的凸起与该凹槽的形状与尺寸相配合,并通过螺栓可拆卸连接。The device used for preparing the equiaxed fine-grained leaf disk for casting in the present invention is a mechanically rotating and oscillating fine-grained casting furnace (patent with the application number of 201110004318.3 for structural parameters of the casting furnace), which includes a rotatable water-cooled turntable, and the mold shell can be fixed on the rotating device, As shown in Fig. 1-2, a protrusion with a cavity is provided on the lower bottom surface of the base of the mold case, which is used for fixing the mold case to the rotatable water-cooled chassis. The upper part of the water-cooled chassis is provided with a groove, the protrusion with a cavity matches the shape and size of the groove, and is detachably connected by bolts.
所述型壳的制备方法如下:在蜡型上涂挂涂料,第一层面层是由200目Al2O3粉和铝酸钴细化剂按照85:15的重量比例混合而成;第二到第十一层为加固层,加固层为80目Al2O3粉撒砂,每层砂之间采用硅溶胶沾浆,涂至十一层后,再沾浆,烘干脱蜡后,所得型壳备用。The preparation method of the mold shell is as follows: coating and hanging paint on the wax mold, the first layer is formed by mixing 200 mesh Al 2 O 3 powder and cobalt aluminate refiner in a weight ratio of 85:15; The eleventh layer is the reinforcement layer. The reinforcement layer is sanded with 80 mesh Al 2 O 3 powder. Between each layer of sand, silica sol is used to dip the slurry. The obtained shell is ready for use.
所述细晶铸造工艺过程如下:The fine-grain casting process is as follows:
将型壳固定在旋转水冷底盘上,关闭炉门,将保温炉下降至型壳底端,完全罩住型壳,炉内抽真空至3Pa以内,开启保温炉加热装置,使保温炉加热,保温炉升温至1240℃,保温2小时,保温炉保温2小时后,熔炼炉送电开始熔炼,当钢水全部化清后,待钢液温度达到1600℃时,精炼5分钟,精炼结束,停电降温,直至钢液凝固开始结膜,再次送电熔化钢液,待钢液升至1480-1510℃时进行浇注,浇注后静置3-15秒后,控制可旋转水冷底盘动作,单方向旋转30-180秒后,快速制动,制动时间1-5秒,然后反方向旋转震荡30-180秒,然后再次紧急制动,并再次反方向旋转,如此循环往复,总体震荡时间在6-15分钟,单向旋转速度为100-200转/分钟。Fix the mold shell on the rotating water-cooled chassis, close the furnace door, lower the holding furnace to the bottom of the mold shell, completely cover the mold shell, evacuate the furnace to less than 3Pa, turn on the holding furnace heating device, heat the holding furnace, and keep the heat preservation. The furnace is heated to 1240°C and kept for 2 hours. After the holding furnace is kept for 2 hours, the smelting furnace is powered on to start smelting. When the molten steel is completely dissolved and the temperature of the molten steel reaches 1600°C, refining is performed for 5 minutes. Until the molten steel solidifies and begins to conjunctiva, send electricity again to melt the molten steel. When the molten steel rises to 1480-1510 ℃, pour it. After pouring, let it stand for 3-15 seconds, control the action of the rotatable water-cooled chassis, and rotate 30-180 in one direction. Seconds later, brake quickly, braking time is 1-5 seconds, then rotate in the opposite direction for 30-180 seconds, then emergency brake again, and rotate in the opposite direction again, and so on and so forth, the total vibration time is 6-15 minutes The unidirectional rotation speed is 100-200 rpm.
实施例1-9:Examples 1-9:
实施例1-9合金成分、工艺参数及制备的铸造整体等轴细晶叶盘状态见表1。本发明制备的整体叶盘与现有重力铸造叶盘轮盘取样的拉伸性能对比见表2。Examples 1-9 The alloy composition, process parameters and the state of the cast integral equiaxed fine-grained leaf disk are shown in Table 1. Table 2 shows the comparison of the tensile properties of the integral blisk prepared by the present invention and the sampling of the existing gravity casting blisk disk.
实施例1-9制备的铸造叶盘如图3-11,真空下重力铸造整体铸造叶盘盘体解剖晶粒组织如图12。The cast blisks prepared in Examples 1-9 are shown in Figures 3-11, and the anatomical grain structure of the integrally cast blisks by gravity casting under vacuum is shown in Figure 12.
表1Table 1
表2整体叶盘轮盘取样的拉伸性能对比Table 2 Comparison of tensile properties of integral blisk disk samples
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011456852.3A CN114619021B (en) | 2020-12-11 | 2020-12-11 | Method for casting integral equiaxial fine-grain leaf disc by mechanical oscillation method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011456852.3A CN114619021B (en) | 2020-12-11 | 2020-12-11 | Method for casting integral equiaxial fine-grain leaf disc by mechanical oscillation method |
Publications (2)
Publication Number | Publication Date |
---|---|
CN114619021A true CN114619021A (en) | 2022-06-14 |
CN114619021B CN114619021B (en) | 2024-04-16 |
Family
ID=81894948
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202011456852.3A Active CN114619021B (en) | 2020-12-11 | 2020-12-11 | Method for casting integral equiaxial fine-grain leaf disc by mechanical oscillation method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114619021B (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101823141A (en) * | 2009-03-04 | 2010-09-08 | 沈阳工业大学 | Grain-refined high-temperature alloy casting technology |
CN109719278A (en) * | 2019-03-20 | 2019-05-07 | 沈阳真空技术研究所有限公司 | Agitating type vacuum fine grain foundry furnace and its application method |
CN209681125U (en) * | 2019-03-20 | 2019-11-26 | 沈阳真空技术研究所有限公司 | Agitating type vacuum fine grain foundry furnace |
CN111318646A (en) * | 2020-04-17 | 2020-06-23 | 中国航发北京航空材料研究院 | A method for controlling the grain size of equiaxed superalloy turbine blades |
CN111438331A (en) * | 2020-05-13 | 2020-07-24 | 中国航发北京航空材料研究院 | Method for controlling grain size of turbine blade |
-
2020
- 2020-12-11 CN CN202011456852.3A patent/CN114619021B/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101823141A (en) * | 2009-03-04 | 2010-09-08 | 沈阳工业大学 | Grain-refined high-temperature alloy casting technology |
CN109719278A (en) * | 2019-03-20 | 2019-05-07 | 沈阳真空技术研究所有限公司 | Agitating type vacuum fine grain foundry furnace and its application method |
CN209681125U (en) * | 2019-03-20 | 2019-11-26 | 沈阳真空技术研究所有限公司 | Agitating type vacuum fine grain foundry furnace |
CN111318646A (en) * | 2020-04-17 | 2020-06-23 | 中国航发北京航空材料研究院 | A method for controlling the grain size of equiaxed superalloy turbine blades |
CN111438331A (en) * | 2020-05-13 | 2020-07-24 | 中国航发北京航空材料研究院 | Method for controlling grain size of turbine blade |
Also Published As
Publication number | Publication date |
---|---|
CN114619021B (en) | 2024-04-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4523032B2 (en) | Compressor impeller manufacturing method | |
CN102581245B (en) | Multifunctional vacuum centrifugal oscillating fine grain melting and casting furnace | |
JPH09503027A (en) | Investment casting process for beryllium-containing aluminum alloys and other alloys. | |
CN115055659B (en) | Centrifugal casting preparation method of high-temperature alloy casting | |
CN111318646B (en) | A method for controlling the grain size of equiaxed superalloy turbine blades | |
CN105803255B (en) | High-niobium titanium aluminum-base supercharger turbine and manufacturing method thereof | |
CN103817313B (en) | A preparation method of integral fine-grain radial impeller casting | |
JP2022512329A (en) | Die-casting method for filter cavities | |
CN201969858U (en) | Multifunctional vacuum centrifugal oscillation fine grain melting and casting furnace | |
CN104947175A (en) | Method for preparing single crystal high temperature alloy block material through laser 3D printing | |
CN101823141A (en) | Grain-refined high-temperature alloy casting technology | |
CN102581249A (en) | Centrifugal casting method of aluminum alloy impeller | |
JP2005220441A (en) | Castable high temperature aluminum alloy | |
JP2003520313A (en) | Turbine blade and method of manufacturing turbine blade | |
CN115889694A (en) | Forming method for lost foam frozen sand mold negative pressure casting light alloy casting | |
CN102071344B (en) | Preparation method for refined magnesium alloy solidification tissue | |
CN114619021A (en) | Method for casting integral equiaxial fine-grained blade disc by mechanical oscillation method | |
JP2002331352A (en) | Manufacturing method for turbine blade | |
CN220329938U (en) | Vibration pressurizing fine-grain casting equipment | |
CN102268563A (en) | Casting high temperature alloy refiner and high temperature alloy casting method using the same | |
CN209452787U (en) | Forming device for magnetic-dynamic composite precision and complex fine-grained castings | |
US20230033669A1 (en) | Multiple materials and microstructures in cast alloys | |
CN113373502B (en) | A Process for Controlling Freckle Defects in Single Crystal Castings | |
CN113165054B (en) | Controlled grain microstructure in casting alloys | |
CN114619018A (en) | Preparation method of high-temperature alloy with oriented structure and equiaxed fine-grained structure |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |