CN114594514A - A Quantitative Prediction Method of Thin Layer Thickness Based on Interference of Underlying Limestone - Google Patents
A Quantitative Prediction Method of Thin Layer Thickness Based on Interference of Underlying Limestone Download PDFInfo
- Publication number
- CN114594514A CN114594514A CN202011420611.3A CN202011420611A CN114594514A CN 114594514 A CN114594514 A CN 114594514A CN 202011420611 A CN202011420611 A CN 202011420611A CN 114594514 A CN114594514 A CN 114594514A
- Authority
- CN
- China
- Prior art keywords
- thickness
- frequency
- seismic
- slice
- thin
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 235000019738 Limestone Nutrition 0.000 title claims abstract description 30
- 239000006028 limestone Substances 0.000 title claims abstract description 30
- 238000000034 method Methods 0.000 title claims abstract description 29
- 230000015572 biosynthetic process Effects 0.000 claims abstract description 42
- 238000005553 drilling Methods 0.000 claims abstract description 20
- 238000012545 processing Methods 0.000 claims abstract description 16
- 230000004927 fusion Effects 0.000 claims abstract description 15
- 210000004884 grey matter Anatomy 0.000 claims abstract description 7
- 230000002452 interceptive effect Effects 0.000 claims abstract description 3
- 239000004576 sand Substances 0.000 claims description 22
- 238000012417 linear regression Methods 0.000 claims description 3
- 230000004044 response Effects 0.000 claims description 2
- 238000005755 formation reaction Methods 0.000 claims 15
- 238000004364 calculation method Methods 0.000 claims 1
- 230000000694 effects Effects 0.000 abstract description 9
- 238000004088 simulation Methods 0.000 abstract 1
- 238000011161 development Methods 0.000 description 5
- 238000010586 diagram Methods 0.000 description 5
- 238000005516 engineering process Methods 0.000 description 4
- 208000035126 Facies Diseases 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000011002 quantification Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000033764 rhythmic process Effects 0.000 description 1
- 238000007619 statistical method Methods 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 238000012795 verification Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01V—GEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
- G01V1/00—Seismology; Seismic or acoustic prospecting or detecting
- G01V1/28—Processing seismic data, e.g. for interpretation or for event detection
- G01V1/30—Analysis
- G01V1/306—Analysis for determining physical properties of the subsurface, e.g. impedance, porosity or attenuation profiles
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01V—GEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
- G01V1/00—Seismology; Seismic or acoustic prospecting or detecting
- G01V1/28—Processing seismic data, e.g. for interpretation or for event detection
- G01V1/282—Application of seismic models, synthetic seismograms
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01V—GEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
- G01V1/00—Seismology; Seismic or acoustic prospecting or detecting
- G01V1/28—Processing seismic data, e.g. for interpretation or for event detection
- G01V1/36—Effecting static or dynamic corrections on records, e.g. correcting spread; Correlating seismic signals; Eliminating effects of unwanted energy
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01V—GEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
- G01V2210/00—Details of seismic processing or analysis
- G01V2210/40—Transforming data representation
- G01V2210/48—Other transforms
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01V—GEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
- G01V2210/00—Details of seismic processing or analysis
- G01V2210/60—Analysis
- G01V2210/62—Physical property of subsurface
- G01V2210/624—Reservoir parameters
Landscapes
- Engineering & Computer Science (AREA)
- Remote Sensing (AREA)
- Physics & Mathematics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Acoustics & Sound (AREA)
- Environmental & Geological Engineering (AREA)
- Geology (AREA)
- General Life Sciences & Earth Sciences (AREA)
- General Physics & Mathematics (AREA)
- Geophysics (AREA)
- Geophysics And Detection Of Objects (AREA)
Abstract
本发明提供一种下伏灰质地层干涉的薄层厚度定量预测方法,该方法包括:地震正演模拟,定量分析下伏灰质地层对薄层砂岩的地震干涉特征;通过实钻砂体厚度统计,确定所述薄层砂岩的优势调谐频率;地震分频处理,提取所述优势调谐频率下的最佳地层切片组合;实钻井厚度约束,建立分频切片融合公式;利用所述分频切片融合公式,对灰质干涉下的薄层厚度进行定量预测。本发明在地震正演模拟分析基础上,优选了消除下伏灰质地层干涉影响的地层切片组合,并在实钻厚度约束下,建立了薄层厚度定量公式,显著提高了薄层厚度预测精度,可在无法开展叠前地震反演情况下,消除下伏灰质地层干涉影响,实现薄层厚度定量预测。
The invention provides a method for quantitatively predicting the thickness of a thin layer by interfering with an underlying limestone stratum. The method includes: seismic forward modeling, quantitatively analyzing the seismic interference characteristics of the underlying limestone stratum on the thin sandstone; Determine the dominant tuning frequency of the thin sandstone; Seismic frequency division processing, extract the optimal formation slice combination under the dominant tuning frequency; Constrain the thickness of the actual drilling, establish a frequency division slice fusion formula; Use the frequency division slice fusion formula , quantitative prediction of thin layer thickness under gray matter interference. On the basis of seismic forward modeling simulation analysis, the invention optimizes the combination of strata slices that eliminates the interference effect of the underlying gray strata, and establishes a thin layer thickness quantitative formula under the constraint of actual drilling thickness, which significantly improves the thin layer thickness prediction accuracy. In the case where prestack seismic inversion cannot be performed, the interference effect of the underlying limestone strata can be eliminated, and the quantitative prediction of thin layer thickness can be realized.
Description
技术领域technical field
本发明涉及陆相复杂隐蔽油藏的储层厚度预测领域,特别涉及到一种下伏灰质地层干涉的薄层厚度定量预测方法。The invention relates to the field of reservoir thickness prediction of complex and hidden oil reservoirs in continental facies, in particular to a thin layer thickness quantitative prediction method with the interference of underlying ash strata.
背景技术Background technique
陆相复杂隐蔽油藏中岩性复杂多变、沉积韵律多样,随着勘探开发的持续推进,薄储层的厚度定量预测已成为制约高效勘探开发的关键。其中,下伏灰质地层干涉的薄层厚度定量预测是需要关注的难点问题。叠前地震反演技术可有效消除灰质地层的干涉影响,但在实际勘探中,叠前地震资料较少,无法大规模推广应用。因此,需要研究在无法开展叠前地震反演情况下,消除下伏灰质地层干涉影响,实现薄层厚度定量预测的方法。Continental complex and subtle oil reservoirs have complex and changeable lithology and diverse sedimentary rhythms. With the continuous advancement of exploration and development, quantitative prediction of the thickness of thin reservoirs has become the key to restricting efficient exploration and development. Among them, the quantitative prediction of the thin layer thickness of the underlying gray layer interference is a difficult problem that needs to be paid attention to. Pre-stack seismic inversion technology can effectively eliminate the interference effect of gray strata, but in actual exploration, there are few pre-stack seismic data, which cannot be widely applied. Therefore, it is necessary to study a method to achieve quantitative prediction of thin layer thickness by eliminating the interference effect of the underlying limestone strata when pre-stack seismic inversion cannot be carried out.
目前,国内外学者在灰质发育区储层识别方面已开展了较多研究和论述。其中,大多数文献中应用地区具有纵横波资料,采用了叠前地震反演方法,通过构建敏感岩性因子,实现了灰质发育区的储层识别。At present, domestic and foreign scholars have carried out a lot of research and discussion on reservoir identification in grey matter development areas. Among them, most of the application areas in the literature have P and S wave data, and the pre-stack seismic inversion method is used, and the reservoir identification in the gray matter development area is realized by constructing sensitive lithological factors.
现有技术方法中,叠前地震反演技术只能应用于具有横波测井、叠前地震资料的地区,无法大规模推广应用,且叠前地震反演的专业性强、操作流程复杂、作业周期长,无法适应快节奏的高效勘探开发进程。在薄层厚度预测方面的诸多研究中,大多数注意到了薄层自身的调谐干涉效应,应用不同调谐频率的地层切片或地层切片组合较好的预测了薄层砂岩的展布范围,但方法适用的地质条件较为简单,并未考虑到下伏存在灰质地层时,对薄层的干涉效应及对薄层厚度预测的影响。Among the existing technical methods, the pre-stack seismic inversion technology can only be applied to areas with shear wave logging and pre-stack seismic data, and cannot be widely applied. The cycle is long and cannot adapt to the fast-paced and efficient exploration and development process. In many studies on thin layer thickness prediction, most of them have paid attention to the tuning interference effect of the thin layer itself. The application of formation slices or combination of formation slices with different tuning frequencies can better predict the distribution range of thin sandstones, but the method is suitable for The geological conditions are relatively simple, and the interference effect on the thin layer and the influence on the thickness prediction of the thin layer when the underlying gray layer is not considered.
发明内容SUMMARY OF THE INVENTION
本发明的目的是提供一种下伏灰质地层干涉的薄层厚度定量预测方法,能够在无法开展叠前地震反演情况下,消除下伏灰质地层干涉影响,实现薄层厚度的定量预测。The purpose of the present invention is to provide a method for quantitatively predicting the thickness of the thin layer with the interference of the underlying ash strata, which can eliminate the influence of the interference of the underlying ash strata and realize the quantitative prediction of the thickness of the thin layer when the pre-stack seismic inversion cannot be carried out.
本发明的目的可通过如下技术措施来实现:The purpose of the present invention can be achieved by the following technical measures:
一种下伏灰质地层干涉的薄层厚度定量预测方法,包括以下步骤:A method for quantitatively predicting the thickness of a thin layer by interfering with an underlying grey matter stratum, comprising the following steps:
步骤110,地震正演模拟,定量分析下伏灰质地层对薄层砂岩的地震干涉特征;
步骤120,通过实钻砂体厚度统计,确定所述薄层砂岩的优势调谐频率;Step 120: Determine the dominant tuning frequency of the thin-bed sandstone through the actual drilling sand body thickness statistics;
步骤130,地震分频处理,提取所述优势调谐频率下的最佳地层切片组合;
步骤140,实钻井厚度约束,建立分频切片融合公式;
步骤150,利用所述分频切片融合公式,对灰质干涉下的薄层厚度进行定量预测。
进一步的,步骤1中所述地震正演模拟,定量分析下伏灰质地层对薄层的地震干涉特征,具体包括:Further, the seismic forward modeling described in
通过实钻井分析,明确下伏灰质地层及薄层砂岩的厚度、速度及密度的岩石物理特征,建立下伏灰质地层的薄层砂岩地震正演模型;Through the analysis of actual drilling, the petrophysical characteristics of the thickness, velocity and density of the underlying calcareous strata and thin sandstones were clarified, and the thin sandstone seismic forward modeling model of the underlying calcareous strata was established;
通过波动方程地震正演模拟,确定下伏灰质地层对薄层砂岩开始产生干涉时的地震响应特征,并定量统计薄层砂岩厚度与不同位置地层切片振幅的变化关系。Through the wave equation seismic forward modeling, the seismic response characteristics of the underlying limestone strata when the thin sandstone begins to interfere with the thin sandstone are determined, and the relationship between the thickness of the thin sandstone and the amplitude of the stratum slice at different positions is quantitatively calculated.
进一步的,选择能较好反映薄层砂岩厚度变化的地层切片组合,通过相邻波峰振幅比法处理,即下伏灰质地层波峰切片振幅与砂岩波峰切片振幅之比,统计薄层砂岩厚度与不同位置地层切片振幅的变化关系。Further, the combination of formation slices that can better reflect the thickness variation of thin-bed sandstone is selected, and processed by the adjacent wave peak amplitude ratio method, that is, the ratio of the amplitude of the wave crest slice of the underlying limestone stratum to the amplitude of the sandstone wave crest slice, and the statistical difference between the thickness of the thin-bed sandstone and the difference is calculated. Variation relationship of the amplitude of the position stratigraphic slice.
进一步的,在步骤2中所述通过实钻砂体厚度统计,确定所述薄层砂岩的优势调谐频率,具体包括:Further, as described in
按照厚度调谐原理,在地层速度确定的前提下,当砂岩厚度值等于四分之一波长时,根据地震纵波传播速度公式,求取对应的频率:According to the principle of thickness tuning, on the premise that the formation velocity is determined, when the sandstone thickness is equal to one-quarter wavelength, the corresponding frequency can be obtained according to the seismic longitudinal wave propagation velocity formula:
f=v/λ=v/4hf=v/λ=v/4h
其中,v为纵波速度,f为地震资料主频,λ为地震纵波波长,h为调谐厚度,令h等于目标砂体厚度,利用上式计算得到f即为反映目标砂体的优势调谐频率。Among them, v is the P-wave velocity, f is the dominant frequency of the seismic data, λ is the seismic P-wave wavelength, and h is the tuning thickness. Let h be equal to the thickness of the target sand body. Using the above formula, f is the dominant tuning frequency that reflects the target sand body.
进一步的,在步骤3所述地震分频处理,提取所述优势调谐频率下的最佳地层切片组合,具体包括:在对地震数据进行分频处理,选择S变换作为时频分析算法,根据如下公式进行计算:Further, in the seismic frequency division processing described in
其中,t表示时间,f表示频率,τ为高斯窗在时间轴上的位置,时窗宽度随频率的变化而改变,频率的倒数决定时窗的大小,s(t)表示时间域输入信号,exp为自然对数函数,π为圆周率,i表示虚数单位,dt表示积分函数。Among them, t represents time, f represents frequency, τ is the position of the Gaussian window on the time axis, the width of the time window changes with the frequency, the inverse of the frequency determines the size of the time window, and s(t) represents the time domain input signal, exp is the natural logarithmic function, π is the pi, i is the imaginary unit, and dt is the integral function.
对地震数据进行分频处理后,生成优势的调谐频率体,并提取目标砂体地层切片的振幅属性,获得所述优势调谐频率下的最佳地层切片组合。After frequency division processing of the seismic data, a dominant tuning frequency volume is generated, and the amplitude attribute of the target sand body formation slice is extracted to obtain the optimal formation slice combination under the dominant tuning frequency.
进一步的,在步骤3所述地震分频处理具体包括:采用傅里叶变换、小波变换时频分析算法,对地震数据进行分频处理。Further, the seismic frequency division processing in
进一步的,所述提取目标砂体地层切片的振幅属性具体包括:提取最佳地层切片组合的相邻波峰振幅比,即下伏灰质地层波峰切片振幅与砂岩波峰切片振幅之比。Further, the extracting the amplitude attribute of the target sand body formation slice specifically includes: extracting the adjacent wave crest amplitude ratio of the optimal formation slice combination, that is, the ratio of the wave crest slice amplitude of the underlying limestone formation to the sandstone wave crest slice amplitude.
进一步的,在步骤4中所述实钻井厚度约束,建立分频切片融合公式,具体包括以下步骤:Further, in
对优势频率范围内的地层切片进行所述相邻波峰振幅比法处理,依据实钻井砂体厚度与分频切片的统计拟合关系,将比值后的分频切片进行加权线性回归,建立分频切片融合公式,以求得目标砂体的厚度值:The adjacent wave peak amplitude ratio method is performed on the formation slices in the dominant frequency range. According to the statistical fitting relationship between the actual drilling sand body thickness and the frequency division slices, the frequency division slices after the ratio are subjected to weighted linear regression to establish the frequency division. Slice fusion formula to obtain the thickness value of the target sand body:
Thickness=A1k1+A2k2+A3k3+……+Ankn+CThickness=A 1 k 1 +A 2 k 2 +A 3 k 3 +……+A n k n +C
其中,Thickness为预测的薄层砂岩厚度;A为优势调谐频率的最佳地层切片组合即相邻波峰振幅比,A1为第1个优势频率的地层切片组合,An为第n个优势频率的地层切片组合;k1为第1个地层切片组合的加权系数值,kn为第n个地层切片组合的加权系数值;C为加权常数。Among them, Thickness is the predicted thickness of thin sandstone; A is the optimal formation slice combination of the dominant tuning frequency, that is, the adjacent peak amplitude ratio, A1 is the formation slice combination of the first dominant frequency, and An is the nth dominant frequency. The combination of formation slices; k 1 is the weighting coefficient value of the first formation slice combination, k n is the weighting coefficient value of the nth formation slice combination; C is the weighting constant.
有益效果:Beneficial effects:
本发明中的一种下伏灰质地层干涉的薄层厚度定量预测方法,在地震正演模拟分析基础上,优选了消除下伏灰质地层干涉影响的地层切片组合,并在实钻厚度约束下,建立了薄层厚度定量公式,显著提高了薄层厚度预测精度,可在无法开展叠前地震反演情况下,消除下伏灰质地层干涉影响,实现薄层厚度定量预测,进一步丰富了陆相复杂隐蔽油藏的储层厚度预测技术,具有良好的应用效果和推广前景。The method for quantitatively predicting the thin layer thickness of the underlying limestone stratum interference in the present invention, on the basis of the seismic forward modeling analysis, optimizes the formation slice combination that eliminates the influence of the underlying limestone stratum interference, and under the constraint of the actual drilling thickness, A quantitative formula for thin layer thickness is established, which significantly improves the prediction accuracy of thin layer thickness. It can eliminate the interference effect of the underlying limestone strata and realize the quantitative prediction of thin layer thickness when pre-stack seismic inversion cannot be carried out, which further enriches the complexity of continental facies. The reservoir thickness prediction technology for hidden oil reservoirs has good application effects and promotion prospects.
附图说明Description of drawings
图1为本发明实施例一种下伏灰质地层干涉的薄层厚度定量预测方法流程图;1 is a flow chart of a method for quantitatively predicting the thickness of a thin layer with interference of underlying ash strata according to an embodiment of the present invention;
图2是下伏灰质地层及薄层的地震正演模型图;Fig. 2 is the seismic forward modeling model diagram of the underlying limestone strata and thin layers;
图3是薄层砂岩厚度与相邻波峰振幅比的交会分析图;Fig. 3 is the intersection analysis diagram of the thickness of thin sandstone and the amplitude ratio of adjacent wave peaks;
图4是分频地层切片融合后的储层厚度预测图。Fig. 4 is a prediction diagram of reservoir thickness after fusion of frequency-division formation slices.
具体实施方式Detailed ways
本部分将详细描述本发明的具体实施例,本发明之较佳实施例在附图中示出,附图的作用在于用图形补充说明书文字部分的描述,使人能够直观地、形象地理解本发明的每个技术特征和整体技术方案,但其不能理解为对本发明保护范围的限制。This part will describe the specific embodiments of the present invention in detail, and the preferred embodiments of the present invention are shown in the accompanying drawings. Each technical feature and overall technical solution of the invention should not be construed as limiting the protection scope of the invention.
如图1所示,图1为本发明的一种下伏灰质地层干涉的薄层厚度定量预测方法的流程图,具体包括以下步骤:As shown in FIG. 1, FIG. 1 is a flowchart of a method for quantitatively predicting the thickness of a thin layer by interference of an underlying ash stratum of the present invention, which specifically includes the following steps:
步骤110,地震正演模拟,定量分析下伏灰质地层对薄层砂岩的地震干涉特征。In
在本发明的一个具体实施例中,通过实钻井分析,明确下伏灰质地层及薄层砂岩的厚度、速度及密度等岩石物理特征,本发明实施例中岩性组合类型主要是薄层和下伏灰质地层。In a specific embodiment of the present invention, through actual drilling analysis, the petrophysical characteristics such as the thickness, velocity and density of the underlying calcareous strata and thin sandstone are clarified. Volatile ash strata.
示例性的,薄砂岩厚度区间在0-16m,平均10m左右,速度为3500m/s;下伏灰质地层厚度区间在0-30m,平均为15m,主要为高速的灰钙质泥岩、砂岩,速度变化大,约为2900-4200m/s。据此,建立了三种下伏灰质地层的薄层砂岩正演模型,通过波动方程地震正演模拟,定量统计薄层砂岩厚度与不同位置地层切片振幅的变化关系,选择能较好反映薄层砂岩厚度变化的地层切片组合,计算相邻波峰振幅比,即下伏灰质地层波峰切片振幅与砂岩波峰切片振幅之比,实现了消除下伏灰质地层干涉影响、较好反映薄层砂岩厚度的目的。Exemplarily, the thickness range of thin sandstone is 0-16m, with an average of about 10m, and the speed is 3500m/s; the thickness of the underlying calcareous layer is 0-30m, with an average of 15m, mainly high-speed lime-calcareous mudstone and sandstone, with a speed of 3500m/s. The change is large, about 2900-4200m/s. Based on this, three thin-bed sandstone forward modeling models of the underlying limestone strata were established. Through the wave equation seismic forward modeling, the relationship between the thickness of thin-bed sandstone and the amplitude of the stratum slices at different positions was quantitatively calculated, and the thin-bed sandstone thickness was calculated quantitatively. For the combination of strata slices with varying sandstone thickness, the amplitude ratio of adjacent wave crests is calculated, that is, the ratio of the amplitude of the wave crest slices of the underlying limestone stratum to the amplitude of the sandstone wave crest slices. .
步骤120,通过实钻砂体厚度统计,确定所述薄层砂岩的优势调谐频率。Step 120: Determine the dominant tuning frequency of the thin layer of sandstone through the actual drilling sand body thickness statistics.
本发明实施例中,按照厚度调谐原理,在地层速度确定的前提下,当砂岩厚度值等于四分之一波长时,根据地震纵波传播速度公式,求取对应的频率:In the embodiment of the present invention, according to the thickness tuning principle, under the premise that the formation velocity is determined, when the sandstone thickness value is equal to a quarter wavelength, the corresponding frequency is obtained according to the seismic longitudinal wave propagation velocity formula:
f=v/λ=v/4hf=v/λ=v/4h
其中,v为纵波速度,f为地震资料主频,λ为地震纵波波长,h为调谐厚度。令h等于目标砂体厚度,利用上式计算得到f即为反映目标砂体的优势调谐频率。Among them, v is the longitudinal wave velocity, f is the dominant frequency of the seismic data, λ is the seismic longitudinal wave wavelength, and h is the tuning thickness. Let h be equal to the thickness of the target sand body, and f calculated from the above formula is the dominant tuning frequency reflecting the target sand body.
通过实钻井统计分析得出薄层的砂岩厚度主要分布在0-10m、10-15m之间,按照统计的砂岩速度3500m/s计算,该砂组的优势调谐频率主要在50Hz和55Hz。Through the statistical analysis of actual drilling, it is concluded that the thickness of sandstone in the thin layer is mainly distributed between 0-10m and 10-15m. According to the statistical sandstone velocity of 3500m/s, the dominant tuning frequency of this sand group is mainly 50Hz and 55Hz.
步骤130,地震分频处理,提取所述优势调谐频率下的最佳地层切片组合。Step 130: Seismic frequency division processing to extract the best combination of formation slices at the dominant tuning frequency.
本发明实施例中,对地震数据进行分频处理,选择S变换作为时频分析算法。S变换集合了窗口傅里叶变换和小波变换优点,可将信号从时间域变换到时频域,还能够通过反变换从时频域转换到时间域,不会丢失任何信息,具有局部性、无损可逆性和高分辨率的特点。根据如下公式进行计算:In the embodiment of the present invention, frequency division processing is performed on seismic data, and S transform is selected as the time-frequency analysis algorithm. The S transform combines the advantages of the window Fourier transform and the wavelet transform. It can transform the signal from the time domain to the time-frequency domain, and can also convert from the time-frequency domain to the time domain through inverse transformation without losing any information. Features of lossless reversibility and high resolution. Calculated according to the following formula:
其中,t表示时间,f表示频率,τ为高斯窗在时间轴上的位置,时窗宽度随频率的变化而改变,频率的倒数决定了时窗的大小,s(t)表示时间域输入信号,exp为自然对数函数,π为圆周率,i表示虚数单位,dt表示积分函数。Among them, t represents time, f represents frequency, τ is the position of the Gaussian window on the time axis, the width of the time window changes with the change of frequency, the inverse of the frequency determines the size of the time window, and s(t) represents the time domain input signal , exp is the natural logarithmic function, π is the pi, i is the imaginary unit, and dt is the integral function.
在具体实施例中,将地震数据划分为35Hz、40Hz、45Hz、50Hz和55Hz共5个分频数据体,反映不同厚度的砂体信息。并进一步对薄层的50Hz和55Hz两个优势调谐频率分别提取了最佳地层切片组合—相邻波峰振幅比,即下伏灰质地层波峰切片振幅与砂岩波峰切片振幅之比。In a specific embodiment, the seismic data is divided into 5 frequency division data volumes of 35Hz, 40Hz, 45Hz, 50Hz and 55Hz, reflecting sand body information of different thicknesses. Furthermore, the optimal stratum slice combination-adjacent wave crest amplitude ratio was extracted from the two dominant tuning frequencies of 50Hz and 55Hz in the thin layer, that is, the ratio of the crest slice amplitude of the underlying limestone formation to the sandstone crest slice amplitude.
步骤140,实钻井厚度约束,建立分频切片融合公式。
作为本发明的一个优选实施例,选取了40口实钻井的砂体厚度与50Hz、55Hz两个优势调谐频率的相邻波峰振幅比进行加权线性回归,建立了薄层厚度的分频地层切片融合公式:As a preferred embodiment of the present invention, the weighted linear regression is performed by selecting the sand body thickness of 40 real wells and the adjacent peak amplitude ratios of the two dominant tuning frequencies of 50 Hz and 55 Hz, and establishing the frequency division formation slice fusion formula of thin layer thickness. :
Thickness=8.15*A1+6.04*A2-9.14Thickness=8.15*A 1 +6.04*A 2 -9.14
其中,Thickness为预测的薄层厚度;A为优势调谐频率的最佳地层切片组合的相邻波峰振幅比,A1为50Hz优势频率的相邻波峰振幅比,A2为55Hz优势频率的相邻波峰振幅比。Among them, Thickness is the predicted thickness of the thin layer; A is the adjacent peak amplitude ratio of the optimal formation slice combination of the dominant tuning frequency, A 1 is the adjacent peak amplitude ratio of the 50 Hz dominant frequency, and A 2 is the adjacent 55 Hz dominant frequency. Crest Amplitude Ratio.
步骤150,利用所述分频切片融合公式,对灰质干涉下的薄层厚度进行定量预测。
本发明实施例中,将分频地层切片定量公式推广应用,得到了薄层厚度的平面预测图,实现下伏灰质地层干涉的薄层厚度定量预测。In the embodiment of the present invention, the quantitative formula of frequency-division formation slices is popularized and applied to obtain a plane prediction map of the thickness of the thin layer, so as to realize the quantitative prediction of the thickness of the thin layer due to the interference of the underlying calcareous strata.
图2是下伏灰质地层及薄层的地震正演模型图。图3是不同频率下有效储层厚度与储层顶界波峰振幅值比值的交会分析图,该图表明薄层厚度与相邻波峰振幅比(下伏灰质地层波峰切片振幅与砂岩波峰切片振幅之比)成正比,有较好的线性关系。图4是通过地层分频切片融合技术得到的薄层厚度预测图,分析表明预测结果与实钻井砂体厚度吻合度较高,参与井的厚度预测误差平均在9.7%,验证井的厚度预测误差平均在18.2%,实现了下伏灰质地层干涉的薄层厚度定量。Fig. 2 is the seismic forward modeling model diagram of the underlying limestone strata and thin layers. Fig. 3 is the intersection analysis diagram of the effective reservoir thickness and the ratio of the peak amplitude value at the top of the reservoir at different frequencies. ratio) is proportional to, and has a better linear relationship. Figure 4 is the thin layer thickness prediction map obtained by the formation frequency slice fusion technology. The analysis shows that the prediction results are in good agreement with the actual drilling sand body thickness. The thickness prediction error of the participating wells is 9.7% on average, and the thickness prediction error of the verification wells At an average of 18.2%, a thin layer thickness quantification of the underlying ash strata interference was achieved.
本说明书中采用的表示方法,是本领域技术人员习惯用法,本领域技术人员熟知,不做更详细解释。The representation methods used in this specification are commonly used by those skilled in the art, and are well known to those skilled in the art, and will not be explained in more detail.
如上所述,对本发明的实施例进行了详细地说明,并非用于限定本发明的保护范围。只要实质上没有脱离本发明的发明点及效果可以有很多的变形,这对本领域的技术人员来说是显而易见的。因此,这样的变形例也全部包含在本发明的保护范围之内。As described above, the embodiments of the present invention have been described in detail, but are not intended to limit the protection scope of the present invention. It will be apparent to those skilled in the art that many modifications can be made without substantially departing from the invention and effect of the present invention. Therefore, all such modifications are also included in the scope of the present invention.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011420611.3A CN114594514A (en) | 2020-12-07 | 2020-12-07 | A Quantitative Prediction Method of Thin Layer Thickness Based on Interference of Underlying Limestone |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011420611.3A CN114594514A (en) | 2020-12-07 | 2020-12-07 | A Quantitative Prediction Method of Thin Layer Thickness Based on Interference of Underlying Limestone |
Publications (1)
Publication Number | Publication Date |
---|---|
CN114594514A true CN114594514A (en) | 2022-06-07 |
Family
ID=81812737
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202011420611.3A Pending CN114594514A (en) | 2020-12-07 | 2020-12-07 | A Quantitative Prediction Method of Thin Layer Thickness Based on Interference of Underlying Limestone |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114594514A (en) |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2187828C2 (en) * | 1996-12-06 | 2002-08-20 | Бп Корпорейшн Норт Америка Инк. | Spectral analysis for seismic interpretation |
CN104280770A (en) * | 2014-09-28 | 2015-01-14 | 中国石油大港油田勘探开发研究院 | Prediction method of compact transition rock reservoir stratum |
CN105589097A (en) * | 2014-10-23 | 2016-05-18 | 中国石油化工股份有限公司 | Clastic reservoir seismic description phase control decalcifying method |
CN106405647A (en) * | 2016-12-22 | 2017-02-15 | 成都晶石石油科技有限公司 | Tune inversion method about sedimentary stratum thickness |
CN107942405A (en) * | 2017-11-15 | 2018-04-20 | 中国石油化工股份有限公司 | The method for predicting thin sand-mud interbed sand body cumulative thickness |
CN108710149A (en) * | 2018-05-16 | 2018-10-26 | 中国石油天然气股份有限公司 | Thin reservoir prediction method and device |
CN109709607A (en) * | 2018-12-07 | 2019-05-03 | 中国石油天然气股份有限公司 | Method and device for predicting thickness of thin sandstone reservoir |
-
2020
- 2020-12-07 CN CN202011420611.3A patent/CN114594514A/en active Pending
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2187828C2 (en) * | 1996-12-06 | 2002-08-20 | Бп Корпорейшн Норт Америка Инк. | Spectral analysis for seismic interpretation |
CN104280770A (en) * | 2014-09-28 | 2015-01-14 | 中国石油大港油田勘探开发研究院 | Prediction method of compact transition rock reservoir stratum |
CN105589097A (en) * | 2014-10-23 | 2016-05-18 | 中国石油化工股份有限公司 | Clastic reservoir seismic description phase control decalcifying method |
CN106405647A (en) * | 2016-12-22 | 2017-02-15 | 成都晶石石油科技有限公司 | Tune inversion method about sedimentary stratum thickness |
CN107942405A (en) * | 2017-11-15 | 2018-04-20 | 中国石油化工股份有限公司 | The method for predicting thin sand-mud interbed sand body cumulative thickness |
CN108710149A (en) * | 2018-05-16 | 2018-10-26 | 中国石油天然气股份有限公司 | Thin reservoir prediction method and device |
CN109709607A (en) * | 2018-12-07 | 2019-05-03 | 中国石油天然气股份有限公司 | Method and device for predicting thickness of thin sandstone reservoir |
Non-Patent Citations (1)
Title |
---|
刘化清 等: "薄砂体预测的地震沉积学研究方法", 岩性油气藏, vol. 30, no. 2, 30 April 2018 (2018-04-30), pages 1 - 11 * |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN105445800B (en) | A kind of recognition methods of the different lithological pool in thick sand bodies top | |
CN102707317B (en) | Method of using absorption and attenuation characteristics of seismic wave for reservoir analysis | |
CN103389513B (en) | Method for improving seismic data resolution by using acoustic logging data constraint inversion | |
CN104570127B (en) | A kind of method of utilization seimic wave velocity Simultaneous Inversion porosity and shale content | |
CN108508489B (en) | Seismic inversion method based on waveform micro-variation matching | |
CN103792573A (en) | Seismic wave impedance inversion method based on frequency spectrum fusion | |
CN105089652A (en) | Pseudo-acoustic curve rebuilding and sparse pulse joint inversion method | |
Liu et al. | Seismic characterization of fault and fractures in deep buried carbonate reservoirs using CNN-LSTM based deep neural networks | |
CN105116449A (en) | Method for identifying weak reflection reservoir | |
Amoura et al. | Investigation of lithological heterogeneities from velocity logs using EMD-Hölder technique combined with multifractal analysis and unsupervised statistical methods | |
CN113514892A (en) | Method for simulating and researching thin-layer compact sandstone distribution by utilizing earthquake forward modeling | |
Volkov et al. | From qualitative interpretation to quantitative analysis: prediction of properties of geological bodies by using the spectral decomposition attribute–case study of Achimov turbidity system in West-Siberia | |
Maurya et al. | Prediction of acoustic impedance and density porosity using seismic inversion, and geostatistical methods on Krishna Godavari basin, India: A case study | |
Ni et al. | Geostatistical inversion method based on seismic waveform similarity | |
Ningkai et al. | Stepped and detailed seismic prediction of shallow-thin reservoirs in Chunfeng oilfield of Junggar Basin, NW China | |
CN114594514A (en) | A Quantitative Prediction Method of Thin Layer Thickness Based on Interference of Underlying Limestone | |
RU2206911C2 (en) | Process of search, prospecting, examination of deposit of mineral wealth and of construction of its model | |
Cheng et al. | The research on method of interlayer modeling based on seismic inversion and petrophysical facies | |
CN115685343A (en) | Reservoir thickness quantitative prediction method for overlying unequal-thickness sandstone interference | |
CN113311482B (en) | High-resolution medium-deep reservoir prediction method based on prestack spectrum inversion optimization | |
CN108107482A (en) | Hydrocarbon source rock multiparameter prediction method and system under a kind of condition of less wells | |
Gao et al. | Research on reservoir inversion method of Paleogene in few well area | |
Yu-lin et al. | Identification and Interpretation of fan deposits in Block H12 of Beixi subsag, Beier depression, Hailar basin | |
Liu et al. | Study and Application of Thin Reservoir Prediction Method Based on Broadband Seismic Information | |
Volkov et al. | SPE-202030-MS |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |