CN114595129A - Configurable multi-dimensional data monitoring method and device and storage medium - Google Patents
Configurable multi-dimensional data monitoring method and device and storage medium Download PDFInfo
- Publication number
- CN114595129A CN114595129A CN202210173886.4A CN202210173886A CN114595129A CN 114595129 A CN114595129 A CN 114595129A CN 202210173886 A CN202210173886 A CN 202210173886A CN 114595129 A CN114595129 A CN 114595129A
- Authority
- CN
- China
- Prior art keywords
- data
- field
- index
- configuration
- function
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims abstract description 52
- 238000012544 monitoring process Methods 0.000 title claims abstract description 47
- 230000006870 function Effects 0.000 claims description 130
- 238000009825 accumulation Methods 0.000 claims description 10
- 238000001914 filtration Methods 0.000 claims description 6
- 238000005070 sampling Methods 0.000 claims description 4
- 238000004590 computer program Methods 0.000 claims description 3
- 238000012806 monitoring device Methods 0.000 abstract description 5
- 230000008569 process Effects 0.000 description 11
- 238000004891 communication Methods 0.000 description 5
- 238000013500 data storage Methods 0.000 description 5
- 238000010586 diagram Methods 0.000 description 5
- 230000008901 benefit Effects 0.000 description 4
- 238000012545 processing Methods 0.000 description 4
- 230000002159 abnormal effect Effects 0.000 description 3
- 238000012423 maintenance Methods 0.000 description 3
- 230000009466 transformation Effects 0.000 description 3
- 230000004888 barrier function Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000012935 Averaging Methods 0.000 description 1
- 101100446506 Mus musculus Fgf3 gene Proteins 0.000 description 1
- 101100348848 Mus musculus Notch4 gene Proteins 0.000 description 1
- 101000767160 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) Intracellular protein transport protein USO1 Proteins 0.000 description 1
- 230000006399 behavior Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000007405 data analysis Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000007667 floating Methods 0.000 description 1
- 238000007726 management method Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 101150035983 str1 gene Proteins 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F11/00—Error detection; Error correction; Monitoring
- G06F11/30—Monitoring
- G06F11/34—Recording or statistical evaluation of computer activity, e.g. of down time, of input/output operation ; Recording or statistical evaluation of user activity, e.g. usability assessment
- G06F11/3466—Performance evaluation by tracing or monitoring
- G06F11/3476—Data logging
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F11/00—Error detection; Error correction; Monitoring
- G06F11/30—Monitoring
- G06F11/3089—Monitoring arrangements determined by the means or processing involved in sensing the monitored data, e.g. interfaces, connectors, sensors, probes, agents
- G06F11/3093—Configuration details thereof, e.g. installation, enabling, spatial arrangement of the probes
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F11/00—Error detection; Error correction; Monitoring
- G06F11/30—Monitoring
- G06F11/34—Recording or statistical evaluation of computer activity, e.g. of down time, of input/output operation ; Recording or statistical evaluation of user activity, e.g. usability assessment
- G06F11/3409—Recording or statistical evaluation of computer activity, e.g. of down time, of input/output operation ; Recording or statistical evaluation of user activity, e.g. usability assessment for performance assessment
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Quality & Reliability (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Debugging And Monitoring (AREA)
Abstract
Description
技术领域technical field
本发明涉及计算机技术领域,尤其涉及一种可配置的多维度数据监控方法、装置及存储介质。The present invention relates to the field of computer technology, and in particular, to a configurable multi-dimensional data monitoring method, device and storage medium.
背景技术Background technique
大型APP往往承载着诸多业务,以购物APP为例,就存在社区、交易、直播等六项业务,随着APP版本的迭代,业务也在高速发展,实时获取APP的业务监控对当前业务的运行质量以及后续业务决策均有着重要收益。Large-scale APPs often carry many services. Taking shopping APPs as an example, there are six services such as community, transaction, and live broadcast. With the iteration of APP versions, the business is also developing rapidly. Real-time access to the APP's business monitoring can monitor the operation of the current business. Quality and subsequent business decisions have important benefits.
业务监控往往用于监控某一项业务中的某一项功能的使用,传统方式是针对每一项功能进行埋点上报,然后配置数据源以及展示图表,这方面典型的方案是ElasticSearch+Grafana,采用ElasticSearch作为存储以及搜索服务,采用Grafana作为指标展示系统,这套方案深受各大公司的认可,其在实际使用中也存在技术门槛,基础设施需要团队定期维护,指标也需要专业的研发人员才能配置,对埋点代码不熟悉时,就无法配置,这一限制导致产品经理无法介入指标配置。Business monitoring is often used to monitor the use of a function in a business. The traditional method is to report each function, and then configure the data source and display charts. The typical solution in this regard is ElasticSearch+Grafana. Using ElasticSearch as the storage and search service, and Grafana as the indicator display system, this solution is well recognized by major companies, but it also has technical barriers in actual use. The infrastructure requires regular maintenance by the team, and indicators also require professional R&D personnel. If you are not familiar with the embedded code, you cannot configure it. This limitation prevents the product manager from intervening in the indicator configuration.
业务埋点的重要使用者是产品经理,面向产品经理的一款通用型可配置的多维度指标系统能够降低埋点配置的复杂度以及提高配置效率,同时对埋点的成本可管控。An important user of business tracking is the product manager. A general-purpose, configurable, multi-dimensional indicator system for product managers can reduce the complexity of tracking configuration and improve configuration efficiency, and at the same time control the cost of tracking.
发明内容SUMMARY OF THE INVENTION
本发明的主要目的在于提供一种可配置的多维度数据监控方法、装置及存储介质,旨在解决现有技术中指标监控系统配置复杂和配置效率低的问题。The main purpose of the present invention is to provide a configurable multi-dimensional data monitoring method, device and storage medium, aiming to solve the problems of complex configuration and low configuration efficiency of the index monitoring system in the prior art.
为实现上述目的,本发明提供了一种可配置的多维度数据监控方法,所述方法包括以下步骤:In order to achieve the above object, the present invention provides a configurable multi-dimensional data monitoring method, the method includes the following steps:
配置数据字段,得到配置字段;Configure the data field to get the configuration field;
Flink根据所述配置字段对日志服务器中的第一业务数据进行过滤处理,得到第二业务数据;把所述第二业务数据存入数据库中;Flink filters the first business data in the log server according to the configuration field to obtain second business data; stores the second business data in the database;
配置监控指标,得到配置指标;Configure monitoring indicators to get configuration indicators;
根据所述配置指标查询所述数据库得到第三业务数据,对所述第三业务数据进行指标展示。The database is queried according to the configuration index to obtain third service data, and an index display is performed on the third service data.
可选地,所述配置数据字段得到配置字段,包括以下步骤:Optionally, obtaining the configuration field from the configuration data field includes the following steps:
设置业务标识和/或功能标识和/或基础字段和/或自定义字段;Set business ID and/or functional ID and/or base fields and/or custom fields;
建立所述业务标识与数据库关联关系,N(N大于等于1)个所述业务标识与1个所述数据库建立关联关系;establishing an association relationship between the service identifier and the database, and establishing an association relationship between N (N is greater than or equal to 1) the service identifier and one of the databases;
建立所述功能标识与数据库表关联关系,N(N大于等于1)个所述功能标识与1张所述数据库表建立关联关系;Establish an association relationship between the function identifier and the database table, and establish an association relationship between N (N is greater than or equal to 1) of the function identifier and one of the database tables;
建立所述基础字段和/或所述自定义字段与所述数据库表的字段的关联关系。An association relationship between the basic field and/or the custom field and the field of the database table is established.
可选地,所述方法还包括:Optionally, the method further includes:
计算所述功能标识对应的记录条数;Calculate the number of records corresponding to the function identifier;
判断所述记录条数在所述功能标识对应的所述数据库表的总记录中的第一占比和/或指定时间范围内的第二占比;Judging the first proportion of the number of records in the total records of the database table corresponding to the function identifier and/or the second proportion within a specified time range;
所述第一占比大于第一阈值和/或所述第二占比大于第二阈值,对所述第二业务数据进行采样,得到第四业务数据,然后把所述第四业务数据存入数据库中。The first proportion is greater than the first threshold and/or the second proportion is greater than the second threshold, the second business data is sampled to obtain fourth business data, and then the fourth business data is stored in in the database.
可选地,所述配置监控指标得到配置指标,包括以下步骤:Optionally, obtaining the configuration index from the configuration monitoring index includes the following steps:
所述监控指标包括以下至少一种:图表类型、功能指标,X轴指标、Y轴指标、图例指标、查询条件、过滤条件;The monitoring indicators include at least one of the following: chart type, function indicators, X-axis indicators, Y-axis indicators, legend indicators, query conditions, and filter conditions;
所述功能指标包含N(N大于等于1)个所述功能标识;The function index includes N (N is greater than or equal to 1) the function identifiers;
所述X轴指标包含时间单位和/或N(N大于等于1)个基础字段和/或N(N大于等于1)个自定义字段;The X-axis indicator includes time units and/or N (N greater than or equal to 1) basic fields and/or N (N greater than or equal to 1) custom fields;
所述Y轴指标包含N(N大于等于1)个基础字段和/或N(N大于等于1)个自定义字段;The Y-axis indicator includes N (N greater than or equal to 1) basic fields and/or N (N greater than or equal to 1) custom fields;
所述过滤条件用于限制数据规模,过滤无用的数据;The filter conditions are used to limit the data scale and filter useless data;
所述查询条件用于所述图例指标的查询;The query condition is used for the query of the legend indicator;
所述图例指标根据所述功能指标进行数据分组,得到多条指标曲线。The legend index performs data grouping according to the function index, and obtains a plurality of index curves.
可选地,所述方法还包括以下步骤:Optionally, the method further includes the following steps:
所述X轴指标还包括第一函数,所述第一函数包括以下至少一种:均值函数、累加函数;The X-axis indicator further includes a first function, and the first function includes at least one of the following: a mean value function and an accumulation function;
所述Y轴指标支持数值型和比例型,所述Y轴为比例型时,对分子与分母进行配置;所述分子为所述基础字段和/或自定义字段,所述分母为所述基础字段和/或自定义字段;The Y-axis indicator supports numerical and proportional types. When the Y-axis is proportional, configure the numerator and denominator; the numerator is the basic field and/or a custom field, and the denominator is the basic field. fields and/or custom fields;
所述Y轴指标还包括第二函数,所述第二函数包括以下至少一种:均值函数、累加函数。The Y-axis indicator further includes a second function, and the second function includes at least one of the following: a mean value function and an accumulation function.
可选地,所述方法还包括以下步骤:Optionally, the method further includes the following steps:
对所述第三业务数据进行缓存,缓存时长可配置。The third service data is cached, and the cache duration is configurable.
可选地,所述图例指标根据所述功能指标进行数据分组,包括以下步骤:Optionally, the legend indicators perform data grouping according to the function indicators, including the following steps:
配置所述基础字段和/或所述自定义字段对应的分组条件;configuring the grouping conditions corresponding to the basic field and/or the custom field;
根据所述分组条件,对所述基础字段和/或所述自定义字段的数据进行分组。The data of the basic field and/or the custom field is grouped according to the grouping condition.
此外,为实现上述目的,本发明还提出一种可配置的多维度数据监控装置,所述装置包括:In addition, in order to achieve the above object, the present invention also provides a configurable multi-dimensional data monitoring device, the device comprising:
字段配置单元,用于配置数据字段得到配置字段;The field configuration unit is used to configure the data field to obtain the configuration field;
数据过滤单元,用于Flink根据所述配置字段对日志服务器中的第一业务数据进行过滤处理,得到第二业务数据;把所述第二业务数据存入数据库中;a data filtering unit, used by Flink to filter the first business data in the log server according to the configuration field to obtain second business data; and store the second business data in the database;
指标配置单元,用于配置监控指标,得到配置指标;The indicator configuration unit is used to configure monitoring indicators and obtain configuration indicators;
指标查询单元,用于根据所述配置指标查询所述数据库得到第三业务数据,对所述第三业务数据进行指标展示。An indicator query unit, configured to query the database according to the configuration indicator to obtain third business data, and display indicators for the third business data.
此外,为实现上述目的,本发明还提出一种电子设备,所述电子设备包括:存储器、处理器及存储在所述存储器上并可在所述处理器上运行的可配置的多维度数据监控程序,所述可配置的多维度数据监控程序配置为实现如上文所述可配置的多维度数据监控方法的步骤。In addition, in order to achieve the above object, the present invention also provides an electronic device, the electronic device includes: a memory, a processor, and a configurable multi-dimensional data monitoring device stored on the memory and running on the processor A program, the configurable multi-dimensional data monitoring program configured to implement the steps of the configurable multi-dimensional data monitoring method as described above.
此外,为实现上述目的,本发明还提出一种计算机可读存储介质,其上存储有计算机程序,所述计算机程序被处理器执行时实现如上文所述的可配置的多维度数据监控方法的步骤。In addition, in order to achieve the above object, the present invention also provides a computer-readable storage medium on which a computer program is stored, and when the computer program is executed by a processor, the configurable multi-dimensional data monitoring method as described above is implemented. step.
通过本发明实施例,将日志服务器的数据记录到系统中,并支持通过配置X轴、Y轴及函数配置,规避了日志服务器的SQL编写,有效降低配置门槛;采用多字段多条件的图例,从而实现多维度指标配置,能够灵活将业务埋点组装到同一个指标图中。Through the embodiment of the present invention, the data of the log server is recorded in the system, and the configuration of the X axis, the Y axis and the function configuration is supported, which avoids the SQL writing of the log server, and effectively reduces the configuration threshold; In this way, multi-dimensional indicator configuration can be realized, and business buried points can be flexibly assembled into the same indicator graph.
附图说明Description of drawings
图1为本发明提供的可配置的多维度数据监控方法的一个流程示意图。FIG. 1 is a schematic flowchart of a configurable multi-dimensional data monitoring method provided by the present invention.
图2为本发明提供的可配置的多维度数据监控系统结构图。FIG. 2 is a structural diagram of a configurable multi-dimensional data monitoring system provided by the present invention.
图3为本发明提供的配置数据存储规则的一个流程示意图。FIG. 3 is a schematic flowchart of a configuration data storage rule provided by the present invention.
图4为本发明提供的业务数据入库的系统结构图。FIG. 4 is a system structure diagram of service data storage provided by the present invention.
图5为本发明提供的监控记录采样的一个流程示意图。FIG. 5 is a schematic flowchart of monitoring record sampling provided by the present invention.
图6为本发明提供的监控数据分组的一个流程示意图。FIG. 6 is a schematic flowchart of a monitoring data packet provided by the present invention.
图7为本发明提供的可配置的多维度数据监控装置实施例的结构框图。FIG. 7 is a structural block diagram of an embodiment of a configurable multi-dimensional data monitoring apparatus provided by the present invention.
图8为本发明实施例提供的一种电子设备的结构示意图。FIG. 8 is a schematic structural diagram of an electronic device according to an embodiment of the present invention.
本发明目的的实现、功能特点及优点将结合实施例,参照附图做进一步说明。The realization, functional characteristics and advantages of the present invention will be further described with reference to the accompanying drawings in conjunction with the embodiments.
具体实施方式Detailed ways
为了使本发明所要解决的技术问题、技术方案及有益效果更加清楚、明白,以下结合附图和实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅以解释本发明,并不用于限定本发明。In order to make the technical problems, technical solutions and beneficial effects to be solved by the present invention clearer and more comprehensible, the present invention will be further described in detail below with reference to the accompanying drawings and embodiments. It should be understood that the specific embodiments described herein are only for explaining the present invention, but not for limiting the present invention.
在后续的描述中,使用用于表示元件的诸如“模块”、“部件”或“单元”的后缀仅为了有利于本发明的说明,其本身没有特定的意义。因此,“模块”、“部件”或“单元”可以混合地使用。In the following description, suffixes such as 'module', 'component' or 'unit' used to represent elements are used only to facilitate the description of the present invention and have no specific meaning per se. Thus, "module", "component" or "unit" may be used interchangeably.
需要说明的是,本发明的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。It should be noted that the terms "first", "second" and the like in the description and claims of the present invention and the above drawings are used to distinguish similar objects, and are not necessarily used to describe a specific sequence or sequence.
在一个实施例中,如图1所示,本发明提供一种可配置的多维度数据监控方法,所述方法包括:In one embodiment, as shown in FIG. 1 , the present invention provides a configurable multi-dimensional data monitoring method, the method comprising:
步骤101、配置数据字段,得到配置字段。Step 101: Configure the data field to obtain the configuration field.
大型APP往往承载着诸多业务,以购物APP为例,就存在社区、交易、直播等六项业务,随着APP版本的迭代,业务也在高速发展,实时获取APP的业务监控对当前业务的运行质量以及后续业务决策均有着重要收益。Large-scale APPs often carry many services. Taking shopping APPs as an example, there are six services such as community, transaction, and live broadcast. With the iteration of APP versions, the business is also developing rapidly. Real-time access to the APP's business monitoring can monitor the operation of the current business. Quality and subsequent business decisions have important benefits.
业务监控往往用于监控某一项业务中的某一项功能的使用,传统方式是针对每一项功能进行埋点上报,然后配置数据源以及展示图表,这方面典型的方案是ElasticSearch+Grafana,采用ElasticSearch作为存储以及搜索服务,采用Grafana作为指标展示系统,这套方案深受各大公司的认可,其在实际使用中也存在技术门槛,基础设施需要团队定期维护,指标也需要专业的研发人员才能配置,对埋点代码不熟悉时,就无法配置,这一限制导致产品经理无法介入指标配置。Business monitoring is often used to monitor the use of a function in a business. The traditional method is to report each function, and then configure the data source and display charts. The typical solution in this regard is ElasticSearch+Grafana. Using ElasticSearch as the storage and search service, and Grafana as the indicator display system, this solution is well recognized by major companies, but it also has technical barriers in actual use. The infrastructure requires regular maintenance by the team, and indicators also require professional R&D personnel. If you are not familiar with the embedded code, you cannot configure it. This limitation prevents the product manager from intervening in the indicator configuration.
业务埋点的重要使用者是产品经理,面向产品经理的一款通用型可配置的多维度指标系统能够降低埋点配置的复杂度以及提高配置效率,同时对埋点的成本可管控。An important user of business tracking is the product manager. A general-purpose, configurable, multi-dimensional indicator system for product managers can reduce the complexity of tracking configuration and improve configuration efficiency, and at the same time control the cost of tracking.
可配置的多维度数据监控系统,如图2所示。包括配置层、存储层、指标大盘。配置层支持APP灵活定义埋点字段,经APP中的SDK生成日志记录后,上报至阿里云SLS进行缓存,然后借助Flink从阿里云SLS上消费数据记录,并录入到记录对应的ClickHouse表中进行数据存储。The configurable multi-dimensional data monitoring system is shown in Figure 2. Including configuration layer, storage layer, and indicator panel. The configuration layer supports the APP to flexibly define the buried point fields. After the log records are generated by the SDK in the APP, they are reported to Alibaba Cloud SLS for caching, and then the data records are consumed from the Alibaba Cloud SLS with Flink and entered into the ClickHouse table corresponding to the records. data storage.
Flink集群对阿里云SLS服务器中的数据进行处理时,需要根据配置层配置的字段进行处理。因此,需要先对日记记录中需要保存的字段进行配置。配置需要保存的字段,参见图3所示流程。When the Flink cluster processes the data in the Alibaba Cloud SLS server, it needs to be processed according to the fields configured in the configuration layer. Therefore, the fields that need to be saved in the journal record need to be configured first. To configure the fields to be saved, see the process shown in Figure 3.
步骤201、设置业务标识和/或功能标识和/或基础字段和/或自定义字段。
APP数据指标,从业务角度,分为多个业务线,如社区、交易、直播等业务线。每个业务线的数据指标需要进行划分,在日志记录中通过业务标识来标识。每个业务线的业务标识唯一,在多维度数据监控时需要配置那些业务线的数据需要保存。如业务线包括:社区、交易、直播,业务标识如下表所示:APP data indicators, from a business perspective, are divided into multiple business lines, such as community, transaction, live broadcast and other business lines. The data indicators of each business line need to be divided and identified by business identifiers in log records. The business identifier of each business line is unique, and the data of those business lines needs to be configured and saved during multi-dimensional data monitoring. For example, the business line includes: community, transaction, live broadcast, and the business identifier is shown in the following table:
多维度数据监控时,如只需要监控交易相关的指标,则只需要把交易业务线的业务标识配置到多维度数据监控系统中。During multi-dimensional data monitoring, if you only need to monitor transaction-related indicators, you only need to configure the business ID of the transaction business line into the multi-dimensional data monitoring system.
APP数据指标,从用途的维度上,APP数据指标主要分为两类,一类是统计数据指标,像PV、UV之类的,只是计算用户使用过某一项功能,例如点击过某个按钮或者进入过某个页面,这类埋点内容简单,只需要用户每次使用的时候,产生一条记录即可,主要用于展示用户对某一项功能的使用数据次数以及使用人数;一类是质量埋点,这类埋点主要是记录用户使用过程中的性能以及异常数据,数据内容较为复杂,需要包括异常堆栈、异常的版本、机型以及网络等,不同的环境对APP的质量均有影响,这类埋点的字段相对灵活,不同的业务场景不一样,需要为质量迭代提供足够支持。APP data indicators, from the dimension of use, APP data indicators are mainly divided into two categories, one is statistical data indicators, such as PV, UV, etc., only to calculate the user has used a certain function, such as clicking a certain button Or have entered a certain page, the content of this kind of buried point is simple, just need to generate a record every time the user uses it, which is mainly used to display the number of times the user has used a certain function and the number of users; one is Quality buried points. This type of buried points mainly records the performance and abnormal data during the user's use. The data content is more complex and needs to include abnormal stacks, abnormal versions, models, and networks. Different environments have different effects on the quality of the APP. Influence, the fields of such buried points are relatively flexible, and different business scenarios are different, and it is necessary to provide sufficient support for quality iteration.
APP埋点通过SDK收集用户的操作记录后,生成日志文件上报给阿里云SLS服务器。每条日志记录都有一个唯一标识,用于区分日志记录;同时每条日志记录中包含相应的基础字段和自定义字段。基础字段包括:UUID、userID、app版本号、设备类型、os类型等字段;自定义字段可以根据每种日记记录类型进行自定义字段,如记录用户浏览商品的日志记录的自定义字段包括:日志类型、商品详情页、收藏商品、购买商品。分析日志文件时,系统可以根据业务需求设置对应的基础字段和自定义字段,本技术方案不做具体限制。After collecting user's operation records through the SDK, the APP will generate log files and report them to the Alibaba Cloud SLS server. Each log record has a unique identifier to distinguish the log records; at the same time, each log record contains corresponding basic fields and custom fields. Basic fields include: UUID, userID, app version number, device type, os type and other fields; custom fields can be customized according to each type of diary record, such as custom fields that record the log records of users browsing products include: log Types, product detail pages, favorites, purchases. When analyzing log files, the system can set corresponding basic fields and custom fields according to business requirements, and this technical solution does not impose specific restrictions.
运维人员可以根据需要动态修改需要保存的字段中的业务标识、功能标识、基础字段、自定义字段。如果需要对新的埋点数据(即新的日志记录)进行分析时,需要根据新的日志记录设置对应的标识;也可以对已分析(即已配置标识)的日志记录重新设置基础字段和自定义字段,如需要对某个用户操作行为进行分析时,则增加相应字段就可以。增加的字段需要埋点数据中有相应记录。Operation and maintenance personnel can dynamically modify business IDs, function IDs, basic fields, and custom fields in the fields to be saved as needed. If you need to analyze new buried point data (that is, new log records), you need to set the corresponding identifiers according to the new log records; you can also reset the basic fields and autologous fields for the log records that have been analyzed (that is, configured identifiers). Define fields. If you need to analyze a user's operation behavior, you can add corresponding fields. The added fields require corresponding records in the buried point data.
基础字段如下表所示:The underlying fields are shown in the following table:
当上述字段不满足业务需要的时候,业务自行增加的自定义字段以记录更多的内容:例如:When the above fields do not meet the business needs, the business adds custom fields to record more content: for example:
path:http网络日志的path,只在http业务类型的日志中存在,类型是Stringpath: the path of the http network log, only exists in the log of the http service type, the type is String
url:http网络日志的URL,类型是Stringurl: URL of http web log, type is String
tab:AB Test的日志的页面标记,类型是Stringtab: the page tag of the log of AB Test, the type is String
duration:耗时日志的时长字段,类型是longduration: the duration field of the time-consuming log, the type is long
detail:异常日志的内容字段detail: the content field of the exception log
Stack:异常日志的堆栈字段Stack: stack field of exception log
步骤202、建立所述业务标识与数据库关联关系,N(N大于等于1)个所述业务标识与1个所述数据库建立关联关系。Step 202: Establish an association relationship between the service identifiers and the database, and establish an association relationship between N (N greater than or equal to 1) the service identifiers and one of the databases.
每个业务线相关的日记记录保存到一个独立的数据库中,如ClickHouse数据库系统中的数据库A中。也可以多个业务线的相关数据保存到一个数据库中,如交易、直播这两个业务线的数据都保存到数据库A中。配置需要进行指标监控的业务线数据与存储的数据库关系,如下表所示:Diary records related to each line of business are kept in a separate database, such as database A in the ClickHouse database system. It is also possible to save the related data of multiple business lines in one database, for example, the data of the two business lines of transaction and live broadcast are all stored in database A. Configure the relationship between the line-of-business data that needs to be monitored and the stored database, as shown in the following table:
步骤203、建立所述功能标识与数据库表关联关系,N(N大于等于1)个所述功能标识与1张所述数据库表建立关联关系。Step 203: Establish an association relationship between the function identifiers and a database table, and establish an association relationship between N (N greater than or equal to 1) of the function identifiers and one of the database tables.
本发明采用结构化的数据表生成通用型的多维度表,在埋点对象与存储表之间进行关联配置,从而支持处理不同的业务埋点的字段差异,将N个埋点对象关联成一张结构表,将埋点字段与结构表的字段进行一一对应,从而完成了埋点定义结构化转变。The present invention uses a structured data table to generate a general-purpose multi-dimensional table, and performs association configuration between the buried point objects and the storage table, thereby supporting the processing of field differences of different business buried points, and associating N buried point objects into one Structure table, one-to-one correspondence between the buried point fields and the fields of the structure table, thus completing the structural transformation of the buried point definition.
日志数据通常不会改变,采用ClickHouse作为存储数据库,支持大批量存储的情况下保持良好的查询速度。The log data usually does not change, and ClickHouse is used as the storage database to maintain a good query speed in the case of supporting large-scale storage.
埋点的唯一标记称之为Section,埋点Section与ClickHouse表是n:1的关系,埋点与ClickHouse表之间的关系采用人工配置进行管理,与ClickHouse表关联的n个埋点都将入库到这个ClickHouse表中,然后针对单表进行SQL查询,再对前端提供三维度(横轴、纵轴、折线名称)的查询结果,从而支持多维度数据指标。The only mark of the buried point is called Section. The relationship between the buried point Section and the ClickHouse table is n:1. The relationship between the buried point and the ClickHouse table is managed by manual configuration, and the n buried points associated with the ClickHouse table will be entered. Library to this ClickHouse table, and then perform SQL query on a single table, and then provide three-dimensional (horizontal axis, vertical axis, polyline name) query results to the front end, thereby supporting multi-dimensional data indicators.
如把3个埋点A、B、C对应的日志记录都存储到ClickHouse数据的Table_ID_001表中,则把这3个埋点对应的日志记录的标识和表名称进行关联配置,如配置成如下表所示:For example, if the log records corresponding to the three buried points A, B, and C are stored in the Table_ID_001 table of ClickHouse data, then the identifiers of the log records corresponding to the three buried points and the table names are associated and configured, such as the configuration as shown in the following table shown:
步骤204、建立所述基础字段和/或所述自定义字段与所述数据库表的字段的关联关系。Step 204: Establish an association relationship between the basic field and/or the custom field and the field of the database table.
本发明需要手动创建ClickHouse表,表包含全部的基础字段,与埋点记录中的字段一一对应,同时还会在ClickHouse表中留下10个String字段、5个int字段、5个浮点字段以及3个时间字段,这些字段简单的命名为str1、str2、str3…int1、int2、int3这些业务无关的名称,然后将ClickHouse表录入到本发明的指标系统中,针对业务字段、section字段以及基础字段,采用默认自动映射,针对自定义字段,则是采用系统配置的方案进行配置。The present invention needs to manually create a ClickHouse table, the table contains all the basic fields, one-to-one correspondence with the fields in the buried point record, and also leaves 10 String fields, 5 int fields, and 5 floating point fields in the ClickHouse table. And three time fields, these fields are simply named str1, str2, str3...int1, int2, int3 these business-independent names, and then the ClickHouse table is entered into the indicator system of the present invention, for business fields, section fields and basic Fields are automatically mapped by default. For custom fields, they are configured using the system configuration scheme.
将N个埋点对象关联成一张结构表后,将埋点字段与结构表的字段进行一一对应,从而完成了埋点定义结构化转变。如埋点A、B包含基础字段和多个自定义字段,然后把这些字段一一对应到数据库表字段中。业务字段、section字段以及基础字段和ClickHouse的数据库表字段一一对应,自定义字段和数据库表中的预留字段进行配置,如下表所示:After associating N buried point objects into a structure table, one-to-one correspondence is made between the buried point fields and the fields of the structure table, thus completing the structural transformation of the buried point definition. For example, buried points A and B contain basic fields and multiple custom fields, and then map these fields to the database table fields one by one. Business fields, section fields, and basic fields correspond one-to-one with ClickHouse's database table fields, and custom fields are configured with reserved fields in the database table, as shown in the following table:
埋点日志记录的字段需要和对应的数据库表字段一一对应,后续flink需要根据该对应关系把日志记录中的字段数据一一存储到数据库表的对应字段关系中。The fields of the buried log records need to correspond one-to-one with the corresponding database table fields, and then flink needs to store the field data in the log records into the corresponding field relationships of the database table one by one according to the corresponding relationship.
配置完埋点的日志记录中需要保存的数据字段后,需要把需要保存的数据字段和数据库的关联关系(即配置字段规则)下发给Flink集群。本发明需要保存的数据字段通过WEB管理端进行配置,配置后保存到数据库表,如section配置表中,然后由Flink集群定期到section配置表中获取数据存储规则。After configuring the data fields that need to be saved in the log records of buried points, the association between the data fields to be saved and the database (that is, the configuration field rules) needs to be delivered to the Flink cluster. The data fields that need to be saved in the present invention are configured through the WEB management terminal, and are saved in a database table, such as a section configuration table, after configuration, and then the Flink cluster periodically obtains data storage rules from the section configuration table.
Flink集群从section配置表中获取需要保存的数据字段和数据库的关联关系后,保存到本地。如果本地已存在有对应的需要保存的数据字段和数据库的关联关系,如存在埋点A的日志记录的需要保存的数据字段和数据库的关联关系,则使用使用最新的需要保存的数据字段和数据库的关联关系更新本地保存的需要保存的数据字段和数据库的关联关系。After the Flink cluster obtains the relationship between the data fields to be saved and the database from the section configuration table, it is saved locally. If there is a local relationship between the corresponding data field to be saved and the database, such as the relationship between the data field to be saved and the database of the log record of buried point A, use the latest data field and database to be saved. The association relationship updates the locally saved data fields that need to be saved and the database association relationship.
步骤102、Flink根据所述配置字段对日志服务器中的第一业务数据进行过滤处理,得到第二业务数据;把所述第二业务数据存入数据库中。Step 102: Flink filters the first service data in the log server according to the configuration field to obtain second service data; and stores the second service data in a database.
本发明采用阿里云SLS作为APP的埋点日志记录数据缓存,SLS存储费用并不高,其能支持高并发性,能够弥补ClickHouse并发限制的问题,而SLS的数据分析以及图表配置需要创建索引,索引的费用较高,本发明采用成本较低的ClickHouse进行存储。The present invention adopts Alibaba Cloud SLS as the buried log record data cache of the APP. The storage cost of SLS is not high, it can support high concurrency, and can make up for the problem of ClickHouse concurrency limitation, and the data analysis and graph configuration of SLS need to create an index, The cost of indexing is relatively high, and the present invention adopts the lower cost ClickHouse for storage.
Flink连接对应的Logstore进行数据消费,每5秒从Section配置表中获取Section配置(即需要保存的数据字段和数据库的关联关系),根据业务线标识、Section字段进行过滤,减少无效数据,然后根据Section配置的字段以及关联表,动态生成入库语句,拼接后将数据入库。数据入库系统结构如图4所示。Flink connects to the corresponding Logstore for data consumption, obtains the Section configuration (that is, the relationship between the data fields to be saved and the database) from the Section configuration table every 5 seconds, and filters according to the business line ID and Section field to reduce invalid data. The fields and associated tables configured by Section, dynamically generate warehousing statements, and splicing the data into the warehousing. The structure of the data storage system is shown in Figure 4.
SLS的每个存储数据的表叫LogStore,Flink任务采用Source从SLS上进行数据消费获取数据,采用Sink进行数据入库,将数据录入ClickHouse。Source获取到日志记录后,根据日志记录的业务标识、功能标识,在本地保存的需要保存的数据字段和数据库的关联关系中查找是否配置了对应的业务标识和功能标识,如果没有配置对应的标识,则丢弃该日志记录;如果配置了对应的标识,则获取该日志记录数据,进行后续处理。如埋点A对应的业务标识为交易业务线,功能标识为商品交易日志A,这些标识在需要保存的数据字段和数据库的关联关系已配置,则Source获取埋点A对应的日志记录数据,如获取的日志记录数据为日志记录_埋点A。Each table that stores data in SLS is called LogStore. Flink tasks use Source to consume data from SLS to obtain data, use Sink to store data, and enter data into ClickHouse. After the source obtains the log record, according to the business identifier and function identifier of the log record, it searches the association between the data fields that need to be saved and the database saved locally to find out whether the corresponding business identifier and function identifier are configured. If the corresponding identifier is not configured , the log record is discarded; if the corresponding identifier is configured, the log record data is obtained for subsequent processing. If the business identifier corresponding to buried point A is a transaction business line, and the function identifier is commodity transaction log A, these identifiers have been configured in the data field to be saved and the relationship between the database, then Source obtains the log record data corresponding to buried point A, such as The acquired log record data is log record_buried point A.
根据获取的日志记录的业务标识(如Trade_id)、功能标识(如商品交易日志A),获取业务标识对应的数据库,功能标识对应的基础字段和自定义字段,如获取功能标识商品交易日志A的字段,然后从获取的日志记录中获取该标识对应字段的数据内容。According to the business ID (such as Trade_id) and function ID (such as commodity transaction log A) of the obtained log records, obtain the database corresponding to the business ID, the basic fields and custom fields corresponding to the function ID, such as obtaining the function ID of the commodity transaction log A. field, and then obtain the data content of the field corresponding to the ID from the obtained log record.
日志记录数据中可能包含除标识对应的字段外其他数据,Flink只会获取功能标识对应字段的数据,其他数据Flink不会获取。The log record data may contain other data than the fields corresponding to the identifiers. Flink will only obtain the data of the fields corresponding to the function identifiers, and Flink will not obtain other data.
Flink根据日志记录的标识获取对应的ClickHouse数据库表,如商品交易日志A对应的数据库表为Table_ID_001。然后根据日志记录的标识对应的日志记录的字段,获取数据库表Table_ID_001中对应的数据库表字段。Flink obtains the corresponding ClickHouse database table according to the ID of the log record. For example, the database table corresponding to commodity transaction log A is Table_ID_001. Then, according to the field of the log record corresponding to the identifier of the log record, the corresponding database table field in the database table Table_ID_001 is obtained.
Flink根据日志记录字段的数据内容、功能标识对应的数据库表、对应的数据库表字段,构造SQL语句。然后执行SQL语句,把日志记录的字段对应的数据内容保存到对应的数据库表中,如保存到表Table_ID_001。Flink constructs an SQL statement based on the data content of the log record field, the database table corresponding to the function identifier, and the corresponding database table field. Then execute the SQL statement to save the data content corresponding to the field of the log record to the corresponding database table, such as the table Table_ID_001.
保存日志记录到数据库时,防止过多日志记录存储到数据库,需要根据当前数据库表中每个功能标识对应的记录条数进行判断,如果记录条数超过一定制时,需要对日志记录进行采样。具体流程参见图5所示流程:When saving log records to the database, to prevent too many log records from being stored in the database, it is necessary to judge according to the number of records corresponding to each function identifier in the current database table. If the number of records exceeds a custom, the log records need to be sampled. For the specific process, see the process shown in Figure 5:
步骤S301、计算所述功能标识对应的记录条数。Step S301: Calculate the number of records corresponding to the function identifier.
ClickHouse数据库表以日志记录的功能字段(section字段)作为表的索引,将实时计算各个section的所占的记录条数。如计算功能标识为商品交易日志A的记录条数,得到记录条数为1500。The ClickHouse database table uses the function field (section field) of the log record as the index of the table, and will calculate the number of records occupied by each section in real time. For example, if the function identifier is the number of records of the commodity transaction log A, the number of records obtained is 1500.
步骤S302、判断所述记录条数在所述功能标识对应的所述数据库表的总记录中的第一占比和/或指定时间范围内的第二占比。Step S302: Determine the first proportion of the number of records in the total records of the database table corresponding to the function identifier and/or the second proportion within a specified time range.
判断某个功能标识对应的记录条数在整个数据库表中的占比,如商品交易日志A对应的数据库表Table_ID_001的总记录条数为15000,则该功能标识的记录与数据库表Table_ID_001的总记录条数的占比为10%。Determine the proportion of the number of records corresponding to a function identifier in the entire database table. For example, the total number of records in the database table Table_ID_001 corresponding to the commodity transaction log A is 15,000, then the records of the function identifier and the total records of the database table Table_ID_001 The proportion of the number of bars is 10%.
也可以判断某个时间段内功能标识的记录条数和该时间段内的数据库表的记录条数的占比,如24小时内功能标识为商品交易日志A的记录条数为200,数据库表Table_ID_001的总记录条数为5000,则指定时间范围内该功能标识的记录与数据库表Table_ID_001的记录条数的占比为4%。It is also possible to determine the ratio of the number of records of the functional identifier in a certain period of time to the number of records of the database table in this period of time. The total number of records in Table_ID_001 is 5000, and the ratio of the records of this function identifier to the records of database table Table_ID_001 within the specified time range is 4%.
步骤S303、所述第一占比大于第一阈值和/或所述第二占比大于第二阈值,对所述第二业务数据进行采样,得到第四业务数据,然后把所述第四业务数据存入数据库中。Step S303, the first proportion is greater than the first threshold and/or the second proportion is greater than the second threshold, the second service data is sampled to obtain fourth service data, and then the fourth service Data is stored in the database.
判断功能标识商品交易日志A的记录与数据库表Table_ID_001的总记录条数的占比是否大于一个阈值,如5%。如果大于这个阈值,则表示该功能标识对应的日记记录较多,需要对该功能标识对应的日志记录进行采样。The judgment function identifies whether the ratio of the records of the commodity transaction log A to the total number of records of the database table Table_ID_001 is greater than a threshold, such as 5%. If it is greater than this threshold, it means that there are many log records corresponding to the function identifier, and the log records corresponding to the function identifier need to be sampled.
也可以判断在一定时间范围内(如24小时)功能标识商品交易日志A的记录与数据库表Table_ID_001的记录条数的占比是否大于一个阈值,如5%。如小于该阈值,则不需要对该功能标识对应的日记记录进行采样。It can also be judged whether the ratio of the records of the functionally identified commodity transaction log A to the number of records of the database table Table_ID_001 within a certain time range (eg 24 hours) is greater than a threshold, such as 5%. If it is less than the threshold, it is not necessary to sample the diary record corresponding to the function identifier.
日志记录采样可以通过时间戳字段进行采样,例如时间戳模1等于0,则是取全部数据,时间戳模2=0,则是取50%的数据,模数可配置。也可以采用其他方式进行采样,本技术方案不进行限定。The log record sampling can be sampled by the timestamp field. For example, if timestamp modulo 1 equals 0, all data is taken; if timestamp modulo 2=0, 50% of the data is taken, and the modulo is configurable. The sampling may also be performed in other manners, which are not limited in this technical solution.
步骤103、配置监控指标,得到配置指标。Step 103: Configure monitoring indicators to obtain configuration indicators.
日志记录需要的字段配置完成后,本技术方案需要对监控指标进行配置,得到配置指标。能够配置图表类型、功能指标,X轴指标、Y轴指标、图例指标、查询条件、过滤条件等。After the configuration of the fields required for logging is completed, the technical solution needs to configure the monitoring indicators to obtain the configuration indicators. Ability to configure chart types, functional indicators, X-axis indicators, Y-axis indicators, legend indicators, query conditions, filter conditions, etc.
图表类型包括折线图、柱状图等;每个配置指标包括对应的功能指标,一个配置指标中可以包含多个功能指标。功能指标和功能标识进行关联,在配置功能指标时,可以通过下拉列表方式选择一个功能标识,也可以通过查询方式获取一个功能标识。例如,将直播的wifi情况下的流畅度指标与4G情况下的流畅度指标放在同一个指标表中,用不同的曲线进行展示。Chart types include line charts, bar charts, etc.; each configuration indicator includes corresponding functional indicators, and one configuration indicator can contain multiple functional indicators. Function indicators and function identifiers are associated. When configuring a function indicator, you can select a function identifier through a drop-down list, or you can obtain a function identifier through a query. For example, put the fluency index under the live wifi condition and the fluency index under the 4G condition in the same index table and display them with different curves.
X轴指标一般为时间单位,也可以是自定义字段,如柱状图中,X轴可以表示各种功能。X轴的自定义字段从功能指标对应的功能标识对应的基础字段和自定义字段中进行选择。X轴选择了自定义字段时,可以为每个选择的自定义字段设置一个包裹字段的函数,如对该字段进行累加的函数、均值的函数。配置后,以group by的方式自行添加到数据合并中。如果配置了多个自定义字段,则还可以配置排序方式,如从小到大方式进行排序。The X-axis indicator is generally a time unit, or it can be a custom field. For example, in a bar chart, the X-axis can represent various functions. The custom field of the X-axis is selected from the base field and custom field corresponding to the function indicator corresponding to the function indicator. When a custom field is selected for the X-axis, a function wrapping the field can be set for each selected custom field, such as a function for accumulating the field and a function for the mean value. After configuration, it is added to the data merge in the way of group by. If multiple custom fields are configured, you can also configure the sorting method, such as sorting from small to large.
Y轴指标支持数值型和比例型,其中,比例型支持分子与分母的配置。当Y抽为数值型时,Y轴指标从功能指标对应的功能标识对应的基础字段和自定义字段中进行选择;以为每个选择的自定义字段设置一个包裹字段的函数,如对该字段进行累加的函数、均值的函数。The Y-axis indicator supports numerical and proportional types, and the proportional type supports the configuration of numerator and denominator. When Y is a numeric type, the Y-axis indicator is selected from the basic field and the custom field corresponding to the function identifier corresponding to the function indicator; a function wrapping the field is set for each selected custom field. A function of accumulation, a function of mean.
当Y轴指标为比例型时,需要分别为分子配置相应字段,从功能指标对应的功能标识对应的基础字段和自定义字段中进行选择;为分母配置相应字段,从功能指标对应的功能标识对应的基础字段和自定义字段中进行选择。分子、分母中配置的字段可以设置一个包裹字段的函数,如对该字段进行累加的函数、均值的函数。When the Y-axis indicator is proportional, it is necessary to configure corresponding fields for the numerator, and select from the basic fields and custom fields corresponding to the function identifier corresponding to the function indicator; configure the corresponding field for the denominator, from the function indicator corresponding to the function indicator. to choose between the base field and the custom field. For the fields configured in the numerator and denominator, a function that wraps the field can be set, such as a function for accumulating the field and a function for the mean value.
图例指标则是将section(功能标识)对应的数据分组,得到多条指标曲线,其中,分组可以单独配置某个字段在什么条件下,成为一个组,本发明可以配置多个字段的多种条件,从而实现多维度指标。分组流程,参见图6所示流程:The legend indicator is to group the data corresponding to the section (function identifier) to obtain multiple indicator curves. The grouping can be configured separately under what conditions a field becomes a group, and the present invention can configure various conditions for multiple fields. , so as to achieve multi-dimensional indicators. For the grouping process, see the process shown in Figure 6:
步骤401、配置所述基础字段和/或所述自定义字段对应的分组条件。Step 401: Configure grouping conditions corresponding to the basic field and/or the custom field.
对Y轴指标配置的字段设置分组条件,如设置APP版本号的分组条件,把版本号小于2.0的分一个组,版本号2.1到3.0的分一个组,版本号3.1以上的分一个组。Set the grouping conditions for the fields of the Y-axis indicator configuration, such as setting the grouping conditions for the APP version number, group those with version numbers less than 2.0 into one group, those with version numbers from 2.1 to 3.0 into one group, and those with version numbers above 3.1 into one group.
步骤402、根据所述分组条件,对所述基础字段和/或所述自定义字段的数据进行分组。Step 402: Group the data of the basic field and/or the custom field according to the grouping condition.
根据分组条件,对相应字段的数据进行分组。如直播的wifi情况下的流畅度指标,根据APP版本号分组,把归属相应APP版本号的数据加入到对应的组中。分组后,通过不同图表来表示相应分组。如直播的wifi情况下的流畅度指标,根据APP版本号分组分成3个组,则使用3条折线来表示对应组的数据。According to the grouping condition, the data of the corresponding field is grouped. For example, the fluency indicator in the case of live wifi is grouped according to the APP version number, and the data belonging to the corresponding APP version number is added to the corresponding group. After grouping, the corresponding groups are represented by different charts. For example, the fluency indicator in the case of live wifi is divided into 3 groups according to the APP version number, and 3 broken lines are used to represent the data of the corresponding group.
查询条件将会带入指标图表中,过滤条件则是用于限制数据规模,过滤掉无用的数据,以上配置能够覆盖掉绝大多数指标配置的场景,无需写SQL,通过点击完成配置。The query conditions will be brought into the indicator chart, and the filter conditions are used to limit the data size and filter out useless data. The above configuration can cover most of the indicator configuration scenarios, without writing SQL, and click to complete the configuration.
查询条件可以是某个APP版本的数据,如app版本号为1.0版本的数据。过滤条件可以某个设备类型,如iphone8设备上报的数据过滤掉等。The query condition can be the data of a certain APP version, such as the data of the APP version number 1.0. The filter condition can be filtered by a certain device type, such as the data reported by the iphone8 device.
步骤104、根据所述配置指标查询所述数据库得到第三业务数据,对所述第三业务数据进行指标展示。Step 104: Query the database according to the configuration index to obtain third service data, and display the index of the third service data.
监控指标配置完成后,指标监控系统根据配置指标从ClickHouse数据库中查询相应数据,如查询Y轴指标数据、查询X轴指标数据。然后查询配置指标中该字段是否配置了相应函数,如果配置了相应函数则调用相应函数对该字段进行处理,如配置了累加函数,则对该字段的数据进行累加。After the monitoring indicators are configured, the indicator monitoring system queries the corresponding data from the ClickHouse database according to the configuration indicators, such as querying the Y-axis indicator data and querying the X-axis indicator data. Then query whether the corresponding function is configured in the field in the configuration indicator. If the corresponding function is configured, the corresponding function is called to process the field. If the accumulation function is configured, the data of the field is accumulated.
如果Y轴指标为比例型,则分别获取分子对应的指标数据,然后调用对应的函数进行处理;获取分母对应的指标数据,然后调用对应的函数进行处理,然后把分子除以分母,得到Y轴指标。If the Y-axis indicator is proportional, obtain the indicator data corresponding to the numerator, and then call the corresponding function for processing; obtain the indicator data corresponding to the denominator, then call the corresponding function for processing, and then divide the numerator by the denominator to get the Y-axis index.
如Y轴指标配置的是直播的wifi情况下的流畅度指标与4G情况下的流畅度指标,则获取当前时刻日志记录中直播wifi情况下的流畅度指标与4G情况下的流畅度指标,然后对这些指标求平均值,则得到该时刻的直播wifi情况下的流畅度指标与4G情况下的流畅度指标。然后把Y轴指标根据图表类型(如折线图)显示。If the Y-axis indicator is configured with the fluency index in the case of live wifi and the fluency index in 4G, then obtain the fluency index in the log record of the current moment in the case of live wifi and the fluency index in 4G, and then By averaging these indicators, the fluency index in the case of live wifi and the fluency index in the case of 4G are obtained at that moment. Then display the Y-axis indicator according to the chart type (such as a line chart).
监控指标进行展示时,可以增加中间缓存,如缓存3分钟更新一次,将默认的全局查询均进行缓存,从而降低直接查询ClickHouse数据库的频率,保持系统性能。缓存时长可配置,如配置为5分钟。When displaying monitoring indicators, an intermediate cache can be added. For example, the cache is updated every 3 minutes, and all default global queries are cached, thereby reducing the frequency of directly querying the ClickHouse database and maintaining system performance. The cache duration can be configured, such as 5 minutes.
通过本发明实施例,将日志服务器的数据记录到系统中,并支持通过配置X轴、Y轴及函数配置,规避了日志服务器的SQL编写,有效降低配置门槛;采用多字段多条件的图例,从而实现多维度指标配置,能够灵活将业务埋点组装到同一个指标图中。Through the embodiment of the present invention, the data of the log server is recorded in the system, and the configuration of the X axis, the Y axis and the function configuration is supported, which avoids the SQL writing of the log server, and effectively reduces the configuration threshold; In this way, multi-dimensional indicator configuration can be realized, and business buried points can be flexibly assembled into the same indicator graph.
此外,本发明实施例还提出一种可配置的多维度数据监控装置,参照图7,所述可配置的多维度数据监控装置包括:In addition, an embodiment of the present invention also provides a configurable multi-dimensional data monitoring device. Referring to FIG. 7 , the configurable multi-dimensional data monitoring device includes:
字段配置单元10,用于配置数据字段得到配置字段;The
数据过滤单元20,用于Flink根据所述配置字段对日志服务器中的第一业务数据进行过滤处理,得到第二业务数据;把所述第二业务数据存入数据库中;The
指标配置单元30,用于配置监控指标,得到配置指标;an
指标查询单元40,用于根据所述配置指标查询所述数据库得到第三业务数据,对所述第三业务数据进行指标展示。The
通过本发明实施例,将日志服务器的数据记录到系统中,并支持通过配置X轴、Y轴及函数配置,规避了日志服务器的SQL编写,有效降低配置门槛;采用多字段多条件的图例,从而实现多维度指标配置,能够灵活将业务埋点组装到同一个指标图中。Through the embodiment of the present invention, the data of the log server is recorded in the system, and the configuration of the X axis, the Y axis and the function configuration is supported, which avoids the SQL writing of the log server, and effectively reduces the configuration threshold; In this way, multi-dimensional indicator configuration can be realized, and business buried points can be flexibly assembled into the same indicator graph.
需要说明的是,上述装置中的各单元可用于实现上述方法中的各个步骤,同时达到相应的技术效果,本实施例在此不再赘述。It should be noted that, each unit in the above-mentioned apparatus may be used to implement each step in the above-mentioned method, and at the same time achieve corresponding technical effects, which will not be repeated in this embodiment.
参照图8,图8为本发明实施例提供的一种电子设备的结构示意图。Referring to FIG. 8 , FIG. 8 is a schematic structural diagram of an electronic device according to an embodiment of the present invention.
如图8所示,该电子设备可以包括:处理器1001,例如CPU,通信总线1002、用户接口1003,网络接口1004,存储器1005。其中,通信总线1002用于实现这些组件之间的连接通信。用户接口1003可以包括显示屏(Display)、输入单元比如键盘(Keyboard),可选用户接口1003还可以包括标准的有线接口、无线接口。网络接口1004可选的可以包括标准的有线接口、无线接口(如WI-FI、4G、5G接口)。存储器1005可以是高速RAM存储器,也可以是稳定的存储器(non-volatile memory),例如磁盘存储器。存储器1005可选的还可以是独立于前述处理器1001的存储装置。As shown in FIG. 8 , the electronic device may include: a
本领域技术人员可以理解,图8中示出的结构并不构成对电子设备的限定,可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。Those skilled in the art can understand that the structure shown in FIG. 8 does not constitute a limitation to the electronic device, and may include more or less components than the one shown, or combine some components, or arrange different components.
如图8所示,作为一种计算机存储介质的存储器1005中可以包括操作系统、网络通信模块、用户接口模块以及可配置的多维度数据监控程序。As shown in FIG. 8 , the
在图8所示的电子设备中,网络接口1004主要用于与外部网络进行数据通信;用户接口1003主要用于接收用户的输入指令;电子设备通过处理器1001调用存储器1005中存储的可配置的多维度数据监控程序,并执行以下操作:In the electronic device shown in FIG. 8 , the
配置数据字段,得到配置字段;Configure the data field to get the configuration field;
Flink根据所述配置字段对日志服务器中的第一业务数据进行过滤处理,得到第二业务数据;把所述第二业务数据存入数据库中;Flink filters the first business data in the log server according to the configuration field to obtain second business data; stores the second business data in the database;
配置监控指标,得到配置指标;Configure monitoring indicators to get configuration indicators;
根据所述配置指标查询所述数据库得到第三业务数据,对所述第三业务数据进行指标展示。The database is queried according to the configuration index to obtain third service data, and an index display is performed on the third service data.
可选地,所述配置数据字段得到配置字段,包括以下步骤:Optionally, obtaining the configuration field from the configuration data field includes the following steps:
设置业务标识和/或功能标识和/或基础字段和/或自定义字段;Set business ID and/or functional ID and/or base fields and/or custom fields;
建立所述业务标识与数据库关联关系,N(N大于等于1)个所述业务标识与1个所述数据库建立关联关系;establishing an association relationship between the service identifier and the database, and establishing an association relationship between N (N is greater than or equal to 1) the service identifier and one of the databases;
建立所述功能标识与数据库表关联关系,N(N大于等于1)个所述功能标识与1张所述数据库表建立关联关系;Establish an association relationship between the function identifier and the database table, and establish an association relationship between N (N is greater than or equal to 1) of the function identifier and one of the database tables;
建立所述基础字段和/或所述自定义字段与所述数据库表的字段的关联关系。An association relationship between the basic field and/or the custom field and the field of the database table is established.
可选地,所述方法还包括:Optionally, the method further includes:
计算所述功能标识对应的记录条数;Calculate the number of records corresponding to the functional identifier;
判断所述记录条数在所述功能标识对应的所述数据库表的总记录中的第一占比和/或指定时间范围内的第二占比;Judging the first proportion of the number of records in the total records of the database table corresponding to the function identifier and/or the second proportion within a specified time range;
所述第一占比大于第一阈值和/或所述第二占比大于第二阈值,对所述第二业务数据进行采样,得到第四业务数据,然后把所述第四业务数据存入数据库中。The first proportion is greater than the first threshold and/or the second proportion is greater than the second threshold, the second business data is sampled to obtain fourth business data, and then the fourth business data is stored in in the database.
可选地,所述配置监控指标得到配置指标,包括以下步骤:Optionally, obtaining the configuration index from the configuration monitoring index includes the following steps:
所述监控指标包括以下至少一种:图表类型、功能指标,X轴指标、Y轴指标、图例指标、查询条件、过滤条件;The monitoring indicators include at least one of the following: chart type, function indicators, X-axis indicators, Y-axis indicators, legend indicators, query conditions, and filter conditions;
所述功能指标包含N(N大于等于1)个所述功能标识;The function index includes N (N is greater than or equal to 1) the function identifiers;
所述X轴指标包含时间单位和/或N(N大于等于1)个基础字段和/或N(N大于等于1)个自定义字段;The X-axis indicator includes time units and/or N (N greater than or equal to 1) basic fields and/or N (N greater than or equal to 1) custom fields;
所述Y轴指标包含N(N大于等于1)个基础字段和/或N(N大于等于1)个自定义字段;The Y-axis indicator includes N (N greater than or equal to 1) basic fields and/or N (N greater than or equal to 1) custom fields;
所述过滤条件用于限制数据规模,过滤无用的数据;The filter conditions are used to limit the data scale and filter useless data;
所述查询条件用于所述图例指标的查询;The query condition is used for the query of the legend indicator;
所述图例指标根据所述功能指标进行数据分组,得到多条指标曲线。The legend index performs data grouping according to the function index, and obtains a plurality of index curves.
可选地,所述方法还包括以下步骤:Optionally, the method further includes the following steps:
所述X轴指标还包括第一函数,所述第一函数包括以下至少一种:均值函数、累加函数;The X-axis indicator further includes a first function, and the first function includes at least one of the following: a mean value function and an accumulation function;
所述Y轴指标支持数值型和比例型,所述Y轴为比例型时,对分子与分母进行配置;所述分子为所述基础字段和/或自定义字段,所述分母为所述基础字段和/或自定义字段;The Y-axis indicator supports numerical and proportional types. When the Y-axis is proportional, configure the numerator and denominator; the numerator is the basic field and/or a custom field, and the denominator is the basic field. fields and/or custom fields;
所述Y轴指标还包括第二函数,所述第二函数包括以下至少一种:均值函数、累加函数。The Y-axis indicator further includes a second function, and the second function includes at least one of the following: a mean value function and an accumulation function.
可选地,所述方法还包括以下步骤:Optionally, the method also includes the following steps:
对所述第三业务数据进行缓存,缓存时长可配置。The third service data is cached, and the cache duration is configurable.
可选地,所述图例指标根据所述功能指标进行数据分组,包括以下步骤:Optionally, the legend indicators perform data grouping according to the function indicators, including the following steps:
配置所述基础字段和/或所述自定义字段对应的分组条件;configuring the grouping conditions corresponding to the basic field and/or the custom field;
根据所述分组条件,对所述基础字段和/或所述自定义字段的数据进行分组。The data of the basic field and/or the custom field is grouped according to the grouping condition.
通过本发明实施例,将日志服务器的数据记录到系统中,并支持通过配置X轴、Y轴及函数配置,规避了日志服务器的SQL编写,有效降低配置门槛;采用多字段多条件的图例,从而实现多维度指标配置,能够灵活将业务埋点组装到同一个指标图中。Through the embodiment of the present invention, the data of the log server is recorded in the system, and the configuration of the X axis, the Y axis and the function configuration is supported, which avoids the SQL writing of the log server, and effectively reduces the configuration threshold; In this way, multi-dimensional indicator configuration can be realized, and business buried points can be flexibly assembled into the same indicator graph.
此外,本发明实施例还提出一种计算机可读存储介质,计算机可读存储介质上存储有可配置的多维度数据监控程序,可配置的多维度数据监控程序被处理器执行时实现如下操作:In addition, an embodiment of the present invention also provides a computer-readable storage medium, where a configurable multi-dimensional data monitoring program is stored on the computer-readable storage medium, and the configurable multi-dimensional data monitoring program is executed by a processor to achieve the following operations:
配置数据字段,得到配置字段;Configure the data field to get the configuration field;
Flink根据所述配置字段对日志服务器中的第一业务数据进行过滤处理,得到第二业务数据;把所述第二业务数据存入数据库中;Flink filters the first business data in the log server according to the configuration field to obtain second business data; stores the second business data in the database;
配置监控指标,得到配置指标;Configure monitoring indicators to get configuration indicators;
根据所述配置指标查询所述数据库得到第三业务数据,对所述第三业务数据进行指标展示。The database is queried according to the configuration index to obtain third service data, and an index display is performed on the third service data.
可选地,所述配置数据字段得到配置字段,包括以下步骤:Optionally, obtaining the configuration field from the configuration data field includes the following steps:
设置业务标识和/或功能标识和/或基础字段和/或自定义字段;Set business ID and/or functional ID and/or base fields and/or custom fields;
建立所述业务标识与数据库关联关系,N(N大于等于1)个所述业务标识与1个所述数据库建立关联关系;establishing an association relationship between the service identifier and the database, and establishing an association relationship between N (N is greater than or equal to 1) the service identifier and one of the databases;
建立所述功能标识与数据库表关联关系,N(N大于等于1)个所述功能标识与1张所述数据库表建立关联关系;Establish an association relationship between the function identifier and the database table, and establish an association relationship between N (N is greater than or equal to 1) of the function identifier and one of the database tables;
建立所述基础字段和/或所述自定义字段与所述数据库表的字段的关联关系。An association relationship between the basic field and/or the custom field and the field of the database table is established.
可选地,所述方法还包括:Optionally, the method further includes:
计算所述功能标识对应的记录条数;Calculate the number of records corresponding to the functional identifier;
判断所述记录条数在所述功能标识对应的所述数据库表的总记录中的第一占比和/或指定时间范围内的第二占比;Judging the first proportion of the number of records in the total records of the database table corresponding to the function identifier and/or the second proportion within a specified time range;
所述第一占比大于第一阈值和/或所述第二占比大于第二阈值,对所述第二业务数据进行采样,得到第四业务数据,然后把所述第四业务数据存入数据库中。The first proportion is greater than the first threshold and/or the second proportion is greater than the second threshold, the second business data is sampled to obtain fourth business data, and then the fourth business data is stored in in the database.
可选地,所述配置监控指标得到配置指标,包括以下步骤:Optionally, obtaining the configuration index from the configuration monitoring index includes the following steps:
所述监控指标包括以下至少一种:图表类型、功能指标,X轴指标、Y轴指标、图例指标、查询条件、过滤条件;The monitoring indicators include at least one of the following: chart type, function indicators, X-axis indicators, Y-axis indicators, legend indicators, query conditions, and filter conditions;
所述功能指标包含N(N大于等于1)个所述功能标识;The function index includes N (N is greater than or equal to 1) the function identifiers;
所述X轴指标包含时间单位和/或N(N大于等于1)个基础字段和/或N(N大于等于1)个自定义字段;The X-axis indicator includes time units and/or N (N greater than or equal to 1) basic fields and/or N (N greater than or equal to 1) custom fields;
所述Y轴指标包含N(N大于等于1)个基础字段和/或N(N大于等于1)个自定义字段;The Y-axis indicator includes N (N greater than or equal to 1) basic fields and/or N (N greater than or equal to 1) custom fields;
所述过滤条件用于限制数据规模,过滤无用的数据;The filter conditions are used to limit the data scale and filter useless data;
所述查询条件用于所述图例指标的查询;The query condition is used for the query of the legend indicator;
所述图例指标根据所述功能指标进行数据分组,得到多条指标曲线。The legend index performs data grouping according to the function index, and obtains a plurality of index curves.
可选地,所述方法还包括以下步骤:Optionally, the method also includes the following steps:
所述X轴指标还包括第一函数,所述第一函数包括以下至少一种:均值函数、累加函数;The X-axis indicator further includes a first function, and the first function includes at least one of the following: a mean value function and an accumulation function;
所述Y轴指标支持数值型和比例型,所述Y轴为比例型时,对分子与分母进行配置;所述分子为所述基础字段和/或自定义字段,所述分母为所述基础字段和/或自定义字段;The Y-axis indicator supports numerical and proportional types. When the Y-axis is proportional, configure the numerator and denominator; the numerator is the basic field and/or a custom field, and the denominator is the basic field. fields and/or custom fields;
所述Y轴指标还包括第二函数,所述第二函数包括以下至少一种:均值函数、累加函数。The Y-axis indicator further includes a second function, and the second function includes at least one of the following: a mean value function and an accumulation function.
可选地,所述方法还包括以下步骤:Optionally, the method also includes the following steps:
对所述第三业务数据进行缓存,缓存时长可配置。The third service data is cached, and the cache duration is configurable.
可选地,所述图例指标根据所述功能指标进行数据分组,包括以下步骤:Optionally, the legend indicators perform data grouping according to the function indicators, including the following steps:
配置所述基础字段和/或所述自定义字段对应的分组条件;configuring the grouping conditions corresponding to the basic field and/or the custom field;
根据所述分组条件,对所述基础字段和/或所述自定义字段的数据进行分组。The data of the basic field and/or the custom field is grouped according to the grouping condition.
通过本发明实施例,将日志服务器的数据记录到系统中,并支持通过配置X轴、Y轴及函数配置,规避了日志服务器的SQL编写,有效降低配置门槛;采用多字段多条件的图例,从而实现多维度指标配置,能够灵活将业务埋点组装到同一个指标图中。Through the embodiment of the present invention, the data of the log server is recorded in the system, and the configuration of the X axis, the Y axis and the function configuration is supported, which avoids the SQL writing of the log server, and effectively reduces the configuration threshold; In this way, multi-dimensional indicator configuration can be realized, and business buried points can be flexibly assembled into the same indicator graph.
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者系统不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者系统所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者系统中还存在另外的相同要素。It should be noted that, herein, the terms "comprising", "comprising" or any other variation thereof are intended to encompass non-exclusive inclusion, such that a process, method, article or system comprising a series of elements includes not only those elements, It also includes other elements not expressly listed or inherent to such a process, method, article or system. Without further limitation, an element qualified by the phrase "comprising a..." does not preclude the presence of additional identical elements in the process, method, article or system that includes the element.
上述本发明实施例序号仅仅为了描述,不代表实施例的优劣。The above-mentioned serial numbers of the embodiments of the present invention are only for description, and do not represent the advantages or disadvantages of the embodiments.
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在如上所述的一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端设备(可以是手机,计算机,服务器,控制器,或者网络设备等)执行本发明各个实施例所述的方法。From the description of the above embodiments, those skilled in the art can clearly understand that the method of the above embodiment can be implemented by means of software plus a necessary general hardware platform, and of course can also be implemented by hardware, but in many cases the former is better implementation. Based on such understanding, the technical solutions of the present invention can be embodied in the form of software products in essence or the parts that make contributions to the prior art, and the computer software products are stored in a storage medium (such as ROM/RAM) as described above. , magnetic disk, optical disk), including several instructions to make a terminal device (which may be a mobile phone, a computer, a server, a controller, or a network device, etc.) to execute the methods described in the various embodiments of the present invention.
以上仅为本发明的优选实施例,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。The above are only preferred embodiments of the present invention, and are not intended to limit the scope of the present invention. Any equivalent structure or equivalent process transformation made by using the contents of the description and drawings of the present invention, or directly or indirectly applied in other related technical fields , are similarly included in the scope of patent protection of the present invention.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210173886.4A CN114595129A (en) | 2022-02-24 | 2022-02-24 | Configurable multi-dimensional data monitoring method and device and storage medium |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210173886.4A CN114595129A (en) | 2022-02-24 | 2022-02-24 | Configurable multi-dimensional data monitoring method and device and storage medium |
Publications (1)
Publication Number | Publication Date |
---|---|
CN114595129A true CN114595129A (en) | 2022-06-07 |
Family
ID=81806653
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210173886.4A Pending CN114595129A (en) | 2022-02-24 | 2022-02-24 | Configurable multi-dimensional data monitoring method and device and storage medium |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114595129A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115114174A (en) * | 2022-08-02 | 2022-09-27 | 中航信移动科技有限公司 | Debugging method for weex page, storage medium and electronic equipment |
CN116629805A (en) * | 2023-06-07 | 2023-08-22 | 浪潮智慧科技有限公司 | Water conservancy index service method, equipment and medium for distributed flow batch integration |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111241078A (en) * | 2020-01-07 | 2020-06-05 | 网易(杭州)网络有限公司 | Data analysis system, data analysis method and device |
CN111488261A (en) * | 2020-03-11 | 2020-08-04 | 北京健康之家科技有限公司 | User behavior analysis system, method, storage medium and computing device |
CN113868248A (en) * | 2021-09-03 | 2021-12-31 | 上海汇付数据服务有限公司 | Indicator data pre-aggregation method |
-
2022
- 2022-02-24 CN CN202210173886.4A patent/CN114595129A/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111241078A (en) * | 2020-01-07 | 2020-06-05 | 网易(杭州)网络有限公司 | Data analysis system, data analysis method and device |
CN111488261A (en) * | 2020-03-11 | 2020-08-04 | 北京健康之家科技有限公司 | User behavior analysis system, method, storage medium and computing device |
CN113868248A (en) * | 2021-09-03 | 2021-12-31 | 上海汇付数据服务有限公司 | Indicator data pre-aggregation method |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115114174A (en) * | 2022-08-02 | 2022-09-27 | 中航信移动科技有限公司 | Debugging method for weex page, storage medium and electronic equipment |
CN115114174B (en) * | 2022-08-02 | 2022-12-13 | 中航信移动科技有限公司 | Debugging method for weex page, storage medium and electronic equipment |
CN116629805A (en) * | 2023-06-07 | 2023-08-22 | 浪潮智慧科技有限公司 | Water conservancy index service method, equipment and medium for distributed flow batch integration |
CN116629805B (en) * | 2023-06-07 | 2023-12-01 | 浪潮智慧科技有限公司 | Water conservancy index service method, equipment and medium for distributed flow batch integration |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103136335B (en) | A kind of data control method based on data platform | |
CN103390066B (en) | A kind of database overall automation optimizes prior-warning device and disposal route thereof | |
US10452625B2 (en) | Data lineage analysis | |
CN114186000B (en) | Method, device and storage medium for monitoring business data based on Flink | |
CN109254901B (en) | A kind of Monitoring Indexes method and system | |
EP2672397A1 (en) | Generating reports based on materialized view | |
CN111339171B (en) | Data query method, device and device | |
CN109299157A (en) | A data export method and device for distributed large single table | |
WO2019076001A1 (en) | Information updating method and device | |
CN114595129A (en) | Configurable multi-dimensional data monitoring method and device and storage medium | |
CN115269515B (en) | Processing method for searching specified target document data | |
CN1859505B (en) | Bill checking system and method | |
CN111241129A (en) | Industrial production enterprise index data acquisition and calculation system | |
CN110781235A (en) | Big data based purchase data processing method and device, terminal and storage medium | |
WO2017000592A1 (en) | Data processing method, apparatus and system | |
CN111061802B (en) | Power data management processing method, device and storage medium | |
CN111414410A (en) | Data processing method, device, equipment and storage medium | |
CN116362212A (en) | Report generation method, device, equipment and storage medium | |
CN114911769A (en) | Data management method and system supporting custom dynamic tag construction | |
CN114428812A (en) | Report data monitoring method, device, equipment and storage medium | |
CN107729206A (en) | Real-time analysis method, system and the computer-processing equipment of alarm log | |
CN107357919A (en) | User behaviors log inquiry system and method | |
CN110222032A (en) | A kind of generalised event model based on software data analysis | |
CN115329150A (en) | Method and device for generating search condition tree, electronic equipment and storage medium | |
CN114398244B (en) | Communication system stability evaluation method and device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
CB02 | Change of applicant information |
Country or region after: China Address after: Room 6416, Building 13, No. 723 Tongxin Road, Hongkou District, Shanghai 200080 Applicant after: Shanghai Dewu Information Group Co.,Ltd. Address before: Room B6-2005, No. 121 Zhongshan North 1st Road, Hongkou District, Shanghai Applicant before: SHANGHAI SHIZHUANG INFORMATION TECHNOLOGY Co.,Ltd. Country or region before: China |
|
CB02 | Change of applicant information |