CN114609620A - Underwater positioning method and system - Google Patents
Underwater positioning method and system Download PDFInfo
- Publication number
- CN114609620A CN114609620A CN202011429874.0A CN202011429874A CN114609620A CN 114609620 A CN114609620 A CN 114609620A CN 202011429874 A CN202011429874 A CN 202011429874A CN 114609620 A CN114609620 A CN 114609620A
- Authority
- CN
- China
- Prior art keywords
- signal
- optical
- optical cable
- target
- submarine
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims abstract description 70
- 230000003287 optical effect Effects 0.000 claims abstract description 118
- 238000001514 detection method Methods 0.000 claims abstract description 38
- 238000012545 processing Methods 0.000 claims abstract description 16
- 238000000253 optical time-domain reflectometry Methods 0.000 claims description 37
- 238000004364 calculation method Methods 0.000 claims description 8
- 238000010276 construction Methods 0.000 claims description 8
- 238000007781 pre-processing Methods 0.000 claims description 7
- 238000013528 artificial neural network Methods 0.000 claims description 3
- 238000000354 decomposition reaction Methods 0.000 claims description 3
- 230000008569 process Effects 0.000 abstract description 6
- 230000009471 action Effects 0.000 abstract description 3
- 238000007667 floating Methods 0.000 abstract description 2
- 238000012937 correction Methods 0.000 description 3
- 238000013480 data collection Methods 0.000 description 3
- 238000012423 maintenance Methods 0.000 description 3
- 238000004891 communication Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 238000009825 accumulation Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000001186 cumulative effect Effects 0.000 description 1
- 230000009189 diving Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000002310 reflectometry Methods 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S11/00—Systems for determining distance or velocity not using reflection or reradiation
- G01S11/14—Systems for determining distance or velocity not using reflection or reradiation using ultrasonic, sonic, or infrasonic waves
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01H—MEASUREMENT OF MECHANICAL VIBRATIONS OR ULTRASONIC, SONIC OR INFRASONIC WAVES
- G01H9/00—Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves by using radiation-sensitive means, e.g. optical means
- G01H9/004—Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves by using radiation-sensitive means, e.g. optical means using fibre optic sensors
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)
- Position Fixing By Use Of Radio Waves (AREA)
Abstract
Description
技术领域technical field
本发明属于水下定位领域,具体涉及一种水下定位方法及其系统,特别是一 种精确、快速定位,并且成本较低的水下定位方法及其系统。The invention belongs to the field of underwater positioning, and in particular relates to an underwater positioning method and a system thereof, in particular to an underwater positioning method and a system thereof with accurate and rapid positioning and low cost.
背景技术Background technique
水下自主航行器(Autonomous Underwater Vehicles,AUV)作为一种具有水 下运动灵活性、水下隐蔽性与集群工作能力的新兴海洋设备,可完成海底勘探、 水下设施维护与水下参数数据采集等多项水下任务。为了高效精确地完成水下作 业,对AUV的精确定位是一项重中之重的任务。Autonomous Underwater Vehicles (AUV), as an emerging marine equipment with underwater mobility, underwater concealment and cluster work ability, can complete seabed exploration, underwater facility maintenance and underwater parameter data collection. and many other underwater missions. In order to efficiently and accurately complete underwater operations, the precise positioning of AUVs is a top priority.
现有的AUV海下导航定位技术主要是基于自身携带传感器的方式,利用了纯 惯导系统,并融合了多普勒测速仪与航姿参考系统等辅助设备。由于惯性导航系 统的固有缺点,其定位误差随着航行时间的增加而不断累积,逐渐丧失定位导航 精确度。同时,不同于陆上系统,水中的航行严重受到水流的影响,海洋水流的 连续波动会进一步加快惯性导航系统误差累积,这种误差累积效应甚至能达到系 统标称误差的千倍以上。The existing AUV underwater navigation and positioning technology is mainly based on the method of self-carrying sensors, using pure inertial navigation system, and integrating auxiliary equipment such as Doppler speedometer and attitude reference system. Due to the inherent shortcomings of the inertial navigation system, the positioning error of the inertial navigation system continues to accumulate with the increase of navigation time, and the positioning and navigation accuracy is gradually lost. At the same time, different from land systems, navigation in water is seriously affected by currents, and the continuous fluctuation of ocean currents will further accelerate the accumulation of inertial navigation system errors, and the cumulative effect of this error can even reach more than a thousand times the nominal error of the system.
为了解决这一问题,研究者提出通过外界信息校正的方式,其中一种方法利 用了GPS系统来校正AUV的绝对位置,但由于电磁波信号无法穿透水体,因此对 于海洋作业的AUV,类似于GPS这种定位方法只能在海洋洋面附近进行定位,这使 得AUV的隐蔽性降低同时中断了进行中的任务。另一种解决方法是通过声学定位 传感器的方法,通过预先布设水面浮标或者水底沉标来实现绝对位置定位。但是 这种方式需要大量作业船只放置信标参照物,作业成本很高且十分耗时。In order to solve this problem, the researchers propose a method of correcting through external information. One of the methods uses the GPS system to correct the absolute position of the AUV. However, since the electromagnetic wave signal cannot penetrate the water body, the AUV for marine operations is similar to GPS. This positioning method can only locate near the ocean surface, which makes the AUV less stealthy and interrupts the ongoing mission. Another solution is to use acoustic positioning sensors to achieve absolute position positioning by pre-arranging surface buoys or underwater sinks. However, this method requires a large number of operating vessels to place the beacon reference objects, which is costly and time-consuming.
目前主流的定位方式为结合外校正与AUV自身传感器的联合定位方式。专利 CN111595348 A公开了一种AUV组合导航系统的主从式协同定位方法,通过主AUV 广播自身的位置信息,从AUV根据声速和时延获取两者时间的相对距离,进而有 主AUV利用测速信息、测距信息对任意的从AUV进行协同定位,修正两者之间的 距离,减少AUV定位的误差。专利CN 111595348 A公开的基于AUV的主从式协同 定位方法中,多个AUV可以在每个定位周期通过AUV之间进行信息共享,利用声 速和时延获取两者时间的相对距离使各个AUV的定位精度达到相同量级,在一定 程度上恢复定位能力。然而,目前AUV主要的工作场景中通常只需要一个AUV即 可完成水下作业任务,采用该专利中介绍的方法则需要额外定制的用于定位的 AUV,产生了极高的额外成本;同时,该协同定位方法并不能完全校正绝对误差, 为了控制误差发散,该方法仍需要主AUV定期上浮获取GPS定位信息,这将中断 水下任务的执行。The current mainstream positioning method is the joint positioning method combining external correction and AUV's own sensor. Patent CN111595348 A discloses a master-slave cooperative positioning method of an AUV integrated navigation system. The master AUV broadcasts its own position information, and the AUV obtains the relative distance between the two times according to the speed of sound and time delay, and then the master AUV uses the speed measurement information. 、Ranging information to co-locate any slave AUV, correct the distance between the two, and reduce the error of AUV positioning. In the master-slave co-location method based on AUV disclosed in the patent CN 111595348 A, multiple AUVs can share information between AUVs in each positioning cycle, and use the speed of sound and time delay to obtain the relative distance between the two time to make each AUV The positioning accuracy reaches the same order of magnitude, and the positioning capability is restored to a certain extent. However, currently only one AUV is needed in the main working scenarios of AUVs to complete the underwater operation task. Using the method described in this patent requires additional customized AUVs for positioning, resulting in extremely high additional costs; at the same time, This co-location method cannot completely correct the absolute error. In order to control the error divergence, this method still requires the main AUV to float up regularly to obtain GPS positioning information, which will interrupt the execution of underwater tasks.
专利CN 110057365 A公开了一种大潜深AUV下潜定位方法。这种方法中AUV 搭载了水下通信节点、惯导系统和温盐深传感器,通过结合水面母船与水下AUV 通信发送的坐标系位置信息及时间信息与AUV记录的惯导信息及温盐深传感信息 构建一个AUV与母船的距离模型,再融合母船自身的定位信息完成对定位误差的 在线校正,但是在海洋调查中应用船时有限,母船的成本花销十分巨大。Patent CN 110057365 A discloses a deep diving AUV positioning method. In this method, the AUV is equipped with an underwater communication node, an inertial navigation system and a temperature and salinity sensor. By combining the coordinate system position information and time information sent by the communication between the surface mother ship and the underwater AUV, and the inertial navigation information and temperature and salinity recorded by the AUV The sensor information builds a distance model between the AUV and the mother ship, and then integrates the positioning information of the mother ship itself to complete the online correction of the positioning error. However, the application of ships in marine surveys is limited, and the cost of the mother ship is very large.
综上所述,现有技术的水下定位方法成本高、为了维持相对精度仍需上浮校 正,所以需要对现有技术做出改进。To sum up, the underwater positioning method of the prior art has high cost, and still needs to be corrected in order to maintain the relative accuracy, so the prior art needs to be improved.
发明内容SUMMARY OF THE INVENTION
本发明的目的在于提供一种水下定位方法及其系统,光源向海底光缆发出光 信号,振动源发出声波信号作用在海底光缆的光信号上,并结合海底光缆施工路 由图实现待定位目标的定位。The object of the present invention is to provide an underwater positioning method and a system thereof, wherein a light source sends out an optical signal to a submarine optical cable, a vibration source sends out an acoustic signal to act on the optical signal of the submarine optical cable, and combined with the construction route map of the submarine optical cable, the target to be located is realized. position.
为实现上述目的,本发明提供的一种水下定位方法包括以下步骤:In order to achieve the above object, a kind of underwater positioning method provided by the present invention comprises the following steps:
步骤1,光信号处理装置通过光源向海底光缆发出光信号,所述光信号进入所 述接收单元并转换成电信号,获得基准探测信号q;
步骤2,待定位目标通过位于所述待定位目标内部的振动源发出声波信号S, 所述声波信号S作用在所述海底光缆中的光信号上,获得探测信号t1;Step 2, the target to be positioned sends out an acoustic wave signal S through a vibration source located inside the target to be positioned, and the acoustic wave signal S acts on the optical signal in the submarine optical cable to obtain a detection signal t1;
步骤3,将所述步骤2中的所述探测信号t1减去所述步骤1中的所述基准探 测信号q,获得所述振动源作用在所述海底光缆沿线的声波探测信号S1,选取所 述声波探测信号S1的信号幅值最大点A1;
步骤4,获取海底光缆施工路由图,基于所述声波探测信号S1、所述信号幅 值最大点A1和所述海底光缆施工路由图得到所述待定位目标的定位。Step 4, obtain the construction route map of submarine optical cable, and obtain the positioning of the target to be located based on the sound wave detection signal S1, the maximum point A1 of the signal amplitude and the construction route map of the submarine optical cable.
进一步,在所述步骤4之前,判断所述声波探测信号S1强度是否达到预设的 阈值,如果是,进入步骤4;如果不是,使所述待定位目标继续移动并重复步骤2。Further, before the step 4, it is judged whether the intensity of the sound wave detection signal S1 reaches the preset threshold value, if so, enter the step 4; if not, make the target to be located move and repeat the step 2.
进一步,所述光源与所述接收单元分别连接所述海底光缆的同一端,所述光 源向所述海底光缆发送光信号,所述接收单元接收所述光信号的后向散射信号。Further, the light source and the receiving unit are respectively connected to the same end of the submarine optical cable, the light source sends an optical signal to the submarine optical cable, and the receiving unit receives the backscattered signal of the optical signal.
进一步,所述光信号处理装置为光时域反射装置。Further, the optical signal processing device is an optical time domain reflectometry device.
进一步,所述光时域反射装置为φ-OTDR反射仪;或Further, the optical time domain reflectometry device is a φ-OTDR reflectometer; or
所述光时域反射装置为c-OTDR反射仪。The optical time domain reflectometry device is a c-OTDR reflectometer.
进一步,所述步骤4中,将所述步骤3的所述声波探测信号S1的强度代入预 设的声波探测信号强度S1与所述待定位目标到所述海底光缆之间距离的关系式, 得到所述待定位目标与所述海底光缆之间的距离。Further, in the step 4, the intensity of the sound wave detection signal S1 in the
进一步,基于所述光信号在所述海底光缆中的光速v与所述信号幅值最大点 A1接入所述光时域反射装置的零点之间的时间差得到所述待定位目标与所述光时 域反射装置之间的距离。Further, based on the time difference between the speed of light v of the optical signal in the submarine optical cable and the zero point where the signal amplitude maximum point A1 is connected to the optical time domain reflection device, the target to be located and the optical signal are obtained. Distance between time domain reflectometry devices.
进一步,所述待定位目标为水下自主航行器。Further, the target to be located is an underwater autonomous vehicle.
进一步,所述步骤1和所述步骤2还包括信号预处理,所述信号预处理为移 动平均法、小波去噪法、曲波变换去噪法、压缩感知去噪法、经验模态分解去噪 法或神经网络法中的一种或多种。Further, the
一种水下定位系统,包括振动源、海底光缆和光信号处理装置,所述光信号 处理装置包括光源、接收单元和控制单元;An underwater positioning system, comprising a vibration source, a submarine optical cable and an optical signal processing device, the optical signal processing device comprising a light source, a receiving unit and a control unit;
所述光源用于产生光信号;the light source is used to generate an optical signal;
所述海底光缆用于传输光信号;The submarine optical cable is used for transmitting optical signals;
所述振动源设置在待定位目标中且用于发出声波并作用在所述光信号上;The vibration source is arranged in the target to be located and is used to emit sound waves and act on the optical signal;
所述接收单元用于接收所述光信号并转换成电信号,再传递给控制单元;The receiving unit is used to receive the optical signal and convert it into an electrical signal, and then transmit it to the control unit;
所述控制单元用于控制所述光源和所述接收单元,还包括解算模块,所述解 算模块用于执行所述权利要求1-9任一项所述的水下定位方法。The control unit is used to control the light source and the receiving unit, and further includes a calculation module, and the calculation module is used to execute the underwater positioning method according to any one of claims 1-9.
进一步,所述光信号处理装置为光时域反射装置。Further, the optical signal processing device is an optical time domain reflectometry device.
进一步,所述光时域反射装置为φ-OTDR反射仪;或Further, the optical time domain reflectometry device is a φ-OTDR reflectometer; or
所述光时域反射装置为c-OTDR反射仪。The optical time domain reflectometry device is a c-OTDR reflectometer.
进一步,所述振动源为发动机或广播声源。Further, the vibration source is an engine or a broadcast sound source.
本发明至少具有以下有益效果:本发明提供了一种水下定位方法及其系统, 不需要使用多个振动源,通过单个振动源就可以完成定位过程,不需要待定位目 标上浮获取GPS定位信号,就可以获取待定位目标的绝对位置,也不需要母船跟 随行动,在海洋探测中节约了船时,同时能显著地降低成本开销。The present invention has at least the following beneficial effects: the present invention provides an underwater positioning method and a system thereof, which does not require the use of multiple vibration sources, the positioning process can be completed through a single vibration source, and does not require the target to be positioned to float up to obtain GPS positioning signals , the absolute position of the target to be located can be obtained, and the mother ship is not required to follow the action, which saves the ship's time in ocean exploration and can significantly reduce the cost.
本发明的待定位目标为水下自主航行器,是一种水下运动灵活性、水下隐蔽 性与集群工作能力的新兴海洋设备,可完成海底勘探、水下设施维护与水下参数 数据采集等多项水下任务,再结合本发明的水下定位方法,可以高效精确地完成 水下作业。The target to be located in the present invention is an underwater autonomous vehicle, which is an emerging marine equipment with underwater movement flexibility, underwater concealment and cluster work ability, and can complete seabed exploration, underwater facility maintenance and underwater parameter data collection and other underwater tasks, combined with the underwater positioning method of the present invention, the underwater operation can be completed efficiently and accurately.
附图说明Description of drawings
下面结合附图和具体实施方式对本发明作进一步详细的说明。The present invention will be described in further detail below with reference to the accompanying drawings and specific embodiments.
图1为本发明实施例一种水下定位方法流程图。FIG. 1 is a flowchart of an underwater positioning method according to an embodiment of the present invention.
图2为本发明实施例一种水下定位系统示意图。FIG. 2 is a schematic diagram of an underwater positioning system according to an embodiment of the present invention.
图中:1-φ-OTDR反射仪、2-海底光缆、3-AUV、S1-声波探测信号、A1-最大 幅值点。In the picture: 1-φ-OTDR reflectometer, 2- submarine optical cable, 3-AUV, S1- acoustic detection signal, A1- maximum amplitude point.
具体实施方式Detailed ways
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施 例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以 解释本发明,并不用于限定本发明。In order to make the objects, technical solutions and advantages of the present invention clearer, the present invention will be further described in detail below with reference to the accompanying drawings and embodiments. It should be understood that the specific embodiments described herein are only used to explain the present invention, but not to limit the present invention.
以下结合具体实施例对本发明的具体实现进行详细描述,虽然以下实施例以 AUV为例,但显然本发明同样可以作为一种独立的位置跟踪与导航方法及其系统, 因而实施例的待定位目标并不用于限定本发明。The specific implementation of the present invention will be described in detail below in conjunction with specific embodiments. Although the following embodiments take AUV as an example, it is obvious that the present invention can also be used as an independent position tracking and navigation method and system. Therefore, the target to be located in the embodiment is It is not intended to limit the present invention.
本发明为了解决现有技术存在的缺点,即水下定位成本高,为了维持精度需要 上浮校正,提出了一种水下定位方法及其系统。本发明通过光源向海底光缆2发 出光信号,待定位目标中的振动源发出振动产生声波信号,作用于海底光缆2的 光信号上,再通过解算模块和海底光缆施工路由图确定待定位目标的定位。具体 步骤如下所示:In order to solve the shortcomings of the prior art, that is, the high cost of underwater positioning, and the need for floating correction to maintain accuracy, the present invention proposes an underwater positioning method and a system thereof. The invention sends out optical signals to the submarine optical cable 2 through the light source, and the vibration source in the target to be positioned vibrates to generate sound wave signals, which act on the optical signal of the submarine optical cable 2, and then determine the target to be positioned through the solution module and the construction route map of the submarine optical cable. positioning. The specific steps are as follows:
如图1所示为本发明实施例一种水下定位方法的步骤,包括:Figure 1 shows the steps of an underwater positioning method according to an embodiment of the present invention, including:
步骤1,光信号处理装置通过光源向海底光缆2发出光信号,光信号进入接收 单元并转换成电信号,获得基准探测信号q;
步骤2,待定位目标通过位于待定位目标内部的振动源发出声波信号S,声波 信号S作用在海底光缆2的光信号上,获得探测信号t1;Step 2, the target to be positioned sends out sound wave signal S by the vibration source positioned inside the target to be positioned, and the sound wave signal S acts on the optical signal of submarine optical cable 2, obtains detection signal t1;
步骤3,将步骤2中的探测信号t1减去步骤2中的基准探测信号q,获得振动 源作用在海底光缆2沿线的声波探测信号S1,选取声波探测信号S1的信号幅值最 大点A1;
步骤4,获取海底光缆施工路由图,基于声波探测信号S1、信号幅值最大点 A1和海底光缆施工路由图得到待定位目标的定位。Step 4: Obtain the construction route map of the submarine optical cable, and obtain the location of the target to be located based on the acoustic wave detection signal S1, the maximum signal amplitude point A1 and the construction route map of the submarine optical cable.
进一步,在上述步骤S4之前,判断声波探测信号S1强度是否达到预设的阈值, 如果是,进入下一步骤;如果不是,使待定位目标继续移动并重复步骤2。在实际 应用场景中,若是对定位精度的要求较高,则需要提高阈值以满足需求。Further, before the above step S4, determine whether the intensity of the sound wave detection signal S1 reaches a preset threshold, if so, go to the next step; if not, continue to move the target to be located and repeat step 2. In practical application scenarios, if the requirements for positioning accuracy are high, the threshold needs to be increased to meet the requirements.
本发明的光信号处理装置为光时域反射装置,通过向海底光缆2注入光信号, 并分析其反射回来的按探测时间先后排列的多个光信号,有助于实现水下的精确 快速定位。本发明中光时域反射装置为φ-OTDR反射仪1。The optical signal processing device of the present invention is an optical time domain reflection device. By injecting optical signals into the submarine optical cable 2 and analyzing the reflected multiple optical signals arranged in order of detection time, it is helpful to realize accurate and rapid underwater positioning. . In the present invention, the optical time domain reflectometry device is a φ-
本发明的待定位目标为AUV3,是一种水下运动灵活性、水下隐蔽性与集群工 作能力的新兴海洋设备,可完成海底勘探、水下设施维护与水下参数数据采集等 多项水下任务,再结合本发明的水下定位方法,可以高效精确地完成水下作业。The target to be located in the present invention is AUV3, which is an emerging marine equipment with underwater movement flexibility, underwater concealment and cluster work ability, and can complete a number of marine equipment such as seabed exploration, underwater facility maintenance, and underwater parameter data collection. For the next task, combined with the underwater positioning method of the present invention, the underwater operation can be completed efficiently and accurately.
光源与接收单元分别连接海底光缆2的同一端,光源向海底光缆2发送光信号, 接收单元接收光信号的后向散射信号。The light source and the receiving unit are respectively connected to the same end of the submarine optical cable 2, the light source sends an optical signal to the submarine optical cable 2, and the receiving unit receives the backscattered signal of the optical signal.
步骤1中,φ-OTDR反射仪1通过光源发出光信号,在预先布设的海底光缆2 中传播。由于海底光缆2中沿线所有位置都会返回瑞利散射光,因此在φ-OTDR反 射仪1中可以探测到一条连续的按探测时间先后排列的瑞利散射光强信号,每一 时间点的信号幅值都有确定位置的瑞利散射光强与之对应。通过φ-OTDR反射仪1 将光缆沿线分布的外界信息进行还原,再经过信号预处理方法消除探测过程中的 海底环境的背景噪声获得基准探测信号q,该信号预处理方法包括但不限于移动平 均法、小波去噪法、曲波变换去噪法、压缩感知去噪法、经验模态分解去噪法和 神经网络法。In
步骤2中,AUV3通过振动源发出一定幅度与频率的声波信号S;通过φ-OTDR 技术进行探测,在φ-OTDR反射仪1中得到海底光缆2沿线分布的外界扰动信息与 AUV3产生的声波信号S,再通过与步骤1相同的信号预处理方法消除环境背景噪 声等外界扰动信息后获得探测信号t1。In step 2, the AUV3 sends out a sound wave signal S with a certain amplitude and frequency through the vibration source; the detection is carried out through the φ-OTDR technology, and the external disturbance information distributed along the submarine optical cable 2 and the sound wave signal generated by the AUV3 are obtained in the φ-
步骤3中,信号幅值最大点A1对应着海底光缆2上与AUV3距离最小的点。In
步骤4中,将步骤3的声波探测信号S1的强度代入预设的声波探测信号强度 S1与待定位目标到海底光缆之间距离的关系,得到待定位目标与海底光缆之间的 距离。通过φ-OTDR反射仪1处理单元中的解算模块可以计算得到振动信号最大幅 值点A1距离φ-OTDR反射仪1的距离,其距离为:A1点与接入φ-OTDR反射仪1 的零点之间的时间差与海底光缆2中的光速v相乘,并除以2。In step 4, the intensity of the sound wave detection signal S1 of
另外,本发明的φ-OTDR反射仪1可以通过C-OTDR反射仪进行替代,该替代 只是对海底光缆的振动信号测量方法的变换,其测量过程仍然不变。In addition, the φ-
参见说明书附图2,为本发明实施例一种水下定位系统示意图,包括基于瑞利 散射的φ-OTDR反射仪1、海底光缆2和AUV3。φ-OTDR反射仪1包括光源、接收 单元和控制单元。光源用于产生光信号,海底光缆2用于传输光信号,AUV3中设 置有振动源,用于发出声波信号S并作用于海底光缆2的光信号上。控制单元用 于控制光源和接收单元,还包括解算模块,解算模块用于处理电信号,将电信号输 入所述解算模块得到待定位目标的定位。Referring to Figure 2 of the description, it is a schematic diagram of an underwater positioning system according to an embodiment of the present invention, including a φ-
本发明在实施AUV3定位时,海底光缆2的一端连接φ-OTDR反射仪1作为光 时域反射装置,并由φ-OTDR反射仪1的控制单元控制光源发出光信号,在预先布 设的海底光缆2中传播,接收单元接收光信号的后向散射信号并转换成电信号。 其中海底光缆2可为原本存在的海底光缆2,也可以在AUV3任务区域自行布设光 缆。AUV3通过振动源产生声波信号S作用在海底光缆2沿线。AUV3中振动源的位 置可根据AUV3需要调整。其中,振动源能够产生振动或声波,包括但不限于具有 独特振动的发动机、广播声源等。When implementing the AUV3 positioning of the present invention, one end of the submarine optical cable 2 is connected to the φ-
由此,本发明提供了一种水下定位方法及其系统,不需要使用多个振动源,通 过单个振动源就可以完成定位过程,不需要待定位目标上浮获取GPS定位信号, 就可以获取待定位目标的绝对位置,也不需要母船跟随行动,在海洋探测中节约 了船时,同时能显著地降低成本开销。Therefore, the present invention provides an underwater positioning method and a system thereof, which do not need to use multiple vibration sources, and can complete the positioning process through a single vibration source, without the need for the target to be positioned to float up to obtain a GPS positioning signal, and can obtain the undetermined positioning signal. The absolute position of the target is not required, and the mother ship does not need to follow the action, which saves the ship's time in ocean exploration and can significantly reduce the cost.
以上所述仅为本发明的较佳实施例而已,并不用于限制本发明,凡在本发明的 精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护 范围之内。The above descriptions are only preferred embodiments of the present invention and are not intended to limit the present invention. Any modifications, equivalent replacements and improvements made within the spirit and principles of the present invention shall be included in the protection of the present invention. within the range.
Claims (13)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011429874.0A CN114609620A (en) | 2020-12-09 | 2020-12-09 | Underwater positioning method and system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011429874.0A CN114609620A (en) | 2020-12-09 | 2020-12-09 | Underwater positioning method and system |
Publications (1)
Publication Number | Publication Date |
---|---|
CN114609620A true CN114609620A (en) | 2022-06-10 |
Family
ID=81856361
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202011429874.0A Pending CN114609620A (en) | 2020-12-09 | 2020-12-09 | Underwater positioning method and system |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114609620A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115480125A (en) * | 2022-09-19 | 2022-12-16 | 中天电力光缆有限公司 | Fault positioning method, device and system, storage medium and electronic device |
-
2020
- 2020-12-09 CN CN202011429874.0A patent/CN114609620A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115480125A (en) * | 2022-09-19 | 2022-12-16 | 中天电力光缆有限公司 | Fault positioning method, device and system, storage medium and electronic device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8949012B2 (en) | Automated multi-vehicle position, orientation and identification system and method | |
US20120099400A1 (en) | Estimating position and orientation of an underwater vehicle relative to underwater structures | |
CN108681338A (en) | A kind of telemetering and remote control system of submarine navigation device | |
JP6425133B2 (en) | Relative position control method and relative position control system of underwater vehicle | |
CN110727282B (en) | AUV docking method and device and underwater docking system | |
JP2018204970A (en) | Underwater acoustic positioning system and method | |
KR20080085509A (en) | Underwater navigation system of unmanned submersible fleet using distance information and two inertial sensors for two reference points | |
CN109319074B (en) | Multi-orthogonal signal emission unmanned submersible vehicle sound guiding and recycling system | |
CN108791774A (en) | A kind of submarine navigation device for communicating and positioning | |
CN108680170A (en) | AUV based on electromagnetic wave attenuation principle returns depressed place navigation system and method | |
CN114200401A (en) | A self-positioning system and self-positioning method of underwater robot based on grid division | |
CN116106875B (en) | Method, system, electronic equipment and storage medium for joint calibration of shore-based array coordinates | |
CN110780303A (en) | Parametric array ice layer profile detection underwater robot and ice layer profile detection method | |
CN111427009A (en) | Underwater positioning method and system for remote control unmanned underwater vehicle | |
CN114609620A (en) | Underwater positioning method and system | |
KR20190116018A (en) | Method of acquiring underwater location information using GPS and ultrasonic communication | |
CN118971993B (en) | A bidirectional cross-media method and system integrating communication, positioning and detection | |
CN110333369A (en) | UUV DVL Velocity Measurement System and Adaptive Noise Removal Method Based on Surface GPS Correction | |
JP2023034807A (en) | Acoustic positioning processing method, acoustic positioning processing program and acoustic positioning processing system for underwater sailing body | |
CN113109823A (en) | Real-time measuring system for towed linear array formation | |
CN113654553B (en) | Cylinder array positioning system and positioning method based on inverse ultrashort baseline | |
Caiti et al. | Set-membership acoustic tracking of autonomous underwater vehicles | |
Thurman et al. | Real-time adaptive control of multiple colocated acoustic sensors for an unmanned underwater vehicle | |
CN113514051A (en) | Deep water high-precision navigation positioning technology based on multi-method fusion | |
Yang et al. | Research on the application technology of manned submersible bathymetric sidescan sonar system in the abyss zone |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |