CN114618323A - Porous substrate structure and method of making the same - Google Patents
Porous substrate structure and method of making the same Download PDFInfo
- Publication number
- CN114618323A CN114618323A CN202110053405.1A CN202110053405A CN114618323A CN 114618323 A CN114618323 A CN 114618323A CN 202110053405 A CN202110053405 A CN 202110053405A CN 114618323 A CN114618323 A CN 114618323A
- Authority
- CN
- China
- Prior art keywords
- porous substrate
- substrate structure
- layer
- oxide layer
- oxide
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 239000000758 substrate Substances 0.000 title claims abstract description 87
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 18
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 claims abstract description 37
- 229910044991 metal oxide Inorganic materials 0.000 claims abstract description 25
- 150000004706 metal oxides Chemical class 0.000 claims abstract description 25
- 229910052782 aluminium Inorganic materials 0.000 claims description 25
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 25
- 238000000034 method Methods 0.000 claims description 21
- 239000002245 particle Substances 0.000 claims description 16
- 239000011148 porous material Substances 0.000 claims description 10
- 229910001220 stainless steel Inorganic materials 0.000 claims description 10
- 239000010935 stainless steel Substances 0.000 claims description 10
- 239000000463 material Substances 0.000 claims description 9
- 229910000000 metal hydroxide Inorganic materials 0.000 claims description 8
- 150000004692 metal hydroxides Chemical class 0.000 claims description 8
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 6
- 238000001704 evaporation Methods 0.000 claims description 5
- 230000008020 evaporation Effects 0.000 claims description 5
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 claims description 4
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 claims description 4
- AMWRITDGCCNYAT-UHFFFAOYSA-L hydroxy(oxo)manganese;manganese Chemical compound [Mn].O[Mn]=O.O[Mn]=O AMWRITDGCCNYAT-UHFFFAOYSA-L 0.000 claims description 4
- 239000000919 ceramic Substances 0.000 claims description 3
- 239000011651 chromium Substances 0.000 claims description 3
- 239000010949 copper Substances 0.000 claims description 3
- 238000007772 electroless plating Methods 0.000 claims description 3
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 3
- 239000000126 substance Substances 0.000 claims description 3
- 238000007738 vacuum evaporation Methods 0.000 claims description 3
- 239000011701 zinc Substances 0.000 claims description 3
- QPLDLSVMHZLSFG-UHFFFAOYSA-N Copper oxide Chemical compound [Cu]=O QPLDLSVMHZLSFG-UHFFFAOYSA-N 0.000 claims description 2
- 239000005751 Copper oxide Substances 0.000 claims description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 claims description 2
- WGLPBDUCMAPZCE-UHFFFAOYSA-N Trioxochromium Chemical compound O=[Cr](=O)=O WGLPBDUCMAPZCE-UHFFFAOYSA-N 0.000 claims description 2
- BRPQOXSCLDDYGP-UHFFFAOYSA-N calcium oxide Chemical compound [O-2].[Ca+2] BRPQOXSCLDDYGP-UHFFFAOYSA-N 0.000 claims description 2
- ODINCKMPIJJUCX-UHFFFAOYSA-N calcium oxide Inorganic materials [Ca]=O ODINCKMPIJJUCX-UHFFFAOYSA-N 0.000 claims description 2
- 239000000292 calcium oxide Substances 0.000 claims description 2
- 229910000420 cerium oxide Inorganic materials 0.000 claims description 2
- 229910000423 chromium oxide Inorganic materials 0.000 claims description 2
- 229910000431 copper oxide Inorganic materials 0.000 claims description 2
- 238000007598 dipping method Methods 0.000 claims description 2
- 238000001027 hydrothermal synthesis Methods 0.000 claims description 2
- 229910000480 nickel oxide Inorganic materials 0.000 claims description 2
- BMMGVYCKOGBVEV-UHFFFAOYSA-N oxo(oxoceriooxy)cerium Chemical compound [Ce]=O.O=[Ce]=O BMMGVYCKOGBVEV-UHFFFAOYSA-N 0.000 claims description 2
- GNRSAWUEBMWBQH-UHFFFAOYSA-N oxonickel Chemical compound [Ni]=O GNRSAWUEBMWBQH-UHFFFAOYSA-N 0.000 claims description 2
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 claims description 2
- 229910052814 silicon oxide Inorganic materials 0.000 claims description 2
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 claims description 2
- 239000011787 zinc oxide Substances 0.000 claims description 2
- 229910001928 zirconium oxide Inorganic materials 0.000 claims description 2
- 238000000975 co-precipitation Methods 0.000 claims 1
- 239000000945 filler Substances 0.000 claims 1
- 238000007747 plating Methods 0.000 claims 1
- 239000007789 gas Substances 0.000 description 18
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 16
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 9
- 230000004048 modification Effects 0.000 description 9
- 238000012986 modification Methods 0.000 description 9
- 239000001257 hydrogen Substances 0.000 description 8
- 229910052739 hydrogen Inorganic materials 0.000 description 8
- 229910052763 palladium Inorganic materials 0.000 description 8
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 7
- 239000012528 membrane Substances 0.000 description 5
- 230000000052 comparative effect Effects 0.000 description 4
- 238000001914 filtration Methods 0.000 description 4
- YQNQTEBHHUSESQ-UHFFFAOYSA-N lithium aluminate Chemical compound [Li+].[O-][Al]=O YQNQTEBHHUSESQ-UHFFFAOYSA-N 0.000 description 4
- 229910052757 nitrogen Inorganic materials 0.000 description 4
- 230000035515 penetration Effects 0.000 description 4
- 229910017073 AlLi Inorganic materials 0.000 description 3
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 3
- 230000004907 flux Effects 0.000 description 3
- 229910000765 intermetallic Inorganic materials 0.000 description 3
- AHLBNYSZXLDEJQ-FWEHEUNISA-N orlistat Chemical compound CCCCCCCCCCC[C@H](OC(=O)[C@H](CC(C)C)NC=O)C[C@@H]1OC(=O)[C@H]1CCCCCC AHLBNYSZXLDEJQ-FWEHEUNISA-N 0.000 description 3
- 230000035699 permeability Effects 0.000 description 3
- 239000012670 alkaline solution Substances 0.000 description 2
- 238000007743 anodising Methods 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000001354 calcination Methods 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 230000000149 penetrating effect Effects 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- WNROFYMDJYEPJX-UHFFFAOYSA-K aluminium hydroxide Chemical compound [OH-].[OH-].[OH-].[Al+3] WNROFYMDJYEPJX-UHFFFAOYSA-K 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 1
- 150000004679 hydroxides Chemical class 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D69/00—Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
- B01D69/10—Supported membranes; Membrane supports
- B01D69/105—Support pretreatment
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/22—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion
- B01D53/228—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion characterised by specific membranes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D71/00—Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
- B01D71/02—Inorganic material
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Analytical Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Inorganic Chemistry (AREA)
- Other Surface Treatments For Metallic Materials (AREA)
- Separation Using Semi-Permeable Membranes (AREA)
- Laminated Bodies (AREA)
Abstract
本发明提供一种多孔基材结构及其制造方法。所述多孔基材结构包括基材、阳极氧化铝层以及双金属氧化物层。所述基材具有多个孔洞。所述阳极氧化铝层设置于所述基材上。所述双金属氧化物层设置于所述阳极氧化铝层上。
The present invention provides a porous substrate structure and a manufacturing method thereof. The porous substrate structure includes a substrate, an anodized aluminum oxide layer, and a bimetallic oxide layer. The substrate has a plurality of holes. The anodic aluminum oxide layer is disposed on the substrate. The double metal oxide layer is disposed on the anodic aluminum oxide layer.
Description
技术领域technical field
本发明涉及一种多孔基材结构及其制造方法。The present invention relates to a porous substrate structure and a manufacturing method thereof.
背景技术Background technique
由于钯膜在氢气传送上的特殊性,因此目前大多将钯膜形成于多孔基材的表面上进行滤氢处理。藉由氢分子在钯膜的表面解离并穿透膜层,可将氢分子和其他气体分子分离。一般来说,采用钯膜的厚度来作为滤氢性能的指针。也就是说,为了增加钯膜的氢气渗透率,必须降低钯膜的厚度,且必须使膜层的缺陷尽可能地减少以提高钯膜的致密度。Due to the particularity of palladium membranes in hydrogen transmission, palladium membranes are currently mostly formed on the surface of porous substrates for hydrogen filtration treatment. By dissociating hydrogen molecules on the surface of the palladium membrane and penetrating the membrane layer, hydrogen molecules can be separated from other gas molecules. In general, the thickness of the palladium membrane is used as an indicator of the hydrogen filtration performance. That is to say, in order to increase the hydrogen permeability of the palladium film, the thickness of the palladium film must be reduced, and the defects of the film layer must be reduced as much as possible to improve the density of the palladium film.
此外,藉由对多孔基材的表面进行修饰(例如形成修饰层),可减少具有所需致密度的钯膜厚度。然而,若多孔基材上修饰层厚度过大,可能造成修饰层附着力不足而自多孔基材剥离的问题。In addition, by modifying the surface of the porous substrate (eg, forming a modified layer), the thickness of the palladium film with the desired density can be reduced. However, if the thickness of the modified layer on the porous substrate is too large, the problem of insufficient adhesion of the modified layer and peeling from the porous substrate may occur.
发明内容SUMMARY OF THE INVENTION
本发明是针对一种多孔基材结构,其中基材与修饰层(双金属氧化物层)之间设置有阳极氧化铝层。The present invention is directed to a porous substrate structure, wherein an anodized aluminum oxide layer is arranged between the substrate and the modification layer (double metal oxide layer).
本发明是针对一种多孔基材结构的制造方法,其中阳极氧化铝层形成于基材与修饰层(双金属氧化物层)之间。The present invention is directed to a method for manufacturing a porous substrate structure, wherein an anodic aluminum oxide layer is formed between the substrate and a modification layer (a double metal oxide layer).
根据本发明的实施例,多孔基材结构包括基材、阳极氧化铝层以及双金属氧化物层。所述基材具有多个孔洞。所述阳极氧化铝层设置于所述基材上。所述双金属氧化物层设置于所述阳极氧化铝层上。According to an embodiment of the present invention, the porous substrate structure includes a substrate, an anodized aluminum oxide layer, and a bimetallic oxide layer. The substrate has a plurality of holes. The anodic aluminum oxide layer is disposed on the substrate. The double metal oxide layer is disposed on the anodized aluminum oxide layer.
根据本发明的实施例,多孔基材结构的制造方法包括以下步骤。于基材上形成阳极氧化铝层,其中所述基材具有多个孔洞。于所述阳极氧化铝层上形成双金属氧化物层。According to an embodiment of the present invention, the manufacturing method of the porous substrate structure includes the following steps. An anodized aluminum oxide layer is formed on a substrate, wherein the substrate has a plurality of pores. A bimetallic oxide layer is formed on the anodic aluminum oxide layer.
以下结合附图和具体实施例对本发明进行详细描述,但不作为对本发明的限定。The present invention is described in detail below with reference to the accompanying drawings and specific embodiments, but is not intended to limit the present invention.
附图说明Description of drawings
图1A至图1D为本发明的实施例的多孔基材结构的制造流程剖面示意图;1A to 1D are schematic cross-sectional views of the manufacturing process of the porous substrate structure according to the embodiment of the present invention;
图2A为双金属氧化物层直接形成于基材上的多孔基材结构的截面影像图;2A is a cross-sectional image of a porous substrate structure in which a double metal oxide layer is directly formed on the substrate;
图2B为本发明的实施例的多孔基材结构的截面影像图。FIG. 2B is a cross-sectional image view of the porous substrate structure according to the embodiment of the present invention.
具体实施方式Detailed ways
下面结合附图对本发明的结构原理和工作原理作具体的描述:Below in conjunction with accompanying drawing, structure principle and working principle of the present invention are described in detail:
关于文中所提到“包含”、“包括”、“具有”等的用语均为开放性的用语,也就是指“包含但不限于”。The terms "including", "including", "having" and the like mentioned in the text are all open-ended terms, that is, "including but not limited to".
此外,在本文中,由“一数值至另一数值”表示的范围是一种避免在说明书中逐一列举所述范围中的所有数值的概要性表示方式。因此,某一特定数值范围的记载涵盖了所述数值范围内的任意数值,以及涵盖由所述数值范围内的任意数值界定出的较小数值范围。Also, herein, a range represented by "one value to another value" is a general representation that avoids listing all the values in the range in the specification. Thus, the recitation of a particular numerical range includes any number within that numerical range as well as any smaller numerical range bounded by any number within that numerical range.
另外文中所提到“上”、“下”等的方向性用语,仅是用以参考附图的方向,并非用以限制本发明。In addition, the directional terms such as "upper" and "lower" mentioned in the text are only used to refer to the direction of the drawings, and are not used to limit the present invention.
图1A至图1D为本发明的实施例的多孔基材结构的制造流程剖面示意图。本发明的实施例的多孔基材结构允许气体穿透,以应用于例如分离气体等的气体处理(例如滤氢处理)。1A to 1D are schematic cross-sectional views of the manufacturing process of the porous substrate structure according to the embodiment of the present invention. The porous substrate structures of embodiments of the present invention allow gas penetration for applications in gas treatment (eg, hydrogen filtration treatment) such as separation of gases and the like.
首先,请参照图1A,提供基材100。在本实施例中,基材100的材料为多孔不锈钢,但本发明不限于此。在其他实施例中,基材100的材料可为多孔陶瓷。基材100具有多个孔洞100a,以供气体穿透。孔洞100a的孔径例如介于1μm至30μm之间。基材100可为管状基材或片状基材,本发明不对此进行限定。First, referring to FIG. 1A , a
接着,视实际需求,可于孔洞100a中填入填充粒子102。如此一来,当孔洞100a的孔径相对较大时,将填充粒子102填充于孔洞100a中可使孔洞100a的孔径缩小,可避免后续形成于基材100上的膜层陷入孔洞100a中,造成膜层的表面不平整或孔洞100a堵塞的问题。此外,将填充粒子102填充于孔洞100a中可改善孔洞100a的孔径不均一的问题。Then, according to actual requirements, filling
填充粒子102的材料例如为氧化铝、氧化硅、氧化钙、氧化铈、氧化钛、氧化铬、氧化锰、氧化铁、氧化镍、氧化铜、氧化锌、氧化锆或上述的组合。在填充粒子102不会将孔洞100a填满的前提下,本发明不对填充粒子102的粒径进行限定。The material of the
另外,当孔洞100a的孔径相对较小时,由于后续形成于基材100上的膜层不容易陷入孔洞100a中,因此可不需要将填充粒子102填充于孔洞100a中。In addition, when the pore size of the
接着,请参照图1B,于基材100上形成铝层104。铝层104的厚度例如不超过3μm。铝层104的形成方法例如是真空蒸镀或无电镀。Next, referring to FIG. 1B , an
然后,请参照图1C,对铝层104进行阳极处理,以形成阳极氧化铝(anodicaluminum oxide,AAO)层106。在所述阳极处理之后,所形成的阳极氧化铝层106中具有多个穿透阳极氧化铝层106的孔洞106a,且这些孔洞106a暴露出基材100以及孔洞100a。以供气体穿透。在本发明的实施例中,由于铝层104的厚度例如不超过3μm,因此在进行阳极处理而形成阳极氧化铝层106之后,孔洞106a能够穿透阳极氧化铝层106。当铝层104的厚度超过3μm时,所形成的孔洞106a无法穿透阳极氧化铝层106。如此一来,气体将无法穿透阳极氧化铝层106以及基材100。Then, referring to FIG. 1C , the
此外,在进行阳极处理之后,铝层104转变为具有平整的表面以及高孔隙率的阳极氧化铝层106。因此,阳极氧化铝层106可作为基材100的修饰层,以提高后续形成于其上的膜层的平整度。在本实施例中,当孔洞100a的孔径相对较大时,由于有填充粒子102填充于孔洞100a中而避免了铝层104陷入孔洞100a中,因此铝层104可具有平整的表面且不会造成孔洞100a堵塞。如此一来,所形成的阳极氧化铝层106可具有更高的表面平整度,且气体可有效地穿透阳极氧化铝层106以及基材100。Furthermore, after anodizing, the
接着,请参照图1D,于阳极氧化铝层106上形成双金属氧化物层108,以形成本发明的实施例的多孔基材结构10。双金属氧化物层108中具有孔洞108a,以供气体穿透。在本发明的实施例中,双金属氧化物层108的材料例如为双金属氧化物。在一实施例中,双金属氧化物可例如为锂铝氧化物。此外,在一些实施例中,双金属氧化物可为层状双金属氧化物,其可由式1表示,Next, referring to FIG. 1D , a double
[MII 1-xMIII x]Oy 式1[M II 1-x M III x ]O y formula 1
其中MII为Mg2+、Zn2+、Fe2+、Ni2+、Co2+、Cu2+或Li+,MIII为Al3+、Cr3+、Fe3+或Sc3+,x介于0.2至0.33之间,y介于0.7至2之间。此外,在本发明的实施例中,双金属氧化物层108的形成方法例如先于阳极氧化铝层106上形成双金属氢氧化物(layered double hydroxide,LDH)层(未图示)。然后,对双金属氢氧化物层进行锻烧处理,以得到双金属氧化物层。在阳极氧化铝层106上形成双金属氢氧化物层的方法可例如为化学镀、热浸镀、物理蒸镀、化学蒸镀、共沉法或水热法,但不限定。双金属氢氧化物为双金属氧化物的前驱物,可经由高温处理(例如锻烧)转化为双金属氧化物。此外,锻烧处理的温度约为300℃至500℃。Wherein M II is Mg 2+ , Zn 2+ , Fe 2+ , Ni 2+ , Co 2+ , Cu 2+ or Li + , M III is Al 3+ , Cr 3+ , Fe 3+ or Sc 3+ , x is between 0.2 and 0.33 and y is between 0.7 and 2. In addition, in the embodiment of the present invention, the method for forming the double
在本发明的实施例中,双金属氧化物层108的厚度小于3μm。详细地说,由于基材100上形成有阳极氧化铝层106,因此可用较薄的双金属氧化物层即达到修饰效果,因而提高双金属氧化物层108在基材100上的附着力。如此一来,双金属氧化物层108的厚度可降低至小于3μm,以避免为了提高表面平整度而厚度过大造成附着力不足,进而导致双金属氧化物层108剥离的问题。当双金属氧化物层的厚度降低,亦可提升气体的通过量。In an embodiment of the present invention, the thickness of the double
此外,由于阳极氧化铝层106具有平整的表面,因此形成于阳极氧化铝层106上的双金属氧化物层108也可具有平整的表面。如此一来,双金属氧化物层108可作为基材100的修饰层,且使得后续所形成的膜层具有较少的缺陷而有较高的致密度。In addition, since the anodized
在本发明的实施例中,多孔基材结构10包括具有孔洞100a的基材100、具有孔洞106a的阳极氧化铝层106以及具有孔洞108a的双金属氧化物层108。因此,多孔基材结构10可允许气体穿透,以应用于例如分离气体等的气体处理(例如滤氢处理)。以下对多孔基材结构10的结构与气体穿透特性作进一步的说明。In an embodiment of the present invention, the
实施例:Example:
在多孔不锈钢管材(PSS,Pall Accusep filter,P/N:7CC6L465236235SC02)表面的孔洞内填入氧化铝粒子,其中氧化铝粒子的平均粒径为10μm。接着,将填有氧化铝粒子的不锈钢管材置入真空蒸镀机中进行表面蒸镀。于腔体内的靶台上放置1g铝锭,以真空泵将腔体压力抽至1×10-4torr以下,开始旋转待蒸镀的不锈钢管材并加热靶台,使其表面形成极薄(小于3μm)的铝层。接着,将镀有铝层的不锈钢管材进行阳极处理,得到表面披覆有阳极氧化铝层的不锈钢管材。The pores on the surface of the porous stainless steel pipe (PSS, Pall Accusep filter, P/N: 7CC6L465236235SC02) were filled with alumina particles, wherein the average particle size of the alumina particles was 10 μm. Next, the stainless steel pipe filled with alumina particles was placed in a vacuum evaporation machine for surface evaporation. Place 1g aluminum ingot on the target table in the chamber, pump the chamber pressure to below 1×10 -4 torr with a vacuum pump, start to rotate the stainless steel pipe to be evaporated and heat the target table to make the surface extremely thin (less than 3μm) ) of the aluminum layer. Next, anodize the stainless steel pipe plated with the aluminum layer to obtain a stainless steel pipe coated with an anodized aluminum layer on the surface.
将AlLi介金属化合物(以AlLi介金属化合物的总重量计,Li的含量约为18wt.%至21wt.%)粉末置入1000mL的纯水中,导入氮气且曝气搅拌,使大部分的AlLi介金属化合物粉末与水反应而溶解。接着,过滤杂质,以得到澄清且含有Li+及Al3+的碱性溶液(pH值约为11.0至12.3)。The AlLi intermetallic compound (based on the total weight of the AlLi intermetallic compound, the Li content is about 18 wt.% to 21 wt.%) powder is placed in 1000 mL of pure water, and nitrogen is introduced and aerated and stirred to make most of the AlLi The intermetallic compound powder reacts with water and dissolves. Next, the impurities were filtered to obtain a clear alkaline solution containing Li + and Al 3+ (pH about 11.0 to 12.3).
将表面披覆有阳极氧化铝层的不锈钢管材浸置于含有Li+及Al3+的碱性溶液中约2小时后进行干燥,使得连续相的层状含有锂的铝氢氧化物层披覆于阳极氧化铝层上。接着,在500℃下对不锈钢管材进行锻烧两小时,在阳极氧化铝层上形成层状锂铝氧化物层,其中锂铝氧化物层的厚度约为2.9μm,得到本实施例的多孔基材结构。The stainless steel pipe coated with anodized aluminum layer was immersed in an alkaline solution containing Li + and Al 3 + for about 2 hours and then dried, so that the continuous phase layered aluminum hydroxide layer containing lithium was coated on the anodized aluminum layer. Next, the stainless steel pipe was calcined at 500° C. for two hours to form a layered lithium-aluminum oxide layer on the anodic aluminum oxide layer, wherein the thickness of the lithium-aluminum oxide layer was about 2.9 μm, to obtain the porous substrate of this example. material structure.
比较例:Comparative example:
除了未形成阳极氧化铝层之外,以与实施例相同的方式形成多孔基材结构,其中锂铝氧化物层的厚度约为6.4μm。A porous substrate structure was formed in the same manner as in the Example except that the anodic aluminum oxide layer was not formed, wherein the thickness of the lithium aluminum oxide layer was about 6.4 μm.
图2A为比较例的多孔基材结构截面影像图。图2B为本发明的实施例的多孔基材结构截面影像图。由图2A与图2B可清楚看出,当双金属氧化物层与基材之间设置有阳极氧化铝层时,双金属氧化物层可在符合所需平整度(表面上的最大落差为2.8μm)的条件下具有较薄的厚度,且因此可有效地避免修饰层(双金属氧化物层)自基材剥离。FIG. 2A is a cross-sectional image of a porous substrate structure of a comparative example. FIG. 2B is a cross-sectional image of a porous substrate structure according to an embodiment of the present invention. It can be clearly seen from FIG. 2A and FIG. 2B that when an anodized aluminum oxide layer is arranged between the double metal oxide layer and the substrate, the double metal oxide layer can meet the required flatness (the maximum drop on the surface is 2.8). μm) has a thinner thickness, and thus can effectively prevent the modification layer (double metal oxide layer) from peeling off the substrate.
此外,将本发明的实施例的多孔基材结构与比较例的多孔基材结构(金属氧化物层直接形成于基材上)进行气体穿透率测试,结果如表1所示。In addition, the porous substrate structure of the embodiment of the present invention and the porous substrate structure of the comparative example (the metal oxide layer is directly formed on the substrate) were tested for gas permeability, and the results are shown in Table 1.
气体穿透率测试:Gas Penetration Test:
将待量测的多孔基材结构置于测试腔体中,然后将氮气通入测试腔体,并由压力计来监控压力数值。使用流量计来量测从测试腔体的开口端流出的氮气,并计算在特定压力下的氮气通量。The porous substrate structure to be measured is placed in the test chamber, then nitrogen gas is passed into the test chamber, and the pressure value is monitored by a pressure gauge. A flow meter was used to measure the nitrogen flow from the open end of the test chamber and to calculate the nitrogen flux at a specific pressure.
表1Table 1
由图2A、图2B与表1可以清楚看出,在本发明的实施例中,由于多孔基材与修饰层(双金属氧化物层)之间设置有阳极氧化铝层,因此修饰层(双金属氧化物层)在具有相同平整度的条件下可具有较薄的厚度,且同时具有较高的气体通量,亦即本发明的实施例的多孔基材结构可具有较高的气体渗透率。It can be clearly seen from FIG. 2A, FIG. 2B and Table 1 that in the embodiment of the present invention, since an anodized aluminum oxide layer is arranged between the porous substrate and the modification layer (double metal oxide layer), the modification layer (double metal oxide layer) is The metal oxide layer) can have a thinner thickness under the condition of the same flatness, and at the same time have a higher gas flux, that is, the porous substrate structure of the embodiment of the present invention can have a higher gas permeability .
当然,本发明还可有其它多种实施例,在不背离本发明精神及其实质的情况下,熟悉本领域的技术人员当可根据本发明作出各种相应的改变和变形,但这些相应的改变和变形都应属于本发明所附的权利要求的保护范围。Of course, the present invention can also have other various embodiments, without departing from the spirit and essence of the present invention, those skilled in the art can make various corresponding changes and modifications according to the present invention, but these corresponding Changes and deformations should belong to the protection scope of the appended claims of the present invention.
Claims (18)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW109143994 | 2020-12-14 | ||
TW109143994A TWI758008B (en) | 2020-12-14 | 2020-12-14 | Porous substrate structure and manufacturing method thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
CN114618323A true CN114618323A (en) | 2022-06-14 |
Family
ID=81710647
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202110053405.1A Withdrawn CN114618323A (en) | 2020-12-14 | 2021-01-15 | Porous substrate structure and method of making the same |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP2022094280A (en) |
CN (1) | CN114618323A (en) |
TW (1) | TWI758008B (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5393325A (en) * | 1990-08-10 | 1995-02-28 | Bend Research, Inc. | Composite hydrogen separation metal membrane |
JP2000189772A (en) * | 1998-12-24 | 2000-07-11 | Kyocera Corp | Hydrogen gas separation filter and method for producing the same |
TW200927275A (en) * | 2007-12-21 | 2009-07-01 | Ind Tech Res Inst | Hydrogen filtration membrane structure and manufacturing method thereof |
US20100219079A1 (en) * | 2006-05-07 | 2010-09-02 | Synkera Technologies, Inc. | Methods for making membranes based on anodic aluminum oxide structures |
CN103182249A (en) * | 2011-12-30 | 2013-07-03 | 财团法人工业技术研究院 | Method for modifying porous substrate and modified porous substrate |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1085568A (en) * | 1996-09-10 | 1998-04-07 | Tonen Corp | Gas separation equipment |
EP1487563A4 (en) * | 2002-03-05 | 2005-07-20 | Eltron Research Inc | Hydrogen transport membranes |
US7018446B2 (en) * | 2003-09-24 | 2006-03-28 | Siemens Westinghouse Power Corporation | Metal gas separation membrane |
US20130171442A1 (en) * | 2011-12-30 | 2013-07-04 | Meng-Chang Lin | Method for modifying porous substrate and modified porous substrate |
-
2020
- 2020-12-14 TW TW109143994A patent/TWI758008B/en active
-
2021
- 2021-01-15 CN CN202110053405.1A patent/CN114618323A/en not_active Withdrawn
- 2021-04-28 JP JP2021076235A patent/JP2022094280A/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5393325A (en) * | 1990-08-10 | 1995-02-28 | Bend Research, Inc. | Composite hydrogen separation metal membrane |
JP2000189772A (en) * | 1998-12-24 | 2000-07-11 | Kyocera Corp | Hydrogen gas separation filter and method for producing the same |
US20100219079A1 (en) * | 2006-05-07 | 2010-09-02 | Synkera Technologies, Inc. | Methods for making membranes based on anodic aluminum oxide structures |
TW200927275A (en) * | 2007-12-21 | 2009-07-01 | Ind Tech Res Inst | Hydrogen filtration membrane structure and manufacturing method thereof |
CN103182249A (en) * | 2011-12-30 | 2013-07-03 | 财团法人工业技术研究院 | Method for modifying porous substrate and modified porous substrate |
Also Published As
Publication number | Publication date |
---|---|
JP2022094280A (en) | 2022-06-24 |
TWI758008B (en) | 2022-03-11 |
TW202223155A (en) | 2022-06-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103182249B (en) | Method for modifying porous substrate and modified porous substrate | |
Yan et al. | Thin palladium membrane formed in support pores by metal-organic chemical vapor deposition method and application to hydrogen separation | |
US8119205B2 (en) | Process for preparing palladium alloy composite membranes for use in hydrogen separation, palladium alloy composite membranes and products incorporating or made from the membranes | |
JP5199332B2 (en) | Method for producing palladium alloy composite membrane for hydrogen gas separation | |
Gade et al. | Palladium–ruthenium membranes for hydrogen separation fabricated by electroless co-deposition | |
FR2550953A1 (en) | PROCESS FOR PRODUCING PERMEABLE MINERAL MEMBRANES | |
WO2011159389A1 (en) | Zeolite membranes for separation of mixtures containing water, alcohols, or organics | |
US8366805B2 (en) | Composite structures with porous anodic oxide layers and methods of fabrication | |
JP2007000858A (en) | Hydrogen permeation member and its manufacturing method | |
Wang et al. | Synthesis of size-controlled boehmite sols: Application in high-performance hydrogen-selective ceramic membranes | |
TWI758008B (en) | Porous substrate structure and manufacturing method thereof | |
Tanaka et al. | Fabrication of supported palladium alloy membranes using electroless plating techniques | |
TWI449808B (en) | Method for modifying porous substrate and modified porous substrate | |
Kim et al. | Characteristics of dense palladium alloy membranes formed by nano-scale nucleation and lateral growth | |
US11583810B2 (en) | Porous substrate structure and manufacturing method thereof | |
JPS63171617A (en) | Composite membrane excellent in permselectivity of hydrogen and its production | |
Yu et al. | Confined and in-situ zeolite synthesis: A novel strategy for defect reparation over dense Pd membranes for hydrogen separation | |
TWI442966B (en) | Methods of fabricating porous media and inorganic selective film | |
Li et al. | Effects of synthesis parameters on the microstructure and phase structure of porous 316L stainless steel supported TiO2 membranes | |
JP2004089838A (en) | Separation membrane module and manufacturing method thereof | |
Chi et al. | Preparation of a novel Pd/layered double hydroxide composite membrane for hydrogen filtration and characterization by thermal cycling | |
CN109248544A (en) | Gas filtering structure and gas filtering method | |
KR20140108012A (en) | Manufacturing method for dense hydrogen separation membrane by sputter system | |
CN114182205A (en) | A kind of nanometer multilayer structure metal hydrogen absorption film and its preparation method and application | |
KR101715875B1 (en) | Support Integrated Hydrogen Separation Membrane and Method for Manufacturing the Same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
WW01 | Invention patent application withdrawn after publication | ||
WW01 | Invention patent application withdrawn after publication |
Application publication date: 20220614 |