CN114599201B - Micro-spray phase change liquid cooling soaking plate for server, cooling operation system and control method - Google Patents
Micro-spray phase change liquid cooling soaking plate for server, cooling operation system and control method Download PDFInfo
- Publication number
- CN114599201B CN114599201B CN202210094752.3A CN202210094752A CN114599201B CN 114599201 B CN114599201 B CN 114599201B CN 202210094752 A CN202210094752 A CN 202210094752A CN 114599201 B CN114599201 B CN 114599201B
- Authority
- CN
- China
- Prior art keywords
- spray
- liquid
- plate
- micro
- cavity
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000007788 liquid Substances 0.000 title claims abstract description 195
- 239000007921 spray Substances 0.000 title claims abstract description 192
- 238000001816 cooling Methods 0.000 title claims abstract description 49
- 238000002791 soaking Methods 0.000 title claims abstract description 37
- 230000008859 change Effects 0.000 title claims abstract description 27
- 238000000034 method Methods 0.000 title claims abstract description 11
- 239000012530 fluid Substances 0.000 claims abstract description 31
- 230000017525 heat dissipation Effects 0.000 claims abstract description 20
- 238000001704 evaporation Methods 0.000 claims abstract description 17
- 238000010521 absorption reaction Methods 0.000 claims abstract description 6
- 238000005507 spraying Methods 0.000 claims abstract 16
- 239000002826 coolant Substances 0.000 claims description 39
- 239000012071 phase Substances 0.000 claims description 26
- 238000009833 condensation Methods 0.000 claims description 14
- 230000005494 condensation Effects 0.000 claims description 14
- 230000008020 evaporation Effects 0.000 claims description 14
- 238000007872 degassing Methods 0.000 claims description 11
- 238000010438 heat treatment Methods 0.000 claims description 10
- 238000000926 separation method Methods 0.000 claims description 8
- 239000007791 liquid phase Substances 0.000 claims description 5
- 230000009471 action Effects 0.000 claims description 4
- 230000003068 static effect Effects 0.000 claims 1
- 230000007704 transition Effects 0.000 claims 1
- 238000002347 injection Methods 0.000 abstract description 3
- 239000007924 injection Substances 0.000 abstract description 3
- 230000007423 decrease Effects 0.000 description 6
- 238000000889 atomisation Methods 0.000 description 5
- 238000010586 diagram Methods 0.000 description 4
- 230000004907 flux Effects 0.000 description 4
- 230000008016 vaporization Effects 0.000 description 3
- 230000002745 absorbent Effects 0.000 description 2
- 239000002250 absorbent Substances 0.000 description 2
- 230000003993 interaction Effects 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 238000005086 pumping Methods 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 239000004519 grease Substances 0.000 description 1
- 230000020169 heat generation Effects 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 239000003595 mist Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 238000009834 vaporization Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K7/00—Constructional details common to different types of electric apparatus
- H05K7/20—Modifications to facilitate cooling, ventilating, or heating
- H05K7/2029—Modifications to facilitate cooling, ventilating, or heating using a liquid coolant with phase change in electronic enclosures
- H05K7/20345—Sprayers; Atomizers
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K7/00—Constructional details common to different types of electric apparatus
- H05K7/20—Modifications to facilitate cooling, ventilating, or heating
- H05K7/2029—Modifications to facilitate cooling, ventilating, or heating using a liquid coolant with phase change in electronic enclosures
- H05K7/20309—Evaporators
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K7/00—Constructional details common to different types of electric apparatus
- H05K7/20—Modifications to facilitate cooling, ventilating, or heating
- H05K7/2029—Modifications to facilitate cooling, ventilating, or heating using a liquid coolant with phase change in electronic enclosures
- H05K7/20318—Condensers
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K7/00—Constructional details common to different types of electric apparatus
- H05K7/20—Modifications to facilitate cooling, ventilating, or heating
- H05K7/2029—Modifications to facilitate cooling, ventilating, or heating using a liquid coolant with phase change in electronic enclosures
- H05K7/20327—Accessories for moving fluid, for connecting fluid conduits, for distributing fluid or for preventing leakage, e.g. pumps, tanks or manifolds
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K7/00—Constructional details common to different types of electric apparatus
- H05K7/20—Modifications to facilitate cooling, ventilating, or heating
- H05K7/2029—Modifications to facilitate cooling, ventilating, or heating using a liquid coolant with phase change in electronic enclosures
- H05K7/20381—Thermal management, e.g. evaporation control
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K7/00—Constructional details common to different types of electric apparatus
- H05K7/20—Modifications to facilitate cooling, ventilating, or heating
- H05K7/2039—Modifications to facilitate cooling, ventilating, or heating characterised by the heat transfer by conduction from the heat generating element to a dissipating body
- H05K7/20509—Multiple-component heat spreaders; Multi-component heat-conducting support plates; Multi-component non-closed heat-conducting structures
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02D—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
- Y02D10/00—Energy efficient computing, e.g. low power processors, power management or thermal management
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Cooling Or The Like Of Electrical Apparatus (AREA)
Abstract
Description
技术领域technical field
本发明涉及服务器芯片散热技术领域,具体涉及一种服务器用微喷雾相变液冷均热板、散热运行系统及控制方法。The invention relates to the technical field of heat dissipation of server chips, in particular to a micro-spray phase-change liquid-cooled soaking plate for servers, a heat dissipation operation system and a control method.
背景技术Background technique
近年来全球数据中心的数量和规模迅速增长,机房高密度服务器设备不断增加,其内置CPU芯片或其他发热芯片正朝着微型化、高频、高功率密度的方向呈指数级增长,发热量急剧增加。In recent years, the number and scale of data centers around the world have grown rapidly, and the high-density server equipment in the computer room has continued to increase. Its built-in CPU chips or other heat-generating chips are growing exponentially in the direction of miniaturization, high frequency, and high power density, and the heat generation is sharp. Increase.
针对高热流密度的服务器微小型芯片,液冷散热方式逐渐成为主流散热手段,但直接液冷方式易发生冷量泄露,造成印刷电路短路风险,因此液冷散热往往和其他传热元器件复合使用。均热板是一种性能优越的传热元器件,具有热损小、效率高、响应快的特点。在均热板冷凝板外部复合液冷板等散热模组是比较常见的散热组合方式。在高热流密度环境下,微射流单相液冷与均热板的复合往往能获得优越的散热性能,但这种方式仍然存在以下不足:一方面喷射腔内的冷却液受压不均,致使喷射不均产生发热热点;另一方面喷射腔内易积压冷却液,造成循环死角。Liquid-cooled heat dissipation has gradually become the mainstream heat dissipation method for server microchips with high heat flux density. However, direct liquid-cooled heat dissipation is prone to leakage of cooling capacity, resulting in the risk of short circuit in printed circuits. Therefore, liquid-cooled heat dissipation is often used in combination with other heat transfer components. . Vapor chamber is a heat transfer component with superior performance, which has the characteristics of small heat loss, high efficiency and fast response. It is a common way to combine heat dissipation with a heat dissipation module such as a composite liquid cold plate outside the vapor chamber condensing plate. In the environment of high heat flux density, the combination of micro-jet single-phase liquid cooling and soaking plate can often achieve superior heat dissipation performance, but this method still has the following shortcomings: Uneven injection produces hot spots of heat; on the other hand, coolant tends to accumulate in the injection cavity, resulting in a dead angle of circulation.
发明内容SUMMARY OF THE INVENTION
为了克服现有技术存在的缺点与不足,本发明提供一种服务器用微喷雾相变液冷均热板,本发明将均热板与喷雾冲击相结合用于解决高热流密度服务器散热的难题。In order to overcome the shortcomings and deficiencies of the prior art, the present invention provides a micro-spray phase-change liquid-cooled soaking plate for servers, which combines the soaking plate and the spray impact to solve the problem of heat dissipation for high heat flux density servers.
本发明的第二个目的是提供一种服务器用散热运行系统。The second object of the present invention is to provide a cooling operation system for a server.
本发明的第三个目的是提供一种服务器用散热运行的控制方法。A third object of the present invention is to provide a method for controlling the cooling operation of a server.
本发明的第一个目的采用如下技术方案:The first purpose of the present invention adopts following technical scheme:
一种服务器用微喷雾相变液冷均热板,设置在服务器发热芯片上部,包括微喷雾液冷模块、均热板本体、进气管道、进液管道以及流体出口管道;A micro-spray phase-change liquid-cooled soaking plate for servers is arranged on the upper part of a server heating chip, and includes a micro-spray liquid-cooling module, a soaking plate body, an air inlet pipe, a liquid inlet pipe and a fluid outlet pipe;
所述微喷雾液冷模块包括顺序层叠的上盖板、喷雾板及冷凝板;The micro-spray liquid cooling module includes a sequentially stacked upper cover plate, a spray plate and a condensation plate;
所述微喷雾液冷模块包括按顺序层叠的上盖板、喷雾板以及冷凝板;所述上盖板设有气体介质入口和流体介质出口;所述气体介质入口与进气管道连通,所述流体介质出口和流体出口管道连通;The micro-spray liquid cooling module includes an upper cover plate, a spray plate and a condensation plate stacked in sequence; the upper cover plate is provided with a gas medium inlet and a fluid medium outlet; the gas medium inlet is communicated with the air inlet pipe, the The fluid medium outlet is communicated with the fluid outlet pipeline;
所述喷雾板包括液体介质入口、液体腔、阵列喷雾孔、气体腔和流体介质出口;所述液体介质入口分别与进液管道、液体腔相连通,构成输送液体冷却介质的通道;所述液体腔用来暂存液体冷却介质,也是液体冷却介质与高压空气初步混合的场所;所述阵列喷雾孔与液体腔相连通,是气液两相介质充分混合的通道,所述气体腔与气体介质入口相连通,用来容纳高压空气;所述喷雾板的流体介质出口与上盖板的流体介质出口上下位置对应相连通;The spray plate includes a liquid medium inlet, a liquid cavity, an array of spray holes, a gas cavity and a fluid medium outlet; the liquid medium inlet is communicated with the liquid inlet pipe and the liquid cavity respectively, forming a channel for conveying liquid cooling medium; the liquid medium The cavity is used to temporarily store the liquid cooling medium, and is also the place where the liquid cooling medium and the high-pressure air are initially mixed; the array of spray holes communicates with the liquid cavity, and is a channel for fully mixing the gas-liquid two-phase medium, and the gas cavity and the gas medium are fully mixed. The inlet is connected to accommodate high-pressure air; the fluid medium outlet of the spray plate is communicated with the upper and lower positions of the fluid medium outlet of the upper cover plate correspondingly;
所述冷凝板包括喷雾腔和集流腔,所述喷雾腔用于为细小液滴群雾化提供充足空间,喷雾腔底部用于接受喷雾冲击,所述集流腔与喷雾板上的流体介质出口上下相连通。The condensation plate includes a spray cavity and a collecting cavity, the spray cavity is used to provide sufficient space for the atomization of fine droplets, the bottom of the spray cavity is used to receive spray impact, the collecting cavity and the fluid medium on the spray plate are The exit is connected up and down.
进一步,阵列喷雾孔与喷雾腔的距离计算如下:Further, the distance between the array spray holes and the spray chamber is calculated as follows:
设阵列喷雾孔中,单个喷雾孔的理论喷雾高度H与理论喷雾圆直径D及喷雾锥角θ的关系为:H=0.5D/tan(θ/2);In the array of spray holes, the relationship between the theoretical spray height H of a single spray hole, the theoretical spray circle diameter D and the spray cone angle θ is: H=0.5D/tan(θ/2);
喷雾腔的面积覆盖喷雾腔的受热面时,喷雾冷却效率最佳,因此以喷雾腔的长度L和宽度W为阵列喷雾面积的边界;When the area of the spray cavity covers the heating surface of the spray cavity, the spray cooling efficiency is the best, so the length L and width W of the spray cavity are used as the boundary of the array spray area;
利用单一的喷雾圆计算整个阵列的喷雾面积,在相同喷嘴入口压力条件下,采用的7×6阵列喷雾孔布局在喷射腔体地面产生的喷雾圆直径需同时满足D>L/6以及D>W/7,得到喷雾空间的最小临界喷雾高度值,由此确定冷凝板结构,从阵列喷雾孔出口底端到喷雾腔体底面的垂直距离大于得到的最小临界喷雾高度值,保证液体冷却介质雾化的充足空间。Using a single spray circle to calculate the spray area of the entire array, under the condition of the same nozzle inlet pressure, the diameter of the spray circle generated on the ground of the spray cavity by the 7×6 array spray hole layout should satisfy both D>L/6 and D> W/7, obtain the minimum critical spray height value of the spray space, thus determine the structure of the condensation plate, the vertical distance from the bottom end of the array spray hole outlet to the bottom surface of the spray cavity is greater than the obtained minimum critical spray height value, to ensure that the liquid cooling medium mist of sufficient space.
进一步,所述阵列喷雾孔的截面积自上往下先减小后增大。Further, the cross-sectional area of the array of spray holes first decreases and then increases from top to bottom.
进一步,所述喷雾板与冷凝板的距离越近,阵列喷雾孔的孔数越多或孔径越小。Further, the closer the distance between the spray plate and the condensation plate is, the larger the number of holes in the array of spray holes or the smaller the hole diameter.
进一步,所述喷雾腔和集流腔的内表面设置三维复杂表面结构,所述三维复杂表面结构包括微通道阵列或微扰流柱阵列。Further, a three-dimensional complex surface structure is provided on the inner surfaces of the spray cavity and the current collecting cavity, and the three-dimensional complex surface structure includes a micro-channel array or a micro-turbulence column array.
进一步,further,
所述均热板本体包括冷凝板、吸液芯、蒸发板以及进液除气管道;所述吸液芯设有Y形槽,所述吸液芯分别烧结在蒸发板的真空腔底面以及对应位置的冷凝板的下表面。The body of the soaking plate includes a condensation plate, a liquid absorption core, an evaporation plate and a liquid inlet and gas removal pipeline; the liquid absorption core is provided with a Y-shaped groove, and the liquid absorption core is sintered on the bottom surface of the vacuum cavity of the evaporation plate and the corresponding position on the lower surface of the condenser plate.
所述蒸发板设有Y形支撑柱、真空腔以及用于注入液体相变工质以及将真空腔抽成低压或真空状态的进液除气孔,所述Y形支撑柱是与蒸发板一体成型加工,所述进液除气孔与进液除气管道相连通。The evaporation plate is provided with a Y-shaped support column, a vacuum cavity and a liquid inlet and degassing hole for injecting a liquid phase change working medium and pumping the vacuum cavity into a low pressure or vacuum state, and the Y-shaped support column is integrally formed with the evaporation plate. During processing, the liquid inlet and degassing holes are communicated with the liquid inlet and degassing pipelines.
本发明的第二个目的采用如下技术方案:The second purpose of the present invention adopts following technical scheme:
一种服务器用微喷雾相变液冷均热板构成的散热运行系统,包括微喷雾相变液冷均热板、气体流动回路及液体冷却循环回路,A heat dissipation operation system composed of a micro-spray phase-change liquid-cooled soaking plate for servers, comprising a micro-spray phase-change liquid-cooled soaking plate, a gas flow loop and a liquid cooling circulation loop,
进一步,所述液体冷却循环系统包括液体冷却介质流经的液体换热循环回路,所述液体换热循环回路包括储液罐、齿轮泵、过滤器、板式换热器、控制针阀、液体流量计、压力变送器及温度传感器;Further, the liquid cooling circulation system includes a liquid heat exchange circulation loop through which the liquid cooling medium flows, and the liquid heat exchange circulation loop includes a liquid storage tank, a gear pump, a filter, a plate heat exchanger, a control needle valve, a liquid flow rate gauges, pressure transmitters and temperature sensors;
以及液体冷却介质由过滤器流出后经旁通阀流回储液罐的液体卸压循环回路。And the liquid cooling medium flows out from the filter and then flows back to the liquid storage tank through the bypass valve.
进一步,所述气体流动回路中气体介质为不凝性的空气,用于辅助进入微喷雾相变液冷均热板的液体冷却介质实现雾化。Further, the gas medium in the gas flow circuit is non-condensable air, which is used to assist the atomization of the liquid cooling medium entering the micro-spray phase change liquid cooling soaking plate.
本发明的第三个目的采用如下技术方案:The 3rd object of the present invention adopts following technical scheme:
一种散热运行系统的控制方法,包括:A control method for a cooling operation system, comprising:
服务器运行时,与发热芯片接触的微喷雾相变液冷均热板的蒸发板受热后,均热板真空腔的液体工质受热蒸发,充满整个真空腔,汽化后的气体遇到温度较低的冷凝板凝结成液态并释放热能;此刻,环境中的空气连续不断地被空气压缩机压缩后进入储气罐形成高压气体,高压气体经过管道输送进入微喷雾相变液冷均热板内,为液体冷却介质实现雾化提供高压气体条件;When the server is running, after the evaporation plate of the micro-spray phase-change liquid-cooled soaking plate in contact with the heating chip is heated, the liquid working medium in the vacuum chamber of the soaking plate is heated and evaporated, filling the entire vacuum chamber, and the vaporized gas encounters a lower temperature. The condensing plate condenses into a liquid state and releases heat energy; at this moment, the air in the environment is continuously compressed by the air compressor and then enters the gas storage tank to form high-pressure gas. Provide high-pressure gas conditions for atomization of liquid cooling medium;
与此同时,参与换热循环的液体冷却介质由齿轮泵输送至微喷雾相变液冷均热板内,在阵列喷雾孔内遇到高压空气后,在高压作用下,液体冷却介质破碎成细小的液滴群并从阵列喷雾孔末端快速喷射至充满低速流动或静止空气的喷雾腔内,在液体表面张力、粘性、空气阻力的相互作用下,逐渐由滴落、平滑流、波状流转变为雾状微细群并冲击至喷雾腔的内表面,依靠喷雾冲击、液滴相变带走由均热板传递的服务器芯片的热量;换热后的气液两相介质进入气液分离装置,分离后的高压空气被直接排至环境中被冷却,液体冷却介质进入换热器被冷却后流回储液罐,依此循环。At the same time, the liquid cooling medium participating in the heat exchange cycle is transported by the gear pump to the micro-spray phase change liquid-cooled soaking plate. After encountering high-pressure air in the array spray holes, the liquid cooling medium is broken into small pieces under the action of high pressure. The droplet group is rapidly sprayed from the end of the array spray holes into the spray chamber filled with low-speed flow or still air. Under the interaction of liquid surface tension, viscosity and air resistance, it gradually changes from dripping, smooth flow, and wavy flow to The mist-like fine groups impact on the inner surface of the spray chamber, and rely on the spray impact and droplet phase change to take away the heat of the server chip transmitted by the vapor chamber; the gas-liquid two-phase medium after heat exchange enters the gas-liquid separation device, and separates After the high-pressure air is directly discharged to the environment to be cooled, the liquid cooling medium enters the heat exchanger to be cooled and then flows back to the liquid storage tank, and circulates accordingly.
本发明的有益效果:Beneficial effects of the present invention:
(1)本发明采用空气作为不凝性的高压气体,具有易获得、分离后无须额外装置进行收集的优点,使用高压空气辅助液冷冷却介质实现雾化,产生的喷雾更均匀,喷雾冲击加剧,冷却效果更好;(1) The present invention uses air as a non-condensable high-pressure gas, which has the advantages of being easy to obtain, and no additional device is required for collection after separation. The high-pressure air is used to assist the liquid-cooled cooling medium to achieve atomization, and the generated spray is more uniform, and the spray impact is aggravated. , the cooling effect is better;
(2)本发明采用阵列喷雾孔,在保证喷雾效率前提下,降低喷雾高度,减小微喷雾冷却模块体积,以适应服务器狭小空间下CPU或其他高热流密度芯片的散热需求;(2) The present invention adopts an array of spray holes, and under the premise of ensuring the spray efficiency, the spray height is reduced, and the volume of the micro-spray cooling module is reduced, so as to meet the heat dissipation requirements of the CPU or other high heat flux density chips in the narrow space of the server;
(3)本发明将能快速均匀导热的均热板技术与换热系数高的喷雾冲击冷却相结合,不仅有效解决了服务器芯片表面因受热不均导致的局部热点问题,而且极大地提升了微喷雾相变液冷均热板的散热效率及性能。(3) The present invention combines the vapor chamber technology capable of rapid and uniform heat conduction with the spray impingement cooling with high heat transfer coefficient, which not only effectively solves the problem of local hot spots caused by uneven heating on the surface of the server chip, but also greatly improves the Heat dissipation efficiency and performance of spray phase-change liquid-cooled vapor chambers.
附图说明Description of drawings
图1是一种服务器用微喷雾相变液冷均热板散热运行系统的结构示意图;Figure 1 is a schematic structural diagram of a micro-spray phase-change liquid-cooled soaking plate heat dissipation operation system for servers;
图2是本发明的微喷雾相变液冷均热板的结构示意图;Fig. 2 is the structural representation of the micro-spray phase change liquid-cooled soaking plate of the present invention;
图3是本发明的微喷雾相变液冷均热板的剖面结构示意图;3 is a schematic cross-sectional structure diagram of a micro-spray phase-change liquid-cooled soaking plate of the present invention;
图4是本发明的单个喷雾孔的理论喷雾模式示意图;Fig. 4 is the theoretical spray pattern schematic diagram of the single spray hole of the present invention;
图5是本发明阵列喷雾圆在喷雾腔体的底面相切的临界情况示意图。FIG. 5 is a schematic diagram of a critical situation in which the array spray circle of the present invention is tangent to the bottom surface of the spray cavity.
具体实施方式Detailed ways
下面结合实施例及附图,对本发明作进一步地详细说明,但本发明的实施方式不限于此。The present invention will be described in further detail below with reference to the embodiments and the accompanying drawings, but the embodiments of the present invention are not limited thereto.
实施例Example
如图1所示,一种服务器用微喷雾相变液冷均热板的散热运行系统,包括微喷雾相变液冷均热板1、气体流动回路2及液体冷却循环回路3;所述微喷雾相变液冷均热板1安装在服务器发热芯片上部,接触面均匀涂有导热硅脂,包括微喷雾液冷模块11、均热板本体12、进气管道13、进液管道14以及流体出口管道15;所述进气管道13、进液管道14以及流体出口管道15根据需要可设置在微喷雾相变液冷均热板1的同侧或不同侧,可平行或垂直设置。As shown in FIG. 1, a heat dissipation operation system for a micro-spray phase-change liquid-cooled vapor chamber for a server includes a micro-spray phase-change liquid-cooled
如图2和图3所示,所述微喷雾液冷模块11包括按顺序层叠的上盖板111、喷雾板112以及冷凝板113。As shown in FIG. 2 and FIG. 3 , the micro-spray
所述上盖板111设有气体介质入口1111和流体介质出口1112,所述气体介质入口1111与进气管道13连通,所述流体介质出口1112和流体出口管道15连通。The
所述喷雾板112包括液体介质入口1121、液体腔1122、阵列喷雾孔1123、气体腔1124和流体介质出口1125;所述液体介质入口1121分别与进液管道14、液体腔1122相连通,构成输送液体冷却介质的通道;所述液体腔1122用来暂存液体冷却介质,也是液体冷却介质与高压空气初步混合的场所;所述阵列喷雾孔1123与液体腔1122相连通,其截面积自上往下先减小后增大,是气液两相介质充分混合的通道,也是液体冷却介质提前雾化形成细小液滴群的必要条件;所述气体腔1124与气体介质入口1111相连通,用来容纳高压空气;连续不断的高压空气从进气管道13和气体介质入口1111进入气体腔1124后快速被压入阵列喷雾孔1123,随着阵列喷雾孔1123的截面积逐渐减小,气体速度加快,压强减小,形成一个低压区,此时,通过进液管道14和液体介质入口1121进入液体腔1122的液体冷却介质,被吸入已经形成的低压区的阵列喷雾孔1123内,气体与液体会在阵列喷雾孔1123上部分实现混合,在阵列喷雾孔1123的下部分,由于其截面积沿着气液混合介质速度方向逐渐增大,因此气体流速逐渐减小、压强逐渐增大,在气体高压的作用下,液体冷却介质破碎成细小的液滴群并快速从阵列喷雾孔1123的末端喷射出;所述流体介质出口1125与上盖板111上的流体介质出口1112上下位置对应相连通。The
所述冷凝板113包括喷雾腔1131和集流腔1132;所述喷雾腔1131为细小液滴群雾化提供充足空间,喷雾腔1131底部是接受喷雾冲击作用的主要位置;所述集流腔1132与喷雾板112上的流体介质出口1125上下相连通,集流腔1132是汇合气液混合流体介质的位置,流体介质在集流腔1132汇合后经流体介质出口1125、1112以及流体介质出口15排出。The
进一步,当喷雾面积覆盖所述整个喷雾腔1131的受热表面时,喷雾冷却效率最佳。喷雾覆盖面积与喷雾锥角及喷雾高度有关,而同系列同结构阵列喷雾孔1123,产生的喷雾锥角受入口流量和系统压力影响,所以最佳喷雾高度也是变化的。单个喷雾孔1123的理论喷雾模式如图4所示,理论喷雾高度H与理论喷雾圆直径D及喷雾锥角θ的关系为:H=0.5D/tan(θ/2)。以本案例所采用的是7×6阵列布局对喷雾高度H的计算进行说明,所述喷雾腔1131底面为矩形,与集流腔1132无边界相连通,所述喷雾腔1131的面积覆盖了均热板真空腔1221(均热板本体12的主要传热区域)的面积,因此在设计喷雾腔1131体高度时,以喷雾腔1131的长度L和宽度W为阵列喷雾面积的边界,采用单一的喷雾圆的理论面积来对整个阵列喷雾的面积进行计算,使得其尽量涵盖整个喷雾腔体1131的底面。阵列喷雾圆在喷雾腔体1131的底面相切的临界情况如图5所述,而最小喷雾高度需大于此时计算出的理论喷雾高度H,才能确保使阵列喷雾圆相交重叠,从而尽可能覆盖喷雾腔体1131底面面积,同结构阵列喷雾孔1123,在相同喷嘴入口压力条件下,喷雾圆直径D需同时满足:D>L/6以及D>W/7。代入公式:H=0.5D/tan(θ/2),可计算出喷雾空间的最小临界喷雾高度值。因此,从阵列喷雾孔1123出口底端到喷雾腔体1131底面的垂直距离需大于计算得到的理论高度H最小临界喷雾高度值,从而保证液体冷却介质雾化的充足空间。Further, when the spray area covers the entire heated surface of the
所述冷凝板113既是微喷雾液冷模块11的构件之一,也是均热板本体12的构件之一,具有收纳喷雾冷却介质以及液化均热板内气体工质的作用。The
所述均热板本体12作为将服务器发热芯片热量传递至微喷雾液冷模块11的相变元件,能实现快速且均匀的导热,包括冷凝板113、吸液芯121、蒸发板122以及进液除气管道123。The
所述吸液芯121设有Y形槽,用来容纳Y形支撑柱1221,为真空腔1222内液体相变工质汽化上升和液冷回流提供毛细力作用;所述吸液芯121分别烧结在蒸发板122的真空腔1222底面以及对应位置的冷凝板113的下表面。The liquid
所述蒸发板122设有Y形支撑柱1221、真空腔1222以及用于注入液体相变工质以及将真空腔1222抽成低压或真空状态的进液除气孔1223;所述进液除气孔1223与进液除气管道123相连通;所述Y形支撑柱1221是与蒸发板122一体成型加工,位于在真空腔1221内,用以来支撑均热板本体组件12,防止真空腔1221遇冷塌陷,也可作为均热板本体12内部液体相变工质回流的辅助流道。The
如图1所示,所述气体流动回路2包括空气压缩机21、储气罐22、控制针阀23、气体流量计24、压力变送器25和压力变送器28、温度传感器26和温度传感器27、气液分离装置29;所述气体流动回路2中的气体介质为不凝性的空气,具有易获得以及分离后无须进行收集可直接排到大气中的优点,其主要作用是辅助进入微喷雾相变液冷均热板1的液体冷却介质实现雾化;所述空气压缩机21用来压缩环境中的空气,增大空气压强,压缩后的空气进入储气罐22;所述控制阀23及气体流量计24用来调节和测定气体流动回路中的空气的体积流量,进而控制回路中的气体压强;所述压力变送器25和温度传感器26分别用来监测进气管道13处的气体压力值和温度值;所述压力变送器28和温度传感器27分别用来监测流体出口管道15处的气液混合介质的压力值和温度值;所述气液分离装置29用来将换热后的气液两相介质进行分离,分离出来的空气可直接排到大气中,分离出来的液体,重新回到液体循环回路3。As shown in FIG. 1 , the
如图1所示,所述液体冷却循循环系统3包括液体冷却介质依次流经的由储液罐31、齿轮泵32、过滤器33、板式换热器34、控制针阀35、液体流量计36、压力变送器37、温度传感器38组成的液体换热循环回路以及液体冷却介质通过储液罐31、齿轮泵32、过滤器33后经旁通阀流回储液罐31的液体卸压循环回路;所述储液罐31用来储藏和回收液体冷却介质;所述齿轮泵32用来泵送储液罐31中的液体冷却介质;所述过滤器33用来过滤循环多次后液体冷却介质中的混入的杂质;所述板式换热器34用以冷却参与换热后的受热液体,还能预热进入微喷雾相变液冷均热板1的液体冷却介质;所述控制针阀35以及液体流量计36用来调节及监测液体流量;所述压力变送器37、温度传感器38分别用来监测进液管道112处的压力值和温度值。As shown in FIG. 1 , the liquid
本实施例的工作过程为:The working process of this embodiment is:
服务器运行时,与发热芯片接触的微喷雾相变液冷均热板1蒸发板122受热后,均热板真空腔1222的液体相变工质在受热蒸发,并迅速充满整个真空腔1222,汽化后的气体遇到温度较低的冷凝板113后凝结成液态并释放热能;此刻,环境中的空气连续不断地被空气压缩机21压缩后进入储气罐22形成高压气体,此时通过调节气体流量计23将回路中气体体积流量调节至由气体流量计24读数得到的体积流量预定值,高压气体经过管道输送,通过进气管道13进入微喷雾相变液冷均热板1内,进气管道13处的气体压力值和温度值由压力变送器25和温度传感器26读出;与此同时,储液罐31内的液体冷却介质由齿轮泵32输送,经过过滤器33后,一部分液体冷却介质输送至参与换热的液体循环回路,液体在进入微喷雾相变液冷均热板1之前,流经板式换热器34,在那里液体被预热;通过控制针阀35来调节液体循环回路中的液体流量,使液体循环回路中的流量达到预定值后经由进液管道14流入微喷雾相变液冷均热板1,进液管道14处的液体流量、压力以及温度值可分别通过液体流量计36、压力变送器37以及温度传感器38读数得到;另一部分输送至液体卸压循环回路,通过旁通阀39流回储液罐31,用来防止当液体冷却循环系统3中液体流量较小时齿轮泵32烧坏。When the server is running, after the
由气体介质入口13进入的高压气体迅速充满气体腔1124,气体介质是高压且连续不断的,会高速流入截面积自上而下先减小后增大的阵列喷雾孔1123内,气体先加速和减速,因此气体压强逐渐减小后增大,在阵列喷雾孔1123截面积的最小处会形成一个低压区,此时,通过进液管道14和液体介质入口1121进入液体腔1122的液体冷却介质,被吸入已经形成的低压区的阵列喷雾孔1123内,气体与液体会在阵列喷雾孔1123上部分实现混合,在阵列喷雾孔1123的下部分,由于其截面积沿着气液混合介质速度方向逐渐增大,因此,在气体的高压作用下,液体冷却介质破碎成细小的液滴群并快速从阵列喷雾孔1123的末端喷射至充低速流动或静止空气的喷雾腔1131中,在液体表面张力、粘性、空气阻力的相互作用下,逐渐由滴落、平滑流、波状流转变为雾状微细群并冲击至喷雾腔1131的内表面,也就是液体冷却介质与冷凝板113的换热面,依靠喷雾冲击、液滴相变带走冷凝板113的热量,此刻,均热板真空腔遇冷后冷凝的液体工质在吸液芯121毛细力作用、液滴自身重力以及Y形支撑柱辅助流道回到蒸发板122,完成一个热交换过程,受热后液体工质又会被汽化,依此循环。微喷雾相变液冷均热板1内进行换热后的气液混合介质在集流腔1132内聚集后经流体介质出口1125、1112以及流体出口管道15排出至气液分离装置29中进行分离,分离后的高压空气被直接排至环境中被冷却,液体冷却介质进入板式换热器34中被冷却后流回储液罐31中参与下一次换热。在均热板本体12相变传热的不断重复以及服务器外部气体和液体不断循环过程中,完成对服务器发热芯片的散热。The high-pressure gas entering from the
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受所述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。The above-mentioned embodiments are preferred embodiments of the present invention, but the embodiments of the present invention are not limited by the described embodiments, and any other changes, modifications, substitutions, and combinations made without departing from the spirit and principle of the present invention , simplification, all should be equivalent replacement modes, and are all included in the protection scope of the present invention.
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210094752.3A CN114599201B (en) | 2022-01-26 | 2022-01-26 | Micro-spray phase change liquid cooling soaking plate for server, cooling operation system and control method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210094752.3A CN114599201B (en) | 2022-01-26 | 2022-01-26 | Micro-spray phase change liquid cooling soaking plate for server, cooling operation system and control method |
Publications (2)
Publication Number | Publication Date |
---|---|
CN114599201A CN114599201A (en) | 2022-06-07 |
CN114599201B true CN114599201B (en) | 2022-10-25 |
Family
ID=81804638
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210094752.3A Active CN114599201B (en) | 2022-01-26 | 2022-01-26 | Micro-spray phase change liquid cooling soaking plate for server, cooling operation system and control method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114599201B (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115346880A (en) * | 2022-08-22 | 2022-11-15 | 深圳市电通材料技术有限公司 | Encapsulation substrate with microstructure chamber and preparation method thereof |
CN115623762B (en) * | 2022-12-06 | 2023-03-10 | 常州贺斯特科技股份有限公司 | Composite radiator |
CN116507099B (en) * | 2023-06-30 | 2023-09-12 | 中联云港数据科技股份有限公司 | Liquid cooling device and cooling system of computer equipment center |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110536591A (en) * | 2019-09-17 | 2019-12-03 | 吴玉 | The cooling server system of evaporative phase-change and control method |
CN111479441A (en) * | 2020-03-18 | 2020-07-31 | 南京艾科美热能科技有限公司 | Heat dissipation system of data center machine room |
CN112099591A (en) * | 2020-07-21 | 2020-12-18 | 曙光节能技术(北京)股份有限公司 | Immersed jet flow phase change liquid cooling system for high heat flux density super-calculation server |
CN113133283A (en) * | 2021-04-13 | 2021-07-16 | 上海天马微电子有限公司 | Heat dissipation device and manufacturing method thereof |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7548424B2 (en) * | 2007-03-12 | 2009-06-16 | Raytheon Company | Distributed transmit/receive integrated microwave module chip level cooling system |
CN108712852B (en) * | 2018-07-12 | 2019-07-30 | 厦门大学 | A kind of microchannel heat sink of gas-liquid two-phase mixing jetting |
CN111477599B (en) * | 2020-04-29 | 2024-08-20 | 华南理工大学 | Integrated micro-jet vapor chamber radiator and manufacturing method thereof |
CN111707117B (en) * | 2020-05-29 | 2021-06-25 | 上海交通大学 | Plate type evaporator optimizes heat dissipation device |
-
2022
- 2022-01-26 CN CN202210094752.3A patent/CN114599201B/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110536591A (en) * | 2019-09-17 | 2019-12-03 | 吴玉 | The cooling server system of evaporative phase-change and control method |
CN111479441A (en) * | 2020-03-18 | 2020-07-31 | 南京艾科美热能科技有限公司 | Heat dissipation system of data center machine room |
CN112099591A (en) * | 2020-07-21 | 2020-12-18 | 曙光节能技术(北京)股份有限公司 | Immersed jet flow phase change liquid cooling system for high heat flux density super-calculation server |
CN113133283A (en) * | 2021-04-13 | 2021-07-16 | 上海天马微电子有限公司 | Heat dissipation device and manufacturing method thereof |
Non-Patent Citations (1)
Title |
---|
《梯度结构多孔表面强化沸腾及其在相变器件中的应用》;莫冬传,罗佳利,汪亚桥等;《科学通报》;20200302;第65卷(第17期);全文 * |
Also Published As
Publication number | Publication date |
---|---|
CN114599201A (en) | 2022-06-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN114599201B (en) | Micro-spray phase change liquid cooling soaking plate for server, cooling operation system and control method | |
CN111642103B (en) | High heat flux porous heat sink flow cooling device | |
US6990816B1 (en) | Hybrid capillary cooling apparatus | |
US9383145B2 (en) | System and method of boiling heat transfer using self-induced coolant transport and impingements | |
US9901013B2 (en) | Method of cooling series-connected heat sink modules | |
US7921664B2 (en) | Method and apparatus for high heat flux heat transfer | |
US9832913B2 (en) | Method of operating a cooling apparatus to provide stable two-phase flow | |
EP1793422A2 (en) | System and method of enhanced boiling heat transfer using pin fins | |
US4843837A (en) | Heat pump system | |
CN101191683B (en) | Jet circulation spray falling film evaporator | |
CN101534627A (en) | High-effective integral spray cooling system | |
CN111511164A (en) | Spray cooling phase change heat sink integrated evaporation cooling device | |
CN101307996A (en) | Flat-plate evaporator structure and loop type heat pipe with same | |
CN205566950U (en) | Quick -witted case of integral liquid cooling heat dissipation | |
WO2007030411A2 (en) | Spray cooling system for narrow gap transverse evaporative spray cooling | |
CN110381700B (en) | A spray cavity and steam cavity integrated phase change cooling device and system | |
CN104406440A (en) | Silicon-based miniature loop heat pipe cooler | |
CN101179917A (en) | Loop type latent heat radiating method and loop type latent heat radiating module | |
TWI276396B (en) | Closed-loop latent heat cooling method, and capillary force or non-nozzle module thereof | |
CN116858003A (en) | Condenser and waste heat recovery system thereof | |
US20230288147A1 (en) | Heat exchanger apparatus and cooling systems comprising heat exchanger apparatus | |
CN100334930C (en) | Plane capillary core evaporimeter for CPL | |
CN100366997C (en) | Capillary two-phase fluid circuit with planar evaporator and condenser | |
CN116858001B (en) | Evaporator and waste heat recovery system thereof | |
CN116858004B (en) | A waste heat system liquid storage device and waste heat recovery system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |