CN114613375A - Time domain noise shaping method and device for audio signal - Google Patents
Time domain noise shaping method and device for audio signal Download PDFInfo
- Publication number
- CN114613375A CN114613375A CN202210186480.XA CN202210186480A CN114613375A CN 114613375 A CN114613375 A CN 114613375A CN 202210186480 A CN202210186480 A CN 202210186480A CN 114613375 A CN114613375 A CN 114613375A
- Authority
- CN
- China
- Prior art keywords
- order
- frequency domain
- prediction error
- domain signal
- value
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- G—PHYSICS
- G10—MUSICAL INSTRUMENTS; ACOUSTICS
- G10L—SPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
- G10L19/00—Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis
- G10L19/02—Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis using spectral analysis, e.g. transform vocoders or subband vocoders
- G10L19/03—Spectral prediction for preventing pre-echo; Temporary noise shaping [TNS], e.g. in MPEG2 or MPEG4
-
- G—PHYSICS
- G10—MUSICAL INSTRUMENTS; ACOUSTICS
- G10L—SPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
- G10L19/00—Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis
- G10L19/02—Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis using spectral analysis, e.g. transform vocoders or subband vocoders
- G10L19/032—Quantisation or dequantisation of spectral components
- G10L19/035—Scalar quantisation
-
- G—PHYSICS
- G10—MUSICAL INSTRUMENTS; ACOUSTICS
- G10L—SPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
- G10L19/00—Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis
- G10L19/04—Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis using predictive techniques
- G10L19/16—Vocoder architecture
-
- G—PHYSICS
- G10—MUSICAL INSTRUMENTS; ACOUSTICS
- G10L—SPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
- G10L19/00—Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis
- G10L19/04—Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis using predictive techniques
- G10L19/26—Pre-filtering or post-filtering
-
- G—PHYSICS
- G10—MUSICAL INSTRUMENTS; ACOUSTICS
- G10L—SPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
- G10L21/00—Speech or voice signal processing techniques to produce another audible or non-audible signal, e.g. visual or tactile, in order to modify its quality or its intelligibility
- G10L21/02—Speech enhancement, e.g. noise reduction or echo cancellation
- G10L21/0208—Noise filtering
- G10L21/0216—Noise filtering characterised by the method used for estimating noise
- G10L21/0232—Processing in the frequency domain
-
- G—PHYSICS
- G10—MUSICAL INSTRUMENTS; ACOUSTICS
- G10L—SPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
- G10L21/00—Speech or voice signal processing techniques to produce another audible or non-audible signal, e.g. visual or tactile, in order to modify its quality or its intelligibility
- G10L21/02—Speech enhancement, e.g. noise reduction or echo cancellation
- G10L21/0208—Noise filtering
- G10L21/0264—Noise filtering characterised by the type of parameter measurement, e.g. correlation techniques, zero crossing techniques or predictive techniques
-
- G—PHYSICS
- G10—MUSICAL INSTRUMENTS; ACOUSTICS
- G10L—SPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
- G10L25/00—Speech or voice analysis techniques not restricted to a single one of groups G10L15/00 - G10L21/00
- G10L25/03—Speech or voice analysis techniques not restricted to a single one of groups G10L15/00 - G10L21/00 characterised by the type of extracted parameters
- G10L25/21—Speech or voice analysis techniques not restricted to a single one of groups G10L15/00 - G10L21/00 characterised by the type of extracted parameters the extracted parameters being power information
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Computational Linguistics (AREA)
- Signal Processing (AREA)
- Health & Medical Sciences (AREA)
- Audiology, Speech & Language Pathology (AREA)
- Human Computer Interaction (AREA)
- Acoustics & Sound (AREA)
- Multimedia (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Quality & Reliability (AREA)
- Compression, Expansion, Code Conversion, And Decoders (AREA)
Abstract
Description
技术领域technical field
本发明涉及计算机技术领域,尤其涉及一种针对音频信号的时域噪声整形方法及装置。The present invention relates to the field of computer technology, and in particular, to a time-domain noise shaping method and device for audio signals.
背景技术Background technique
随着科技的发展,低复杂度通信编解码器(low complexity communicationcodec,LC3)在音频设备中得到广泛应用。然而,大数据测试表明,在LC3中,标准的时域噪声整形(temporal noise shaping,TNS)模块计算量占整个编码流程的16%以上,计算量过高,设备难以承载。With the development of science and technology, low complexity communication codec (LC3) is widely used in audio equipment. However, big data tests show that in LC3, the standard temporal noise shaping (TNS) module takes up more than 16% of the entire encoding process, which is too high for the device to carry.
发明内容SUMMARY OF THE INVENTION
本申请提供一种针对音频信号的时域噪声整形方法及装置,以减少时域噪声处理的计算量。The present application provides a time-domain noise shaping method and apparatus for an audio signal, so as to reduce the calculation amount of time-domain noise processing.
第一方面,本申请提供一种针对音频信号的时域噪声整形方法,该方法可通过电子设备的LC3编解码器来执行,该电子设备可以为蓝牙耳机、手机等,本申请在此不具体限定。执行如下:In the first aspect, the present application provides a time-domain noise shaping method for audio signals. The method can be performed by an LC3 codec of an electronic device. The electronic device can be a Bluetooth headset, a mobile phone, etc., which is not specifically described in this application. limited. Execute as follows:
确定经频域噪声整形(spectral noise shape,SNS)处理的频域信号的第k阶预测误差值ek;k为1~m中的任一整数;m为TNS中滤波器的滤波阶数;若第k阶预测误差值ek大于第k阶预测误差比照值e_threshk,则将频域信号进行频谱量化处理;若频域信号的各阶预测误差值不大于对应的各阶预测误差比照值,则通过TNS中的滤波器对频域信号进行滤波处理。Determine the k-th order prediction error value e k of the frequency domain signal processed by frequency domain noise shape (spectral noise shape, SNS); k is any integer from 1 to m; m is the filtering order of the filter in the TNS; If the k-th order prediction error value e k is greater than the k-th order prediction error comparison value e_thresh k , the frequency domain signal is subjected to spectral quantization; , the frequency domain signal is filtered through the filter in TNS.
需要说明的是,本申请中电子设备接收到音频信号后,可对音频信号进行编码处理得到脉冲编码调制(pulse code modulation,PCM)信号,之后对PCM信号进行傅里叶变换,将PCM信号转换成频域信号,以便输入到LC3编解码器中进行信号处理。It should be noted that, after receiving the audio signal in the present application, the electronic device can perform encoding processing on the audio signal to obtain a pulse code modulation (PCM) signal, and then perform Fourier transform on the PCM signal to convert the PCM signal into into a frequency domain signal for input into the LC3 codec for signal processing.
本申请中,当LC3编解码器确定某阶的预测误差值大于预测误差比照值时,则不执行滤波处理,执行频谱量化的操作,相对于现有技术不对预测误差值进行判断,均要执行滤波处理的计算而言,可以减少计算量,在计算量减少的情况下,显然可以提高信号处理效率。In this application, when the LC3 codec determines that the prediction error value of a certain order is greater than the prediction error comparison value, it does not perform filtering processing, and performs the operation of spectral quantization. In terms of the calculation of filtering processing, the calculation amount can be reduced, and the signal processing efficiency can obviously be improved when the calculation amount is reduced.
在一种可选的方式中,针对经SNS处理的频域信号,确定频域信号的第k阶归一化自相关系数rw(k),k初始化为1;基于第k阶归一化自相关系数rw(k),确定第k阶预测误差值ek;若第k阶预测误差值ek不大于第k阶预测误差比照值e_threshk,则将k加1的取值赋值给k,返回确定频域信号的第k阶归一化自相关系数rw(k)的步骤,直至第k阶预测误差值ek大于e_threshk或k等于m。In an optional manner, for the frequency domain signal processed by SNS, determine the k-th order normalized autocorrelation coefficient r w (k) of the frequency-domain signal, and k is initialized to 1; based on the k-th order normalization The autocorrelation coefficient r w (k) determines the k-th order prediction error value e k ; if the k-th order prediction error value e k is not greater than the k-th order prediction error comparison value e_thresh k , then assign the value of k plus 1 to k, return to the step of determining the k-th order normalized autocorrelation coefficient r w (k) of the frequency domain signal, until the k-th order prediction error value e k is greater than e_thresh k or k is equal to m.
本申请通过设置循环操作,可以保证数据处理的精确度,且在ek大于第k阶预测误差比照值e_threshk或k=m结束循环,可以减少计算量,进一步地可以提高数据处理效率。In the present application, by setting the loop operation, the accuracy of data processing can be guaranteed, and the loop can be ended when e k is greater than the k-th order prediction error comparison value e_thresh k or k=m, which can reduce the amount of calculation and further improve the data processing efficiency.
在一种可选的方式中,针对经SNS处理的频域信号,确定频域信号的各阶归一化自相关系数;针对任一第k阶,基于第1到第k-1阶归一化自相关系数,确定频域信号的第k阶预测误差值ek。In an optional manner, for the frequency domain signal processed by the SNS, the normalized autocorrelation coefficient of each order of the frequency domain signal is determined; for any kth order, the normalization is based on the 1st to the k-1th order Calculate the autocorrelation coefficient to determine the k-th order prediction error value ek of the frequency domain signal.
通过该方式可直接确定各阶预测误差值,数据处理效率高。In this way, the prediction error value of each order can be directly determined, and the data processing efficiency is high.
在一种可选的方式中,通过TNS中的滤波器对频域信号进行滤波处理之前,基于第0阶归一化自相关系数rw(0)与第m阶预测误差值em,确定频域信号的预测增益;在预测增益大于第一预设值,通过TNS中的滤波器对频域信号进行滤波处理。In an optional manner, before the frequency domain signal is filtered by the filter in the TNS, based on the 0th order normalized autocorrelation coefficient r w (0) and the mth order prediction error value em , determine The predicted gain of the frequency domain signal; when the predicted gain is greater than the first preset value, the frequency domain signal is filtered by the filter in the TNS.
本申请根据预测增益与第一预设值的关系,确定是否启执行滤波处理操作,通过该方式可以保证数据处理的精确度。According to the relationship between the predicted gain and the first preset value, the present application determines whether to start the filtering operation, and in this way, the accuracy of the data processing can be ensured.
在一种可选的方式中,在预测增益不大于第一预设值,将频域信号进行频谱量化处理。In an optional manner, when the prediction gain is not greater than the first preset value, spectral quantization processing is performed on the frequency domain signal.
通过该方式可以减少时域噪声处理的计算量,并进一步提高数据处理效率。In this way, the calculation amount of time-domain noise processing can be reduced, and the data processing efficiency can be further improved.
在一种可选的方式中,各阶预测误差比照值中的任一阶预测误差比照值是通过样本数据中对应阶预测误差确定的;样本数据为无需进行TNS滤波处理的频域信号。In an optional manner, any order prediction error comparison value in each order prediction error comparison value is determined by the corresponding order prediction error in the sample data; the sample data is a frequency domain signal that does not need to be processed by TNS filtering.
通过该方式确定的预测误差比照值更加可靠,可以保证数据处理的精确度。The prediction error comparison value determined in this way is more reliable, and the accuracy of data processing can be guaranteed.
在一种可选的方式中,各阶预测误差比照值是在设定的损失精度条件下确定的。In an optional manner, the comparison values of prediction errors of each order are determined under a set loss accuracy condition.
本申请中,各阶预测误差比照值与损失精度相关,该方式可以保证数据处理的精确度。In this application, the comparison values of prediction errors of each order are related to the loss accuracy, and this method can ensure the accuracy of data processing.
在一种可选的方式中,若频域信号的各阶预测误差值均不大于对应的各阶预测误差比照值,则通过TNS中的滤波器对频域信号进行滤波处理。In an optional manner, if each order prediction error value of the frequency domain signal is not greater than the corresponding comparison value of each order prediction error, the frequency domain signal is filtered by a filter in the TNS.
通过该方式可以保证数据处理的精确度。In this way, the accuracy of data processing can be guaranteed.
在一种可选的方式中,通过TNS中的滤波器对频域信号进行滤波处理,包括:In an optional manner, the frequency domain signal is filtered by a filter in the TNS, including:
基于频域信号的m阶线性预测编码值,确定m-1阶反射系数;对m-1阶反射系数进行量化处理,得到TNS中的滤波器的m-1阶量化反射系数;基于m-1阶量化反射系数,通过TNS中的滤波器对频域信号进行滤波处理。Based on the m-order linear prediction coding value of the frequency domain signal, the m-1 order reflection coefficient is determined; the m-1 order reflection coefficient is quantized to obtain the m-1 order quantized reflection coefficient of the filter in the TNS; based on the m-1 order reflection coefficient The first-order quantized reflection coefficient is used to filter the frequency domain signal through the filter in the TNS.
第二方面,本申请提供针对音频信号的时域噪声整形装置,该装置包括:In a second aspect, the present application provides a time-domain noise shaping device for an audio signal, the device comprising:
误差确定单元,用于确定经SNS处理的频域信号的第k阶预测误差值ek;k为1~m中的任一整数;m为时域噪声整形TNS中滤波器的滤波阶数;第一误差比照单元,用于若第k阶预测误差值ek大于第k阶预测误差比照值e_threshk,则将频域信号进行频谱量化处理;第二误差比照单元,用于若频域信号的各阶预测误差值不大于对应的各阶预测误差比照值,则通过TNS中的滤波器对频域信号进行滤波处理。An error determination unit, used for determining the k-th order prediction error value e k of the frequency domain signal processed by the SNS; k is any integer from 1 to m; m is the filtering order of the filter in the time-domain noise shaping TNS; The first error comparison unit is used for performing spectrum quantization processing on the frequency domain signal if the kth order prediction error value e k is greater than the kth order prediction error comparison value e_thresh k ; the second error comparison unit is used for if the frequency domain signal is The prediction error value of each order is not greater than the corresponding comparison value of each order prediction error, then the frequency domain signal is filtered by the filter in the TNS.
第三方面,本申请提供一种计算装置,包括:存储器以及处理器;存储器,用于存储程序指令;处理器,用于调用所述存储器中存储的程序指令,按照获得的程序执行第一方面所述的方法。In a third aspect, the present application provides a computing device, including: a memory and a processor; a memory for storing program instructions; a processor for calling program instructions stored in the memory, and executing the first aspect according to the obtained program the method described.
第四方面,本申请提供一种计算机存储介质,存储有计算机可执行指令,所述计算机可执行指令用于执行如第一方面所述的方法。In a fourth aspect, the present application provides a computer storage medium storing computer-executable instructions for executing the method according to the first aspect.
上述第二方面至第四方面可以达到的技术效果,请参照上述第一方面中相应可能设计方案可以达到的技术效果说明,本申请这里不再重复赘述。For the technical effects that can be achieved by the second aspect to the fourth aspect, please refer to the description of the technical effects that can be achieved by the corresponding possible design solutions in the first aspect, which will not be repeated here in this application.
本申请的其它特征和优点将在随后的说明书中阐述,并且部分地从说明书中变得显而易见,或者通过实施本申请而了解。本申请的目的和其他优点可通过在所写的说明书、权利要求书、以及附图中所特别指出的结构来实现和获得。Other features and advantages of the present application will be set forth in the description which follows, and in part will be apparent from the description, or may be learned by practice of the present application. The objectives and other advantages of the application may be realized and attained by the structure particularly pointed out in the written description, claims, and drawings.
附图说明Description of drawings
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简要介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域的普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。In order to illustrate the technical solutions in the embodiments of the present invention more clearly, the following briefly introduces the accompanying drawings used in the description of the embodiments. Obviously, the drawings in the following description are only some embodiments of the present invention. For those of ordinary skill in the art, other drawings can also be obtained from these drawings without any creative effort.
图1为一种音频信号的时域噪声处理方法的应用场景示意图;1 is a schematic diagram of an application scenario of a time-domain noise processing method for an audio signal;
图2为一种时域噪声处理方法的流程示意图;2 is a schematic flowchart of a time-domain noise processing method;
图3为本申请实施例提供的一种时域噪声整形方法的流程示意图;FIG. 3 is a schematic flowchart of a time-domain noise shaping method provided by an embodiment of the present application;
图4为本申请实施例提供的预测误差比照值的示意图;4 is a schematic diagram of a prediction error comparison value provided by an embodiment of the present application;
图5为本申请实施例提供的另一种时域噪声整形方法的流程示意图;FIG. 5 is a schematic flowchart of another time-domain noise shaping method provided by an embodiment of the present application;
图6为本申请实施例提供的一种时域噪声整形装置的结构示意图;FIG. 6 is a schematic structural diagram of a time-domain noise shaping apparatus provided by an embodiment of the present application;
图7为本申请实施例提供的一种计算设备的结构示意图。FIG. 7 is a schematic structural diagram of a computing device according to an embodiment of the present application.
具体实施方式Detailed ways
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述。In order to make the purpose, technical solutions and advantages of the embodiments of the present invention clearer, the technical solutions in the embodiments of the present invention will be described clearly and completely below with reference to the accompanying drawings in the embodiments of the present invention.
需要说明的是,本申请中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应所述理解这样使用的数据在适当情况下可以互换,以便这里描述的本公开的实施例能够以除了在这里图示或描述的那些以外的顺序实施。以下示例性实施例中所描述的实施方式并不代表与本申请相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本申请的一些方面相一致的装置和方法的例子。It should be noted that the terms "first", "second" and the like in this application are used to distinguish similar objects, and are not necessarily used to describe a specific sequence or sequence. It is to be understood that the data so used are interchangeable under appropriate circumstances such that the embodiments of the disclosure described herein can be practiced in sequences other than those illustrated or described herein. The implementations described in the illustrative examples below are not intended to represent all implementations consistent with this application. Rather, they are merely examples of apparatus and methods consistent with some aspects of the present application as recited in the appended claims.
为了更好说明本申请的方案,相对本申请可能涉及的技术用于进行解释:In order to better illustrate the solution of this application, relative to the technologies that may be involved in this application, it is used to explain:
TNS(时域噪声整形):时域噪声整形是通过处理信号频谱实现时域噪声整形,能够对量化噪声的时域进行控制。其原理是对时域信号进行开环预测编码,以此调节解码器最终的量化误差功率谱密度适应输入信号的功率谱密度。TNS (Time-Domain Noise Shaping): Time-domain noise shaping is to realize time-domain noise shaping by processing the signal spectrum, which can control the time-domain of quantization noise. The principle is to perform open-loop predictive coding on the time domain signal, so as to adjust the final quantization error power spectral density of the decoder to adapt to the power spectral density of the input signal.
LPC(线性预测编码):利用已知过去的若干个语音信号的线性组合对当前的语音采样值进行逼近(预测),使其线性预测值在最小方均误差等于语音的当前采样值,再将预测值和当前采样值相减,得到预测误差,最后对预测误差编码。LPC (Linear Predictive Coding): Approximate (predict) the current speech sample value by using the linear combination of several known past speech signals, so that the linear prediction value is equal to the current sample value of the speech at the minimum mean square error, and then The predicted value and the current sampled value are subtracted to obtain the prediction error, and finally the prediction error is encoded.
预测增益:用于判断是否启动TNS操作。Prediction gain: used to judge whether to start TNS operation.
预测误差:利用归一化的加窗自相关系数和预测误差求得预测增益,通过比较预测增益和设定阈值(本申请中为第一预设值)的大小判断是否启动TNS。Prediction error: use the normalized windowed autocorrelation coefficient and prediction error to obtain the prediction gain, and determine whether to activate TNS by comparing the prediction gain and the set threshold (the first preset value in this application).
如图1示出了本申请中音频信号的时域噪声处理方法的应用场景,该应用场景中包括:播放音乐的设备1(图1中以蓝牙音箱为例),以及蓝牙耳机,蓝牙音箱与蓝牙耳机之间通过无线通信传输音频数据,在该应用场景中为蓝牙通信,蓝牙耳机接收到音频数据后,通过PCM对音频数据进行采样、量化、编码转换成的标准数字音频数据,也即PCM数据。蓝牙耳机中还设置有LC3编解码器,LC3编解码器可将PCM数据转换成频域信号,并将频域信号输入到LC3编解码器中的TNS模块进行噪声滤波处理,得到滤波信号。滤波信号可经过解码转换成音频信号,以供用户收听。此外,还要说明的是,在执行完滤波处理后,还要执行频谱量化等操作,本申请在此不一一说明。FIG. 1 shows the application scenario of the time-domain noise processing method for audio signals in this application. The application scenario includes: a
相关技术中,针对音频信号的时域噪声整形流程如图2所示,假定在实际应用时,TNS中滤波器的滤波阶数为8,则需要经过8阶(也即8次)数据处理,以便更好地滤除频域信号中的噪声,图2中从获取到频域信号开始进行数据处理,LC3编解码器可分别计算频域信号的8个归一化自相关系数,基于8个归一化自相关系数计算8个LPC系数,并基于8个LPC系数以及8个归一化自相关系数计算预测误差。基于归一化自相关系数以及预测误差的值,确定预测增益preGain。当确定preGain大于1.5时,计算反射系数,并量化反射系数,计算TNS比特消耗,利用量化的反射系数对频域信号进行滤波,得到滤波信号。当确定preGain不大于1.5时,将反射系数全都设置为0,并基于全0的反射系数进行量化,计算TNS比特消耗,利用量化的反射系数对频域信号进行滤波,得到滤波信号。In the related art, the time-domain noise shaping process for audio signals is shown in Figure 2. Assuming that in practical application, the filtering order of the filter in the TNS is 8, it needs to go through 8-order (that is, 8 times) data processing, In order to better filter out the noise in the frequency domain signal, in Figure 2, the data processing starts from the acquired frequency domain signal. The LC3 codec can calculate the 8 normalized autocorrelation coefficients of the frequency domain signal respectively, based on the 8 normalized autocorrelation coefficients. The normalized autocorrelation coefficients calculate 8 LPC coefficients, and the prediction error is calculated based on the 8 LPC coefficients and the 8 normalized autocorrelation coefficients. Based on the normalized autocorrelation coefficient and the value of the prediction error, the prediction gain preGain is determined. When it is determined that the preGain is greater than 1.5, the reflection coefficient is calculated, the reflection coefficient is quantized, the TNS bit consumption is calculated, and the quantized reflection coefficient is used to filter the frequency domain signal to obtain a filtered signal. When it is determined that preGain is not greater than 1.5, the reflection coefficients are all set to 0, and quantization is performed based on the reflection coefficients of all 0s, the TNS bit consumption is calculated, and the quantized reflection coefficient is used to filter the frequency domain signal to obtain the filtered signal.
该方式将8阶数据处理全都统一进行计算后,基于预测增益的取值执行后续的时域噪声整形操作。其中,标准的时域噪声整形模块计算量占整个编码流程的16%以上,归一化自相关系数,LPC系数以及预测误差的计算占用了流程计算量80%以上,反射系数的计算和量化,TNS比特消耗以及利用量化反射系数对频谱进行滤波的计算占用了编码流程计算量15%以上。该方式计算量较大,设备难以承载。In this method, after the 8th-order data processing is all calculated uniformly, the subsequent time-domain noise shaping operation is performed based on the value of the prediction gain. Among them, the calculation of the standard time-domain noise shaping module accounts for more than 16% of the entire coding process, the calculation of the normalized autocorrelation coefficient, LPC coefficient and prediction error accounts for more than 80% of the calculation of the process, and the calculation and quantization of the reflection coefficient, The TNS bit consumption and the computation of filtering the spectrum using the quantized reflection coefficients account for more than 15% of the computation of the encoding process. This method requires a large amount of computation and is difficult for equipment to carry.
因此,减少归一化自相关系数,LPC系数和预测误差的计算以及减少反射系数的计算和量化,TNS比特消耗以及利用量化反射系数对频谱进行滤波的计算,能够有效降低时域噪声整形操作的计算量。基于此本申请提供一种针对音频信号的时域噪声整形方法。Therefore, reducing the calculation of normalized autocorrelation coefficients, LPC coefficients and prediction errors, as well as reducing the calculation and quantization of reflection coefficients, TNS bit consumption, and calculation of spectrum filtering using quantized reflection coefficients can effectively reduce the time-domain noise shaping operation. amount of calculation. Based on this, the present application provides a time-domain noise shaping method for audio signals.
下面具体介绍时域噪声整形过程。本申请下述实施例中,“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况,其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b或c中的至少一项(个),可以表示:a,b,c,a-b,a-c,b-c,或a-b-c,其中a,b,c可以是单个,也可以是多个。单数表达形式“一个”、“一种”、“所述”、“上述”、“该”和“这一”旨在也包括例如“一个或多个”这种表达形式,除非其上下文中明确地有相反指示。以及,除非有相反的说明,本申请实施例提及“第一”、“第二”等序数词是用于对多个对象进行区分,不用于限定多个对象的顺序、时序、优先级或者重要程度。例如,第一任务执行设备和第二任务执行设备,只是为了区分不同的任务执行设备,而并不是表示这两种任务执行设备的优先级或者重要程度等的不同。The time-domain noise shaping process is described in detail below. In the following embodiments of this application, "and/or" describes the association relationship between associated objects, indicating that there can be three kinds of relationships, for example, A and/or B, it can mean that A exists alone, A and B exist at the same time, independently There is a case of B, where A, B can be singular or plural. The character "/" generally indicates that the associated objects are an "or" relationship. "At least one item(s) below" or similar expressions thereof refer to any combination of these items, including any combination of single item(s) or plural items(s). For example, at least one (a) of a, b or c may represent: a, b, c, a-b, a-c, b-c, or a-b-c, where a, b, c may be single or multiple. The singular expressions "a", "an", "the", "above", "the" and "the" are intended to also include such expressions as "one or more" unless the context clearly dictates otherwise. to the contrary. And, unless stated to the contrary, the ordinal numbers such as “first” and “second” mentioned in the embodiments of the present application are used to distinguish multiple objects, and are not used to limit the order, sequence, priority or priority of multiple objects. Importance. For example, the first task execution device and the second task execution device are only for distinguishing different task execution devices, and do not indicate the difference in priority or importance of the two task execution devices.
在本申请说明书中描述的参考“一个实施例”或“一些实施例”等意味着在本申请的一个或多个实施例中包括结合该实施例描述的特定特征、结构或特点。由此,在本说明书中的不同之处出现的语句“在一个实施例中”、“在一些实施例中”、“在其他一些实施例中”、“在另外一些实施例中”等不是必然都参考相同的实施例,而是意味着“一个或多个但不是所有的实施例”,除非是以其他方式另外特别强调。术语“包括”、“包含”、“具有”及它们的变形都意味着“包括但不限于”,除非是以其他方式另外特别强调。References in this specification to "one embodiment" or "some embodiments" and the like mean that a particular feature, structure or characteristic described in connection with the embodiment is included in one or more embodiments of the present application. Thus, appearances of the phrases "in one embodiment," "in some embodiments," "in other embodiments," "in other embodiments," etc. in various places in this specification are not necessarily All refer to the same embodiment, but mean "one or more but not all embodiments" unless specifically emphasized otherwise. The terms "including", "including", "having" and their variants mean "including but not limited to" unless specifically emphasized otherwise.
如图3所示,为本申请提供的一种针对音频信号的时域噪声整形方法的流程,该方法可通过电子设备的LC3编解码器来执行,该电子设备可以为手机以及上述图1中的蓝牙耳机等,本申请在此不具体限定。电子设备可执行如下:As shown in FIG. 3 , the process of a time-domain noise shaping method for an audio signal provided by the present application, the method can be executed by an LC3 codec of an electronic device, and the electronic device can be a mobile phone and the above-mentioned FIG. 1 . Bluetooth headsets, etc., which are not specifically limited in this application. The electronic device may perform the following:
步骤301,接收音频信号,并将音频信号转换成频域信号。Step 301: Receive an audio signal, and convert the audio signal into a frequency domain signal.
如上述电子设备接收到音频信号后,可对音频信号进行采样、量化、编码后转换成PCM信号,之后对PCM信号进行傅里叶变换等,将PCM信号变成频域信号。For example, after receiving the audio signal, the above electronic device can sample, quantize, encode and convert the audio signal into a PCM signal, and then perform Fourier transform on the PCM signal, etc., to convert the PCM signal into a frequency domain signal.
通常电子设备会接收到一段音频信号,该段音频信号可分成根据预设的时间多帧音频信号(例如,10毫秒(millisecond,ms)内采集的音频数据为1帧),每帧音频信号通常与频域信号是一一对应的,因此存在多少帧音频信号,也即存在多少帧频域信号。Usually an electronic device will receive a segment of audio signal, which can be divided into multiple frames of audio signals according to a preset time (for example, audio data collected within 10 milliseconds (ms) is 1 frame), and each frame of audio signal is usually There is a one-to-one correspondence with the frequency domain signal, so how many frames of audio signals exist, that is, how many frames of frequency domain signals exist.
步骤302,确定经SNS处理的频域信号的第k阶预测误差值ek;k为1~m中的任一整数;m为时域噪声整形TNS中滤波器的滤波阶数。Step 302: Determine the k-th order prediction error value ek of the frequency domain signal processed by the SNS; k is any integer from 1 to m; m is the filtering order of the filter in the time-domain noise shaping TNS.
可选的,针对经SNS处理的频域信号,确定频域信号的第k阶归一化自相关系数rw(k),k初始化为1;基于第k阶归一化自相关系数rw(k),确定第k阶预测误差值ek;若第k阶预测误差值ek不大于第k阶预测误差比照值e_threshk,则将k加1的取值赋值给k,返回确定频域信号的第k阶归一化自相关系数rw(k)的步骤,直至第k阶预测误差值ek大于e_threshk或k等于m。Optionally, for the frequency-domain signal processed by the SNS, determine the k-th order normalized autocorrelation coefficient r w (k) of the frequency-domain signal, and k is initialized to 1; based on the k-th order normalized autocorrelation coefficient r w (k), determine the k-th order prediction error value e k ; if the k-th order prediction error value e k is not greater than the k-th order prediction error comparison value e_thresh k , then assign the value of k plus 1 to k, and return to determine the frequency The step of normalizing the k-th order autocorrelation coefficient r w (k) of the domain signal until the k-th order prediction error value e k is greater than e_thresh k or k is equal to m.
可选的,第k阶归一化自相关系数rw(k)可参照如下公式计算:Optionally, the k-th order normalized autocorrelation coefficient r w (k) can be calculated with reference to the following formula:
其中,in,
其中,Xs(n)是输入的频域信号,求和号的上下标是滤波器的初始值和截止值,f表示第几个滤波器(不同频带用的滤波器数量不同),因为滤波器会对三段的地方进行滤波,所以s等于0-2。基于上述的公式2可知,r0(0)为3。Among them, X s (n) is the input frequency domain signal, the superscript and subscript of the summation sign are the initial value and cutoff value of the filter, and f represents the number of filters (the number of filters used in different frequency bands is different), because the filter The filter will filter the three segments, so s is equal to 0-2. Based on the
可选的,电子设备根据rw(k)进行计算,第k次线性预测编码值a(k);根据rw(k)以及a(k),确定预测误差值ek。本申请,可通过下述的软代码确定线性预测编码值以及预测误差值,但是在实际应用时,也可采用其他方式确定,本申请在此不具体限定。可参照如下软代码确定a(k)以及ek:Optionally, the electronic device performs calculation according to r w (k), and the kth linear prediction coding value a(k); according to r w (k) and a(k), determines the prediction error value ek . In this application, the linear prediction coding value and the prediction error value may be determined by the following soft codes, but in practical application, other methods may also be used to determine, which is not specifically limited in this application. a(k) and e k can be determined with reference to the following soft codes:
err=r0(0)err=r 0 (0)
a(0)=1a(0)=1
fork=1to8dofork=1to8do
tmp(0)=1tmp(0)=1
forn=1tok-1doforn=1tok-1do
tmp(n)=a(n)+rc(k)·a(k-n)tmp(n)=a(n)+rc(k)·a(k-n)
tmp(k)=rc(k)tmp(k)=rc(k)
forn=0tokdoforn=0tokdo
a(n)=tmp(n)a(n)=tmp(n)
err(k)=(1-rc(k)2)·err(k-1)err(k)=(1-rc(k) 2 ) err(k-1)
其中,err为预测误差值,rc为中间值,tmp()为中间值。Among them, err is the prediction error value, rc is the intermediate value, and tmp() is the intermediate value.
可选的,各阶预测误差比照值中的任一阶预测误差比照值是通过样本数据中对应阶预测误差确定的;样本数据为无需进行TNS滤波处理的频域信号。Optionally, any order prediction error comparison value in each order prediction error comparison value is determined by the corresponding order prediction error in the sample data; the sample data is a frequency domain signal that does not need to be processed by TNS filtering.
例如,选取大量不需要进行TNS处理的音频信号(也即样本数据),计算各阶预测误差值,确定不执行TNS处理的最大的预测误差值,则将该预测误差值确定为该阶的预测误差比照值,当然在实际应用时,为了提高数据计算效率,还可以通过高次多项式拟合样本数据确定各阶的预测误差比照值。通过该方式确定的预测误差比照值更加可靠,可以保证数据处理的精确度。For example, select a large number of audio signals (that is, sample data) that do not need to be processed by TNS, calculate the prediction error value of each order, and determine the largest prediction error value without TNS processing, then determine the prediction error value as the prediction of this order. The error comparison value, of course, in practical application, in order to improve the data calculation efficiency, the prediction error comparison value of each order can also be determined by fitting the sample data with a high-order polynomial. The prediction error comparison value determined in this way is more reliable, and the accuracy of data processing can be guaranteed.
各阶预测误差比照值是在设定的损失精度条件下确定的。其中,时域噪声整形时,信号精度损失情况不同,对应的预测误差比照值也不同。可参照如下表1,确定预测误差比照值,如,处理阶数为2阶时,信号损失精度为20/00时,预测误差比照值2.9992,在实际应用时,可能仅应用一行或多行,一列或多列,本申请在此不限定。The comparison value of each order prediction error is determined under the set loss accuracy condition. Among them, in the time-domain noise shaping, the loss of signal accuracy is different, and the corresponding prediction error comparison value is also different. Refer to Table 1 below to determine the prediction error comparison value. For example, when the processing order is 2 and the signal loss accuracy is 20/00, the prediction error comparison value is 2.9992 . In practical applications, only one or more lines may be applied. , one or more columns, which is not limited in this application.
表1Table 1
在不同信号损失精度要求下,时域噪声整形处理的计算量减少粒度是不同的,例如,信号精度无损时,计算量减少20%;信号精度损失10/00时,计算量减少25%;信号精度损失20/00时,计算量减少30%;信号精度损失50/00时,计算量减少35%,可如图4所示,其中,横坐标为第y次线性预测编码值,纵坐标为预测误差比照值。例如,当信号精度无损的情况下,第6次线性预测编码值对应的预测误差比照值2.85,若第6次预测误差值小于2.85,则不执行时域噪声整形操作,通过该方式可以避免不必要的计算,减少计算量,进一步地,可以提高数据处理效率。Under different signal loss accuracy requirements, the granularity of calculation reduction in time-domain noise shaping processing is different. For example, when the signal accuracy is lossless, the calculation amount is reduced by 20%; when the signal accuracy loss is 10/00 , the calculation amount is reduced by 25%; When the signal accuracy loss is 20/00 , the calculation amount is reduced by 30 %; when the signal accuracy loss is 50/00 , the calculation amount is reduced by 35%, as shown in Figure 4, where the abscissa is the yth linear prediction coding value, The ordinate is the prediction error comparison value. For example, when the signal accuracy is lossless, the comparison value of the prediction error corresponding to the 6th linear prediction coding value is 2.85. If the 6th prediction error value is less than 2.85, the temporal noise shaping operation is not performed. The necessary calculation reduces the amount of calculation, and further, the data processing efficiency can be improved.
本申请通过设置循环操作,可以保证数据处理的精确度,且在ek大于第k阶预测误差比照值e_threshk或k=m结束循环,可以减少计算量,进一步地可以提高数据处理效率。In the present application, by setting the loop operation, the accuracy of data processing can be ensured, and the loop is terminated when e k is greater than the k-th order prediction error comparison value e_threshk or k=m, which can reduce the amount of calculation and further improve the data processing efficiency.
此外,针对经SNS处理的频域信号,也可确定频域信号的各阶归一化自相关系数(也即直接将m阶的归一化自相关系数均计算出来),针对任一第k阶,基于第1到第k-1阶归一化自相关系数,确定频域信号的第k阶预测误差值ek。通过该方式无需执行循环操作,可直接确定各阶预测误差值,数据处理效率高。In addition, for the frequency domain signal processed by SNS, the normalized autocorrelation coefficients of each order of the frequency domain signal can also be determined (that is, the normalized autocorrelation coefficients of the m order are directly calculated). order, the kth order prediction error value ek of the frequency domain signal is determined based on the normalized autocorrelation coefficients of
步骤303,确定第k阶预测误差值ek与第k阶预测误差比照值e_threshk的关系。若ek不大于e_threshk,且各阶预测误差值不大于各阶预测误差比照值,则执行步骤304;若ek大于e_threshk,则执行步骤305;在实际应用时,执行完步骤304也会执行步骤305。Step 303: Determine the relationship between the k-th order prediction error value e k and the k-th order prediction error comparison value e_thresh k . If e k is not greater than e_thresh k , and the prediction error value of each order is not greater than the comparison value of prediction error of each order, go to step 304; if e k is greater than e_thresh k , go to step 305; Step 305 will be executed.
此外,还要说明的是,为了保证数据处理精度,执行步骤304之前的判断条件可为ek不大于e_threshk,且各阶预测误差值均不大于各阶预测误差比照值。In addition, it should be noted that, in order to ensure the data processing accuracy, the judgment condition before executing
步骤304,通过TNS中的滤波器对频域信号进行滤波处理。
步骤305,将频域信号直接进行频谱量化处理。In
本申请中,当LC3编解码器确定某阶的预测误差值大于预测误差比照值时,则不执行滤波处理,执行频谱量化的操作,相对于现有技术不对预测误差值进行判断,均要执行滤波处理的计算而言,可以减少计算量,在计算量减少的情况下,显然可以提高信号处理效率。In this application, when the LC3 codec determines that the prediction error value of a certain order is greater than the prediction error comparison value, it does not perform filtering processing, and performs the operation of spectral quantization. In terms of the calculation of filtering processing, the calculation amount can be reduced, and the signal processing efficiency can obviously be improved when the calculation amount is reduced.
通过TNS中的滤波器对频域信号进行滤波处理之前,还可基于第0阶归一化自相关系数rw(0)与第m阶预测误差值em,确定频域信号的预测增益;当确定预测增益大于第一预设值,通过TNS中的滤波器对频域信号进行滤波处理。Before filtering the frequency-domain signal by the filter in the TNS, the prediction gain of the frequency-domain signal can also be determined based on the 0th-order normalized autocorrelation coefficient rw (0) and the mth -order prediction error value em; When it is determined that the prediction gain is greater than the first preset value, the frequency domain signal is filtered by the filter in the TNS.
上述根据rw(0)以及预测误差值em,确定频域信号的预测增益preGain(y),可通过如下公式确定:The above-mentioned determination of the prediction gain preGain (y) of the frequency domain signal according to r w (0) and the prediction error value em can be determined by the following formula:
需要说明的是,该第一预设值可以为1.5、2.5等,本申请在此不具体限定。当然在预测增益不大于第一预设值,可将频域信号直接进行频谱量化处理。It should be noted that the first preset value may be 1.5, 2.5, etc., which is not specifically limited in this application. Of course, when the prediction gain is not greater than the first preset value, the frequency domain signal can be directly subjected to spectral quantization processing.
本申请中,对频域信号归一化处理后确定rw(0),基于rw(0)确定频域信号的预测增益;电子设备进行时域噪声处理时,当预测增益小于或等于(也即不大于)第一预设值时,确定不执行滤波处理操作,直接执行频谱量化操作,相对于现有技术无论预设增益与第一预设值是什么关系,均要执行滤波处理操作的计算而言,可以减少计算量,在计算量减少的情况下,显然可以提高信号处理效率。In this application, r w (0) is determined after the frequency domain signal is normalized, and the predicted gain of the frequency domain signal is determined based on r w (0); when the electronic device performs time domain noise processing, when the predicted gain is less than or equal to ( That is, when it is not greater than the first preset value, it is determined that the filtering operation is not performed, and the spectrum quantization operation is directly performed. Compared with the prior art, regardless of the relationship between the preset gain and the first preset value, the filtering operation must be performed. In terms of calculation, the amount of calculation can be reduced, and when the amount of calculation is reduced, the signal processing efficiency can obviously be improved.
可选的,通过TNS中的滤波器对频域信号进行滤波处理,包括:Optionally, filter the frequency domain signal through a filter in the TNS, including:
基于频域信号的m阶线性预测编码值,确定m-1阶反射系数;对m-1阶反射系数进行量化处理,得到TNS中的滤波器的m-1阶量化反射系数;基于m-1阶量化反射系数,通过TNS中的滤波器对频域信号进行滤波处理。Based on the m-order linear prediction coding value of the frequency domain signal, the m-1 order reflection coefficient is determined; the m-1 order reflection coefficient is quantized to obtain the m-1 order quantized reflection coefficient of the filter in the TNS; based on the m-1 order reflection coefficient The first-order quantized reflection coefficient is used to filter the frequency domain signal through the filter in the TNS.
在实际应用时,若预测增益小于或等于第一预设值(1.5),电子设备可设置反射系数全部为0,若预测增益大于第一预设值,还可基于中间变量tns_lpc_weighting以及预测增益进行判断,进而确定反射系数的值。例如,当确定tns_lpc_weighting为1,且第一预设值大于1.5小于等于2时,设置线性预测编码值的加权因子γ为当不满足上述条件时,可将γ设置为1,加权后的线性预测编码值为aw(k),可参照下述公式确定:In practical applications, if the predicted gain is less than or equal to the first preset value (1.5), the electronic device can set all the reflection coefficients to 0, and if the predicted gain is greater than the first preset value, it can also be performed based on the intermediate variable tns_lpc_weighting and the predicted gain. Judgment, and then determine the value of the reflection coefficient. For example, when it is determined that tns_lpc_weighting is 1, and the first preset value is greater than 1.5 and less than or equal to 2, set the weighting factor γ of the linear predictive coding value to be When the above conditions are not met, γ can be set to 1, and the weighted linear prediction coding value is a w (k), which can be determined with reference to the following formula:
aw(k)=γka(k) fork=0....ma w (k)=γ k a(k) fork=0....m
公式6
LC3编解码器通过上述的公式6确定加权后的线性预测编码值后,可参照下述的软代码将加权后的线性预测编码值aw(k)转化成反射系数:After the LC3 codec determines the weighted linear prediction coding value through the above-mentioned
tmp1(k)=aw(k),k=0,...,mtmp1(k)=a w (k),k=0,...,m
fork=8to1dofork=8to1do
rc(k-1)=tmp1(k)rc(k-1)=tmp1(k)
e=(1-rc(k-1)2)e=(1-rc(k-1) 2 )
forn=1tok-1doforn=1tok-1do
forn=1tok-1doforn=1tok-1do
tmp1(n)=tmp2(n)tmp1(n)=tmp2(n)
其中,err为预测误差值,e为中间值,rc()为反射系数,tmp2()为中间值。Among them, err is the prediction error value, e is the intermediate value, rc() is the reflection coefficient, and tmp2() is the intermediate value.
之后,LC3编解码器通过下述公式量化反射系数:After that, the LC3 codec quantizes the reflection coefficient by the following formula:
其中,nint表示四舍五入到最接近的整数,rcq(k,f)为量化后的反射系数,rci(k,f)为量化反射系数的中间值。in, nint means rounding to the nearest integer, rc q (k, f) is the quantized reflection coefficient, and rc i (k, f) is the middle value of the quantized reflection coefficient.
还要说明的是,LC3编解码器在量化反射系数时,还可计算TNS的比特开销,以便减化TNS之后的信号处理流程,其中,TNS的比特开销可通过下述公式确定:It should also be noted that when quantizing the reflection coefficient, the LC3 codec can also calculate the bit overhead of TNS, so as to reduce the signal processing flow after TNS, where the bit overhead of TNS can be determined by the following formula:
with:with:
and:and:
其中,ac_tns_order_bits用于计算tns_order的比特消耗,即量化反射系数最后一个非零值的位置。ac_tns_coef_bits用于计算量化反射系数的比特消耗。Among them, ac_tns_order_bits is used to calculate the bit consumption of tns_order, that is, the position of the last non-zero value of the quantized reflection coefficient. ac_tns_coef_bits is used to calculate the bit consumption of quantized reflection coefficients.
为了更好地说明本申请的方案,可参照图5来说明,从获取到频域信号进行数据处理,LC3编解码器可分别计算频域信号的m(图5中以m为8为例来说明)个归一化自相关系数,并基于8个归一化自相关系数分别计算8个LPC系数a(k),并基于LPC系数以及归一化自相关系数计算预测误差ek,确定预测误差ek是否小于等于预测误差比照值e_threshk,若否,则执行频谱量化的操作;若是,则将k进行自加运算得到k+1,将k+1的值赋值给k,并确定k+1是否大于8,若否,计算第k+1次归一化处理的归一化自相关函数为rw(k+1),根据第1到第k阶归一化自相关系数确定频域信号的第k+1次线性预测编码值a(k+1)以及预测误差值ek+1,也即循环执行上述的步骤。若是,LC3编解码器则计算预测增益,判断预测增益preGain与第一预设值(1.5)的关系,若不大于第一预设值,则执行频谱量化的操作,若大于第一预设值,则计算反射系数,并量化反射系数,计算TNS比特消耗,利用量化的反射系数对频域信号进行滤波,得到滤波信号。In order to better illustrate the solution of the present application, it can be explained with reference to FIG. 5 . From the acquisition of the frequency domain signal for data processing, the LC3 codec can separately calculate m of the frequency domain signal (in FIG. 5, m is 8 as an example to Explain) normalized autocorrelation coefficients, and calculate 8 LPC coefficients a(k) based on the 8 normalized autocorrelation coefficients, and calculate the prediction error e k based on the LPC coefficients and the normalized autocorrelation coefficients, and determine the prediction Whether the error e k is less than or equal to the prediction error comparison value e_thresh k , if not, perform spectrum quantization; if so, perform self-addition on k to obtain k+1, assign the value of k+1 to k, and determine k Whether +1 is greater than 8, if not, calculate the normalized autocorrelation function of the k+1th normalization process as r w (k+1), and determine the frequency according to the 1st to kth normalized autocorrelation coefficients. The k+1th linear prediction coding value a(k+1) of the domain signal and the prediction error value e k+1 , that is, the above steps are performed cyclically. If so, the LC3 codec calculates the prediction gain, determines the relationship between the prediction gain preGain and the first preset value (1.5), if it is not greater than the first preset value, performs spectrum quantization, if it is greater than the first preset value , then the reflection coefficient is calculated, and the reflection coefficient is quantized, the TNS bit consumption is calculated, and the quantized reflection coefficient is used to filter the frequency domain signal to obtain the filtered signal.
本申请通过设置循环操作,可以保证数据处理的精确度,可以减少电子设备的计算量,进一步地可以提高数据处理效率。By setting the loop operation in the present application, the accuracy of data processing can be ensured, the calculation amount of the electronic device can be reduced, and the data processing efficiency can be further improved.
基于同样的构思,本申请实施例提供一种针对音频信号的时域噪声整形装置,如图6所示,包括:误差确定单元601、第一误差比照单元602以及第二误差比照单元603。Based on the same concept, an embodiment of the present application provides a time-domain noise shaping device for audio signals, as shown in FIG.
其中,误差确定单元601,用于确定经SNS处理的频域信号的第k阶预测误差值ek;k为1~m中的任一整数;m为时域噪声整形TNS中滤波器的滤波阶数;第一误差比照单元602,用于若第k阶预测误差值ek大于第k阶预测误差比照值e_threshk,则将频域信号进行频谱量化处理;第二误差比照单元603,用于若频域信号的各阶预测误差值不大于对应的各阶预测误差比照值,则通过TNS中的滤波器对频域信号进行滤波处理。Wherein, the
需要说明的是,本申请中电子设备接收到音频信号后,可对音频信号进行编码处理得到PCM信号,之后对PCM信号进行傅里叶变换,将PCM信号转换成频域信号,以便输入到LC3编解码器中进行信号处理。It should be noted that after receiving the audio signal in the present application, the electronic device can encode the audio signal to obtain a PCM signal, and then perform Fourier transform on the PCM signal to convert the PCM signal into a frequency domain signal for input to the LC3 Signal processing in the codec.
本申请中,当LC3编解码器确定某阶的预测误差值大于预测误差比照值时,则不执行滤波处理,执行频谱量化的操作,相对于现有技术不对预测误差值进行判断,均要执行滤波处理的计算而言,可以减少计算量,在计算量减少的情况下,显然可以提高信号处理效率。In this application, when the LC3 codec determines that the prediction error value of a certain order is greater than the prediction error comparison value, it does not perform filtering processing, and performs the operation of spectral quantization. In terms of the calculation of filtering processing, the calculation amount can be reduced, and the signal processing efficiency can obviously be improved when the calculation amount is reduced.
在一种可选的方式中,误差确定单元601,具体用于针对经SNS处理的频域信号,确定频域信号的第k阶归一化自相关系数rw(k),k初始化为1;基于第k阶归一化自相关系数rw(k),确定第k阶预测误差值ek;若第k阶预测误差值ek不大于第k阶预测误差比照值e_threshk,则将k加1的取值赋值给k,返回确定频域信号的第k阶归一化自相关系数rw(k)的步骤,直至第k阶预测误差值ek大于e_threshk或k等于m。In an optional manner, the
本申请通过设置循环操作,可以保证数据处理的精确度,且在ek大于第k阶预测误差比照值e_threshk或k=m结束循环,可以减少计算量,进一步地可以提高数据处理效率。In the present application, by setting the loop operation, the accuracy of data processing can be guaranteed, and the loop can be ended when e k is greater than the k-th order prediction error comparison value e_thresh k or k=m, which can reduce the amount of calculation and further improve the data processing efficiency.
在一种可选的方式中,误差确定单元601,具体用于针对经谱噪声整形SNS处理的频域信号,确定频域信号的各阶归一化自相关系数;针对任一第k阶,基于第1到第k-1阶归一化自相关系数,确定频域信号的第k阶预测误差值ek。In an optional manner, the
通过该方式可直接确定各阶预测误差值,数据处理效率高。In this way, the prediction error value of each order can be directly determined, and the data processing efficiency is high.
在一种可选的方式中,第二误差比照单元603通过TNS中的滤波器对频域信号进行滤波处理之前,还用于基于第0阶归一化自相关系数rw(0)与第m阶预测误差值em,确定频域信号的预测增益;在预测增益大于第一预设值,通过TNS中的滤波器对频域信号进行滤波处理。In an optional manner, before the second error comparison unit 603 performs filtering processing on the frequency domain signal through the filter in the TNS, the second error comparison unit 603 is further configured to use the zeroth-order normalized autocorrelation coefficient rw (0) and the The m -order prediction error value em determines the prediction gain of the frequency domain signal; when the prediction gain is greater than the first preset value, the frequency domain signal is filtered by the filter in the TNS.
本申请根据预测增益与第一预设值的关系,确定是否启执行滤波处理操作,通过该方式可以保证数据处理的精确度。According to the relationship between the predicted gain and the first preset value, the present application determines whether to start the filtering operation, and in this way, the accuracy of the data processing can be ensured.
在一种可选的方式中,第二误差比照单元603还用于在预测增益不大于第一预设值,将频域信号进行频谱量化处理。In an optional manner, the second error comparison unit 603 is further configured to perform spectral quantization processing on the frequency domain signal when the prediction gain is not greater than the first preset value.
通过该方式可以减少时域噪声处理的计算量,并进一步提高数据处理效率。In this way, the calculation amount of time-domain noise processing can be reduced, and the data processing efficiency can be further improved.
在一种可选的方式中,各阶预测误差比照值中的任一阶预测误差比照值是通过样本数据中对应阶预测误差确定的;样本数据为无需进行TNS滤波处理的频域信号。In an optional manner, any order prediction error comparison value in each order prediction error comparison value is determined by the corresponding order prediction error in the sample data; the sample data is a frequency domain signal that does not need to be processed by TNS filtering.
通过该方式确定的预测误差比照值更加可靠,可以保证数据处理的精确度。The prediction error comparison value determined in this way is more reliable, and the accuracy of data processing can be guaranteed.
在一种可选的方式中,各阶预测误差比照值是在设定的损失精度条件下确定的。In an optional manner, the comparison values of prediction errors of each order are determined under a set loss accuracy condition.
本申请中,各阶预测误差比照值与损失精度相关,该方式可以保证数据处理的精确度。In this application, the comparison values of prediction errors of each order are related to the loss accuracy, and this method can ensure the accuracy of data processing.
在一种可选的方式中,第二误差比照单元603具体用于若频域信号的各阶预测误差值均不大于对应的各阶预测误差比照值,则通过TNS中的滤波器对频域信号进行滤波处理。In an optional manner, the second error comparison unit 603 is specifically configured to, if each order prediction error value of the frequency domain signal is not greater than the corresponding each order prediction error comparison value, compare the frequency domain The signal is filtered.
通过该方式可以保证数据处理的精确度。In this way, the accuracy of data processing can be guaranteed.
在一种可选的方式中,第二误差比照单元603具体用于基于频域信号的m阶线性预测编码值,确定m-1阶反射系数;对m-1阶反射系数进行量化处理,得到TNS中的滤波器的m-1阶量化反射系数;基于m-1阶量化反射系数,通过TNS中的滤波器对频域信号进行滤波处理。In an optional manner, the second error comparison unit 603 is specifically configured to determine the m-1-order reflection coefficient based on the m-order linear prediction coding value of the frequency domain signal; perform quantization processing on the m-1-order reflection coefficient to obtain The m-1 order quantized reflection coefficient of the filter in the TNS; based on the m-1 order quantized reflection coefficient, the frequency domain signal is filtered by the filter in the TNS.
在介绍了本申请示例性实施方式中的针对音频信号的时域噪声整形装置之后,接下来,介绍本申请的另一示例性实施方式的计算设备。After the temporal noise shaping apparatus for audio signals in the exemplary embodiment of the present application is introduced, next, the computing device of another exemplary embodiment of the present application is introduced.
所属技术领域的技术人员能够理解,本申请的各个方面可以实现为系统、方法或程序产品。因此,本申请的各个方面可以具体实现为以下形式,即:完全的硬件实施方式、完全的软件实施方式(包括固件、微代码等),或硬件和软件方面结合的实施方式,这里可以统称为“电路”、“模块”或“系统”。As will be appreciated by one skilled in the art, various aspects of the present application may be implemented as a system, method or program product. Therefore, various aspects of the present application can be embodied in the following forms, namely: a complete hardware implementation, a complete software implementation (including firmware, microcode, etc.), or a combination of hardware and software aspects, which may be collectively referred to herein as implementations "circuit", "module" or "system".
在一些可能的实施方式中,根据本申请的计算设备可以至少包括至少一个处理器、以及至少一个存储器。其中,存储器存储有计算机程序,当计算机程序被处理器执行时,使得处理器执行本说明书上述描述的根据本申请各种示例性实施方式的针对音频信号的时域噪声整形方法中的步骤。例如,处理器可以执行如图3中所示的步骤301-步骤305。In some possible implementations, a computing device according to the present application may include at least one processor, and at least one memory. The memory stores a computer program that, when executed by the processor, causes the processor to execute the steps in the temporal noise shaping method for audio signals according to various exemplary embodiments of the present application described above in this specification. For example, the processor may perform steps 301-305 as shown in FIG. 3 .
下面参照图7来描述根据本申请的这种实施方式的计算设备130。图7显示的计算设备130仅仅是一个示例,不应对本申请实施例的功能和使用范围带来任何限制。如图7所示,计算设备130以通用智能终端(或蓝牙耳机)的形式表现。计算设备130的组件可以包括但不限于:上述至少一个处理器131、上述至少一个存储器132、连接不同系统组件(包括存储器132和处理器131)的总线133。A
总线133表示几类总线结构中的一种或多种,包括存储器总线或者存储器控制器、外围总线、处理器或者使用多种总线结构中的任意总线结构的局域总线。存储器132可以包括易失性存储器形式的可读介质,例如随机存取存储器(RAM)1321和/或高速缓存存储器1322,还可以进一步包括只读存储器(ROM)1323。存储器132还可以包括具有一组(至少一个)程序模块1324的程序/实用工具1325,这样的程序模块1324包括但不限于:操作系统、一个或者多个应用程序、其它程序模块以及程序数据,这些示例中的每一个或某种组合中可能包括网络环境的实现。
计算设备130也可以与一个或多个外部设备134(例如键盘、指向设备等)通信,和/或与使得该计算设备130能与一个或多个其它智能终端进行通信的任何设备(例如路由器、调制解调器等等)通信。这种通信可以通过输入/输出(I/O)接口135进行。并且,计算设备130还可以通过网络适配器136与一个或者多个网络(例如局域网(LAN),广域网(WAN)和/或公共网络,例如因特网)通信。如图所示,网络适配器136通过总线133与用于计算设备130的其它模块通信。应当理解,尽管图中未示出,可以结合计算设备130使用其它硬件和/或软件模块,包括但不限于:微代码、设备驱动器、冗余处理器、外部磁盘驱动阵列、RAID系统、磁带驱动器以及数据备份存储系统等。
在一些可能的实施方式中,本申请提供的时域噪声处理方法的各个方面还可以实现为一种程序产品的形式,其包括计算机程序,当程序产品在计算机设备上运行时,计算机程序用于使计算机设备执行本说明书上述描述的根据本申请各种示例性实施方式的针对音频信号的时域噪声整形方法中的步骤。例如,处理器可以执行如图3中所示的步骤301-步骤305。In some possible implementations, various aspects of the temporal noise processing method provided by the present application can also be implemented in the form of a program product, which includes a computer program, and when the program product runs on a computer device, the computer program is used for The computer device is caused to perform the steps in the temporal noise shaping method for an audio signal according to various exemplary embodiments of the present application described above in this specification. For example, the processor may perform steps 301-305 as shown in FIG. 3 .
程序产品可以采用一个或多个可读介质的任意组合。可读介质可以是可读信号介质或者可读存储介质。可读存储介质例如可以是——但不限于——电、磁、光、电磁、红外线、或半导体的系统、装置或器件,或者任意以上的组合。可读存储介质的更具体的例子(非穷举的列表)包括:具有一个或多个导线的电连接、便携式盘、硬盘、随机存取存储器(RAM)、只读存储器(ROM)、可擦式可编程只读存储器(EPROM或闪存)、光纤、便携式紧凑盘只读存储器(CD-ROM)、光存储器件、磁存储器件、或者上述的任意合适的组合。The program product may employ any combination of one or more readable media. The readable medium may be a readable signal medium or a readable storage medium. The readable storage medium may be, for example, but not limited to, an electrical, magnetic, optical, electromagnetic, infrared, or semiconductor system, apparatus or device, or a combination of any of the above. More specific examples (non-exhaustive list) of readable storage media include: electrical connections with one or more wires, portable disks, hard disks, random access memory (RAM), read only memory (ROM), erasable programmable read only memory (EPROM or flash memory), optical fiber, portable compact disk read only memory (CD-ROM), optical storage devices, magnetic storage devices, or any suitable combination of the foregoing.
本申请的实施方式的用于时域噪声处理的程序产品可采用便携式紧凑盘只读存储器(CD-ROM)并包括计算机程序,并可在智能终端上运行。但本申请的程序产品不限于此,在本文件中,可读存储介质可以是任何包含或存储程序的有形介质,该程序可被指令执行系统、装置或者器件使用或者与其结合使用。The program product for temporal noise processing of the embodiments of the present application may adopt a portable compact disk read only memory (CD-ROM) and include a computer program, and may run on a smart terminal. However, the program product of the present application is not limited thereto, and in this document, the readable storage medium may be any tangible medium containing or storing a program that can be used by or combined with an instruction execution system, apparatus or device.
可读信号介质可以包括在基带中或者作为载波一部分传播的数据信号,其中承载了可读计算机程序。这种传播的数据信号可以采用多种形式,包括——但不限于——电磁信号、光信号或上述的任意合适的组合。可读信号介质还可以是可读存储介质以外的任何可读介质,该可读介质可以发送、传播或者传输用于由指令执行系统、装置或者器件使用或者与其结合使用的程序。A readable signal medium may include a propagated data signal in baseband or as part of a carrier wave with a readable computer program embodied thereon. Such propagated data signals may take a variety of forms including, but not limited to, electromagnetic signals, optical signals, or any suitable combination of the foregoing. A readable signal medium can also be any readable medium, other than a readable storage medium, that can transmit, propagate, or transport the program for use by or in connection with the instruction execution system, apparatus, or device.
应当注意,尽管在上文详细描述中提及了装置的若干单元或子单元,但是这种划分仅仅是示例性的并非强制性的。实际上,根据本申请的实施方式,上文描述的两个或更多单元的特征和功能可以在一个单元中具体化。反之,上文描述的一个单元的特征和功能可以进一步划分为由多个单元来具体化。It should be noted that although several units or sub-units of the apparatus are mentioned in the above detailed description, this division is merely exemplary and not mandatory. Indeed, according to embodiments of the present application, the features and functions of two or more units described above may be embodied in one unit. Conversely, the features and functions of one unit described above may be further subdivided to be embodied by multiple units.
此外,尽管在附图中以特定顺序描述了本申请方法的操作,但是,这并非要求或者暗示必须按照该特定顺序来执行这些操作,或是必须执行全部所示的操作才能实现期望的结果。附加地或备选地,可以省略某些步骤,将多个步骤合并为一个步骤执行,和/或将一个步骤分解为多个步骤执行。Furthermore, although the operations of the methods of the present application are depicted in the figures in a particular order, this does not require or imply that the operations must be performed in the particular order, or that all illustrated operations must be performed to achieve desirable results. Additionally or alternatively, certain steps may be omitted, multiple steps may be combined to be performed as one step, and/or one step may be decomposed into multiple steps to be performed.
本申请是参照根据本申请实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程访问频次的预测设备的处理器以产生一个机器,使得通过计算机或其他可编程访问频次的预测设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。The present application is described with reference to flowchart illustrations and/or block diagrams of methods, apparatus (systems), and computer program products according to embodiments of the present application. It will be understood that each flow and/or block in the flowchart illustrations and/or block diagrams, and combinations of flows and/or blocks in the flowchart illustrations and/or block diagrams, can be implemented by computer program instructions. These computer program instructions may be provided to the processor of a general purpose computer, special purpose computer, embedded processor or other programmable access frequency prediction device to produce a machine for execution by the processor of the computer or other programmable access frequency prediction device The instructions produce means for implementing the functions specified in a flow or flow of the flowchart and/or a block or blocks of the block diagram.
这些计算机程序指令也可存储在能引导计算机或其他可编程访问频次的预测设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。These computer program instructions may also be stored in a computer readable memory capable of directing a computer or other programmable access frequency prediction device to operate in a particular manner, such that the instructions stored in the computer readable memory result in an article of manufacture comprising the instruction means, The instruction means implements the functions specified in the flow or flows of the flowcharts and/or the block or blocks of the block diagrams.
这些计算机程序指令也可装载到计算机或其他可编程访问频次的预测设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。These computer program instructions may also be loaded on a computer or other programmable access frequency prediction device, such that a series of operational steps are performed on the computer or other programmable device to produce a computer-implemented process, thereby executing on the computer or other programmable device Execution of the instructions provides steps for implementing the functions specified in the flowchart or blocks and/or the block or blocks of the block diagrams.
尽管已描述了本申请的优选实施例,但本领域内的技术人员一旦得知了基本创造性概念,则可对这些实施例做出另外的变更和修改。所以,所附权利要求意欲解释为包括优选实施例以及落入本申请范围的所有变更和修改。While the preferred embodiments of the present application have been described, additional changes and modifications to these embodiments may occur to those skilled in the art once the basic inventive concepts are known. Therefore, the appended claims are intended to be construed to include the preferred embodiment and all changes and modifications that fall within the scope of this application.
显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的精神和范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。Obviously, those skilled in the art can make various changes and modifications to the present application without departing from the spirit and scope of the present application. Thus, if these modifications and variations of the present application fall within the scope of the claims of the present application and their equivalents, the present application is also intended to include these modifications and variations.
Claims (12)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210186480.XA CN114613375A (en) | 2022-02-28 | 2022-02-28 | Time domain noise shaping method and device for audio signal |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210186480.XA CN114613375A (en) | 2022-02-28 | 2022-02-28 | Time domain noise shaping method and device for audio signal |
Publications (1)
Publication Number | Publication Date |
---|---|
CN114613375A true CN114613375A (en) | 2022-06-10 |
Family
ID=81858728
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210186480.XA Pending CN114613375A (en) | 2022-02-28 | 2022-02-28 | Time domain noise shaping method and device for audio signal |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114613375A (en) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1675683A (en) * | 2002-08-09 | 2005-09-28 | 弗兰霍菲尔运输应用研究公司 | Device and method for scalable coding and device and method for scalable decoding |
US20080004870A1 (en) * | 2006-06-30 | 2008-01-03 | Chi-Min Liu | Method of detecting for activating a temporal noise shaping process in coding audio signals |
US20140072120A1 (en) * | 2011-05-09 | 2014-03-13 | Dolby International Ab | Method and encoder for processing a digital stereo audio signal |
JP2016111841A (en) * | 2014-12-08 | 2016-06-20 | 多摩川精機株式会社 | Motor drive controller |
CN111429926A (en) * | 2020-03-24 | 2020-07-17 | 北京百瑞互联技术有限公司 | Method and device for optimizing audio coding speed |
CN111587456A (en) * | 2017-11-10 | 2020-08-25 | 弗劳恩霍夫应用研究促进协会 | Time domain noise shaping |
-
2022
- 2022-02-28 CN CN202210186480.XA patent/CN114613375A/en active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1675683A (en) * | 2002-08-09 | 2005-09-28 | 弗兰霍菲尔运输应用研究公司 | Device and method for scalable coding and device and method for scalable decoding |
US20080004870A1 (en) * | 2006-06-30 | 2008-01-03 | Chi-Min Liu | Method of detecting for activating a temporal noise shaping process in coding audio signals |
US20140072120A1 (en) * | 2011-05-09 | 2014-03-13 | Dolby International Ab | Method and encoder for processing a digital stereo audio signal |
JP2016111841A (en) * | 2014-12-08 | 2016-06-20 | 多摩川精機株式会社 | Motor drive controller |
CN111587456A (en) * | 2017-11-10 | 2020-08-25 | 弗劳恩霍夫应用研究促进协会 | Time domain noise shaping |
CN111429926A (en) * | 2020-03-24 | 2020-07-17 | 北京百瑞互联技术有限公司 | Method and device for optimizing audio coding speed |
Non-Patent Citations (1)
Title |
---|
戈迪, 刘佩林: "基于新型TNS启用机制的高效音频编码方法", 电声技术, no. 11, 17 November 2005 (2005-11-17) * |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN1926608B (en) | Device and method for processing a multi-channel signal | |
CN110047500B (en) | Audio encoder, audio decoder and method thereof | |
US9536533B2 (en) | Linear prediction based audio coding using improved probability distribution estimation | |
EP2863388B1 (en) | Bit allocation method and device for audio signal | |
CN106169297B (en) | Signal coding method and device | |
KR20150058483A (en) | Bit allocation method and device for audio signal | |
WO2014013294A1 (en) | Stereo audio signal encoder | |
US9646615B2 (en) | Audio signal encoding employing interchannel and temporal redundancy reduction | |
JP2022127601A (en) | Audio encoder and audio decoder with signal-dependent number and precision control, and related method and computer program | |
US8825494B2 (en) | Computation apparatus and method, quantization apparatus and method, audio encoding apparatus and method, and program | |
CN114613375A (en) | Time domain noise shaping method and device for audio signal | |
CN103489450A (en) | Wireless audio compression and decompression method based on time domain aliasing elimination and equipment thereof | |
KR102569784B1 (en) | System and method for long-term prediction of audio codec | |
CN110660400B (en) | Encoding and decoding method, encoding device and decoding device of stereo signal | |
KR20240066586A (en) | Method and apparatus for encoding and decoding audio signal using complex polar quantizer | |
WO2011000434A1 (en) | An apparatus | |
HK1210316B (en) | Linear prediction based audio coding using improved probability distribution estimation |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |