CN114606509A - A thermal management system and method for a hydrogen production electrolyzer array - Google Patents
A thermal management system and method for a hydrogen production electrolyzer array Download PDFInfo
- Publication number
- CN114606509A CN114606509A CN202111211141.4A CN202111211141A CN114606509A CN 114606509 A CN114606509 A CN 114606509A CN 202111211141 A CN202111211141 A CN 202111211141A CN 114606509 A CN114606509 A CN 114606509A
- Authority
- CN
- China
- Prior art keywords
- lye
- heat exchange
- electrolyzers
- pump
- hydrogen
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B1/00—Electrolytic production of inorganic compounds or non-metals
- C25B1/01—Products
- C25B1/02—Hydrogen or oxygen
- C25B1/04—Hydrogen or oxygen by electrolysis of water
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B15/00—Operating or servicing cells
- C25B15/02—Process control or regulation
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B15/00—Operating or servicing cells
- C25B15/02—Process control or regulation
- C25B15/021—Process control or regulation of heating or cooling
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B15/00—Operating or servicing cells
- C25B15/02—Process control or regulation
- C25B15/023—Measuring, analysing or testing during electrolytic production
- C25B15/025—Measuring, analysing or testing during electrolytic production of electrolyte parameters
- C25B15/027—Temperature
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B15/00—Operating or servicing cells
- C25B15/08—Supplying or removing reactants or electrolytes; Regeneration of electrolytes
- C25B15/083—Separating products
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B15/00—Operating or servicing cells
- C25B15/08—Supplying or removing reactants or electrolytes; Regeneration of electrolytes
- C25B15/087—Recycling of electrolyte to electrochemical cell
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B9/00—Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
- C25B9/60—Constructional parts of cells
- C25B9/67—Heating or cooling means
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/36—Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Metallurgy (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Automation & Control Theory (AREA)
- Inorganic Chemistry (AREA)
- Analytical Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
Abstract
本发明公开一种用于制氢电解槽阵列的热管理系统及方法,该系统包括多个并联的电解槽,每个电解槽的氢气出口端和氧气出口端分别与氢侧气液分离器和氧侧气液分离器连接,氢侧气液分离器的排液口和氧侧气液分离器的排液口并联后与热交换器的第一换热通道的其中一端连接,第一换热通道的另一端与第一单向阀的进液口连接,热交换器的第二换热通道的两端接入换热环路,第一单向阀的出液口与加热器的其中一端连接,加热器的另一端通过碱液循环泵与多个并联的第二单向阀连接,每个第二单向阀均匹配接入一个电解槽的进液口,且第一单向阀的出液口和加热器之间设有碱液补充支路。本发明的有益效果是:大幅减少电解槽阵列的启动时间,提升系统的快速响应性。
The invention discloses a thermal management system and method for an array of hydrogen-producing electrolyzers. The system comprises a plurality of electrolyzers connected in parallel. The hydrogen outlet end and the oxygen outlet end of each electrolyzer are respectively connected with a hydrogen side gas-liquid separator and a hydrogen side gas-liquid separator. The gas-liquid separator on the oxygen side is connected, and the liquid discharge port of the gas-liquid separator on the hydrogen side and the liquid discharge port of the gas-liquid separator on the oxygen side are connected in parallel with one end of the first heat exchange channel of the heat exchanger. The other end of the channel is connected to the liquid inlet of the first one-way valve, the two ends of the second heat exchange channel of the heat exchanger are connected to the heat exchange loop, and the liquid outlet of the first one-way valve is connected to one end of the heater connection, the other end of the heater is connected with a plurality of parallel second one-way valves through the lye circulating pump, each second one-way valve is matched to the liquid inlet of an electrolytic cell, and the first one-way valve A lye supplementary branch is arranged between the liquid outlet and the heater. The beneficial effects of the invention are that the start-up time of the electrolytic cell array is greatly reduced, and the rapid response of the system is improved.
Description
技术领域technical field
本发明涉及新能源技术领域,尤其涉及一种用于制氢电解槽阵列的热管理系统及方法。The present invention relates to the technical field of new energy, and in particular, to a thermal management system and method for a hydrogen production electrolyzer array.
背景技术Background technique
风力发电是实现可再生能源利用并推动碳中和、碳达峰的重要途径。然而大规模风电场容易产生巨大的弃风能量,导致能源利用率下降。而利用电解水制氢技术则可以将弃风资源转化为绿色氢能,不仅可以提高风电场的经济效益,还可以促进氢能产业的发展,尤其地,推动氢燃料电池在交通领域的应用。Wind power is an important way to realize the utilization of renewable energy and promote carbon neutrality and carbon peaking. However, large-scale wind farms are prone to generate huge amounts of abandoned wind energy, resulting in a decline in energy utilization. The use of electrolyzed water hydrogen production technology can convert abandoned wind resources into green hydrogen energy, which can not only improve the economic benefits of wind farms, but also promote the development of the hydrogen energy industry, especially the application of hydrogen fuel cells in the field of transportation.
碱性电解水制氢技术是当下技术最成熟、成本最低的制氢方案之一。对于大规模风电场,其发电功率波动大、随机性强,因此采用多个碱性制氢电解槽并联不仅可以提高制氢规模及制氢系统的宽功率波动适应性,还可以提高制氢系统的瞬时响应能力、综合效率及使用寿命,如:Alkaline electrolysis water hydrogen production technology is one of the most mature and lowest cost hydrogen production solutions. For large-scale wind farms, the power generation fluctuates greatly and the randomness is strong. Therefore, using multiple alkaline hydrogen production electrolyzers in parallel can not only improve the hydrogen production scale and the wide power fluctuation adaptability of the hydrogen production system, but also improve the hydrogen production system. The instantaneous response capability, overall efficiency and service life of the products, such as:
中国专利CN 111364052 A提出采用多个电解槽并联,降低电解系统的制氢功率下限,从而拓宽了电解系统制氢功率的运行范围,使其适用于风力发电或光伏发电等波动性电源场合;Chinese patent CN 111364052 A proposes to use multiple electrolyzers in parallel to reduce the lower limit of the hydrogen production power of the electrolysis system, thereby broadening the operating range of the hydrogen production power of the electrolysis system, making it suitable for fluctuating power supply occasions such as wind power generation or photovoltaic power generation;
中国专利CN 111826669 A提出一种具有宽功率波动适应性的大型电解水制氢系统及控制方法,采用多个电解槽并联形成制氢模组,各个模组再形成大规模制氢系统,由一种模组功率分流控制器分别控制各个模组的功率,从而提升制氢能耗效率和宽功率波动适应性,增强瞬时响应速度,降低功率加载成本;Chinese patent CN 111826669 A proposes a large-scale electrolyzed water hydrogen production system and control method with wide power fluctuation adaptability. A plurality of electrolytic cells are used in parallel to form a hydrogen production module, and each module forms a large-scale hydrogen production system. Various module power shunt controllers control the power of each module separately, thereby improving the energy consumption efficiency of hydrogen production and wide power fluctuation adaptability, enhancing the instantaneous response speed and reducing the power loading cost;
中国专利CN 112103994 A提出一种针对电解水制氢电解槽阵列的预测管理方法,通过轮换策略,合理分配各个电解槽的运行功率和运行时间,以均衡各个电解槽的寿命;Chinese patent CN 112103994 A proposes a predictive management method for electrolyzer arrays for electrolysis of water for hydrogen production. Through a rotation strategy, the operating power and operating time of each electrolyzer are reasonably allocated to balance the life of each electrolyzer;
综上,现有的发明专利虽然提到了采用电解槽阵列提高大型可再生能源制氢系统的运行效率、宽功率波动适应性和响应时间,但各个电解槽在运行过程中均会产生可观的热量,显然现有技术未能提供具体的综合热管理方法对电解槽产生的热量进行回收利用。To sum up, although the existing invention patents mention the use of electrolyzer arrays to improve the operation efficiency, wide power fluctuation adaptability and response time of large-scale renewable energy hydrogen production systems, each electrolyzer will generate considerable heat during operation. , it is obvious that the prior art fails to provide a specific comprehensive thermal management method to recover and utilize the heat generated by the electrolytic cell.
发明内容SUMMARY OF THE INVENTION
针对上述问题,本发明提出一种用于制氢电解槽阵列的热管理系统及方法,旨在利用电解槽在运行过程产生的热量进一步提高系统的综合效率。In view of the above problems, the present invention proposes a thermal management system and method for an array of hydrogen production electrolyzers, aiming to further improve the overall efficiency of the system by utilizing the heat generated by the electrolyzers during operation.
为解决上述技术问题,本发明第一方面提出一种用于制氢电解槽阵列的热管理系统,包括多个并联的电解槽,每个所述电解槽的氢气出口端和氧气出口端分别与氢侧气液分离器和氧侧气液分离器连接,所述氢侧气液分离器的排液口和所述氧侧气液分离器的排液口并联后与热交换器的第一换热通道的其中一端连接,所述第一换热通道的另一端与第一单向阀的进液口连接,所述热交换器的第二换热通道的两端接入换热环路,所述第一单向阀的出液口与加热器的其中一端连接,所述加热器的另一端通过碱液循环泵与多个并联的第二单向阀连接,每个所述第二单向阀均匹配接入一个所述电解槽的进液口,且所述第一单向阀的出液口和所述加热器之间设有碱液补充支路。In order to solve the above technical problems, the first aspect of the present invention provides a thermal management system for an array of hydrogen production electrolyzers, comprising a plurality of electrolyzers connected in parallel, and the hydrogen outlet end and the oxygen outlet end of each of the electrolyzers are respectively connected to The hydrogen side gas-liquid separator is connected to the oxygen side gas-liquid separator, and the liquid discharge port of the hydrogen side gas-liquid separator and the liquid discharge port of the oxygen side gas-liquid separator are connected in parallel with the first exchange of the heat exchanger. One end of the heat channel is connected, the other end of the first heat exchange channel is connected to the liquid inlet of the first one-way valve, and both ends of the second heat exchange channel of the heat exchanger are connected to the heat exchange loop, The liquid outlet of the first one-way valve is connected to one end of the heater, and the other end of the heater is connected to a plurality of parallel second one-way valves through the lye circulating pump, each of the second one-way valves. All the direction valves are matched and connected to a liquid inlet of the electrolytic cell, and a lye supplementary branch is arranged between the liquid outlet of the first one-way valve and the heater.
在一些实施方式中,所述换热环路包括换热管道,以及安装在所述换热管道任意段的换热泵,所述换热管道的部分管道安装在储热罐的内部。In some embodiments, the heat exchange loop includes a heat exchange pipe, and a heat exchange pump installed in any section of the heat exchange pipe, and some pipes of the heat exchange pipe are installed inside the heat storage tank.
在一些实施方式中,所述碱液补充支路包括碱液储存罐,以及安装在所述碱液储存罐出口端的补碱泵,所述补碱泵的出口端安装在所述第一单向阀的出液口和所述加热器之间。In some embodiments, the lye replenishment branch comprises an lye storage tank, and a lye replenishing pump installed at the outlet end of the lye storage tank, and the outlet end of the lye replenishing pump is installed at the first one-way between the liquid outlet of the valve and the heater.
在一些实施方式中,所述第二单向阀为单向调节阀。In some embodiments, the second one-way valve is a one-way regulating valve.
本发明第二方面提出一种用于制氢电解槽阵列的热管理方法,用于上述的系统,包括以下步骤:检测所述碱液循环泵出口端的碱液温度是否低于预设阈值,若是,则进入冷启动模式,若否,则根据当前所需消纳的风电功率确定所述电解槽运行的个数,并根据所述个数落入的区间选择进入低功率模式或高功率模式。A second aspect of the present invention provides a thermal management method for an array of hydrogen production electrolyzers, which is used in the above-mentioned system, comprising the following steps: detecting whether the temperature of the lye at the outlet of the lye circulating pump is lower than a preset threshold, and if so , then enter the cold start mode, if not, determine the number of the electrolyzers running according to the current wind power required to be consumed, and select to enter the low power mode or the high power mode according to the interval in which the number falls.
在一些实施方式中,所述冷启动模式包括:根据当前所需消纳的风电功率确定所述电解槽运行的个数,根据所述电解槽运行的个数打开对应数量的所述第二单向阀,并启动所述补碱泵、所述碱液循环泵、所述加热器,以及所述换热泵。In some embodiments, the cold start mode includes: determining the number of the electrolyzers to operate according to the wind power that needs to be consumed currently, and turning on a corresponding number of the second units according to the number of the electrolyzers to operate. valve, and start the alkali replenishing pump, the alkali liquor circulation pump, the heater, and the heat exchange pump.
在一些实施方式中,所述低功率模式包括:根据所述电解槽运行的个数打开对应数量的所述第二单向阀,并启动所述补碱泵、所述碱液循环泵,以及所述换热泵,关闭所述加热器。In some embodiments, the low power mode includes: opening a corresponding number of the second one-way valves according to the number of the electrolytic cells operating, and starting the alkali replenishment pump, the alkali liquor circulation pump, and The heat exchange pump turns off the heater.
在一些实施方式中,所述高功率模式包括:根据所述电解槽运行的个数打开对应数量的所述第二单向阀,并启动所述补碱泵、所述碱液循环泵、所述换热泵,以及所述加热器。In some embodiments, the high-power mode includes: opening a corresponding number of the second one-way valves according to the number of the electrolytic cells operating, and starting the alkali replenishing pump, the alkali liquor circulation pump, the The heat exchange pump, and the heater.
在一些实施方式中,在所述电解槽运行过程中,持续检测所述碱液循环泵出口端的碱液温度是否高于所述预设阈值,若是,则关闭所述加热器。In some embodiments, during the operation of the electrolytic cell, it is continuously detected whether the temperature of the lye solution at the outlet end of the lye solution circulation pump is higher than the preset threshold value, and if so, the heater is turned off.
在一些实施方式中,在所述电解槽运行过程中,持续检测所述碱液循环泵出口端的碱液温度是否高于所述储热罐内存储的碱液温度并低于所述预设阈值,若是,则关闭所述换热泵。In some embodiments, during the operation of the electrolysis cell, it is continuously detected whether the temperature of the lye solution at the outlet end of the lye solution circulation pump is higher than the temperature of the lye solution stored in the heat storage tank and lower than the preset threshold value , and if so, turn off the heat exchange pump.
本发明的有益效果为:通过在氢侧气液分离器和氧侧气液分离器的排液口设置热交换器和换热环路,用于吸收碱液的热量,降低系统的碱液温度,使其保持最佳的电解效果,同时在第一单向阀的出液口处安装加热器,能够大幅减少电解槽阵列的启动时间,提升系统的快速响应性。The beneficial effects of the present invention are as follows: by arranging a heat exchanger and a heat exchange loop at the liquid discharge ports of the hydrogen side gas-liquid separator and the oxygen side gas-liquid separator, it is used to absorb the heat of the lye and reduce the temperature of the lye in the system , to maintain the best electrolysis effect, and at the same time, a heater is installed at the liquid outlet of the first one-way valve, which can greatly reduce the start-up time of the electrolytic cell array and improve the rapid response of the system.
附图说明Description of drawings
图1为本发明实施例一公开的用于制氢电解槽阵列的热管理系统的结构示意图;1 is a schematic structural diagram of a thermal management system for an array of hydrogen production electrolyzers disclosed in Embodiment 1 of the present invention;
其中:1-电解槽,2-氢侧气液分离器,3-氧侧气液分离器,4-热交换器,5-第一单向阀,6-换热环路,7-加热器,8-碱液循环泵,9-第二单向阀,10-碱液补充支路,61-换热管道,62-换热泵,63-储热罐,101-碱液储存罐,102-补碱泵,11-直流变换器,12-直流母线。Among them: 1-electrolyzer, 2-hydrogen side gas-liquid separator, 3-oxygen side gas-liquid separator, 4-heat exchanger, 5-first check valve, 6-heat exchange loop, 7-heater , 8- lye circulating pump, 9- second one-way valve, 10- lye supplementary branch, 61- heat exchange pipeline, 62- heat exchange pump, 63- heat storage tank, 101- lye liquid storage tank, 102- Alkali make-up pump, 11-DC converter, 12-DC bus.
具体实施方式Detailed ways
为使本发明的目的、技术方案及优点更加清楚、明确,下面结合附图和具体实施方式对本发明的内容做进一步详细说明。可以理解的是,此处所描述的具体实施例仅仅用于解释本发明,而非对本发明的限定。另外还需要说明的是,为了便于描述,附图中仅示出了与本发明相关的部分而非全部内容。In order to make the objectives, technical solutions and advantages of the present invention clearer and clearer, the content of the present invention will be further described in detail below with reference to the accompanying drawings and specific embodiments. It should be understood that the specific embodiments described herein are only used to explain the present invention, but not to limit the present invention. In addition, it should be noted that, for the convenience of description, the drawings only show some but not all of the contents related to the present invention.
实施例一Example 1
本实施例提出了一种用于制氢电解槽阵列的热管理系统,如图1所示,包括多个并联的电解槽1,每个电解槽1的氢气出口端和氧气出口端分别与氢侧气液分离器2和氧侧气液分离器3连接,氢侧气液分离器2的排液口和氧侧气液分离器3的排液口并联后与热交换器4的第一换热通道的其中一端连接,第一换热通道的另一端与第一单向阀5的进液口连接,热交换器4的第二换热通道的两端接入换热环路6,第一单向阀5的出液口与加热器7的其中一端连接,加热器7的另一端通过碱液循环泵8与多个并联的第二单向阀9连接,每个第二单向阀9均匹配接入一个电解槽1的进液口,且第一单向阀5的出液口和加热器7之间设有碱液补充支路10。This embodiment proposes a thermal management system for an array of hydrogen production electrolyzers, as shown in FIG. 1 , comprising a plurality of electrolyzers 1 in parallel, and the hydrogen outlet end and the oxygen outlet end of each electrolyzer 1 are respectively connected to the hydrogen The side gas-liquid separator 2 is connected to the oxygen side gas-liquid separator 3, and the liquid discharge port of the hydrogen side gas-liquid separator 2 and the liquid discharge port of the oxygen side gas-liquid separator 3 are connected in parallel with the first exchange of the heat exchanger 4. One end of the heat channel is connected, the other end of the first heat exchange channel is connected to the liquid inlet of the first one-way valve 5, both ends of the second heat exchange channel of the heat exchanger 4 are connected to the heat exchange loop 6, The liquid outlet of a one-way valve 5 is connected to one end of the heater 7, and the other end of the heater 7 is connected to a plurality of parallel second one-way valves 9 through the lye circulating pump 8, each second one-way valve 9 are matched to the liquid inlet of an electrolytic cell 1 , and a lye
碱性电解水制氢电解槽阵列由n(n大于等于2)个并联的电解槽1组成,各个电解槽1的额定功率可以相同也可以不同,实际运行时可以按效率最优控制各个电解槽1的产氢量。具体地,电解槽1在可运行功率范围内,其电解效率随电解功率的提升而呈下降趋势,因此,采用个多个电解槽1并联成电解槽阵列,除了可以降低系统的最小电解功率、增强系统的宽功率波动性外,还可以将单个电解槽1的高功率指令转换成多个电解槽的低功率指令以提高电解系统效率。The alkaline electrolyzed water hydrogen production electrolyzer array consists of n (n greater than or equal to 2) electrolyzers 1 in parallel. The rated power of each electrolyzer 1 can be the same or different. In actual operation, each electrolyzer can be optimally controlled according to the efficiency. 1 hydrogen production. Specifically, when the electrolytic cell 1 is within the operable power range, its electrolysis efficiency tends to decrease with the increase of the electrolytic power. Therefore, using a plurality of electrolytic cells 1 in parallel to form an electrolytic cell array can not only reduce the minimum electrolysis power of the system, In addition to enhancing the wide power fluctuation of the system, the high-power command of a single electrolytic cell 1 can also be converted into a low-power command of multiple electrolytic cells to improve the efficiency of the electrolysis system.
为了实现各个电解槽1的独立控制,每个电解槽1由与其额定功率相匹配的直流变换器11供电,各个直流变换器11连接到直流母线12。具体地,根据产氢量,每个电解槽1的电解功率可以通过控制直流变换器11的电流值来实现;各个电解槽1产生的氢气与氧气通过单向阀门分别汇集至氢侧气液分离器2和氧侧气液分离器3,通过分离器将气体中的碱液分离出来回流至碱液循环管道(热交换器4的第一换热通道方向)中,并将氢气与氧气送入后续处理装置进行干燥、提纯、冷却等处理。In order to realize the independent control of each electrolytic cell 1 , each electrolytic cell 1 is powered by a
每个电解槽1的碱液流量都可以通过与其相连接的第二单向阀9进行控制,因此各个电解槽1共用一个碱液循环泵8,而碱液循环泵8的泵升压力可以通过其输入电压进行控制。从氢侧气液分离器2和氧侧气液分离器3中析出的碱液可以与碱液补充支路10内存储的碱液一起回流至电解槽中,当系统中的碱液温度不满足需求时,可以通过热管理系统进行换热。The lye flow of each electrolytic cell 1 can be controlled by the second one-way valve 9 connected to it, so each electrolytic cell 1 shares a lye circulating pump 8, and the pumping pressure of the lye circulating pump 8 can be controlled by its input voltage is controlled. The lye precipitated from the hydrogen-side gas-liquid separator 2 and the oxygen-side gas-liquid separator 3 can be returned to the electrolyzer together with the lye solution stored in the lye solution
上述的换热环路6可以是一切能够接入热交换器4的换热组件,在本实施例中提供其中一种可选的实施方案,即,换热环路6包括换热管道61,以及安装在换热管道61任意段的换热泵62,换热管道61的部分管道安装在储热罐63的内部。换热环路6用于冷却从氢侧气液分离器2和氧侧气液分离器3析出的碱液,并将热量储存至储热罐63。The above-mentioned heat exchange loop 6 can be all heat exchange components that can be connected to the heat exchanger 4, and an optional embodiment is provided in this embodiment, that is, the heat exchange loop 6 includes a heat exchange pipe 61, As well as the heat exchange pump 62 installed in any section of the heat exchange pipe 61 , some pipes of the heat exchange pipe 61 are installed inside the
上述的碱液补充支路10用于为电解槽1补充碱液,优选的,碱液补充支路10包括碱液储存罐101,以及安装在碱液储存罐101出口端的补碱泵102,补碱泵102的出口端安装在第一单向阀5的出液口和加热器7之间。The above-mentioned lye
更进一步的,上述的第二单向阀9为单向调节阀。Further, the above-mentioned second one-way valve 9 is a one-way regulating valve.
本实施例中,主要通过在氢侧气液分离器2和氧侧气液分离器3的排液口设置热交换器4和换热环路6,用于吸收碱液的热量,降低系统的碱液温度,使其保持最佳的电解效果,同时在第一单向阀5的出液口处安装加热器7,能够大幅减少电解槽阵列的启动时间,提升系统的快速响应性。本制热管理系统可以通过功率分配优化和制氢余热利用来提高宽功率范围内的制氢效率与响应速度,从而提高大规模风电制氢的经济效益。In this embodiment, the heat exchanger 4 and the heat exchange loop 6 are mainly arranged at the liquid discharge ports of the hydrogen-side gas-liquid separator 2 and the oxygen-side gas-liquid separator 3, so as to absorb the heat of the lye and reduce the system's The temperature of the lye solution is maintained to maintain the best electrolysis effect. At the same time, the heater 7 is installed at the liquid outlet of the first one-way valve 5, which can greatly reduce the start-up time of the electrolytic cell array and improve the rapid response of the system. The heating management system can improve the hydrogen production efficiency and response speed in a wide power range through power distribution optimization and hydrogen production waste heat utilization, thereby improving the economic benefits of large-scale wind power hydrogen production.
实施例二Embodiment 2
一种用于制氢电解槽阵列的热管理方法,用于实施例一所述的系统,包括以下步骤:检测碱液循环泵8出口端的碱液温度是否低于预设阈值,若是,则进入冷启动模式,若否,则根据当前所需消纳的风电功率确定电解槽1运行的个数,并根据个数落入的区间选择进入低功率模式或高功率模式。上述的区间根据电解槽1总的设计量自行设置,如当前的电解槽1阵列具有200个电解槽,可选择[1,20]作为第一区间,[21,200]作为第二区间,当消纳前期仅有20个以内的电解槽1工作,则选择进入低功率模式,反之则选择进入高功率模式。A thermal management method for an array of hydrogen production electrolyzers, used in the system described in Embodiment 1, comprising the following steps: detecting whether the temperature of the lye solution at the outlet of the lye solution circulating pump 8 is lower than a preset threshold, and if so, entering the Cold start mode, if not, determine the number of electrolyzers 1 running according to the current wind power required to be consumed, and select to enter low power mode or high power mode according to the interval in which the number falls. The above interval is set by itself according to the total design quantity of electrolytic cell 1. For example, the current electrolytic cell 1 array has 200 electrolytic cells. In the early stage of consumption, if only 20 or less electrolyzers 1 are working, choose to enter the low-power mode; otherwise, choose to enter the high-power mode.
冷启动模式包括:根据当前所需消纳的风电功率确定电解槽1运行的个数,根据电解槽1运行的个数打开对应数量的第二单向阀9,并启动补碱泵102、碱液循环泵8、加热器7,以及换热泵62。当系统只有少数电解槽1工作且突然启动多台温度较低的待机电解槽1时,也可以通过储热罐63对碱液进行加热,使待启动的电解槽1温度上升,加快启动速度。The cold start mode includes: determining the number of electrolyzers 1 operating according to the current wind power required to be consumed, opening a corresponding number of second one-way valves 9 according to the number of electrolyzers 1 operating, and starting the
低功率模式包括:根据电解槽1运行的个数打开对应数量的第二单向阀9,并启动补碱泵102、碱液循环泵8,以及换热泵62,关闭加热器7。当系统电解功率较低时,如只有一台或者少数几台电解槽1以低功率运行、其产生的热量不足以满足碱液的温度要求或不足以使电解槽1以最佳效率运行时,可以利用储热罐63中所储存的热量通过换热环路6对碱液进行加热。The low power mode includes: opening a corresponding number of second one-way valves 9 according to the number of electrolytic cells 1 running, starting the
高功率模式包括:根据电解槽1运行的个数打开对应数量的第二单向阀9,并启动补碱泵102、碱液循环泵8、换热泵62,以及加热器7。当系统的电解功率较大时,如多个电解槽1同时以较高功率运行、循环碱液温度过高时,可以通过换热环路6对循环碱液进行冷却,并将热量储存进储热罐63中。The high-power mode includes: opening a corresponding number of second one-way valves 9 according to the number of electrolytic cells 1 running, and starting the
在电解槽1运行过程中,持续检测碱液循环泵8出口端的碱液温度是否高于预设阈值,若是,则关闭加热器7。During the operation of the electrolytic cell 1, it is continuously detected whether the temperature of the lye at the outlet of the lye circulating pump 8 is higher than the preset threshold, and if so, the heater 7 is turned off.
在电解槽1运行过程中,持续检测碱液循环泵8出口端的碱液温度是否高于储热罐7内存储的碱液温度并低于预设阈值,若是,则关闭换热泵62。当储热罐63中的热量不足以加热碱液使电解槽1的温度上升时(亦即储热罐63中的热量不足以加热碱液循环泵8所在干路中的碱液),应该避免储热罐63的反向吸热,因此需关闭换热泵62,此时则应由加热器7继续为系统内的碱液加热。储热罐63内部有温度控制系统,当储热罐63温度过高时,可使储热罐63的热介质从出口流出,并通过入口向储热罐63输入冷却介质以降低储热罐63温度,保证碱液冷却效果。During the operation of the electrolytic cell 1, it is continuously detected whether the lye temperature at the outlet of the lye circulating pump 8 is higher than the lye temperature stored in the heat storage tank 7 and lower than the preset threshold, and if so, the heat exchange pump 62 is turned off. When the heat in the
由于在低功率模式下,当所需消纳的风电功率较小时,仅有少量电解槽1及其对应的第二单向阀9开启,系统将运行的电解槽1所产生的热量储存在储热罐63中,而所需消纳的风电功率增加时,根据功率增加的大小,启动余下的电解槽,则进入高功率模式,电解槽1启动数量增加后,碱液流量加大,会导致碱液循环通道中的碱液温度下降,此时可通过热管理系统利用储热罐63中的热量快速加热碱液循环通路,从而保证已开启的电解槽1维持正常工作温度,并加快正在启动的电解槽1投入工作,减少系统制氢及消纳功率的响应时间。另外,碱液循环通路上配置的加热器可用于对碱液进行临时加热,尤其地,当电解槽阵列刚启动且储热罐63温度过低时,通过加热器7可以迅速提高碱液温度,保证电解槽1的快速响应。Since in the low power mode, when the wind power to be consumed is small, only a small number of electrolytic cells 1 and their corresponding second one-way valves 9 are opened, and the system stores the heat generated by the running electrolytic cells 1 in the storage tank. In the
具体地,当系统只有少数电解槽1工作且突然启动多台温度较低的待机电解槽时,可以通过加热器7加热碱液,从而大幅减少电解槽阵列的启动时间,提升系统的快速响应性。Specifically, when only a few electrolytic cells 1 are working in the system and multiple standby electrolytic cells with lower temperature are suddenly activated, the lye can be heated by the heater 7, thereby greatly reducing the startup time of the electrolytic cell array and improving the rapid response of the system. .
上述实施例只是为了说明本发明的技术构思及特点,其目的是在于让本领域内的普通技术人员能够了解本发明的内容并据以实施,并不能以此限制本发明的保护范围。凡是根据本发明内容的实质所做出的等效的变化或修饰,都应涵盖在本发明的保护范围内。The above-mentioned embodiments are only to illustrate the technical concept and characteristics of the present invention, and the purpose thereof is to enable those of ordinary skill in the art to understand the content of the present invention and implement them accordingly, and not to limit the protection scope of the present invention. All equivalent changes or modifications made according to the essence of the present invention shall be included within the protection scope of the present invention.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111211141.4A CN114606509B (en) | 2021-10-18 | 2021-10-18 | Thermal management system and method for hydrogen production electrolytic cell array |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111211141.4A CN114606509B (en) | 2021-10-18 | 2021-10-18 | Thermal management system and method for hydrogen production electrolytic cell array |
Publications (2)
Publication Number | Publication Date |
---|---|
CN114606509A true CN114606509A (en) | 2022-06-10 |
CN114606509B CN114606509B (en) | 2023-10-10 |
Family
ID=81857690
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202111211141.4A Active CN114606509B (en) | 2021-10-18 | 2021-10-18 | Thermal management system and method for hydrogen production electrolytic cell array |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114606509B (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114277384A (en) * | 2021-11-19 | 2022-04-05 | 中国华能集团清洁能源技术研究院有限公司 | System for be used for alkaline electrolysis hydrogen plant electrolyte circulation |
CN114959740A (en) * | 2022-06-16 | 2022-08-30 | 清华四川能源互联网研究院 | Shutdown electrolytic tank heat preservation system for large-scale hydrogen production by alkaline electrolysis of water |
CN117568866A (en) * | 2023-11-29 | 2024-02-20 | 三一氢能有限公司 | Electrolyzer current equalization control system and method |
CN117888143A (en) * | 2024-01-12 | 2024-04-16 | 航天长征化学工程股份有限公司 | Energy efficiency control system and energy efficiency control method for coupling electrolysis hydrogen production |
BE1031541B1 (en) * | 2023-04-21 | 2024-11-28 | John Cockerill Hydrogen Belgium | ELECTROLYSIS UNIT WITH INCREASED PRODUCTIVITY AND AVAILABILITY |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111364052A (en) * | 2020-04-03 | 2020-07-03 | 中国华能集团清洁能源技术研究院有限公司 | A wide-power electrolysis water hydrogen production system and method |
CN111748822A (en) * | 2020-06-04 | 2020-10-09 | 同济大学 | A comprehensive thermal management system for a large-scale alkaline electrolysis water hydrogen production device |
CN213013112U (en) * | 2020-06-04 | 2021-04-20 | 同济大学 | Comprehensive heat management system of large alkaline electrolyzed water hydrogen production device |
CN112899706A (en) * | 2021-01-18 | 2021-06-04 | 阳光电源股份有限公司 | Water electrolysis hydrogen production system and control method thereof |
CN112899726A (en) * | 2021-01-18 | 2021-06-04 | 阳光电源股份有限公司 | Water electrolysis hydrogen production system and control method thereof |
CN113215592A (en) * | 2021-03-15 | 2021-08-06 | 嘉寓氢能源科技(辽宁)有限公司 | Comprehensive heat management system of large alkaline electrolyzed water hydrogen production device |
CN113881951A (en) * | 2021-11-03 | 2022-01-04 | 中国华能集团清洁能源技术研究院有限公司 | Alkali liquor segmented circulating electrolysis system and working method thereof |
CN114561668A (en) * | 2022-03-01 | 2022-05-31 | 国家电投集团氢能科技发展有限公司 | Hydrogen production system with heat storage device and control method of hydrogen production system |
CN114808029A (en) * | 2022-04-14 | 2022-07-29 | 华中科技大学 | A thermal management regulation system for hydrogen production from alkaline electrolysis water and its regulation method |
-
2021
- 2021-10-18 CN CN202111211141.4A patent/CN114606509B/en active Active
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111364052A (en) * | 2020-04-03 | 2020-07-03 | 中国华能集团清洁能源技术研究院有限公司 | A wide-power electrolysis water hydrogen production system and method |
WO2021196564A1 (en) * | 2020-04-03 | 2021-10-07 | 中国华能集团清洁能源技术研究院有限公司 | Wide-power hydrogen production system and method by electrolysis of water |
CN111748822A (en) * | 2020-06-04 | 2020-10-09 | 同济大学 | A comprehensive thermal management system for a large-scale alkaline electrolysis water hydrogen production device |
CN213013112U (en) * | 2020-06-04 | 2021-04-20 | 同济大学 | Comprehensive heat management system of large alkaline electrolyzed water hydrogen production device |
CN112899706A (en) * | 2021-01-18 | 2021-06-04 | 阳光电源股份有限公司 | Water electrolysis hydrogen production system and control method thereof |
CN112899726A (en) * | 2021-01-18 | 2021-06-04 | 阳光电源股份有限公司 | Water electrolysis hydrogen production system and control method thereof |
CN113215592A (en) * | 2021-03-15 | 2021-08-06 | 嘉寓氢能源科技(辽宁)有限公司 | Comprehensive heat management system of large alkaline electrolyzed water hydrogen production device |
CN113881951A (en) * | 2021-11-03 | 2022-01-04 | 中国华能集团清洁能源技术研究院有限公司 | Alkali liquor segmented circulating electrolysis system and working method thereof |
CN114561668A (en) * | 2022-03-01 | 2022-05-31 | 国家电投集团氢能科技发展有限公司 | Hydrogen production system with heat storage device and control method of hydrogen production system |
CN114808029A (en) * | 2022-04-14 | 2022-07-29 | 华中科技大学 | A thermal management regulation system for hydrogen production from alkaline electrolysis water and its regulation method |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114277384A (en) * | 2021-11-19 | 2022-04-05 | 中国华能集团清洁能源技术研究院有限公司 | System for be used for alkaline electrolysis hydrogen plant electrolyte circulation |
CN114959740A (en) * | 2022-06-16 | 2022-08-30 | 清华四川能源互联网研究院 | Shutdown electrolytic tank heat preservation system for large-scale hydrogen production by alkaline electrolysis of water |
CN114959740B (en) * | 2022-06-16 | 2023-06-23 | 清华四川能源互联网研究院 | Insulation system of shutdown electrolyzer for large-scale hydrogen production by alkaline electrolysis of water |
BE1031541B1 (en) * | 2023-04-21 | 2024-11-28 | John Cockerill Hydrogen Belgium | ELECTROLYSIS UNIT WITH INCREASED PRODUCTIVITY AND AVAILABILITY |
CN117568866A (en) * | 2023-11-29 | 2024-02-20 | 三一氢能有限公司 | Electrolyzer current equalization control system and method |
CN117888143A (en) * | 2024-01-12 | 2024-04-16 | 航天长征化学工程股份有限公司 | Energy efficiency control system and energy efficiency control method for coupling electrolysis hydrogen production |
Also Published As
Publication number | Publication date |
---|---|
CN114606509B (en) | 2023-10-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN114606509B (en) | Thermal management system and method for hydrogen production electrolytic cell array | |
CN112820896B (en) | Thermoelectric coupling energy-saving and energy-storing system and method based on hydrogen fuel cell | |
CN111336571A (en) | A system for utilizing waste heat from electrolysis of water for hydrogen production and its working method | |
CN114807962B (en) | Alkaline water electrolysis hydrogen production system based on absorption heat pump and adjusting method thereof | |
CN108317767A (en) | One proton exchanging film fuel battery afterheat utilizing system and method | |
CN107014110B (en) | Distributed water vapor cold-heat-electricity combined supply device and method | |
CN114318360A (en) | Heat management's circulation heat transfer system | |
CN116497399A (en) | Alkaline water electrolysis hydrogen production system using closed cooling | |
CN215799943U (en) | Electrolytic hydrogen production system | |
CN213777864U (en) | Flow distribution device of multi-element heat supply heat source | |
CN108736047A (en) | Fuel cell start-up system and method | |
CN219117572U (en) | Energy-saving quick starting device of water electrolysis hydrogen production system | |
CN217052419U (en) | A thermal management cycle heat exchange system | |
CN217009243U (en) | Multi-working-condition temperature control system for fuel cell | |
CN117230463A (en) | Cold-start alkaline electrolysis hydrogen production device and hydrogen production method | |
CN114220993B (en) | Hydrogen circulation system of fuel cell system | |
CN214625114U (en) | Liquid hydrogen fuel cell waste heat recovery system | |
CN217052431U (en) | Circulating heat exchange system | |
CN116575043A (en) | High-stability proton exchange membrane water electrolysis hydrogen production system with anode purging function and control method thereof | |
CN116404198A (en) | Hydrogen supply regulating system of proton exchange membrane fuel cell | |
CN213936265U (en) | Heat preservation heating device for hydrogen supply and hydrogen return of fuel cell | |
CN114597445A (en) | Comprehensive heat management method for hydrogen energy storage system | |
CN109246979A (en) | Converter valve preheating device and change of current platform | |
CN115751767A (en) | Multi-system coupled combined heat, power and water supply system and method | |
CN114318390A (en) | A circulating heat exchange system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |