[go: up one dir, main page]

CN114605290B - 一种氨基酸螺旋阵列薄膜及其制备方法 - Google Patents

一种氨基酸螺旋阵列薄膜及其制备方法 Download PDF

Info

Publication number
CN114605290B
CN114605290B CN202210201463.9A CN202210201463A CN114605290B CN 114605290 B CN114605290 B CN 114605290B CN 202210201463 A CN202210201463 A CN 202210201463A CN 114605290 B CN114605290 B CN 114605290B
Authority
CN
China
Prior art keywords
amino acid
array
substrate
helix
array film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210201463.9A
Other languages
English (en)
Other versions
CN114605290A (zh
Inventor
陶凯
吴浩然
章家豪
俞滨
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ZJU Hangzhou Global Scientific and Technological Innovation Center
Original Assignee
ZJU Hangzhou Global Scientific and Technological Innovation Center
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ZJU Hangzhou Global Scientific and Technological Innovation Center filed Critical ZJU Hangzhou Global Scientific and Technological Innovation Center
Priority to CN202210201463.9A priority Critical patent/CN114605290B/zh
Publication of CN114605290A publication Critical patent/CN114605290A/zh
Priority to US18/117,016 priority patent/US20230203339A1/en
Application granted granted Critical
Publication of CN114605290B publication Critical patent/CN114605290B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D177/00Coating compositions based on polyamides obtained by reactions forming a carboxylic amide link in the main chain; Coating compositions based on derivatives of such polymers
    • C09D177/04Polyamides derived from alpha-amino carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C271/00Derivatives of carbamic acids, i.e. compounds containing any of the groups, the nitrogen atom not being part of nitro or nitroso groups
    • C07C271/06Esters of carbamic acids
    • C07C271/08Esters of carbamic acids having oxygen atoms of carbamate groups bound to acyclic carbon atoms
    • C07C271/10Esters of carbamic acids having oxygen atoms of carbamate groups bound to acyclic carbon atoms with the nitrogen atoms of the carbamate groups bound to hydrogen atoms or to acyclic carbon atoms
    • C07C271/22Esters of carbamic acids having oxygen atoms of carbamate groups bound to acyclic carbon atoms with the nitrogen atoms of the carbamate groups bound to hydrogen atoms or to acyclic carbon atoms to carbon atoms of hydrocarbon radicals substituted by carboxyl groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G69/00Macromolecular compounds obtained by reactions forming a carboxylic amide link in the main chain of the macromolecule
    • C08G69/02Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids
    • C08G69/08Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids derived from amino-carboxylic acids
    • C08G69/10Alpha-amino-carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/12Organic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/26Vacuum evaporation by resistance or inductive heating of the source
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/54Controlling or regulating the coating process
    • C23C14/541Heating or cooling of the substrates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/60Deposition of organic layers from vapour phase
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/02Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by baking
    • B05D3/0209Multistage baking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/04Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by exposure to gases
    • B05D3/0493Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by exposure to gases using vacuum
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/55Design of synthesis routes, e.g. reducing the use of auxiliary or protecting groups

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

本发明公开了一种氨基酸螺旋阵列薄膜及其制备方法,该氨基酸螺旋阵列薄膜包括基底和均匀沉积在基底上的氨基酸螺旋阵列;每个氨基酸螺旋由带有修饰基团的氨基酸自组装得到;氨基酸选自二十种常见天然氨基酸或其相邻同分异构体中的一种或多种;修饰基团包括N端保护基团、C端保护基团,N端保护基团选自苄氧羰基、脂基、叔丁氧羰基、9‑芴甲氧羰基中的一种或多种;C端保护基团选自硝基苯酯、脂氧基、酰胺基中的一种或多种。制备得到的氨基酸薄膜上,氨基酸自组装体呈螺旋状阵列排布,且所有的螺旋旋向统一,并可对其旋向进行调控。该氨基酸螺旋阵列薄膜的形貌特征对于其物理化学性质以及相关领域功能器件的设计开发及应用具有十分重要的意义。

Description

一种氨基酸螺旋阵列薄膜及其制备方法
技术领域
本发明涉及生物有机自组装超结构材料和表面功能结构的技术领域,尤其涉及一种氨基酸螺旋阵列薄膜及其制备方法。
背景技术
环境友好、生物相容的自组装超结构与基于其设计制造的功能器件会引发人类生活方式的革命。但传统的无机或有机自组装超结构制造技术并不能提供完美的生物相容性,而且其制备条件或性能调控工艺复杂(需要苛刻的温度、压力或其他极端环境条件),难以满足生物-器件界面融合交互的需求。而以氨基酸为代表的生物有机小分子具有原料来源广泛、设计灵活度高、制备简单等优异的材料特性,并且具有固有的生物相容性。因此,利用氨基酸等生物有机小分子智能组装、界面修饰和阵列集成,可制备形貌尺寸多样、性能可控的超结构体系,进而可设计构建各种生物有机功能器件,从而在生物-器件界面交互中具有广阔的应用前景。而阵列集成又可以大大拓展单一生物有机自组装体的形貌与性能,并且可以规模化制备,便于后续器件的设计制造,更成为当前的科技前沿。因此,将生物有机自组装体系进一步阵列组装,可集成单一组装体的物化性能,从而有望实现商业化。因此,越来越多的研究聚焦于生物有机小分子自组装体系的阵列排列。
当前,生物有机小分子自组装超结构阵列集成工艺主要有滴涂法水平沉积、电/磁场辅助排布、外力牵引辅助排布或模板辅助排布等。其中滴涂法水平沉积仅对球形自组装体适用;电/磁场辅助排布则要求自组装体具有极性或磁性性能;外力牵引辅助排布与模板辅助排布的精度较低且阵列形貌受加工工艺的限制。相比之下,物理气相沉积可以将固态的生物有机材料直接升华并沉积在基底表面,得到形貌规则的自组装阵列结构,免去了溶剂的使用,具有从分子自组装到大规模阵列集成一步到位的独特优势。但截至目前,物理气相沉积制备生物有机小分子自组装阵列的技术鲜有报道,目前仅了解到个别短肽(如二苯丙氨酸)在物理气相沉积中可制备出阵列薄膜结构(Nat.Nanotechnol.4,849-854(2009);Nano Lett.9,3111-3115(2009))。但该技术方案制备得到的阵列薄膜中单根自组装体仅停留在纵向垂直方向,结构单一,形性调控性差;而且肽的合成成本较高,限制了其自组装阵列薄膜的大规模推广使用。因此,对于利用结构简单的生物有机小分子制备复杂的拓扑阵列薄膜结构,尤其是具有手性特征的螺旋阵列结构,相关的制备工艺方法、阵列形貌调控以及物化性能表征和应用等,仍未有报道。
发明内容
针对现有技术存在的上述问题,本发明公开了一种氨基酸螺旋阵列薄膜及其制备方法,制备工艺简单、可控,重复性高,制备得到的氨基酸薄膜上,自组装体呈螺旋状阵列均匀排布,且所有的螺旋旋向统一,并可对其旋向进行调整。该氨基酸薄膜的螺旋状阵列的形貌特征对于其物理化学性质(如光学性能、电学性能和机械性能等),以及相关领域功能器件的设计开发及应用具有十分重要的意义。
具体技术方案如下:
一种氨基酸螺旋阵列薄膜,包括基底和均匀沉积在所述基底上的氨基酸螺旋阵列;
每个氨基酸螺旋由带有修饰基团的氨基酸自组装得到;
所述氨基酸选自二十种常见天然氨基酸(α-氨基酸)中的甘氨酸、丙氨酸、缬氨酸、亮氨酸、异亮氨酸、甲硫氨酸(蛋氨酸)、脯氨酸、色氨酸、丝氨酸、酪氨酸、半胱氨酸、苯丙氨酸、天门冬酰胺、谷氨酰胺、苏氨酸、天冬氨酸、谷氨酸、赖氨酸、精氨酸、组氨酸,或者是上述天然氨基酸的相邻同分异构体中的一种或多种;
所述修饰基团包括N端保护基团和C端保护基团,所述N端保护基团选自苄氧羰基、脂基、叔丁氧羰基、9-芴甲氧羰基中的一种或多种;所述C端保护基团选自硝基苯酯、脂氧基、酰胺基中的一种或多种。
上述的相邻同分异构体指的是上述二十种天然氨基酸各自对应的β-氨基酸,其与各自对应的天然氨基酸(α-氨基酸)的性质极为类似。
本发明首次公开了一种氨基酸自组装薄膜,该薄膜均匀沉积于基底上,薄膜中的氨基酸自组装体呈螺旋阵列均匀排布。并且,所述氨基酸螺旋阵列的旋向统一,为顺时针或逆时针。通过调整作为原料的氨基酸的手性可以对获得的氨基酸螺旋阵列的旋向进行调控。
具体的,当采用原料中的氨基酸为L型,则制备得到的氨基酸螺旋阵列呈顺时针旋转;当采用的氨基酸为D型,则制备得到的氨基酸螺旋阵列呈逆时针旋转。
所述氨基酸螺旋的直径范围为300~650μm,且直径分布较窄,尺寸较为均一。
本发明中制备的氨基酸螺旋阵列薄膜对沉积的基底没有特殊要求,材质可以是金属、玻璃或聚合物,其性质可以是亲水性基底,也可是疏水性基底,可以是导电基底、导热基底,也可以是绝缘基底;可以是柔性基底,也可以是刚性基底;可以是无机材质基底,也可以是有机材质基底;可以是透明基底,也可以是半透明和不透明基底。可见,其对基底具有极佳的普适性。
所述基底的尺寸根据所需阵列的尺寸可任意调整。
优选的,所述氨基酸选自L-苯丙氨酸或D-苯丙氨酸,所述N端保护基团选自叔丁氧羰基,所述C端保护基团选自硝基苯酯。
本发明还公开了所述氨基酸螺旋阵列薄膜的制备方法,采用物理气相沉积制备,具体包括:
将带有修饰基团的氨基酸原料置于反应腔室的蒸发舟内,经真空蒸发镀膜法,在基底表面沉积得到自组装的氨基酸螺旋阵列薄膜。
所述氨基酸选自甘氨酸、丙氨酸、缬氨酸、亮氨酸、异亮氨酸、甲硫氨酸(蛋氨酸)、脯氨酸、色氨酸、丝氨酸、酪氨酸、半胱氨酸、苯丙氨酸、天门冬酰胺、谷氨酰胺、苏氨酸、天冬氨酸、谷氨酸、赖氨酸、精氨酸、组氨酸,或者是上述天然氨基酸的相邻同分异构体中的一种或多种;
所述修饰基团包括N端保护基团和C端保护基团,所述N端保护基团选自苄氧羰基、脂基、叔丁氧羰基、9-芴甲氧羰基等;所述C端保护基团选自硝基苯酯、脂氧基、酰胺基等。
优选的,所述带有修饰基团的氨基酸原料选自叔丁氧羰基-L-苯丙氨酸-硝基苯酯或叔丁氧羰基-D-苯丙氨酸-硝基苯酯。
本发明采用物理气相沉积工艺,具体为真空蒸发镀膜法,以特定的带有修饰基团的氨基酸为原料,首次制备得到氨基酸自组装螺旋阵列结构。并且,根据选择的原料氨基酸的手性可以对制备得到的氨基酸螺旋阵列的旋向进行调控,并且根据修饰基团的不同使得制备得到的氨基酸螺旋阵列具有不同的特性;通过对沉积工艺参数的调控实现对制备的氨基酸螺旋阵列的直径进行调整。该制备工艺中,原料的选择以及蒸发舟与基底的间距尤为关键。经试验发现,若不对该氨基酸进行修饰,以苯丙氨酸为例,若仅采用L-苯丙氨酸或D-苯丙氨酸为原料,制备的氨基酸自组装薄膜不具有螺旋阵列的特殊形貌。而若将修饰的L-苯丙氨酸与修饰的D-苯丙氨酸共混作为原料,也同样无法得到规整、均一的氨基酸螺旋阵列薄膜。此外,蒸发舟与基底的间距也同样决定了是否能沉积得到目标产物,本发明中将该间距控制为1~5cm(气相沉积装置需要定制,但除蒸发舟与基底的间距为特殊尺寸外,装置的其它部件与尺寸均与现有技术中的常用气相沉积装置ZFS-500没有区别),可以保证高效率地沉积得到氨基酸螺旋阵列薄膜。而若采用常规的气相沉积的设备(蒸发舟与基底的间距较大,一般为10~40cm),48h内基底上无法观察到明显的自组装薄膜结构。
发明人还做了进一步的对比试验,采用与本发明中相同的原料,但采用溶剂挥发法进行氨基酸自组装,但结果发现,制备的薄膜结构不具有螺旋性。说明本发明中特殊的原料选择与特定的物理气相沉积工艺两者缺一不可。
所述真空蒸发镀膜法:
将反应腔室抽真空至真空度≤5×10-6mbar,先加热至所述带有修饰基团的氨基酸原料的升华温度,再加热至最高温度保温一段时间;
所述最高温度为200~220℃;
从升温至升华温度到最高温度保温结束的总时间记为沉积时间,选自15~60min。
经试验发现,通过调控真空蒸发镀膜工艺中沉积时间与原料的用量还可以进一步对制备的氨基酸螺旋阵列的形貌进行调控。
当沉积时间过短,制备得到的氨基酸螺旋阵列组装的密度较低;但当沉积时间过长,制备得到的氨基酸螺旋阵列由于组装的密度过高而无法明显观察到螺旋结构。
优选的,所述沉积时间为30~60min。该优选的条件下制备得到的氨基酸螺旋阵列密度适中,螺旋结构明显,螺旋阵列的直径分布窄,尺寸更为均一。
当原料的用量过少或过多同样会导致制备得到的氨基酸螺旋阵列组装的密度发生变化,优选的,在本发明采用的设备中,加入的原料质量为3~20mg,进一步优选为5~10mg。在该原料用量下制备得到的氨基酸螺旋阵列密度适中,螺旋结构明显,螺旋阵列的直径分布窄,尺寸更为均一。
但应说明的是,若设备尺寸发生变化,遵循本发明中的原则可以对原料的用量进行适应性的调整,而该原料质量的调整仍属于本发明保护的范围。
为保证沉积的氨基酸螺旋阵列更为均匀、过程可控,优选的,进行分段加热进行沉积,以修饰的苯丙氨酸为原料为例,例如:
第一段加热:设定10分钟从室温升高至60℃;第二段加热:设定10分钟从温度60℃升高至160℃;第三段加热:设定一段时间从温度160℃升高至220℃;第四段加热:维持温度在220℃下一段时间。
上述加热过程中,沉积时间从第三段加热开始,到第四段加热结束。
与现有技术相比,本发明具有如下有益效果:
(1)本发明通过物理气相沉积的方法首次制备出螺旋形貌的生物有机自组装阵列,对螺旋形貌微纳阵列的物理化学性能研究有重要意义。该制备工艺流程简单,系统自动化集成程度高,可批量和规模化制备,结果重复性好;并且避免了溶剂的使用,成本可控,污染较少。
(2)本发明制备的生物有机螺旋阵列薄膜,由氨基酸自组装而成,并且具有特殊的螺旋阵列形貌,通过原料氨基酸的手性可以调控生物有机自组装螺旋阵列的旋向,对沉积工艺的调整还可以调控螺旋阵列的形貌;对不同旋向的螺旋阵列的物理化学性能,尤其是光、电、磁、机械等性能的研究具有重要意义。
附图说明
图1为实施例1制备的氨基酸螺旋阵列在不同放大倍数下的SEM图;
图2为实施例1制备的氨基酸螺旋阵列直径统计分布图;
图3为实施例1制备的氨基酸螺旋阵列的共聚焦显微镜形貌图;
图4为实施例1制备的氨基酸螺旋阵列的荧光显微镜图;
图5为实施例15制备的氨基酸螺旋阵列的SEM图;
图6为实施例17制备的氨基酸螺旋阵列的SEM图;
图7为对比例1制备的L型-苯丙氨酸在玻璃基底上沉积薄膜的SEM图;
图8为对比例3通过溶剂挥发法在玻璃基底上沉积的氨基酸薄膜的SEM图;
图9为实施例21制备的氨基酸螺旋阵列在不同放大倍数下的SEM图;
图10为实施例21制备的氨基酸螺旋阵列直径统计分布图;
图11为实施例21制备的氨基酸螺旋阵列的共聚焦显微镜形貌图;
图12为对比例4制备的氨基酸自组装阵列薄膜的SEM图。
具体实施方式
下面结合实施例和对比例对本发明作进一步详细的描述,但本发明的实施方式不限于此。
实施例1
首先,称量5mg的叔丁氧羰基-(L型)苯丙氨酸-硝基苯酯粉末(Boc-(L)F-ONp)(Chem-Impex Int’l.Inc.);将称量好的叔丁氧羰基-(L型)苯丙氨酸-硝基苯酯粉末置于主发生腔室中的蒸发舟内;调节玻璃基底(2cm×2cm)与蒸发舟间距,设置为1.5cm;完成后关闭主发生腔室门形成封闭环境;打开抽气泵对主发生腔室进行预抽真空至0.1mbar,并检查主发生腔室的气密性后用抽气泵将主发生腔室抽真空至1×10-5mbar左右,然后打开分子泵进一步对主发生腔室抽真空至真空度小于等于5×10-6mbar;待真空度达到要求后,在主控制台的温度控制面板上设定温度控制程序以及沉积时间控制程序,本实施例中采用四次分段加热,第一段加热为:设定10分钟从室温升高至60℃;第二段加热为:设定10分钟从温度60℃升高至160℃;第三段加热为:设定20分钟从温度160℃升高至220℃;第四段加热为:设定维持温度在220℃下15分钟;待沉积完成后,驱动挡板终止沉积;打开循环水冷却装置对蒸发舟和主发生腔室进行冷却;冷却至室温后,在玻璃基底上即已获得氨基酸自组装螺旋阵列薄膜。
图1为本实施例制备的氨基酸自组装螺旋阵列在不同放大倍数下的SEM图,观察(a)图可以发现,制备得到的氨基酸螺旋阵列均匀分布在基底上,螺旋的旋向一致,顺时针旋转。观察(b,c)图可以发现,螺旋阵列由大量氨基酸针状晶体纤维排列组装而成。
图2为本实施例制备的氨基酸自组装螺旋阵列的直径统计分布图,统计结果得出该氨基酸螺旋阵列的统计平均直径为550±36μm,直径分布窄,较为均一。
图3为本实施例制备的氨基酸螺旋阵列的共聚焦显微镜图,结合图1和该图可以发现,螺旋阵列中心处自组装晶体纤维紧密聚集成簇,然后沿顺时针螺旋向外扩展排列。
图4为本实施例制备的氨基酸螺旋阵列的荧光显微镜图片。在荧光显微镜下能够观察到氨基酸螺旋阵列具有光波导效应,荧光可通过阵列内的晶体纤维传递到外层,导致螺旋边缘亮度较高而中间较暗。
实施例2~14
制备工艺与实施例1中基本相同,区别仅在于将基底进行了替换,分别替换为硅片、二氧化硅片、云母片(无机绝缘基底),铜片、铝片、金薄膜(导电导热金属基底),ITO导电玻璃片(无机导电基底),石墨片(疏水导电基底),铝箔、金箔、镀银的PVDF(柔性导电基底)和PDMS、PVA(柔性绝缘基底)。
以上各实施例中制备得到的氨基酸螺旋阵列的形貌与实施例1中的基本相似,说明,本发明中公开的氨基酸螺旋阵列的制备工艺对各种材质与性质的基底具有普适性。
实施例15
制备工艺与实施例1中基本相同,区别仅在于沉积时间有所区别,将沉积时间缩短至15分钟,具体为:第一段加热为:设定10分钟从室温升高至60℃;第二段加热为:设定10分钟从温度60℃升高至160℃;第三段加热为:设定10分钟从温度160℃升高至220℃;第四段加热为:设定维持温度在220℃下5分钟。
图5为本实施例制备的氨基酸螺旋阵列的SEM图。从图中可以看出,本实施例制备得到的氨基酸螺旋阵列的形貌与实施例1中的旋向一致,也为顺时针旋转;但螺旋阵列组装密度较低。
实施例16
制备工艺与实施例1中基本相同,区别仅在于沉积时间有所区别,将沉积时间调整至60分钟,具体为:第一段加热为:设定10分钟从室温升高至60℃;第二段加热为:设定10分钟从温度60℃升高至160℃;第三段加热为:设定30分钟从温度160℃升高至220℃;第四段加热为:设定维持温度在220℃下30分钟。
经SEM表征,本实施制备的氨基酸螺旋阵列的形貌与实施例1中的基本类似。旋向也一致,均为顺时针旋转。
实施例17
制备工艺与实施例1中基本相同,区别仅在于沉积时间有所区别,将沉积时间延长至120分钟,具体为:第一段加热为:设定10分钟从室温升高至60℃;第二段加热为:设定10分钟从温度60℃升高至160℃;第三段加热为:设定60分钟从温度160℃升高至220℃;第四段加热为:设定维持温度在220℃下60分钟。
图6为本实施例制备的氨基酸螺旋阵列的SEM图。从图中可以看出,本实施例制备得到的氨基酸螺旋阵列密度较高,螺旋结构已经不明显。
对比实施例1与实施例15~17分别制备的氨基酸螺旋阵列的SEM图可知,氨基酸螺旋阵列可通过调控沉积时间调整其阵列形貌。
实施例18
制备工艺与实施例1中基本相同,区别仅在于加入的叔丁氧羰基-(L型)苯丙氨酸-硝基苯酯粉末的质量有所区别,具体为减少原料质量至0.5mg。
经SEM表征,本实施例制备得到的氨基酸螺旋阵列的形貌与实施例15中制备的氨基酸螺旋阵列基本相似。
实施例19
制备工艺与实施例1中基本相同,区别仅在于加入的叔丁氧羰基-(L型)苯丙氨酸-硝基苯酯粉末的质量调整为10mg。
经SEM表征,本实施例制备得到的氨基酸螺旋阵列的形貌与实施例1中制备的基本相似。
实施例20
制备工艺与实施例1中基本相同,区别仅在于加入的叔丁氧羰基-(L型)苯丙氨酸-硝基苯酯粉末的质量增加至50mg。
经SEM表征,本实施例制备得到的氨基酸螺旋阵列的形貌与实施例17中制备的氨基酸螺旋阵列基本相似。
对比实施例1与实施例18~20分别制备的氨基酸螺旋阵列的SEM图可知,氨基酸螺旋阵列还可通过调控原料的质量来调整其阵列形貌。
对比例1
制备工艺与实施例1中基本相同,区别仅在于以等质量的L型-苯丙氨酸为原料。
图7为L型-苯丙氨酸在玻璃基底上沉积的SEM图。由SEM图可以看出,本对比例制备得到紧密排列的片状晶体阵列薄膜,不具有螺旋结构,说明,本发明中公开的氨基酸螺旋阵列必须由端基保护的氨基酸才能制备而成。
对比例2
制备工艺与实施例1中基本相同,区别仅在于,该对比例中采用的装置为常规物理气象沉积装置,型号为ZFS-500,该装置中,基底与蒸发舟的间距为40cm。
试验发现,利用该常规装置,采用相同的沉积工艺无法在基底上成功沉积得到氨基酸螺旋阵列薄膜,说明,本发明中公开的氨基酸螺旋阵列必须由较小的基底与蒸发舟间距才能制备而成。
对比例3
制备工艺与实施例1中基本相同,区别仅在于,该对比例中采用溶剂挥发法制备氨基酸薄膜,具体为:将Boc-(L)F-ONp的六氟异丙醇(HFIP)溶液直接滴在玻璃基底上,待HFIP挥发后形成氨基酸薄膜。
图8为通过溶剂挥发法在玻璃基底上沉积的氨基酸薄膜SEM图片。由SEM图可以看出,本对比例制备得到的氨基酸薄膜不具有螺旋结构,说明,本发明中公开的氨基酸螺旋阵列必须由端基保护的氨基酸经真空蒸镀制备工艺才能制备而成。
实施例21
制备工艺与实施例1中基本相同,区别仅在于,将原料替换为等质量的叔丁氧羰基-(D型)苯丙氨酸-硝基苯酯粉末。
图9为本实施例制备的氨基酸自组装螺旋阵列在不同放大倍数下的SEM图,从(a)图可以观察到氨基酸自组装形成螺旋阵列结构。观察(b)图可以发现螺旋阵列均呈逆时针旋转,旋向一致,与实施例1中制备的氨基酸螺旋阵列旋向正好相反,成手性对称。
图10为本实施例制备的氨基酸自组装螺旋阵列的直径统计分布图,统计结果得出该氨基酸螺旋阵列的统计平均直径为550±42μm,与实施例1中尺寸相近,直径分布窄,较为均一。
图11为本实施例制备的氨基酸自组装螺旋阵列的共聚焦显微镜形貌图,从该图可以发现,螺旋中心处晶体纤维紧密聚集成簇,然后沿逆时针螺旋向外扩展排列。
说明,本发明中公开的氨基酸螺旋阵列可通过调控氨基酸的手性来调整其螺旋旋向。
对比例4
制备工艺与实施例1中基本相同,区别仅在于,将原料替换为等质量混合的叔丁氧羰基-(L型)苯丙氨酸-硝基苯酯粉末与叔丁氧羰基-(D型)苯丙氨酸-硝基苯酯粉末,总质量为5mg。
图12为本对比例制备的氨基酸自组装薄膜的SEM图。从SEM图可以看出,本实施例制备的氨基酸自组装阵列是无序、不规整、不均一的薄膜,说明,本发明中公开的氨基酸螺旋阵列必须由单一手性的修饰氨基酸才能制备而成。

Claims (5)

1.一种氨基酸螺旋阵列薄膜,其特征在于,包括基底和均匀沉积在所述基底上的氨基酸螺旋阵列;
每个氨基酸螺旋由带有修饰基团的氨基酸自组装得到;
所述的氨基酸螺旋阵列薄膜采用物理气相沉积制备,具体包括:
将带有修饰基团的氨基酸原料置于反应腔室的蒸发舟内,经真空蒸发镀膜法,在基底表面沉积得到自组装的氨基酸螺旋阵列薄膜;
所述带有修饰基团的氨基酸原料选自叔丁氧羰基-L-苯丙氨酸-硝基苯酯或叔丁氧羰基-D-苯丙氨酸-硝基苯酯;
所述蒸发舟与所述基底的间距为1~5 cm。
2.根据权利要求1所述的氨基酸螺旋阵列薄膜,其特征在于:
所述氨基酸螺旋阵列的旋向统一,为顺时针或逆时针;
所述氨基酸螺旋的直径范围为300~650 μm。
3.根据权利要求1所述的氨基酸螺旋阵列薄膜,其特征在于,所述基底的材质选自导电或绝缘、透明或不透明、导热、有机或无机、柔性或刚性的金属、玻璃或聚合物。
4.根据权利要求1所述的氨基酸螺旋阵列薄膜,其特征在于,所述真空蒸发镀膜法:
将反应腔室抽真空至真空度≤5×10-6 mbar,先加热至所述带有修饰基团的氨基酸原料的升华温度,再加热至最高温度保温一段时间;
所述最高温度为200~220 ℃;
从升温至升华温度到最高温度保温结束的总时间记为沉积时间,选自15~60 min。
5.根据权利要求4所述的氨基酸螺旋阵列薄膜,其特征在于,所述沉积时间,选自30~60min。
CN202210201463.9A 2022-03-03 2022-03-03 一种氨基酸螺旋阵列薄膜及其制备方法 Active CN114605290B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202210201463.9A CN114605290B (zh) 2022-03-03 2022-03-03 一种氨基酸螺旋阵列薄膜及其制备方法
US18/117,016 US20230203339A1 (en) 2022-03-03 2023-03-03 Amino Acid Helical Array Film and Preparation Method Thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210201463.9A CN114605290B (zh) 2022-03-03 2022-03-03 一种氨基酸螺旋阵列薄膜及其制备方法

Publications (2)

Publication Number Publication Date
CN114605290A CN114605290A (zh) 2022-06-10
CN114605290B true CN114605290B (zh) 2023-04-07

Family

ID=81861137

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210201463.9A Active CN114605290B (zh) 2022-03-03 2022-03-03 一种氨基酸螺旋阵列薄膜及其制备方法

Country Status (2)

Country Link
US (1) US20230203339A1 (zh)
CN (1) CN114605290B (zh)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5654451B1 (en) * 1993-01-14 2000-02-22 Magainin Pharma Amino acids and peptides having modified c-terminals and modified n-terminals
MX2008005364A (es) * 2005-10-25 2008-11-20 Artificial Cell Technologies Inc Composiciones inmunogenicas y metodos de uso.
CN102786030B (zh) * 2012-07-06 2014-03-12 江苏大学 一种通过溶剂处理制备多肽纳米薄膜的方法
CN114082971A (zh) * 2020-08-05 2022-02-25 上海交通大学 手性金属纳米螺旋纤维阵列的制备方法及应用

Also Published As

Publication number Publication date
CN114605290A (zh) 2022-06-10
US20230203339A1 (en) 2023-06-29

Similar Documents

Publication Publication Date Title
Zhang et al. Microfabrication of peptide self-assemblies: inspired by nature towards applications
Park et al. Vertically aligned cyclo-phenylalanine peptide nanowire-based high-performance triboelectric energy generator
Izaki et al. Low‐Temperature Electrodeposition of Room‐Temperature Ultraviolet‐Light‐Emitting Zinc Oxide
KR101884701B1 (ko) 고분율 베타상, 압전성 및 강유전성 특성을 가지는 pvdf 나노섬유막 및 그 제조방법
US11280017B2 (en) Substrate for a three-dimensional cell culture, its preparation and use
US9000449B2 (en) Semiconductor substrate, method for producing semiconductor substrate, substrate for semiconductor growth, method for producing substrate for semiconductor growth, semiconductor element, light-emitting element, display panel, electronic element, solar cell element, and electronic device
TWI337204B (zh)
JP4403618B2 (ja) カーボンナノチューブの製造方法
CN102094179B (zh) RB-SiC基底反射镜表面改性层结构及制备方法
CN114605290B (zh) 一种氨基酸螺旋阵列薄膜及其制备方法
CN113629183B (zh) 苯丙氨酸二肽基共自组装产物及其制备方法和应用
US9437823B2 (en) Production device for a graphene thin film
KR101807459B1 (ko) 결함-치유 환원된 그래핀 산화물 히터를 이용한 자가치유 고분자의 자가치유 방법
Amaral et al. Micro-and nano-sized peptidic assemblies prepared via solid-vapor approach: Morphological and spectroscopic aspects
US8685160B2 (en) Substrate having fullerene thin wires and method for manufacture thereof
US9856578B2 (en) Methods of producing large grain or single crystal films
CN112538180A (zh) 一种水辅助聚氧化乙烯单晶薄膜及其制备方法
CN115094379B (zh) 一种一维聚芴链及其制备方法
Li et al. Influence of substrates on formation of zinc oxide nanostructures by a novel reducing annealing method
CN1800439A (zh) 具有ito透明导电膜的基板及其制造方法
CN1304527C (zh) 一种发光薄膜及其制备方法与用途
CN103094494B (zh) 一种衬底电极的修饰方法及其应用
CN102850567B (zh) 一种具有取向生长结构细胞的材料的制备方法
Zheng et al. Chirality-driven molecular packing structure difference and potential application for 3D printing of a series of bola-type Ala–Phe dipeptides
CN115704086A (zh) 一种离子同极溅射镀膜装置及方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant