[go: up one dir, main page]

CN114591969B - 一种抗旱基因CrWRKY57及其在植物抗旱改良中的应用 - Google Patents

一种抗旱基因CrWRKY57及其在植物抗旱改良中的应用 Download PDF

Info

Publication number
CN114591969B
CN114591969B CN202210284601.4A CN202210284601A CN114591969B CN 114591969 B CN114591969 B CN 114591969B CN 202210284601 A CN202210284601 A CN 202210284601A CN 114591969 B CN114591969 B CN 114591969B
Authority
CN
China
Prior art keywords
crwrky57
drought
gene
drought resistance
seq
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210284601.4A
Other languages
English (en)
Other versions
CN114591969A (zh
Inventor
彭婷
熊欣婷
王敏
钟灶发
程方婷
莫锦夏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Gannan Normal University
Original Assignee
Gannan Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gannan Normal University filed Critical Gannan Normal University
Priority to CN202210284601.4A priority Critical patent/CN114591969B/zh
Publication of CN114591969A publication Critical patent/CN114591969A/zh
Application granted granted Critical
Publication of CN114591969B publication Critical patent/CN114591969B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/415Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from plants
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8201Methods for introducing genetic material into plant cells, e.g. DNA, RNA, stable or transient incorporation, tissue culture methods adapted for transformation
    • C12N15/8202Methods for introducing genetic material into plant cells, e.g. DNA, RNA, stable or transient incorporation, tissue culture methods adapted for transformation by biological means, e.g. cell mediated or natural vector
    • C12N15/8205Agrobacterium mediated transformation
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • C12N15/8271Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance
    • C12N15/8273Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for drought, cold, salt resistance

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Biomedical Technology (AREA)
  • Organic Chemistry (AREA)
  • Molecular Biology (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Biochemistry (AREA)
  • Biophysics (AREA)
  • General Health & Medical Sciences (AREA)
  • Cell Biology (AREA)
  • Physics & Mathematics (AREA)
  • Plant Pathology (AREA)
  • Microbiology (AREA)
  • Medicinal Chemistry (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Botany (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)

Abstract

本发明提供了一种抗旱基因CrWRKY57及其在植物抗旱改良中的应用,涉及植物基因工程技术领域。本发明所述抗旱基因CrWRKY57的核苷酸序列SEQ ID NO.1所示,编码的氨基酸序列如SEQ ID NO.2所示。本发明利用农遗传转化方法将所述基因在柠檬和烟草中超表达,在三湖红橘中干涉表达,获得的转基因植株经生物学功能验证,超表达植株抗旱性显著提高,而干涉表达的植株抗旱性显著降低,表明本发明所克隆的CrWRKY57基因具有提高抗旱性的功能。

Description

一种抗旱基因CrWRKY57及其在植物抗旱改良中的应用
技术领域
本发明属于植物基因工程技术领域,具体涉及一种抗旱基因CrWRKY57及其在植物抗旱改良中的应用。
背景技术
干旱不仅严重限制了柑橘的栽培范围,而且是制约柑橘产业发展的主要非生物因素。因此,培育具有抗旱性的柑橘新品种对柑橘产业持续、稳定和健康发展极为重要。生物技术的快速发展为植物育种提供了新的途径,通过基因工程可以对作物进行定向的遗传改良,已经在培育作物抗逆新品种(材料)中展现出重要的利用价值。发掘和鉴定抗逆基因是利用基因工程创制抗逆转基因植株的前提和关键,但是目前对于抗旱基因的筛选量还很少,无法满足科研和生产需要。
发明内容
有鉴于此,本发明的目的在于提供一种抗旱基因CrWRKY57及其在植物抗旱改良中的应用,为植物抗逆分子设计育种提供新的基因资源,为实施绿色农业、节水农业提供新的遗传资源,该遗传资源的开发利用有利于降低农业生产成本和实现环境友好。
为了实现上述发明目的,本发明提供以下技术方案:
本发明提供了一种抗旱基因CrWRKY57,所述抗旱基因CrWRKY57的核苷酸序列如SEQ ID NO.1所示。
本发明还提供了上述抗旱基因CrWRKY57编码的蛋白质。
优选的,所述蛋白质的氨基酸序列如SEQ ID NO.2所示。
本发明还提供了一种扩增上述抗旱基因CrWRKY57的引物对,包括上游引物和下游引物,所述上游引物的核苷酸序列如SEQ ID NO.3所示,所述下游引物的核苷酸序列如 SEQID NO.4所示。
本发明还提供了一种扩增上述抗旱基因CrWRKY57的方法,包括以下步骤:以三湖红橘的cDNA为模板,利用上述引物对进行PCR扩增,得所述抗旱基因CrWRKY57;
所述PCR扩增的程序包括:94℃预变性5min;98℃变性30s,58℃退火30s,72℃延伸1min,35个循环;72℃延伸10min。
本发明还提供了上述抗旱基因CrWRKY57、上述蛋白质或利用上述方法扩增得到的抗旱基因CrWRKY57在提高植物抗旱性中的应用。
优选的,所述植物包括三湖红橘、烟草和/或柠檬。
本发明还提供了一种超表达上述抗旱基因CrWRKY57的重组载体,所述重组载体的基础载体包括pBI121载体,所述抗旱基因CrWRKY57插入所述基础载体的XbaI和SmaI 位点之间。
本发明还提供了一种提高植物抗旱性的方法,包括以下步骤:在植物基因组中表达或超表达上述抗旱基因CrWRKY57。
优选的,所述超表达包括利用遗传转化的方法,将上述重组载体转入植物的基因组中,得提高抗旱性的植物。
有益效果:本发明提供了一种抗旱基因CrWRKY57,所述抗旱基因CrWRKY57从极抗旱品种三湖红橘中分离并克隆得到,隶属于WRKY家族新基因CrWRKY57,其核苷酸序列SEQID NO.1所示,编码的蛋白的氨基酸序列如SEQ ID NO.2所示,包含876bp 的开放阅读框(ORF),编码292个氨基酸,等电点为6.19,预测的分子量为32.05kDa。本发明实施例中,在获得所述抗旱基因CrWRKY57的全长后,利用农杆菌介导的遗传转化方法将该基因在柠檬和烟草中超表达,在三湖红橘中干涉表达,获得的转基因植株经生物学功能验证,超表达植株抗旱性显著提高,而干涉表达的植株抗旱性显著降低,表明本发明所克隆的CrWRKY57基因具有提高抗旱性的功能。依托本发明所述抗旱基因 CrWRKY57能有效改善植物的耐旱能力,生产上可有效降低用水的消耗,降低生产成本;同时还可用于改善果树砧木材料,不存在转基因食品安全隐患,易于被公众接受认可。通过农杆菌介导将该基因导到植株中,鉴定其在干旱或离体脱水条件下的功能,为植物抗旱分子育种提供新的基因资源,为实施绿色农业、节水农业提供新的遗传资源。
附图说明
图1为本发明的技术流程图;
图2为本发明的CrWRKY57基因在转录组测序(RNA-seq)和qRT-PCR分析中的表达量结果图;柱形图为RNA-seq数据,表现形式FPKM;折线图为qRT-PCR数据,表现形式为相对表达量;
图3为本发明的CrWRKY57基因亚细胞定位荧光示意图;
图4为本发明的CrWRKY57转录激活鉴定示意图;
图4中A是CrWRKY57分段情况示意图;图4中B是CrWRKY57和不同片段的转录激活鉴定示意图;
图5为本发明的CrWRKY57基因载体构建示意图;
图5中A是超表达载体构建示意图;图5中B是干涉载体构建示意图;
图6为本发明的CrWRKY57基因超表达载体和空载转化烟草及再生植株PCR鉴定示意图;其中A为共培养的叶片,B为筛选培养的叶片;C为抗性芽在伸长培养基上伸长及扩繁,D为转基因烟草的PCR鉴定;
图7为本发明的CrWRKY57超表达烟草(OE4、OE10、OE17)与野生型(WT)和空载转基因烟草(EV)盆栽苗干旱处理前后的表型和离体叶片脱水后的生理指标测定图;其中A为五个系干旱前、干旱14天和复水1天后的表型图,B为离体叶片脱水后的相对失水率,C为离体叶片脱水80分钟后的丙二醛含量,D为离体叶片脱水80分钟后的电导率;
图8为本发明的CrWRKY57超表达烟草(OE4、OE10、OE17)与野生型(WT)和空载转基因烟草(EV)离体脱水叶片的过氧化物积累图;其中A为NBT(颜色越深, O2·含量越多)和DAB(颜色越深,H2O2含量越多)染色图,B为抗O2·–能力(值越大,说明O2·含量越少),C为H2O2含量;
图9为本发明的CrWRKY57基因超表达载体转化柠檬及再生植株PCR鉴定示意图;其中A为共培养的茎段,B为筛选培养的茎段;C为抗性芽在伸长培养基上伸长及扩繁, D为抗性柠檬芽进行微芽嫁接到砧木枳上,E为土培植株;F为CrWRKY57基因表达量;
图10为本发明的CrWRKY57基因RNAi载体转化三湖红橘及再生植株PCR鉴定示意图;其中A为共培养的茎段,B为筛选培养的茎段;C为抗性芽在伸长培养基上伸长及扩繁,D为抗性芽进行生根培养,E为PCR检测RNAi干扰情况;
图11为本发明CrWRKY57超表达柠檬(OE-1和OE-2)与野生型(CKL)抗旱性比较示意图;其中A为离体叶片脱水后的相对失水率,B为离体叶片脱水80分钟后的丙二醛含量,C为离体叶片脱水80分钟后的电导率;
图12为本发明CrWRKY57RNAi三湖红橘(RNAi-2和RNAi-19)与野生型(CKs) 抗旱性比较示意图;其中A为离体叶片脱水后的相对失水率,B为离体叶片脱水80分钟后的丙二醛含量,C为离体叶片脱水80分钟后的电导率;
图13为差异表达基因韦恩图与聚类热图,其中A为上调差异表达基因,B为下调差异表达基因,C为所有差异基因表达模式;
图14为qRT-PCR验证结果图,其中右下图为qRT-PCR数据与RNA-Seq数据的相关性分析。
具体实施方式
本发明提供了一种抗旱基因CrWRKY57,所述抗旱基因CrWRKY57的核苷酸序列如SEQ ID NO.1所示。本发明SEQ ID NO.1所示的序列为开放阅读框,包括876bp,并且所述抗旱基因CrWRKY57定位在细胞核中。本发明所述抗旱基因CrWRKY57不具有转录激活活性,需要与其他转录因子或启动子元件相互作用形成复合体后再对靶基因进行调控,因此CrWRKY57可能通过复合体的形式行使功能。
本发明所述抗旱基因CrWRKY57中优选分离并克隆自三湖红橘(Citrusreticulata),对干旱胁迫下三湖红橘、枳(Poncirus trifoliata)、枳橙(C.sisensis×P.trifoliate‘Carrizo’)、崇义野橘(C.reticulate)的叶片细胞学特征及抗旱性进行比较,发现三湖红橘的抗旱性最强,因此对三湖红橘干旱处理后采样进行RNA-seq,从中筛选到一个干旱胁迫响应转录因子CrWRKY57。
本发明还提供了上述抗旱基因CrWRKY57编码的蛋白质。
本发明所述蛋白质的氨基酸序列优选如SEQ ID NO.2所示: MDDSSKEKSDRGQSSWKLGEPPDAGCVSYILSEFGWNLQEHESSTSYFAADHERSDLA GNISSSFPAETTTDGGGLTNPGRSADVSTSNPSVSSSSSEDPTEKSTGSGGKPPEIPSKAR KKGQKRIRQPRFAFMTKSEVDHLEDGYRWRKYGQKAVKNSPFPRSYYRCTNSKCTVK KRVERSSEDPTIVITTYEGQHCHH
TVGFPRGGLINHEAAAFASHLTHAIPPYYYHQGVQITQETPGIKQQSHEEELIPVEAREHEPNALPEPPALPPPTDEGLLGDIVPPGMRNR,共编码292个氨基酸。本发明所述抗旱基因CrWRKY57编码的蛋白质CrWRKY57等电点为6.19,预测的分子量为32.05kDa。
本发明还提供了一种扩增上述抗旱基因CrWRKY57的引物对,包括上游引物和下游引物,所述上游引物的核苷酸序列如SEQ ID NO.3所示: 5’-ATTCATTGAGCTCCACGGAG-3’,所述下游引物的核苷酸序列如SEQ ID NO.4所示: 5’-ACTCATCTATTGCGCATCCCAG-3’。
本发明还提供了一种扩增上述抗旱基因CrWRKY57的方法,包括以下步骤:以三湖红橘的cDNA为模板,利用上述引物对进行PCR扩增,得所述抗旱基因CrWRKY57;
所述PCR扩增的程序包括:94℃预变性5min;98℃变性30s,58℃退火30s,72℃延伸1min,35个循环;72℃延伸10min。
本发明在首次扩增所述抗旱基因CrWRKY57时,优选基于RNA-seq数据筛选到的部分EST,以甜橙CrWRKY57基因的序列(Cs7g03080),用Primer Premier 5.0设计上述引物对,并与三湖红橘的cDNA模板配制PCR扩增体系,所述体系以50μL计,优选包括: TaKaRa LATaq(5U/μL)0.5μL、10×LA Taq Buffer II(Mg2+Plus)5μL、dNTP Mixture(2.5mM each)8μL、正向引物和反向引物(10μM)各1μL、模板cDNA 1μL 和灭菌水33.5μL。
本发明所述cDNA模板优选为利用叶片提取的RNA进行反转录后得到,实施例中利用RNAiso Plus试剂盒抽提三湖红橘叶片中的总RNA(试剂盒购自TAKARA公司,操作方法按照说明书);提取得到的三湖红橘RNA参照TOYOBO反转录试剂盒的操作手册进行cDNA第一链的合成。
本发明还提供了上述抗旱基因CrWRKY57、上述蛋白质或利用上述方法扩增得到的抗旱基因CrWRKY57在提高植物抗旱性中的应用。
在本发明中,干旱胁迫可诱导所述抗旱基因CrWRKY57表达,表明所述抗旱基因CrWRKY57是一个干旱应答基因。在本发明中基于超表达和RNAi技术对所述抗旱基因CrWRKY57在转基因植物中抗旱性状进行对比,发现经超表达后的转基因植株抗旱性能显著提高,且RNAi抑制表达后的转基因植物抗旱性能显著降低,表明可通过超表达所述抗旱基因CrWRKY57,从而提高植物的抗寒性。本发明所述植物优选包括三湖红橘、烟草和/或柠檬。
本发明还提供了一种超表达上述抗旱基因CrWRKY57的重组载体,所述重组载体的基础载体包括pBI121载体,所述抗旱基因CrWRKY57插入所述基础载体的XbaI和SmaI 位点之间。
本发明在构建所述重组载体时,优选根据pBI121载体多克隆位点和CrWRKY57基因ORF酶切位点分析,选择XbaI和SmaI作为内切酶,同时设计超表达载体构建引物,所述引物包括正向引物(SEQ ID NO.5)和反向引物(SEQ ID NO.6),序列分别为:
正向引物:5’-GCTCTAGAATGGATGATAGTAGCAAAGAG-3’;
反向引物:5’-TCCCCCGGGTCATCTATTGCGCATCCCA-3’。
本发明利用上述构建得到的正向引物和反向引物扩增包含酶切位点的目的片段,扩增体系以50μL计,优选包括:5×TransStart FastPfu Buffer 10.0μL、dNTP Mix(2.5mMeach)5.0μL、cDNA模板1.0μL、正向引物(10μM)2.0μL、反向引物(10μ M)2.0μL、TransStartFastPfu DNA Polymerase 1.0μL和ddH2O 29.0μL。本发明将配制得到的扩增体系进行PCR扩增,所述PCR扩增的程序优选包括95℃预变性1min; 95℃变性20s,60℃退火20s,72℃延伸30s,40个循环;72℃延伸5min。本发明优选基于双酶切的方法将所述目的片段插入pBI121载体,从而得到pBI121-CrWRKY57 重组载体。
本发明还提供了一种提高植物抗旱性的方法,包括以下步骤:在植物基因组中表达或超表达上述抗旱基因CrWRKY57。
本发明所述超表达优选包括利用遗传转化的方法,将上述重组载体转入植物的基因组中,得提高抗旱性的植物。本发明对所述遗传转化的方法并没有特殊限定,实施例中以根癌农杆菌介导的方式完成所述遗传转化,但是不能仅将其认定为本发明的全部保护范围。
下面结合实施例对本发明提供的一种抗旱基因CrWRKY57及其在植物抗旱改良中的应用进行详细的说明,但是不能把它们理解为对本发明保护范围的限定。
实施例1
CrWRKY57基因分离克隆
1、首先使用RNAiso Plus试剂盒抽提三湖红橘叶片中的总RNA(试剂盒购自TAKARA公司,操作方法按照说明书)。提取得到的三湖红橘RNA参照TOYOBO反转录试剂盒的操作手册进行cDNA第一链的合成。
2、根据RNA-seq数据筛选到的部分EST,以甜橙CrWRKY57基因的序列,用PrimerPremier 5.0设计SEQ ID NO.3和SEQ ID NO.4所示的引物。
转录组测序数据的获得:三湖红橘(Citrus reticulata)是江西新干的古老地方特色品种,具有良好的抗生物胁迫和非生物胁迫的特性;同时,三湖红橘的抗旱性优于枳橙、枳、崇义野橘等柑橘砧木,是极好的耐旱种质资源。
利用RNA-seq分析了三湖红橘干旱处理1天(DroughtAfter Watering,DAW1)、4 天(DAW4)、7天(DAW7)的叶片转录本差异,进行了GO功能富集、KEGG富集、转录因子挖掘等分析,并对14个DEGs(含CrWRKY57)进行了qRT-PCR验证。
在DAW4 vs DAW1中,差异基因数目为7519,其中显著上调基因3652,显著下调基因为3865;DAW7 vs DAW1差异基因数目为6563,显著上调基因为3216,显著下调差异基因为3348;DAW7 vs DAW4差异基因为7407,3692个基因显著上调,3715个基因显著下调(表1)。将三个比较组合的筛选出的差异基因做韦恩图分析,发现在三个比较组合内均为显著差异表达基因有2179个;而在三个比较组合内均显著上调的基因数目为233个,均显著下调的基因数目为210个。热图结果显示DAW4的上调表达基因数量多于DAW1和DAW7,这些早期响应基因的表达很可能受干旱胁迫诱导表达(图13)。
表1三湖红橘干旱胁迫差异表达基因统计
采用实时荧光定量PCR(qRT-PCR)对14个DEGs(含CrWRKY57)的表达量进行验证。用Primer 5.0设计实时定量引物(表2),并选用柑橘Actin为内参基因。qRT-PCR 验证结果与RNA-Seq结果相关系数达到0.72(图14),证明干旱胁迫转录组数据可靠。 qRT-PCR结果显示CrWRKY57显著受干旱诱导。
表2 14个DEGs(含CrWRKY57)的qRT-PCR引物
3、以三湖红橘的cDNA为模板,用PCR扩增出三湖红橘的CrWRKY57。
所述PCR扩增体系为:TaKaRa LA Taq(5U/μL)0.5μL、10×LA Taq Buffer II (Mg2+Plus)5μL、dNTP Mixture(2.5mM each)8μL、正向引物和反向引物(10μM) 各1μL、模板cDNA1μL、灭菌水33.5μL。
PCR按以下程序完成:94℃预变性5min;98℃变性30s,58℃退火30s,72℃延伸1min,35个循环,循环完成后72℃延伸10min。
4、PCR扩增完成后,用1.2%琼脂糖凝胶在DYY-6C电泳仪(六一,北京)用TAE 缓冲液电泳30min,参数设置为120V,150mA。在紫外灯下切下目的条带,用Axygen 凝胶回收试剂盒(康宁生命科学有限公司)回收特异目的条带,操作按说明书进行。
5、回收纯化的产物与pMD18-T载体(Takara,日本)进行连接。
连接体系为:pMD18-T Vector 0.5μL,Solution I 5μL,PCR纯化产物4.5μL。
16℃连接过夜,采用热击法转化到大肠杆菌感受态DH 5α(北京全式金生物技术有限公司)中,以目的基因序列引物挑选阳性克隆进行PCR验证(与上述基因扩增时的 PCR程序一致)并测序(由武汉擎科新业生物技术有限公司完成)。
上述操作扩增出一条904bp的片段。在NCBI上的ORF Finder进行开放阅读框预测,发现该序列含有一个长度为876bp的编码区序列,该序列编码292个氨基酸的蛋白,该蛋白分子量为32.05kDa,理论等电点为6.19。将该基因编码蛋白与拟南芥中已发表的 WRKY家族构建进化树,发现其与AtWRKY57一起归在II-c亚族。将其与拟南芥、水稻、玉米等物种中的WRKY57核心氨基酸序列用DNAMAN 8.0进行比对,发现它们均含有一个WRKYGQK七肽结构及一个C2H2的锌指结构。因此,将该基因命为CrWRKY57,cDNA 序列为SEQ ID NO.1所示,编码蛋白序列为SEQ ID NO.2所示。
实施例2
CrWRKY57基因表达分析
利用与实施例1中RNA-seq相同的样品,采用实时定量PCR分析该基因在干旱1d、4d、7d后叶片中的表达。RNA提取和反转录过程通实施例1。
用Primer 5.0设计CrWRKY57实时定量引物,并选用柑橘Actin为内参基因:
正向引物(SEQ ID NO.7):5'-AACCTCCTGAGATACCAAGC-3';
反向引物(SEQ ID NO.8):5'-TTTACAGCCTTCTGACCATAC-3';
内参基因:
正向引物(SEQ ID NO.9):5'-CATCCCTCAGCACCTTCC-3';
反向引物(SEQ ID NO.10):5'-CCAACCTTAGCACTTCTCC-3'。
定量PCR体系为10μL,包括iTaq TM UniversalGreen Supermix(Roche)5.0μL、实时定量正向和反向引物(10mol/L)各0.2μL、实施例1中的cDNA模板0.5μ、 ddH2O4.1μL。
仪器使用480II(Roche)。反应程序设置为95℃,30s预变性;95℃, 5s变性;56℃,10s退火;72℃,15s,40个循环延伸。定量PCR数据为仪器自带软件分析。
RNA-seq和qRT-PCR结果如图2所示,干旱能诱导该基因表达(见图2),表明CrWRKY57是一个干旱应答基因。
实施例3
CrWRKY57基因的亚细胞定位
ExPASy在线分析结果表明CrWRKY57有一个核定位信号,本实施例利用拟南芥叶片原生质体和植物亚细胞定位载体pL101YFP来研究CrWRKY57的亚细胞定位。
设计亚细胞定位引物,扩增CrWRKY57基因的ORF序列,并插入pL101YFP上的 KpnI和SmaI两个酶切位点之间。
亚细胞定位引物:
正向引物(SEQ ID NO.11):5'-GGGGTACCATGGATGATAGTAGCAAAGAG-3';
反向引物(SEQ ID NO.12):5'-TCCCCCGGGTCTATTGCGCATCCCA-3'。
扩增体系为:1-5TM2×High-Fidelity Master Mix(擎科新业生物技术有限公司)25 μL、正向引物和反向引物各2μL、实施例1中的三湖红橘cDNA 2μL、ddH2O 19μL。
扩增PCR程序为:98℃预变性5min;98℃变性30s,65℃退火30s,72℃延伸 1min,35个循环,循环完成后72℃延伸10min。
PCR扩增完成后,用1.2%琼脂糖凝胶将全部PCR产物上样进行电泳,Axygen凝胶回收试剂盒(康宁生命科学有限公司)回收特异目的条带,操作按说明书进行。将回收后的产物连接载体(全式金,北京),连接体系为/>-Blunt Cloning Vector 1μL、PCR纯化产物4μL。
室温连接10min后,将连接液通过热激发导入大肠杆菌感受态DH 5α(北京全式金生物技术有限公司)中,以目的基因序列引物挑选阳性克隆进行PCR验证(与上述构建载体时的PCR程序一致)并由武汉擎科新业生物技术有限公司完成测序。
用内切酶KpnI和SmaI同时切开pEASY-CrWRKY57重组载体质粒和pL101YFP载体质粒,双酶切体系如下KpnI 1μL、SmaI 1μL、10×Tbuffer 2μL、0.1%BSA2μL、质粒 DNA 14μL。
双酶切体系在37℃下过夜酶切,用琼脂糖凝胶电泳检测并切下合格条带,用胶回收试剂盒回收目的带。用T4 DNALigase连接KpnI和SmaI双酶切后的pEASY-CrWRKY57 重组载体质粒和pL101YFP载体质粒,获得35S-CrWRKY57-pL101YFP重组载体,转化农杆菌感受态细胞GV3101(唯地生物技术有限公司,上海),转化步骤见说明书。
采用拟南芥叶片原生质体制备转化方法检测CrWRKY57定位情况。拟南芥原生质体提取所用试剂:拟南芥叶片原生质体酶解液(现配现用):20mM MES、1.5%纤维素酶、 0.4%浸解酶、0.4M甘露醇、20mM KCl,55℃温浴10min,冷却到室温,加入10mM CaCl2、 5mM巯基乙醇、0.1%BSA,用0.45μM滤膜过滤后使用。WI溶液:4mM MES、0.5M 甘露醇、20mM KCl,室温保存。W5溶液:2mM MES、154mM NaCl、125mM CaCl2、 5mM KCl。PEG4000溶液:1g PEG4000、0.75mL双蒸水、0.625mL甘露醇、0.25mL CaCl2。 MMG溶液:4mM MES,0.4mM甘露醇,15mMMgCl2
通过将35S-CrWRKY57-pL101YFP和对照空载pL101YFP的质粒转化到拟南芥的原生质体中,结果如图3所示,空载pL101YFP质粒的荧光分布于整个原生质体中,包括细胞膜和细胞核,而35S-CrWRKY57-pL101YFP融合蛋白的荧光只集中在细胞核,说明 CrWRKY57定位在细胞核中。
实施例4
CrWRKY57转录激活活性分析
采用pGBKT7载体进行重组构建,验证CrWRKY57是否具有转录激活活性。SMART 上预测CrWRKY57蛋白的WRKY结构域分布在142th-201th aa,推测为转录激活区。因此,除了全长,还将CrWRKY57以WRKY结构域为界划分为三段:CrWRKY57-1(1th-141th aa)、CrWRKY57-2(142th-201th aa)、CrWRKY57-3(202th-291th aa)分别连接到pGBKT7 载体上。经测序确认序列无误后将4个融合表达载体及空载体(pGBKT7)分别转化酵母菌株AH109,然后在不同的缺失培养基上进行培养。结果表明,空载体转化的酵母细胞和4个融合载体转化的细胞都只能在缺失培养基SD/-Trp上生长,不能在SD/-Trp/-ade及 SD/-Trp/-ade/-His等缺失培养基中生长(图4),说明CrWRKY57不具有转录激活活性,可能通过复合体的形式行使功能。
实施例5
CrWRKY57基因超表达和RNAi载体构建
1.超表达载体构建
根据pBI121载体多克隆位点和CrWRKY57基因ORF酶切位点分析,选择XbaI和 SmaI作为内切酶(图5中A)。
设计超表达载体构建引物SEQ ID NO.5和SEQ ID NO.6。
使用TransStart FastPfu DNA Polymerase(全式金)扩增目的片段。PCR体系为:5×TransStart FastPfu Buffer 10.0μL、dNTP Mix(2.5mM each)5.0μL、实施案例1中的cDNA模板1.0μL、正向引物(10μM)2.0μL、反向引物(10μM)2.0μL、TransStart FastPfu DNAPolymerase 1.0μL、ddH2O 29.0μL。
PCR程序为:95℃预变性1min;95℃变性20s,60℃退火20s,72℃延伸30s, 40个循环;72℃延伸5min。
上述PCR产物经切胶回收后进行双酶切,体系为100μL:10×H缓冲液,10μL; XbaI和SmaI(TaKaRa),各5μL;回收产物,25μL;ddH2O,55μL;37℃酶切过夜后回收。
pBI121载体质粒也用相同体系酶切后回收。
将回收目的片段和载体进行连接,总连接反应体积为10μL:10×T4连接缓冲液, 1μL;T4连接酶,1μL;pBI121载体,0.5μL;目的片段,4.5μL;16℃连接16 小时。
然后连接产物转化大肠杆菌DH 5α,在含有50mg/L卡那霉素的LB固体平板中筛选,挑取单克隆PCR检测呈阳性后送武汉擎科新业生物技术有限公司测序,测序确定读码框完全正确即pBI121-CrWRKY57重组载体构建成功。使用冻融法(参照《分子克隆实验指南》第四版,科学出版社,2017年)将重组载体导入到根癌农杆菌GV3103中并将菌液于-80℃保存(含20%甘油)。
2.RNAi载体构建
为了得到干涉转基因植株,采取了pHellsgate2干涉载体进行重组构建。首先选取CrWRKY57上300bp左右的片段设计引物,并在特异引物前加入attB位点通用引物,作为目标片段扩增引物。
选择CrWRKY57小于300bp片段为模板设计构建RNAi载体的引物:
正向引物(SEQ ID NO.17): 5'-GGGGACAAGTTTGTACAAAAAAGCAGGCTGAGCGAGTTTGGATGGAA-3';
反向引物(SEQ ID NO.18):5'- GGGGACCACTTTGTACAAGAAAGCTGGGTCGCTTTTGTCCTTTCTTT-3';
PCR扩增体系:1-5TM2×High-Fidelity Master Mix(擎科新业生物技术有限公司) 25μL、正向引物和反向引物各2μL、实施例1中的三湖红橘cDNA2μL、ddH2O 19μL。
扩增PCR程序为:98℃预变性5min;98℃变性30s,65℃退火30s,72℃延伸1 min,35个循环,循环完成后72℃延伸10min。
PCR扩增完成后,用1.2%琼脂糖凝胶将全部PCR产物上样进行电泳,Axygen凝胶回收试剂盒(康宁生命科学有限公司)回收特异目的条带,操作按说明书进行。
通过BP反应将纯化后的PCR产物连接到RNAi载体pHELLSGATE2,方法参见BP/>II Enzyme mix说明书,即回收后的产物4μL、pHellsgate2质粒1 μL、B/P Clonase 1μL,25℃反应过夜。
以实施案例1中的三湖红橘cDNA为模板扩增得到目标片段,PCR产物经回收后,经BP反应(BP ClonaseTM II Enzyme Mix(Invitrogen)试剂盒)重组连接至pHellsgate2 载体,构建成目的载体(图5中B)。
取所有反应物热击法转化大肠杆菌DH5α感受态,涂于含有100mg/L壮观霉素的 LB固体平板筛选阳性克隆。
以35S启动子序列引物(SEQ ID NO.19:5’-CTATCCTTCGCAAGACCCT-3’)与反向特异引物(SEQ ID NO.18)为扩增引物对阳性克隆进行PCR检测分析,PCR检测正确的阳性克隆进一步用XbaI和XhoI分别进行单酶切验证,如果两组单酶切片段大小一致并且比目标片段大200bp左右,则该阳性克隆中目标片段为正确连接。正确连接的阳性单克隆送武汉擎科新业生物技术有限公司测序,序列无误的单克隆提取重组质粒,使用冻融法将重组载体导入到根癌农杆菌GV3103中并将菌液于-80℃保存(含20%甘油)。
实施例6
转录因子CrWRKY57在提高烟草抗旱性中的应用
1.根癌农杆菌介导的烟草遗传转化步骤如下:
(1)根癌农杆菌培养:取新鲜的根癌农杆菌菌液,于LB固体平板(含50mg/L卡那霉素)上划线,刮取划线菌斑,加入液体MS基本培养基中,28℃200转/分钟振荡培养,待菌液浓度达到OD600=0.3~0.8时进行浸染;
(2)浸染:取健康的野生型离体苗烟草叶片,去除主脉,切成0.5cm×0.5cm大小方块,浸入制备好的根癌农杆菌菌液中,浸泡8~10分钟,间歇振荡;
(3)共培:取浸染后的烟草叶片,于无菌滤纸上晾干,叶背面向下均匀排列在共培培养基上(图6中A),25℃暗培养3天;
(4)筛培:共培后,用头孢霉素溶液(500mg/L)清洗一次,然后用无菌水清洗3~5次,再转移入筛选培养基中(图6中B)。
(5)生根:待筛选培养基上的不定芽长到1cm左右时,切下并转入生根培养基(图 6中C)中。
表3烟草转化培养基配方
名称 组分及含量(30g/L蔗糖;0.7g/L琼脂;pH5.8)
共培培养基 MS基本培养基+2.0mg/L 6-BA+0.3mg/L NAA
筛选培养基 共培培养基+50mg/L 潮霉素+500mg/L 头孢霉素
生根培养基 MS基本培养基+0.3mg/L NAA+50mg/L 潮霉素+500mg/L 头孢霉素
2.阳性转基因烟草鉴定
生根苗长有2至3片叶时,利用CTAB法提取DNA。
用所得DNA为模板,CrWRKY57超表达载体构建引物鉴定超表达阳性植株,潮霉素基因引物(正向引物SEQ ID NO.13:5'-CTCCATACAAGCCAACCACG-3';反向引物SEQ ID NO.14:5'-AAAAAGCCTGAACTCACCGC-3')鉴定空载阳性植株。
Ubiqutin作为内参进行扩增,正向引物(SEQ ID NO.15):5’ -AGCTACATGACGCCATTTCC-3’,反向引物(SEQ ID NO.16):5’ -CCCTGTAAAGCAGCACCTTC-3’。
使用Fermentas公司的Taq酶扩增目的片段。PCR体系为:10×PCR Buffer 2.0μ L、dNTP Mix(10mM each))0.4μL、烟草DNA 1.0μL、正向和反向引物(10μ M)各0.3μL、Polymerase 0.2μL、ddH2O 15.8μL。PCR程序为:94℃预变性5min; 94℃变性30s,56℃退火30s,72℃延伸3min,35个循环;72℃延伸12min。
部分PCR验证电泳结果如图6中D所示。选择其中的三个超表达株系OE4,OE10 和OE17作为单独的转基因株系,然后分别作为收种子的母本植株。
3.超表达烟草抗旱性鉴定
收取同一批次的三个超表达株系OE4、OE10、OE17和空载(EV)及野生型(WT) 烟草种子,进行无菌播种:先用70%的酒精浸泡种子1min,接着用无菌双蒸水清洗三次,再用1mL2.5%NaClO消毒8min,中间振荡数次,然后用无菌ddH2O清洗3次,最后用无菌接种针将种子平铺播于含50mg/L的潮霉素MS基本培养基上,待发芽长成幼苗后用于后续抗旱表型和相关指标测定。
(1)表型:对超表达CrWRKY57烟草OE4、OE10、OE17及其野生型对照WT、空载对照EV进行盆栽控水处理,如图7中A所示,未进行干旱处理时,超表达CrWRKY57 及对照植株生长状况一致;干旱14天后,WT、EV严重萎蔫,大部分叶片失水干枯,而超表达植株OE4、OE10、OE17萎蔫程度相对较轻;复水后,对照植株生长状况并未得到改善,而超表达植株叶片开始转绿。此结果说明超表达CrWRKY57烟草的抗旱性更强,而且干旱后恢复速度更快。
(2)相对失水率:对5个株系烟草叶片进行离体叶片脱水处理,从植株取下时用万分之一天平称重,读数记为M0,之后叶片背面朝上平放于干燥的滤纸上,每隔30min 称重一次,读数记为Mn,实验设置3个重复,取平均值并计算误差,计算公式:
结果如图7中B所显,至脱水80min时,超表达烟草OE4、OE10、OE17相对失水率分别为27.64%、28.68%、26.15%,WT、EV相对失水率分别为33.72%、34.24%,超表达烟草相对失水率显著低于对照(p<0.01)。超表达烟草OE4、OE10、OE17相对失水率均小于WT、EV,说明超表达CrWRKY57后叶片保水力更强。
(3)丙二醛含量:采用硫代巴比妥酸法。称取离体脱水80min叶片0.5g,加入预冷5%三氯乙酸溶液及少许石英砂研磨成匀浆后转入离心管,5%TCA洗净研钵并将清洗液加入离心管,定容到10mL,在4℃,7000rpm下离心10min,取上清液2mL(V1) 于试管中,加0.67%的硫代巴比妥酸(TBA)2mL,混匀后在沸水中煮沸20min,冷却后25℃,7000rpm下离心10min,上清液为待测液(V2),取上清液在450nm、532nm、 600nm下比色,计算公式:
CMDA(μmol/L)=6.45(A532-A600)-0.56A450
结果如图7中C所示,在80min时,OE4、OE10、OE17的MDA含量分别为0.21 μmol/L、0.20μmol/L、0.21μmol/L,WT、EV的MDA含量为0.34μmol/L、0.29μmol/L;即OE4、OE10、OE17的MDA含量显著低于对照(p<0.05),说明离体脱水条件下超表达CrWRKY57烟草叶片细胞膜受损伤程度较小。
(4)电导率:取离体脱水80min后的转基因及对照植株叶片,去除叶中脉及叶边缘,用剪刀剪成0.5×0.5cm左右小块,称取0.1g,放入加有10mL去离子水的玻璃试管中,摇床120r/min,25℃摇3h后,用电导率仪(DDS-307)测其电导率记为C1,再将试管放入沸水中煮15min,待其冷却至室温后测定电导率记为C2,计算公式
如图7中D所示,在80min时,OE4、OE10、OE17的电导率显著低于对照(p<0.05),说明离体脱水条件下超表达CrWRKY57烟草叶片细胞膜受损伤程度较小。
(5)超氧化物积累情况:
首先用离体脱水80min后的转基因及对照植株叶片进行染色法定性检测。
NBT染色方法:以0.01M,pH=7.8的磷酸缓冲液为溶剂,将氮蓝四唑(NBT)粉末溶于其中,终浓度为1mg/mL。配好的NBT染色液分装至50mL的离心管中,使其完全浸没烟草叶片,光下染色3h后弃去染色液,加入无水乙醇进行脱色处理,更换变绿乙醇直至叶片绿色完全脱除,用相机拍照记录,叶片可浸泡于无水乙醇中保存。
DAB方法染色:以0.01M,pH=3.8的磷酸缓冲液为溶剂,将3,3-二氨基联苯胺(DAB)粉末溶于其中,使用前按V(染色液):V(H2O2,30%)=1:1000加入H2O2混匀。配好的DAB染色液分装至50mL的离心管中,使其完全浸没烟草叶片,光下染色8h后弃去染色液,加入无水乙醇,脱色及保存方法同上,最后用相机拍照记录。
结果如图8中A所示,脱水条件下超表达CrWRKY57烟草的颜色更浅,说明其超氧化物积累更少。
H2O2含量和抗超氧阴离子自由基活性的定量测定分别使用南京建成公司的过氧化氢测定试剂盒(A064-1-1)和抑制与产生超氧阴离子自由基测定试剂盒(A052-1-1),操作过程如说明书。抗O2·能力如图8中B所示,值越大,说明O2·含量越少,H2O2含量如图8中C所示,结果表明体脱水条件下超表达CrWRKY57烟草的超氧化物积累更少。
定性和定量结果表明超表达CrWRKY57能够有效的增强转基因植株的活性氧清除能力,减少其对细胞的伤害,从而提高了植株的抗旱性。
实施例7
转录因子CrWRKY57在提高柠檬和三湖红橘抗旱性中的应用
为提供更为丰富有力的实验证据说明CrWRKY57在抗旱下的作用,将实施案例5中的超表达和RNAi载体通过农杆菌介导的柑橘上胚轴转化法分别转化柠檬和三湖红橘,看是否超表达柠檬抗旱性增强,RNAi三湖红橘抗旱性减弱。
1.根癌农杆菌介导的柑橘上胚轴转化和阳性转基因植株鉴定步骤如下:
(1)播种:取柠檬和三湖红橘种子,用1M的NaOH浸泡20min,清水洗净,在超净工作台上用2%NaClO浸泡15~20min,无菌水洗涤3次,在无菌条件下剥去种皮,播种于MT固体培养基上,暗培养3~4周,再光照培养1周后用于转化。
(2)准备菌液:取实施案例5中超表达和RNAi含重组载体的农杆菌菌液划线于含有100mg/L抗生素(pBI121载体为卡那霉素,pHellsgate2载体为壮观霉素)的固体LB 培养基上,28℃暗培养2d;挑取单菌落再次划线于新的平板上,28℃暗培养2-3d;用手术刀刮下长好的菌体,接种于不含抗生素的液体MT培养基中,28℃200rpm振荡培养至OD600=0.6~0.8,添加乙酰丁香酮至终浓度为100μM,待用。
(3)共培:取柠檬和三湖红橘无菌实生苗上胚轴,于超净工作台中斜切成1~1.5cm长茎段,浸泡在制备好的农杆菌菌液(含超表达载体的菌液转化柠檬,含RANi载体的菌液转化三湖红橘)中侵染20min,其间不断摇动几次。侵染完后用无菌吸水纸吸干多余的菌液,将外植体铺陈于共培养基上,25℃暗培养3d(柠檬共培见图9中A,三湖红橘共培见图10中A)。
(4)筛培及生根:共培养3d后,以无菌水洗外植体3~5次,而后用无菌吸水纸吸干表面水份,转到筛选培养基上(柠檬筛培见图9中B,三湖红橘筛培见图10中B)。 25℃暗培养4周后再转到光照条件下培养。当抗性芽>0.5cm时,切下抗性芽转到增殖培养基上促其分化(柠檬见图9中C,三湖红橘见图10中C)。当抗性芽>1.5cm长时,将柠檬抗性芽嫁接到砧木枳上(图9中D),然后土培(图9中E)。将三湖红橘抗性芽转入生根培养基中诱导生根(图10中D)。
常用培养基配方:
LB固体培养基:蛋白胨10g/L+酵母提取物5g/L+NaCl 10g/L+琼脂15g/L;
柠檬共培养培养基:MT+0.5mg/L BA+0.1mg/L NAA+0.5mg/L KT+50mg/L AS;
三湖红橘共培养培养基:MT+1.0mg/L BA+20mg/L AS;
柠檬筛选培养基:MT+0.5mg/L BA+0.1mg/L NAA+0.5mg/L KT+50mg/L AS+ 400mg/L Cef+50mg/L Km;
三湖红橘筛选培养基:MT+1.0mg/L BA+400mg/L Cef+50mg/L Km;
柠檬增殖培养基:MT+0.1mg/L BA+0.5mg/L GA3+0.5mg/L IAA+400mg/L Cef;
三湖红橘增殖培养基:MT+0.5mg/L BA+0.5mg/L IAA+0.5mg/L GA3;
三湖红橘生根培养基:1/2MT+0.5mg/L NAA+0.1mg/L IBA+0.5g/L活性炭;
转化过程中各培养基均添加琼脂7.5g/L+蔗糖35g/L,pH调至5.8。
(5)阳性植株鉴定:
DNA提取同烟草。
PCR检测:柠檬和三湖红橘PCR反应体系和程序同烟草,只是内参基因改为实施案例2中的Actin。柠檬的检测结果如图9中E,三湖红橘的检测结果如图10中D。CKL 为柠檬对照,CKS为三湖红橘对照,均为未转化的上胚轴扩繁获得(即野生型)。柠檬两个超表达系命名为OE-1、OE-2,三湖红橘挑选了RNAi-2和RNAi-19进行后续抗性鉴定。
2.转基因柑橘材料抗旱性鉴定
取柠檬CKL、OE-1、OE-2和三湖红橘CKS、RNAi-2、RNAi-19叶片进行离体脱水。测定了相对失水率、丙二醛含量和电导率,方法同实施例6。如图11所示,脱水80min 后OE柠檬的相对失水率显著低于CKL,而丙二醛含量和电导率显著高于CKL。相反,三湖红橘RNAi系的相对失水率显著高于CKs,而丙二醛含量和电导率显著低于CKs(图 12)。说明超表达CrWRKY57可以显著增强植株的抗旱性,而干扰CrWRKY57的表达会显著降低植株的抗旱性。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。
序列表
<110> 赣南师范大学
<120> 一种抗旱基因CrWRKY57及其在植物抗旱改良中的应用
<160> 47
<170> SIPOSequenceListing 1.0
<210> 1
<211> 876
<212> DNA
<213> 三湖红橘(Citrus reticulata)
<400> 1
atggatgata gtagcaaaga gaaatcggat cgaggccagt cgagctggaa gctaggggag 60
ccaccggacg cgggctgcgt gagttatatt ttgagcgagt ttggatggaa tctgcaagag 120
catgagagtt cgaccagcta cttcgctgct gatcatgaaa gatccgattt ggcgggaaat 180
atcagcagca gttttccggc cgaaactact actgacggtg gcggtttgac aaatcctgga 240
aggtctgctg acgtgtcgac ttcgaatccg tcggtttcgt cgagctccag cgaggatccg 300
acggagaagt ctacgggctc cggcggtaaa cctcctgaga taccaagcaa agcaagaaag 360
aaaggacaaa agcgaattcg gcagccacgt tttgcattta tgaccaagag tgaagttgat 420
caccttgaag atggatacag atggcgaaag tatggtcaga aggctgtaaa aaatagtccg 480
ttccctagga gctactaccg ctgcacaaac agtaaatgta cagtgaagaa gagggtggaa 540
cgatcatctg aagatcccac cattgtaatt actacgtatg aaggtcaaca ctgccatcat 600
accgttggat ttcctcgtgg tggactaatt aatcatgaag cagctgcttt tgctagccat 660
ttgactcacg caatcccacc atattattat catcaaggag ttcagataac ccaagaaact 720
cccggtatca agcagcagtc acatgaagaa gaattaatcc cagttgaagc aagagaacat 780
gaaccaaatg cgttgcccga accaccagcc ttaccacccc ccacggatga aggattacta 840
ggagatattg tgcctcctgg gatgcgcaat agatga 876
<210> 2
<211> 291
<212> PRT
<213> 三湖红橘(Citrus reticulata)
<400> 2
Met Asp Asp Ser Ser Lys Glu Lys Ser Asp Arg Gly Gln Ser Ser Trp
1 5 10 15
Lys Leu Gly Glu Pro Pro Asp Ala Gly Cys Val Ser Tyr Ile Leu Ser
20 25 30
Glu Phe Gly Trp Asn Leu Gln Glu His Glu Ser Ser Thr Ser Tyr Phe
35 40 45
Ala Ala Asp His Glu Arg Ser Asp Leu Ala Gly Asn Ile Ser Ser Ser
50 55 60
Phe Pro Ala Glu Thr Thr Thr Asp Gly Gly Gly Leu Thr Asn Pro Gly
65 70 75 80
Arg Ser Ala Asp Val Ser Thr Ser Asn Pro Ser Val Ser Ser Ser Ser
85 90 95
Ser Glu Asp Pro Thr Glu Lys Ser Thr Gly Ser Gly Gly Lys Pro Pro
100 105 110
Glu Ile Pro Ser Lys Ala Arg Lys Lys Gly Gln Lys Arg Ile Arg Gln
115 120 125
Pro Arg Phe Ala Phe Met Thr Lys Ser Glu Val Asp His Leu Glu Asp
130 135 140
Gly Tyr Arg Trp Arg Lys Tyr Gly Gln Lys Ala Val Lys Asn Ser Pro
145 150 155 160
Phe Pro Arg Ser Tyr Tyr Arg Cys Thr Asn Ser Lys Cys Thr Val Lys
165 170 175
Lys Arg Val Glu Arg Ser Ser Glu Asp Pro Thr Ile Val Ile Thr Thr
180 185 190
Tyr Glu Gly Gln His Cys His His Thr Val Gly Phe Pro Arg Gly Gly
195 200 205
Leu Ile Asn His Glu Ala Ala Ala Phe Ala Ser His Leu Thr His Ala
210 215 220
Ile Pro Pro Tyr Tyr Tyr His Gln Gly Val Gln Ile Thr Gln Glu Thr
225 230 235 240
Pro Gly Ile Lys Gln Gln Ser His Glu Glu Glu Leu Ile Pro Val Glu
245 250 255
Ala Arg Glu His Glu Pro Asn Ala Leu Pro Glu Pro Pro Ala Leu Pro
260 265 270
Pro Pro Thr Asp Glu Gly Leu Leu Gly Asp Ile Val Pro Pro Gly Met
275 280 285
Arg Asn Arg
290
<210> 3
<211> 20
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 3
attcattgag ctccacggag 20
<210> 4
<211> 22
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 4
actcatctat tgcgcatccc ag 22
<210> 5
<211> 29
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 5
gctctagaat ggatgatagt agcaaagag 29
<210> 6
<211> 28
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 6
tcccccgggt catctattgc gcatccca 28
<210> 7
<211> 20
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 7
aacctcctga gataccaagc 20
<210> 8
<211> 21
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 8
tttacagcct tctgaccata c 21
<210> 9
<211> 18
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 9
catccctcag caccttcc 18
<210> 10
<211> 19
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 10
ccaaccttag cacttctcc 19
<210> 11
<211> 29
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 11
ggggtaccat ggatgatagt agcaaagag 29
<210> 12
<211> 25
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 12
tcccccgggt ctattgcgca tccca 25
<210> 13
<211> 20
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 13
ctccatacaa gccaaccacg 20
<210> 14
<211> 20
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 14
aaaaagcctg aactcaccgc 20
<210> 15
<211> 20
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 15
agctacatga cgccatttcc 20
<210> 16
<211> 20
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 16
ccctgtaaag cagcaccttc 20
<210> 17
<211> 47
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 17
ggggacaagt ttgtacaaaa aagcaggctg agcgagtttg gatggaa 47
<210> 18
<211> 47
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 18
ggggaccact ttgtacaaga aagctgggtc gcttttgtcc tttcttt 47
<210> 19
<211> 19
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 19
ctatccttcg caagaccct 19
<210> 20
<211> 21
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 20
gtggctattc tgacttgctc g 21
<210> 21
<211> 22
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 21
tgtactcgta attcctcatc cc 22
<210> 22
<211> 20
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 22
ctgaagaaca gcccaagtcg 20
<210> 23
<211> 20
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 23
ccactgctcc ttatccactc 20
<210> 24
<211> 20
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 24
tcatttgcca tcccagttac 20
<210> 25
<211> 20
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 25
gagtcaagct cattccctca 20
<210> 26
<211> 21
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 26
gagtcatcgg agtaatgtcg g 21
<210> 27
<211> 20
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 27
tgctgttgtc ctgaggctgt 20
<210> 28
<211> 21
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 28
ttgggtcctg tatgactcct g 21
<210> 29
<211> 21
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 29
ttcttccgag caagtttctg t 21
<210> 30
<211> 20
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 30
ttgctgcttc caagaaatgc 20
<210> 31
<211> 20
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 31
caactcaaag tgctgtccct 20
<210> 32
<211> 20
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 32
ttctgctgct agataggacg 20
<210> 33
<211> 20
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 33
aaacatacaa accggacacc 20
<210> 34
<211> 20
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 34
cgaaaccgaa gaatggagtg 20
<210> 35
<211> 20
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 35
cgtcaggaac tggagcgaag 20
<210> 36
<211> 20
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 36
aacctcctga gataccaagc 20
<210> 37
<211> 21
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 37
tttacagcct tctgaccata c 21
<210> 38
<211> 20
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 38
tttggacgtg ggagtatgtg 20
<210> 39
<211> 22
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 39
aatcttgacc aggataagga ga 22
<210> 40
<211> 20
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 40
gcagcaaccc ttcaaactaa 20
<210> 41
<211> 22
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 41
cacaagcgaa caaataacag aa 22
<210> 42
<211> 20
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 42
cgccaccgag accaaataca 20
<210> 43
<211> 20
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 43
aaatccctta cgggcaaacc 20
<210> 44
<211> 20
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 44
tctttactgg ctgcctgttt 20
<210> 45
<211> 20
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 45
tagacgagca tctggtccct 20
<210> 46
<211> 20
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 46
tctgtcggga atgtttggtt 20
<210> 47
<211> 20
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 47
ctcctcggta atctcgccta 20

Claims (2)

1.抗旱基因CrWRKY57在提高植物抗旱性中的应用,所述抗旱基因CrWRKY57的核苷酸序列如SEQ ID NO.1所示;所述植物包括三湖红橘、烟草和/或柠檬。
2.一种提高植物抗旱性的方法,其特征在于,包括以下步骤:在植物基因组中表达或超表达抗旱基因CrWRKY57,所述抗旱基因CrWRKY57的核苷酸序列如SEQ ID NO.1所示;所述植物包括三湖红橘、烟草和/或柠檬。
CN202210284601.4A 2022-03-22 2022-03-22 一种抗旱基因CrWRKY57及其在植物抗旱改良中的应用 Active CN114591969B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210284601.4A CN114591969B (zh) 2022-03-22 2022-03-22 一种抗旱基因CrWRKY57及其在植物抗旱改良中的应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210284601.4A CN114591969B (zh) 2022-03-22 2022-03-22 一种抗旱基因CrWRKY57及其在植物抗旱改良中的应用

Publications (2)

Publication Number Publication Date
CN114591969A CN114591969A (zh) 2022-06-07
CN114591969B true CN114591969B (zh) 2023-08-15

Family

ID=81820057

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210284601.4A Active CN114591969B (zh) 2022-03-22 2022-03-22 一种抗旱基因CrWRKY57及其在植物抗旱改良中的应用

Country Status (1)

Country Link
CN (1) CN114591969B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115340995B (zh) * 2022-06-30 2024-11-08 江苏省中国科学院植物研究所 一种薄荷耐旱基因McWRKY57-like及其表达蛋白和应用
CN115974992B (zh) * 2022-08-08 2023-07-18 华中农业大学 枳转录因子PtrABR1及其在植物抗旱遗传改良中的应用
CN116083445A (zh) * 2022-12-16 2023-05-09 赣南师范大学 一种CrBZR1基因及其应用
CN118308367B (zh) * 2024-03-15 2024-11-29 成都师范学院 一种桑树MaWRKY75基因及其应用

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010075143A1 (en) * 2008-12-22 2010-07-01 Monsanto Technology Llc Genes and uses for plant enhancement
CN103695439A (zh) * 2013-12-25 2014-04-02 华中农业大学 金柑FcWRKY70基因及其在提高植物耐旱中的应用
CN106967729A (zh) * 2017-04-16 2017-07-21 陈帅 Wrky转录因子在制备抗逆转基因甜橙中的应用
WO2018039590A1 (en) * 2016-08-26 2018-03-01 Board Of Trustees Of Michigan State University Transcription factors to improve resistance to environmental stress in plants
CN109679968A (zh) * 2019-01-30 2019-04-26 南京林业大学 一种春兰CgWRKY57基因及其应用
CN112831504A (zh) * 2021-03-16 2021-05-25 昆明理工大学 三七WRKY转录因子基因PnWRKY9及其应用
CN113388618A (zh) * 2021-06-22 2021-09-14 河南农业大学 本氏烟分泌型腺毛调控基因NbJAZ3、其表达载体及应用

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010075143A1 (en) * 2008-12-22 2010-07-01 Monsanto Technology Llc Genes and uses for plant enhancement
CN103695439A (zh) * 2013-12-25 2014-04-02 华中农业大学 金柑FcWRKY70基因及其在提高植物耐旱中的应用
WO2018039590A1 (en) * 2016-08-26 2018-03-01 Board Of Trustees Of Michigan State University Transcription factors to improve resistance to environmental stress in plants
CN106967729A (zh) * 2017-04-16 2017-07-21 陈帅 Wrky转录因子在制备抗逆转基因甜橙中的应用
CN109679968A (zh) * 2019-01-30 2019-04-26 南京林业大学 一种春兰CgWRKY57基因及其应用
CN112831504A (zh) * 2021-03-16 2021-05-25 昆明理工大学 三七WRKY转录因子基因PnWRKY9及其应用
CN113388618A (zh) * 2021-06-22 2021-09-14 河南农业大学 本氏烟分泌型腺毛调控基因NbJAZ3、其表达载体及应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
芝麻肌醇半乳糖苷合成酶基因SiGolS6的克隆及功能分析;刘爱丽;魏梦园;黎冬华;周瑢;张秀荣;游均;;中国农业科学(第17期);全文 *

Also Published As

Publication number Publication date
CN114591969A (zh) 2022-06-07

Similar Documents

Publication Publication Date Title
CN114591969B (zh) 一种抗旱基因CrWRKY57及其在植物抗旱改良中的应用
CN110819607B (zh) CsLYK基因及其编码蛋白在提高柑橘溃疡病抗性的应用
CN103695439B (zh) 金柑FcWRKY70基因及其在提高植物耐旱中的应用
CN104212816B (zh) 玉米锌铁调控转运体ZmZIPs基因及其应用
CN106978424A (zh) 一种玉米抗旱相关基因Zmhdz12及其应用
CN114317552A (zh) 一种调控胡杨耐盐性的基因PeERF1及其应用
CN115896045A (zh) 杜梨E3泛素连接酶基因PbrATL18在植物抗干旱和炭疽病遗传改良中的应用
CN116120413A (zh) SlHAT5基因及其在番茄抗高温胁迫中的应用
CN106834315B (zh) 一种比拉底白刺NbCIPK25基因及其表达蛋白和应用
CN110129291A (zh) 大麦耐湿调控基因HvACO1、蛋白及其在育种中的应用
CN114480341A (zh) 枳蛋白激酶PtrSnRK2.4在植物抗旱遗传改良中的应用
CN111118036B (zh) 刚毛柽柳phd3转录因子编码基因及其应用
CN102719451A (zh) 枳转录因子PtrbHLH及在提高植物抗寒中的应用
CN103183731A (zh) 石斛DnMYB类转录因子、编码基因、载体、工程菌及应用
CN110592106A (zh) 分子标志物Lb14-3-3c基因及其应用
CN116589549A (zh) 枳转录因子PtrZAT12及其在植物抗寒遗传改良中的应用
CN114292318B (zh) 一种增强植物非生物胁迫抗性的蛋白、编码基因、引物对、表达载体及其应用
CN109628468A (zh) 一种春兰CgWRKY53基因及其应用
CN116083445A (zh) 一种CrBZR1基因及其应用
CN110791506B (zh) 一种唐古特白刺NtCIPK11基因及其表达蛋白和应用
CN114478730A (zh) 小麦TaVQ14蛋白及其编码基因与应用
CN104120111B (zh) 乌拉特柄扁桃sod蛋白基因序列及应用
CN114250246A (zh) 一种抗极端高温生长条件的猕猴桃种质材料及培育方法
CN104498506A (zh) 一种编码红肉桃myb10转录因子的dna序列及应用
CN116891521B (zh) 调控植物抗旱性和耐盐性的SpDREB2B蛋白及其应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant