[go: up one dir, main page]

CN114618323A - Porous substrate structure and method of making the same - Google Patents

Porous substrate structure and method of making the same Download PDF

Info

Publication number
CN114618323A
CN114618323A CN202110053405.1A CN202110053405A CN114618323A CN 114618323 A CN114618323 A CN 114618323A CN 202110053405 A CN202110053405 A CN 202110053405A CN 114618323 A CN114618323 A CN 114618323A
Authority
CN
China
Prior art keywords
porous substrate
substrate structure
layer
oxide layer
oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
CN202110053405.1A
Other languages
Chinese (zh)
Inventor
黄军儒
纪岩勳
张秉宏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Industrial Technology Research Institute ITRI
Original Assignee
Industrial Technology Research Institute ITRI
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Industrial Technology Research Institute ITRI filed Critical Industrial Technology Research Institute ITRI
Publication of CN114618323A publication Critical patent/CN114618323A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/10Supported membranes; Membrane supports
    • B01D69/105Support pretreatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/22Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion
    • B01D53/228Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion characterised by specific membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Inorganic Chemistry (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Laminated Bodies (AREA)

Abstract

本发明提供一种多孔基材结构及其制造方法。所述多孔基材结构包括基材、阳极氧化铝层以及双金属氧化物层。所述基材具有多个孔洞。所述阳极氧化铝层设置于所述基材上。所述双金属氧化物层设置于所述阳极氧化铝层上。

Figure 202110053405

The present invention provides a porous substrate structure and a manufacturing method thereof. The porous substrate structure includes a substrate, an anodized aluminum oxide layer, and a bimetallic oxide layer. The substrate has a plurality of holes. The anodic aluminum oxide layer is disposed on the substrate. The double metal oxide layer is disposed on the anodic aluminum oxide layer.

Figure 202110053405

Description

多孔基材结构及其制造方法Porous substrate structure and method of making the same

技术领域technical field

本发明涉及一种多孔基材结构及其制造方法。The present invention relates to a porous substrate structure and a manufacturing method thereof.

背景技术Background technique

由于钯膜在氢气传送上的特殊性,因此目前大多将钯膜形成于多孔基材的表面上进行滤氢处理。藉由氢分子在钯膜的表面解离并穿透膜层,可将氢分子和其他气体分子分离。一般来说,采用钯膜的厚度来作为滤氢性能的指针。也就是说,为了增加钯膜的氢气渗透率,必须降低钯膜的厚度,且必须使膜层的缺陷尽可能地减少以提高钯膜的致密度。Due to the particularity of palladium membranes in hydrogen transmission, palladium membranes are currently mostly formed on the surface of porous substrates for hydrogen filtration treatment. By dissociating hydrogen molecules on the surface of the palladium membrane and penetrating the membrane layer, hydrogen molecules can be separated from other gas molecules. In general, the thickness of the palladium membrane is used as an indicator of the hydrogen filtration performance. That is to say, in order to increase the hydrogen permeability of the palladium film, the thickness of the palladium film must be reduced, and the defects of the film layer must be reduced as much as possible to improve the density of the palladium film.

此外,藉由对多孔基材的表面进行修饰(例如形成修饰层),可减少具有所需致密度的钯膜厚度。然而,若多孔基材上修饰层厚度过大,可能造成修饰层附着力不足而自多孔基材剥离的问题。In addition, by modifying the surface of the porous substrate (eg, forming a modified layer), the thickness of the palladium film with the desired density can be reduced. However, if the thickness of the modified layer on the porous substrate is too large, the problem of insufficient adhesion of the modified layer and peeling from the porous substrate may occur.

发明内容SUMMARY OF THE INVENTION

本发明是针对一种多孔基材结构,其中基材与修饰层(双金属氧化物层)之间设置有阳极氧化铝层。The present invention is directed to a porous substrate structure, wherein an anodized aluminum oxide layer is arranged between the substrate and the modification layer (double metal oxide layer).

本发明是针对一种多孔基材结构的制造方法,其中阳极氧化铝层形成于基材与修饰层(双金属氧化物层)之间。The present invention is directed to a method for manufacturing a porous substrate structure, wherein an anodic aluminum oxide layer is formed between the substrate and a modification layer (a double metal oxide layer).

根据本发明的实施例,多孔基材结构包括基材、阳极氧化铝层以及双金属氧化物层。所述基材具有多个孔洞。所述阳极氧化铝层设置于所述基材上。所述双金属氧化物层设置于所述阳极氧化铝层上。According to an embodiment of the present invention, the porous substrate structure includes a substrate, an anodized aluminum oxide layer, and a bimetallic oxide layer. The substrate has a plurality of holes. The anodic aluminum oxide layer is disposed on the substrate. The double metal oxide layer is disposed on the anodized aluminum oxide layer.

根据本发明的实施例,多孔基材结构的制造方法包括以下步骤。于基材上形成阳极氧化铝层,其中所述基材具有多个孔洞。于所述阳极氧化铝层上形成双金属氧化物层。According to an embodiment of the present invention, the manufacturing method of the porous substrate structure includes the following steps. An anodized aluminum oxide layer is formed on a substrate, wherein the substrate has a plurality of pores. A bimetallic oxide layer is formed on the anodic aluminum oxide layer.

以下结合附图和具体实施例对本发明进行详细描述,但不作为对本发明的限定。The present invention is described in detail below with reference to the accompanying drawings and specific embodiments, but is not intended to limit the present invention.

附图说明Description of drawings

图1A至图1D为本发明的实施例的多孔基材结构的制造流程剖面示意图;1A to 1D are schematic cross-sectional views of the manufacturing process of the porous substrate structure according to the embodiment of the present invention;

图2A为双金属氧化物层直接形成于基材上的多孔基材结构的截面影像图;2A is a cross-sectional image of a porous substrate structure in which a double metal oxide layer is directly formed on the substrate;

图2B为本发明的实施例的多孔基材结构的截面影像图。FIG. 2B is a cross-sectional image view of the porous substrate structure according to the embodiment of the present invention.

具体实施方式Detailed ways

下面结合附图对本发明的结构原理和工作原理作具体的描述:Below in conjunction with accompanying drawing, structure principle and working principle of the present invention are described in detail:

关于文中所提到“包含”、“包括”、“具有”等的用语均为开放性的用语,也就是指“包含但不限于”。The terms "including", "including", "having" and the like mentioned in the text are all open-ended terms, that is, "including but not limited to".

此外,在本文中,由“一数值至另一数值”表示的范围是一种避免在说明书中逐一列举所述范围中的所有数值的概要性表示方式。因此,某一特定数值范围的记载涵盖了所述数值范围内的任意数值,以及涵盖由所述数值范围内的任意数值界定出的较小数值范围。Also, herein, a range represented by "one value to another value" is a general representation that avoids listing all the values in the range in the specification. Thus, the recitation of a particular numerical range includes any number within that numerical range as well as any smaller numerical range bounded by any number within that numerical range.

另外文中所提到“上”、“下”等的方向性用语,仅是用以参考附图的方向,并非用以限制本发明。In addition, the directional terms such as "upper" and "lower" mentioned in the text are only used to refer to the direction of the drawings, and are not used to limit the present invention.

图1A至图1D为本发明的实施例的多孔基材结构的制造流程剖面示意图。本发明的实施例的多孔基材结构允许气体穿透,以应用于例如分离气体等的气体处理(例如滤氢处理)。1A to 1D are schematic cross-sectional views of the manufacturing process of the porous substrate structure according to the embodiment of the present invention. The porous substrate structures of embodiments of the present invention allow gas penetration for applications in gas treatment (eg, hydrogen filtration treatment) such as separation of gases and the like.

首先,请参照图1A,提供基材100。在本实施例中,基材100的材料为多孔不锈钢,但本发明不限于此。在其他实施例中,基材100的材料可为多孔陶瓷。基材100具有多个孔洞100a,以供气体穿透。孔洞100a的孔径例如介于1μm至30μm之间。基材100可为管状基材或片状基材,本发明不对此进行限定。First, referring to FIG. 1A , a substrate 100 is provided. In this embodiment, the material of the base material 100 is porous stainless steel, but the present invention is not limited thereto. In other embodiments, the material of the substrate 100 may be porous ceramics. The substrate 100 has a plurality of holes 100a for gas to penetrate. The diameter of the hole 100a is, for example, between 1 μm and 30 μm. The substrate 100 may be a tubular substrate or a sheet substrate, which is not limited in the present invention.

接着,视实际需求,可于孔洞100a中填入填充粒子102。如此一来,当孔洞100a的孔径相对较大时,将填充粒子102填充于孔洞100a中可使孔洞100a的孔径缩小,可避免后续形成于基材100上的膜层陷入孔洞100a中,造成膜层的表面不平整或孔洞100a堵塞的问题。此外,将填充粒子102填充于孔洞100a中可改善孔洞100a的孔径不均一的问题。Then, according to actual requirements, filling particles 102 may be filled in the holes 100a. In this way, when the pore size of the holes 100a is relatively large, filling the filling particles 102 in the holes 100a can reduce the pore size of the holes 100a, which can prevent the film layer formed on the substrate 100 from sinking into the holes 100a, resulting in film formation. The surface of the layer is uneven or the hole 100a is blocked. In addition, filling the filling particles 102 in the holes 100a can improve the problem of uneven pore size of the holes 100a.

填充粒子102的材料例如为氧化铝、氧化硅、氧化钙、氧化铈、氧化钛、氧化铬、氧化锰、氧化铁、氧化镍、氧化铜、氧化锌、氧化锆或上述的组合。在填充粒子102不会将孔洞100a填满的前提下,本发明不对填充粒子102的粒径进行限定。The material of the filling particles 102 is, for example, aluminum oxide, silicon oxide, calcium oxide, cerium oxide, titanium oxide, chromium oxide, manganese oxide, iron oxide, nickel oxide, copper oxide, zinc oxide, zirconium oxide, or a combination thereof. On the premise that the filling particles 102 will not fill up the holes 100a, the present invention does not limit the particle size of the filling particles 102.

另外,当孔洞100a的孔径相对较小时,由于后续形成于基材100上的膜层不容易陷入孔洞100a中,因此可不需要将填充粒子102填充于孔洞100a中。In addition, when the pore size of the holes 100a is relatively small, since the film layer formed on the substrate 100 is not easily trapped in the holes 100a, the filling particles 102 do not need to be filled in the holes 100a.

接着,请参照图1B,于基材100上形成铝层104。铝层104的厚度例如不超过3μm。铝层104的形成方法例如是真空蒸镀或无电镀。Next, referring to FIG. 1B , an aluminum layer 104 is formed on the substrate 100 . The thickness of the aluminum layer 104 is, for example, not more than 3 μm. The formation method of the aluminum layer 104 is, for example, vacuum evaporation or electroless plating.

然后,请参照图1C,对铝层104进行阳极处理,以形成阳极氧化铝(anodicaluminum oxide,AAO)层106。在所述阳极处理之后,所形成的阳极氧化铝层106中具有多个穿透阳极氧化铝层106的孔洞106a,且这些孔洞106a暴露出基材100以及孔洞100a。以供气体穿透。在本发明的实施例中,由于铝层104的厚度例如不超过3μm,因此在进行阳极处理而形成阳极氧化铝层106之后,孔洞106a能够穿透阳极氧化铝层106。当铝层104的厚度超过3μm时,所形成的孔洞106a无法穿透阳极氧化铝层106。如此一来,气体将无法穿透阳极氧化铝层106以及基材100。Then, referring to FIG. 1C , the aluminum layer 104 is anodized to form an anodized aluminum oxide (anodic aluminum oxide, AAO) layer 106 . After the anodic treatment, the formed anodic aluminum oxide layer 106 has a plurality of holes 106a penetrating the anodic aluminum oxide layer 106, and the holes 106a expose the substrate 100 and the holes 100a. for gas penetration. In the embodiment of the present invention, since the thickness of the aluminum layer 104 is not more than 3 μm, for example, after the anodized aluminum layer 106 is formed by anodizing, the holes 106 a can penetrate the anodized aluminum layer 106 . When the thickness of the aluminum layer 104 exceeds 3 μm, the formed holes 106 a cannot penetrate the anodized aluminum layer 106 . As such, the gas will not be able to penetrate the anodized aluminum layer 106 and the substrate 100 .

此外,在进行阳极处理之后,铝层104转变为具有平整的表面以及高孔隙率的阳极氧化铝层106。因此,阳极氧化铝层106可作为基材100的修饰层,以提高后续形成于其上的膜层的平整度。在本实施例中,当孔洞100a的孔径相对较大时,由于有填充粒子102填充于孔洞100a中而避免了铝层104陷入孔洞100a中,因此铝层104可具有平整的表面且不会造成孔洞100a堵塞。如此一来,所形成的阳极氧化铝层106可具有更高的表面平整度,且气体可有效地穿透阳极氧化铝层106以及基材100。Furthermore, after anodizing, the aluminum layer 104 is transformed into an anodized aluminum layer 106 with a flat surface and high porosity. Therefore, the anodized aluminum oxide layer 106 can be used as a modification layer of the substrate 100 to improve the flatness of the subsequent film layers formed thereon. In this embodiment, when the hole diameter of the hole 100a is relatively large, the aluminum layer 104 can be prevented from sinking into the hole 100a because the filling particles 102 are filled in the hole 100a. Therefore, the aluminum layer 104 can have a flat surface without causing The hole 100a is blocked. In this way, the formed anodic aluminum oxide layer 106 can have higher surface flatness, and the gas can effectively penetrate the anodic aluminum oxide layer 106 and the substrate 100 .

接着,请参照图1D,于阳极氧化铝层106上形成双金属氧化物层108,以形成本发明的实施例的多孔基材结构10。双金属氧化物层108中具有孔洞108a,以供气体穿透。在本发明的实施例中,双金属氧化物层108的材料例如为双金属氧化物。在一实施例中,双金属氧化物可例如为锂铝氧化物。此外,在一些实施例中,双金属氧化物可为层状双金属氧化物,其可由式1表示,Next, referring to FIG. 1D , a double metal oxide layer 108 is formed on the anodic aluminum oxide layer 106 to form the porous substrate structure 10 according to the embodiment of the present invention. There are holes 108a in the bimetal oxide layer 108 for gas to penetrate. In the embodiment of the present invention, the material of the double metal oxide layer 108 is, for example, double metal oxide. In one embodiment, the bimetallic oxide may be, for example, lithium aluminum oxide. Additionally, in some embodiments, the bimetallic oxide may be a layered bimetallic oxide, which may be represented by Equation 1,

[MII 1-xMIII x]Oy 式1[M II 1-x M III x ]O y formula 1

其中MII为Mg2+、Zn2+、Fe2+、Ni2+、Co2+、Cu2+或Li+,MIII为Al3+、Cr3+、Fe3+或Sc3+,x介于0.2至0.33之间,y介于0.7至2之间。此外,在本发明的实施例中,双金属氧化物层108的形成方法例如先于阳极氧化铝层106上形成双金属氢氧化物(layered double hydroxide,LDH)层(未图示)。然后,对双金属氢氧化物层进行锻烧处理,以得到双金属氧化物层。在阳极氧化铝层106上形成双金属氢氧化物层的方法可例如为化学镀、热浸镀、物理蒸镀、化学蒸镀、共沉法或水热法,但不限定。双金属氢氧化物为双金属氧化物的前驱物,可经由高温处理(例如锻烧)转化为双金属氧化物。此外,锻烧处理的温度约为300℃至500℃。Wherein M II is Mg 2+ , Zn 2+ , Fe 2+ , Ni 2+ , Co 2+ , Cu 2+ or Li + , M III is Al 3+ , Cr 3+ , Fe 3+ or Sc 3+ , x is between 0.2 and 0.33 and y is between 0.7 and 2. In addition, in the embodiment of the present invention, the method for forming the double metal oxide layer 108 is, for example, prior to forming a double metal hydroxide (layered double hydroxide, LDH) layer (not shown) on the anodic aluminum oxide layer 106 . Then, the double metal hydroxide layer is calcined to obtain a double metal oxide layer. The method of forming the double metal hydroxide layer on the anodic aluminum oxide layer 106 may be, for example, but not limited to, electroless plating, hot dipping, physical evaporation, chemical evaporation, co-deposition method or hydrothermal method. Bimetallic hydroxides are precursors to bimetallic oxides that can be converted to bimetallic oxides via high temperature treatment (eg, calcination). In addition, the temperature of the calcination treatment is about 300°C to 500°C.

在本发明的实施例中,双金属氧化物层108的厚度小于3μm。详细地说,由于基材100上形成有阳极氧化铝层106,因此可用较薄的双金属氧化物层即达到修饰效果,因而提高双金属氧化物层108在基材100上的附着力。如此一来,双金属氧化物层108的厚度可降低至小于3μm,以避免为了提高表面平整度而厚度过大造成附着力不足,进而导致双金属氧化物层108剥离的问题。当双金属氧化物层的厚度降低,亦可提升气体的通过量。In an embodiment of the present invention, the thickness of the double metal oxide layer 108 is less than 3 μm. In detail, since the anodized aluminum oxide layer 106 is formed on the substrate 100 , a thinner bimetallic oxide layer can be used to achieve the modification effect, thereby improving the adhesion of the bimetallic oxide layer 108 on the substrate 100 . In this way, the thickness of the double metal oxide layer 108 can be reduced to less than 3 μm, so as to avoid the problem of insufficient adhesion due to excessive thickness in order to improve the surface flatness, thereby leading to the peeling off of the double metal oxide layer 108 . When the thickness of the bimetallic oxide layer is reduced, the gas throughput can also be increased.

此外,由于阳极氧化铝层106具有平整的表面,因此形成于阳极氧化铝层106上的双金属氧化物层108也可具有平整的表面。如此一来,双金属氧化物层108可作为基材100的修饰层,且使得后续所形成的膜层具有较少的缺陷而有较高的致密度。In addition, since the anodized aluminum oxide layer 106 has a flat surface, the bimetallic oxide layer 108 formed on the anodized aluminum oxide layer 106 can also have a flat surface. In this way, the double metal oxide layer 108 can be used as a modification layer of the substrate 100 , so that the subsequently formed film layer has fewer defects and higher density.

在本发明的实施例中,多孔基材结构10包括具有孔洞100a的基材100、具有孔洞106a的阳极氧化铝层106以及具有孔洞108a的双金属氧化物层108。因此,多孔基材结构10可允许气体穿透,以应用于例如分离气体等的气体处理(例如滤氢处理)。以下对多孔基材结构10的结构与气体穿透特性作进一步的说明。In an embodiment of the present invention, the porous substrate structure 10 includes a substrate 100 having pores 100a, an anodized aluminum oxide layer 106 having pores 106a, and a bimetal oxide layer 108 having pores 108a. Accordingly, the porous substrate structure 10 may allow gas penetration for applications in gas treatment (eg, hydrogen filtration treatment) such as separation of gases. The structure and gas permeation characteristics of the porous substrate structure 10 will be further described below.

实施例:Example:

在多孔不锈钢管材(PSS,Pall Accusep filter,P/N:7CC6L465236235SC02)表面的孔洞内填入氧化铝粒子,其中氧化铝粒子的平均粒径为10μm。接着,将填有氧化铝粒子的不锈钢管材置入真空蒸镀机中进行表面蒸镀。于腔体内的靶台上放置1g铝锭,以真空泵将腔体压力抽至1×10-4torr以下,开始旋转待蒸镀的不锈钢管材并加热靶台,使其表面形成极薄(小于3μm)的铝层。接着,将镀有铝层的不锈钢管材进行阳极处理,得到表面披覆有阳极氧化铝层的不锈钢管材。The pores on the surface of the porous stainless steel pipe (PSS, Pall Accusep filter, P/N: 7CC6L465236235SC02) were filled with alumina particles, wherein the average particle size of the alumina particles was 10 μm. Next, the stainless steel pipe filled with alumina particles was placed in a vacuum evaporation machine for surface evaporation. Place 1g aluminum ingot on the target table in the chamber, pump the chamber pressure to below 1×10 -4 torr with a vacuum pump, start to rotate the stainless steel pipe to be evaporated and heat the target table to make the surface extremely thin (less than 3μm) ) of the aluminum layer. Next, anodize the stainless steel pipe plated with the aluminum layer to obtain a stainless steel pipe coated with an anodized aluminum layer on the surface.

将AlLi介金属化合物(以AlLi介金属化合物的总重量计,Li的含量约为18wt.%至21wt.%)粉末置入1000mL的纯水中,导入氮气且曝气搅拌,使大部分的AlLi介金属化合物粉末与水反应而溶解。接着,过滤杂质,以得到澄清且含有Li+及Al3+的碱性溶液(pH值约为11.0至12.3)。The AlLi intermetallic compound (based on the total weight of the AlLi intermetallic compound, the Li content is about 18 wt.% to 21 wt.%) powder is placed in 1000 mL of pure water, and nitrogen is introduced and aerated and stirred to make most of the AlLi The intermetallic compound powder reacts with water and dissolves. Next, the impurities were filtered to obtain a clear alkaline solution containing Li + and Al 3+ (pH about 11.0 to 12.3).

将表面披覆有阳极氧化铝层的不锈钢管材浸置于含有Li+及Al3+的碱性溶液中约2小时后进行干燥,使得连续相的层状含有锂的铝氢氧化物层披覆于阳极氧化铝层上。接着,在500℃下对不锈钢管材进行锻烧两小时,在阳极氧化铝层上形成层状锂铝氧化物层,其中锂铝氧化物层的厚度约为2.9μm,得到本实施例的多孔基材结构。The stainless steel pipe coated with anodized aluminum layer was immersed in an alkaline solution containing Li + and Al 3 + for about 2 hours and then dried, so that the continuous phase layered aluminum hydroxide layer containing lithium was coated on the anodized aluminum layer. Next, the stainless steel pipe was calcined at 500° C. for two hours to form a layered lithium-aluminum oxide layer on the anodic aluminum oxide layer, wherein the thickness of the lithium-aluminum oxide layer was about 2.9 μm, to obtain the porous substrate of this example. material structure.

比较例:Comparative example:

除了未形成阳极氧化铝层之外,以与实施例相同的方式形成多孔基材结构,其中锂铝氧化物层的厚度约为6.4μm。A porous substrate structure was formed in the same manner as in the Example except that the anodic aluminum oxide layer was not formed, wherein the thickness of the lithium aluminum oxide layer was about 6.4 μm.

图2A为比较例的多孔基材结构截面影像图。图2B为本发明的实施例的多孔基材结构截面影像图。由图2A与图2B可清楚看出,当双金属氧化物层与基材之间设置有阳极氧化铝层时,双金属氧化物层可在符合所需平整度(表面上的最大落差为2.8μm)的条件下具有较薄的厚度,且因此可有效地避免修饰层(双金属氧化物层)自基材剥离。FIG. 2A is a cross-sectional image of a porous substrate structure of a comparative example. FIG. 2B is a cross-sectional image of a porous substrate structure according to an embodiment of the present invention. It can be clearly seen from FIG. 2A and FIG. 2B that when an anodized aluminum oxide layer is arranged between the double metal oxide layer and the substrate, the double metal oxide layer can meet the required flatness (the maximum drop on the surface is 2.8). μm) has a thinner thickness, and thus can effectively prevent the modification layer (double metal oxide layer) from peeling off the substrate.

此外,将本发明的实施例的多孔基材结构与比较例的多孔基材结构(金属氧化物层直接形成于基材上)进行气体穿透率测试,结果如表1所示。In addition, the porous substrate structure of the embodiment of the present invention and the porous substrate structure of the comparative example (the metal oxide layer is directly formed on the substrate) were tested for gas permeability, and the results are shown in Table 1.

气体穿透率测试:Gas Penetration Test:

将待量测的多孔基材结构置于测试腔体中,然后将氮气通入测试腔体,并由压力计来监控压力数值。使用流量计来量测从测试腔体的开口端流出的氮气,并计算在特定压力下的氮气通量。The porous substrate structure to be measured is placed in the test chamber, then nitrogen gas is passed into the test chamber, and the pressure value is monitored by a pressure gauge. A flow meter was used to measure the nitrogen flow from the open end of the test chamber and to calculate the nitrogen flux at a specific pressure.

氮气通量(m<sup>3</sup>/m<sup>2</sup>-hr-atm)Nitrogen flux (m<sup>3</sup>/m<sup>2</sup>-hr-atm) 实施例Example 107107 比较例Comparative example 8585

表1Table 1

由图2A、图2B与表1可以清楚看出,在本发明的实施例中,由于多孔基材与修饰层(双金属氧化物层)之间设置有阳极氧化铝层,因此修饰层(双金属氧化物层)在具有相同平整度的条件下可具有较薄的厚度,且同时具有较高的气体通量,亦即本发明的实施例的多孔基材结构可具有较高的气体渗透率。It can be clearly seen from FIG. 2A, FIG. 2B and Table 1 that in the embodiment of the present invention, since an anodized aluminum oxide layer is arranged between the porous substrate and the modification layer (double metal oxide layer), the modification layer (double metal oxide layer) is The metal oxide layer) can have a thinner thickness under the condition of the same flatness, and at the same time have a higher gas flux, that is, the porous substrate structure of the embodiment of the present invention can have a higher gas permeability .

当然,本发明还可有其它多种实施例,在不背离本发明精神及其实质的情况下,熟悉本领域的技术人员当可根据本发明作出各种相应的改变和变形,但这些相应的改变和变形都应属于本发明所附的权利要求的保护范围。Of course, the present invention can also have other various embodiments, without departing from the spirit and essence of the present invention, those skilled in the art can make various corresponding changes and modifications according to the present invention, but these corresponding Changes and deformations should belong to the protection scope of the appended claims of the present invention.

Claims (18)

1.一种多孔基材结构,其特征在于,包括:1. a porous substrate structure, is characterized in that, comprises: 基材,具有多个孔洞;substrate, with a plurality of holes; 阳极氧化铝层,设置于所述基材上;以及an anodized aluminum layer disposed on the substrate; and 双金属氧化物层,设置于所述阳极氧化铝层上。A double metal oxide layer is disposed on the anodic aluminum oxide layer. 2.根据权利要求1所述的多孔基材结构,其特征在于,所述双金属氧化物层的厚度小于3μm。2 . The porous substrate structure according to claim 1 , wherein the thickness of the double metal oxide layer is less than 3 μm. 3 . 3.根据权利要求1所述的多孔基材结构,其特征在于,所述双金属氧化物层包括层状双金属氧化物。3. The porous substrate structure of claim 1, wherein the bimetallic oxide layer comprises a layered bimetallic oxide. 4.根据权利要求3所述的多孔基材结构,其特征在于,所述层状双金属氧化物由式1表示,4. The porous substrate structure according to claim 3, wherein the layered bimetallic oxide is represented by formula 1, [MII 1-xMIII x]Oy 式1[M II 1-x M III x ]O y formula 1 其中MII为Mg2+、Zn2+、Fe2+、Ni2+、Co2+、Cu2+或Li+,MIII为Al3+、Cr3+、Fe3+或Sc3+,x介于0.2至0.33之间,y介于0.7至2之间。Wherein M II is Mg 2+ , Zn 2+ , Fe 2+ , Ni 2+ , Co 2+ , Cu 2+ or Li + , M III is Al 3+ , Cr 3+ , Fe 3+ or Sc 3+ , x is between 0.2 and 0.33 and y is between 0.7 and 2. 5.根据权利要求1所述的多孔基材结构,其特征在于,所述阳极氧化铝层的厚度不超过3μm。5 . The porous substrate structure according to claim 1 , wherein the thickness of the anodic aluminum oxide layer is not more than 3 μm. 6 . 6.根据权利要求1所述的多孔基材结构,其特征在于,还包括配置于所述多个孔洞中的填充粒子,所述填充粒子的材料包括氧化铝、氧化硅、氧化钙、氧化铈、氧化钛、氧化铬、氧化锰、氧化铁、氧化镍、氧化铜、氧化锌、氧化锆或上述的组合。6 . The porous substrate structure according to claim 1 , further comprising filling particles arranged in the plurality of holes, and the material of the filling particles comprises aluminum oxide, silicon oxide, calcium oxide, and cerium oxide. 7 . , titanium oxide, chromium oxide, manganese oxide, iron oxide, nickel oxide, copper oxide, zinc oxide, zirconium oxide, or a combination of the above. 7.根据权利要求1所述的多孔基材结构,其特征在于,所述基材的材料包括不锈钢或陶瓷。7. The porous substrate structure according to claim 1, wherein the material of the substrate comprises stainless steel or ceramics. 8.一种多孔基材结构的制造方法,其特征在于,包括:8. A method for manufacturing a porous substrate structure, comprising: 于基材上形成阳极氧化铝层,其中所述基材具有多个孔洞;以及forming an anodized aluminum oxide layer on a substrate, wherein the substrate has a plurality of pores; and 于所述阳极氧化铝层上形成双金属氧化物层。A bimetallic oxide layer is formed on the anodic aluminum oxide layer. 9.根据权利要求8所述的多孔基材结构的制造方法,其特征在于,所述双金属氧化物层的厚度小于3μm。9 . The method for manufacturing a porous substrate structure according to claim 8 , wherein the thickness of the double metal oxide layer is less than 3 μm. 10 . 10.根据权利要求8所述的多孔基材结构的制造方法,其特征在于,所述双金属氧化物层的形成方法包括:10. The method for manufacturing a porous substrate structure according to claim 8, wherein the method for forming the double metal oxide layer comprises: 于所述阳极氧化铝层上形成双金属氢氧化物层;以及forming a double metal hydroxide layer on the anodic aluminum oxide layer; and 对所述双金属氢氧化物层进行锻烧处理。The double metal hydroxide layer is calcined. 11.根据权利要求10所述的多孔基材结构的制造方法,其特征在于,所述双金属氢氧化物层的形成方法包括化学镀、热浸镀、物理蒸镀、化学蒸镀、共沉法或水热法。11 . The method for manufacturing a porous substrate structure according to claim 10 , wherein the method for forming the double metal hydroxide layer comprises chemical plating, hot dipping, physical evaporation, chemical evaporation, and co-precipitation. 12 . method or hydrothermal method. 12.根据权利要求10所述的多孔基材结构的制造方法,其特征在于,所述双金属氢氧化物层包括层状双金属氢氧化物。12 . The method for manufacturing a porous substrate structure according to claim 10 , wherein the double metal hydroxide layer comprises a layered double metal hydroxide. 13 . 13.根据权利要求12所述的多孔基材结构的制造方法,其特征在于,所述层状双金属氧化物由式1表示,13. The method for producing a porous substrate structure according to claim 12, wherein the layered bimetallic oxide is represented by Formula 1, [MII 1-xMIII x]Oy 式1[M II 1-x M III x ]O y formula 1 其中MII为Mg2+、Zn2+、Fe2+、Ni2+、Co2+、Cu2+或Li+,MIII为Al3+、Cr3+、Fe3+或Sc3+,x介于0.2至0.33之间,y介于0.7至2之间。Wherein M II is Mg 2+ , Zn 2+ , Fe 2+ , Ni 2+ , Co 2+ , Cu 2+ or Li + , M III is Al 3+ , Cr 3+ , Fe 3+ or Sc 3+ , x is between 0.2 and 0.33 and y is between 0.7 and 2. 14.根据权利要求8所述的多孔基材结构的制造方法,其特征在于,所述阳极氧化铝层的厚度不超过3μm。14 . The method for manufacturing a porous substrate structure according to claim 8 , wherein the thickness of the anodized aluminum oxide layer is not more than 3 μm. 15 . 15.根据权利要求8所述的多孔基材结构的制造方法,其特征在于,所述阳极氧化铝层的形成方法包括:15. The method for manufacturing a porous substrate structure according to claim 8, wherein the method for forming the anodic aluminum oxide layer comprises: 于所述基材上形成铝层;以及forming an aluminum layer on the substrate; and 对所述铝层进行阳极处理。The aluminum layer is anodized. 16.根据权利要求15所述的多孔基材结构的制造方法,其特征在于,于所述基材上形成所述铝层的方法包括真空蒸镀或无电镀。16 . The method for manufacturing a porous substrate structure according to claim 15 , wherein the method for forming the aluminum layer on the substrate comprises vacuum evaporation or electroless plating. 17 . 17.根据权利要求15所述的多孔基材结构的制造方法,其特征在于,在形成所述铝层之前,还包括将填充粒子填充于所述多个孔洞中。17 . The method for manufacturing a porous substrate structure according to claim 15 , wherein before forming the aluminum layer, the method further comprises filling the plurality of holes with filler particles. 18 . 18.根据权利要求8所述的多孔基材结构的制造方法,其特征在于,所述基材的材料包括不锈钢或陶瓷。18. The method for manufacturing a porous substrate structure according to claim 8, wherein the material of the substrate comprises stainless steel or ceramics.
CN202110053405.1A 2020-12-14 2021-01-15 Porous substrate structure and method of making the same Withdrawn CN114618323A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
TW109143994 2020-12-14
TW109143994A TWI758008B (en) 2020-12-14 2020-12-14 Porous substrate structure and manufacturing method thereof

Publications (1)

Publication Number Publication Date
CN114618323A true CN114618323A (en) 2022-06-14

Family

ID=81710647

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110053405.1A Withdrawn CN114618323A (en) 2020-12-14 2021-01-15 Porous substrate structure and method of making the same

Country Status (3)

Country Link
JP (1) JP2022094280A (en)
CN (1) CN114618323A (en)
TW (1) TWI758008B (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5393325A (en) * 1990-08-10 1995-02-28 Bend Research, Inc. Composite hydrogen separation metal membrane
JP2000189772A (en) * 1998-12-24 2000-07-11 Kyocera Corp Hydrogen gas separation filter and method for producing the same
TW200927275A (en) * 2007-12-21 2009-07-01 Ind Tech Res Inst Hydrogen filtration membrane structure and manufacturing method thereof
US20100219079A1 (en) * 2006-05-07 2010-09-02 Synkera Technologies, Inc. Methods for making membranes based on anodic aluminum oxide structures
CN103182249A (en) * 2011-12-30 2013-07-03 财团法人工业技术研究院 Method for modifying porous substrate and modified porous substrate

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1085568A (en) * 1996-09-10 1998-04-07 Tonen Corp Gas separation equipment
EP1487563A4 (en) * 2002-03-05 2005-07-20 Eltron Research Inc Hydrogen transport membranes
US7018446B2 (en) * 2003-09-24 2006-03-28 Siemens Westinghouse Power Corporation Metal gas separation membrane
US20130171442A1 (en) * 2011-12-30 2013-07-04 Meng-Chang Lin Method for modifying porous substrate and modified porous substrate

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5393325A (en) * 1990-08-10 1995-02-28 Bend Research, Inc. Composite hydrogen separation metal membrane
JP2000189772A (en) * 1998-12-24 2000-07-11 Kyocera Corp Hydrogen gas separation filter and method for producing the same
US20100219079A1 (en) * 2006-05-07 2010-09-02 Synkera Technologies, Inc. Methods for making membranes based on anodic aluminum oxide structures
TW200927275A (en) * 2007-12-21 2009-07-01 Ind Tech Res Inst Hydrogen filtration membrane structure and manufacturing method thereof
CN103182249A (en) * 2011-12-30 2013-07-03 财团法人工业技术研究院 Method for modifying porous substrate and modified porous substrate

Also Published As

Publication number Publication date
JP2022094280A (en) 2022-06-24
TWI758008B (en) 2022-03-11
TW202223155A (en) 2022-06-16

Similar Documents

Publication Publication Date Title
CN103182249B (en) Method for modifying porous substrate and modified porous substrate
Yan et al. Thin palladium membrane formed in support pores by metal-organic chemical vapor deposition method and application to hydrogen separation
US8119205B2 (en) Process for preparing palladium alloy composite membranes for use in hydrogen separation, palladium alloy composite membranes and products incorporating or made from the membranes
JP5199332B2 (en) Method for producing palladium alloy composite membrane for hydrogen gas separation
Gade et al. Palladium–ruthenium membranes for hydrogen separation fabricated by electroless co-deposition
FR2550953A1 (en) PROCESS FOR PRODUCING PERMEABLE MINERAL MEMBRANES
WO2011159389A1 (en) Zeolite membranes for separation of mixtures containing water, alcohols, or organics
US8366805B2 (en) Composite structures with porous anodic oxide layers and methods of fabrication
JP2007000858A (en) Hydrogen permeation member and its manufacturing method
Wang et al. Synthesis of size-controlled boehmite sols: Application in high-performance hydrogen-selective ceramic membranes
TWI758008B (en) Porous substrate structure and manufacturing method thereof
Tanaka et al. Fabrication of supported palladium alloy membranes using electroless plating techniques
TWI449808B (en) Method for modifying porous substrate and modified porous substrate
Kim et al. Characteristics of dense palladium alloy membranes formed by nano-scale nucleation and lateral growth
US11583810B2 (en) Porous substrate structure and manufacturing method thereof
JPS63171617A (en) Composite membrane excellent in permselectivity of hydrogen and its production
Yu et al. Confined and in-situ zeolite synthesis: A novel strategy for defect reparation over dense Pd membranes for hydrogen separation
TWI442966B (en) Methods of fabricating porous media and inorganic selective film
Li et al. Effects of synthesis parameters on the microstructure and phase structure of porous 316L stainless steel supported TiO2 membranes
JP2004089838A (en) Separation membrane module and manufacturing method thereof
Chi et al. Preparation of a novel Pd/layered double hydroxide composite membrane for hydrogen filtration and characterization by thermal cycling
CN109248544A (en) Gas filtering structure and gas filtering method
KR20140108012A (en) Manufacturing method for dense hydrogen separation membrane by sputter system
CN114182205A (en) A kind of nanometer multilayer structure metal hydrogen absorption film and its preparation method and application
KR101715875B1 (en) Support Integrated Hydrogen Separation Membrane and Method for Manufacturing the Same

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WW01 Invention patent application withdrawn after publication
WW01 Invention patent application withdrawn after publication

Application publication date: 20220614