CN114582583A - A magnetron pulling single crystal superconducting magnet device - Google Patents
A magnetron pulling single crystal superconducting magnet device Download PDFInfo
- Publication number
- CN114582583A CN114582583A CN202111572298.XA CN202111572298A CN114582583A CN 114582583 A CN114582583 A CN 114582583A CN 202111572298 A CN202111572298 A CN 202111572298A CN 114582583 A CN114582583 A CN 114582583A
- Authority
- CN
- China
- Prior art keywords
- coil
- iron yoke
- cold
- magnetic shielding
- magnetron
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F6/00—Superconducting magnets; Superconducting coils
- H01F6/06—Coils, e.g. winding, insulating, terminating or casing arrangements therefor
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F6/00—Superconducting magnets; Superconducting coils
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F6/00—Superconducting magnets; Superconducting coils
- H01F6/04—Cooling
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E40/00—Technologies for an efficient electrical power generation, transmission or distribution
- Y02E40/60—Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Containers, Films, And Cooling For Superconductive Devices (AREA)
Abstract
本发明公开了一种磁控拉单晶超导磁体装置,包括线圈骨架、线圈和内嵌铁轭。线圈骨架为马鞍形的环状结构,线圈绕制在线圈骨架上,内嵌铁轭的一端设置在线圈骨架的内环中。本发明在保留马鞍形线圈磁场利用率高、相同磁场强度需求情况下线圈使用量少等优点的基础上,将内嵌铁轭根据线圈结构进行优化设计,内嵌到线圈内径空间中,使得内嵌铁轭对线圈产生吸引力,从而缓解线圈通电励磁后由于上、下水平段电流相反,产生的电磁排斥力对线圈的影响,这样极大的减小了超导线圈上、下水平段的电磁体力大小,使得线圈受力更为合理,缓解了线圈在运行过程中因受力过大引起的失超风险。
The invention discloses a magnetron pulling single crystal superconducting magnet device, which comprises a coil bobbin, a coil and an inner iron yoke. The bobbin is a saddle-shaped annular structure, the coil is wound on the bobbin, and one end of the inner iron yoke is arranged in the inner ring of the bobbin. On the basis of retaining the advantages of high utilization rate of the magnetic field of the saddle coil and less use of the coil under the same magnetic field strength requirement, the invention optimizes the design of the embedded iron yoke according to the coil structure, and is embedded in the inner diameter space of the coil, so that the inner The iron yoke attracts the coil, so as to alleviate the influence of the electromagnetic repulsive force on the coil due to the opposite currents in the upper and lower horizontal sections after the coil is energized and excited, which greatly reduces the superconducting coil upper and lower horizontal sections. The strength of the electromagnet makes the force on the coil more reasonable and alleviates the risk of quenching caused by excessive force during the operation of the coil.
Description
技术领域technical field
本发明涉及半导体生产设备技术领域,特别涉及一种磁控拉单晶超导磁体装置。The invention relates to the technical field of semiconductor production equipment, in particular to a magnetron pulling single crystal superconducting magnet device.
背景技术Background technique
高纯单晶硅广泛应用于太阳能电池、集成电路、半导体等行业,是光伏发电、电子信息等高新技术产业的关键材料之一,在保障能源、信息、国家安全方面具重要的战略地位。High-purity monocrystalline silicon is widely used in solar cells, integrated circuits, semiconductors and other industries. It is one of the key materials for high-tech industries such as photovoltaic power generation and electronic information. It has an important strategic position in ensuring energy, information and national security.
截止目前,在磁控拉单晶用超导磁体领域,近几年也有相关专利进行了保护申请,如CN103106994A、CN110136915A等。然而,以前的磁体大都存在如下问题,如磁体线圈多采用4个或更多的圆形线圈结构,这种线圈存在结构复杂的问题。特别是4线圈及以上的结构,由于线圈与线圈之间磁场有相互抵消的问题,导致磁场利用率较低,因此相同磁场需求下超导线的用量较多,导致生产成本较高。同时,CN210535437U和CN210429450U均采用了左右对称分布的马鞍形线圈结构,可以很好的避免以上问题,磁场利用率明显提高,产生相同中心磁场的情况下,超导线的用量不足传统4线圈的1/2,因此相对传统的磁控拉单晶超导磁体生产成本都大大降低。Up to now, in the field of superconducting magnets for magnetron pulling single crystals, there have also been related patents applied for protection in recent years, such as CN103106994A, CN110136915A and so on. However, most of the previous magnets have the following problems. For example, the magnet coil usually adopts a structure of four or more circular coils, and this kind of coil has the problem of complex structure. Especially for the structure with 4 coils and above, due to the mutual cancellation of the magnetic fields between the coils, the utilization rate of the magnetic field is low. Therefore, the amount of superconducting wire is large under the same magnetic field demand, resulting in high production costs. At the same time, both CN210535437U and CN210429450U adopt the saddle-shaped coil structure with left and right symmetrical distribution, which can well avoid the above problems, and the utilization rate of the magnetic field is significantly improved. Under the condition of the same central magnetic field, the amount of superconducting wire is less than 1/1 of that of the traditional 4 coils. 2. Therefore, the production cost of single crystal superconducting magnets is greatly reduced compared to the traditional magnetron pulling.
然而,对于马鞍形线圈也存在一定的缺点,由于磁控拉单晶的磁体直径约为2m,导致线圈上、下直边段长度达到近2.5m。相较与传统的圆形线圈,其在运行时电磁力导致的线圈结构变形问题更为突出,因此增加了超导线圈在运行过程中发生失超的风险。综上,如何在保留马鞍形线圈磁场利用率高的基础上,进一步优化线圈的受力,成为提高超导磁拉单晶装置运行可靠性的关键问题。However, the saddle-shaped coil also has certain disadvantages. Since the diameter of the magnetron pulling the single crystal is about 2m, the length of the upper and lower straight sides of the coil reaches nearly 2.5m. Compared with traditional circular coils, the problem of coil structure deformation caused by electromagnetic force during operation is more prominent, thus increasing the risk of quenching of superconducting coils during operation. To sum up, how to further optimize the force of the coil on the basis of retaining the high utilization rate of the magnetic field of the saddle coil has become a key issue to improve the operation reliability of the superconducting magnetic pulling single crystal device.
发明内容SUMMARY OF THE INVENTION
本发明实施例提供了一种磁控拉单晶超导磁体装置,用以解决现有技术中马鞍形线圈在运行过程中因受力变形导致失超的问题,同时进一步降低了磁控拉单晶超导磁体装置的制造成本,而且将内嵌铁轭用作低温真空杜瓦结构,去除了传统单独设置的低温真空杜瓦部件。The embodiment of the present invention provides a magnetron pulling single crystal superconducting magnet device, which is used to solve the problem of quenching caused by force deformation of the saddle coil in the prior art during operation, and at the same time further reduces the magnetron pulling single crystal. The manufacturing cost of the crystalline superconducting magnet device is reduced, and the embedded iron yoke is used as a low-temperature vacuum Dewar structure, eliminating the traditional separate low-temperature vacuum Dewar components.
一方面,本发明实施例提供了一种磁控拉单晶超导磁体装置,包括:In one aspect, an embodiment of the present invention provides a magnetron pulling single crystal superconducting magnet device, comprising:
线圈骨架,线圈骨架为马鞍形的环状结构;Coil bobbin, the bobbin is a saddle-shaped annular structure;
线圈,线圈绕制在线圈骨架上;Coil, the coil is wound on the coil bobbin;
内嵌铁轭,内嵌铁轭的一端设置在线圈骨架的内环中。The inner iron yoke is embedded, and one end of the inner iron yoke is arranged in the inner ring of the coil bobbin.
本发明中的一种磁控拉单晶超导磁体装置,具有以下优点:A magnetron pulling single crystal superconducting magnet device in the present invention has the following advantages:
1、在保留马鞍形线圈磁场利用率高、相同磁场强度需求情况下线圈使用量少等优点的基础上,将内嵌铁轭根据线圈结构进行优化设计,内嵌到线圈内径空间中,使得内嵌铁轭对线圈产生吸引力,从而缓解线圈通电励磁后由于上、下水平段电流相反,产生的电磁排斥力对线圈的影响,这样极大的减小了超导线圈上、下水平段的电磁体力大小,使得线圈受力更为合理,缓解了线圈在运行过程中因受力过大引起的失超风险。1. On the basis of retaining the advantages of high magnetic field utilization rate of the saddle coil and less coil usage under the same magnetic field strength requirement, the inner iron yoke is optimized according to the coil structure and embedded in the inner diameter space of the coil, so that the inner The iron yoke attracts the coil, so as to alleviate the influence of the electromagnetic repulsive force on the coil due to the opposite currents in the upper and lower horizontal sections after the coil is energized and excited, which greatly reduces the superconducting coil upper and lower horizontal sections. The strength of the electromagnet makes the force on the coil more reasonable, which alleviates the risk of quenching caused by excessive force during the operation of the coil.
2、由于内嵌铁轭置于线圈的内径空间内,此时内嵌铁轭在线圈内部充当了聚磁极头作用,可以使本发明磁体装置的空间区域内获得的磁场均匀性更高,便于提高磁控拉单晶生产制备的效率。同时,内嵌铁轭可以作为低温真空杜瓦结构,去除了需要额外设计真空杜瓦结构的复杂性,对降低该装置的成本有较大的帮助。2. Since the built-in iron yoke is placed in the inner diameter space of the coil, the built-in iron yoke acts as a magnetic pole head inside the coil, which can make the magnetic field obtained in the space area of the magnet device of the present invention more uniform, which is convenient for Improve the efficiency of magnetron pulling single crystal production and preparation. At the same time, the built-in iron yoke can be used as a low-temperature vacuum dewar structure, which eliminates the need for additional design of the vacuum dewar structure and is of great help in reducing the cost of the device.
附图说明Description of drawings
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。In order to illustrate the embodiments of the present invention or the technical solutions in the prior art more clearly, the following briefly introduces the accompanying drawings that need to be used in the description of the embodiments or the prior art. Obviously, the drawings in the following description are only These are some embodiments of the present invention. For those of ordinary skill in the art, other drawings can also be obtained according to these drawings without creative efforts.
图1为本发明实施例提供的一种磁控拉单晶超导磁体装置的外部结构示意图;1 is a schematic diagram of an external structure of a magnetron pulling single crystal superconducting magnet device provided in an embodiment of the present invention;
图2为本发明实施例提供的一种磁控拉单晶超导磁体装置的部分内部结构示意图;2 is a schematic diagram of a partial internal structure of a magnetron pulling single crystal superconducting magnet device according to an embodiment of the present invention;
图3为本发明实施例提供的线圈以及内嵌铁轭的立体结构示意图;3 is a schematic three-dimensional structure diagram of a coil and an inner iron yoke provided by an embodiment of the present invention;
图4为本发明实施例提供的线圈、内嵌铁轭以及磁屏蔽铁轭上顶板和磁屏蔽铁轭下底板的位置示意图;4 is a schematic diagram of the positions of the coil, the built-in iron yoke, the upper top plate of the magnetically shielded iron yoke, and the lower bottom plate of the magnetically shielded iron yoke according to an embodiment of the present invention;
图5为传统马鞍形线圈在电磁排斥力作用下产生的形变示意图。FIG. 5 is a schematic diagram of the deformation of a traditional saddle coil under the action of electromagnetic repulsion force.
附图标记说明:1-磁屏蔽铁轭上顶板,2-杜瓦内筒,3-内嵌铁轭,4-磁屏蔽铁轭下底板,5-磁屏蔽铁轭外筒,6-杜瓦凸起部件,7-G-M制冷机,8-冷屏导冷结构,9-线圈导冷结构,10-冷屏,11-线圈骨架,12-线圈,13-导冷连接结构,14-真空接口。Description of reference numerals: 1- Magnetic shielding iron yoke upper top plate, 2-Dewar inner cylinder, 3-Inner iron yoke, 4- Magnetic shielding iron yoke lower bottom plate, 5- Magnetic shielding iron yoke outer cylinder, 6-Dewar Protruding parts, 7-G-M refrigerator, 8-cooling shield cooling structure, 9-coil cooling structure, 10-cooling shield, 11-coil frame, 12-coil, 13-cooling connection structure, 14-vacuum interface .
具体实施方式Detailed ways
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。The technical solutions in the embodiments of the present invention will be clearly and completely described below with reference to the accompanying drawings in the embodiments of the present invention. Obviously, the described embodiments are only a part of the embodiments of the present invention, not all of the embodiments. Based on the embodiments of the present invention, all other embodiments obtained by those of ordinary skill in the art without creative efforts shall fall within the protection scope of the present invention.
图1-2为本发明实施例提供的一种磁控拉单晶超导磁体装置的结构示意图。本发明实施例提供了一种磁控拉单晶超导磁体装置,包括:1-2 are schematic structural diagrams of a magnetron pulling single crystal superconducting magnet device according to an embodiment of the present invention. The embodiment of the present invention provides a magnetron pulling single crystal superconducting magnet device, including:
线圈骨架11,线圈骨架11为马鞍形的环状结构;The
线圈12,线圈12绕制在线圈骨架11上;The
内嵌铁轭3,内嵌铁轭3的一端设置在线圈骨架11的内环中。The
示例性地,上述马鞍形的环状结构是指将环状结构弯折形成马鞍形,该环状结构具有两个长度相等且平行设置的水平段,两个水平段的末端分别通过半圆弧段连接。线圈骨架11在水平面上的投影为弧状,且其外侧面上设置有线槽,线圈12即绕制在该线槽中。由于线圈骨架11为马鞍形环状结构,因此绕制在其上的线圈12也为相同的形状。采用马鞍形的线圈可以有效提高磁场利用率,同时也具有相同磁场强度用线少和漏磁场低等优势。Exemplarily, the above-mentioned saddle-shaped annular structure refers to bending the annular structure to form a saddle shape, the annular structure has two horizontal segments of equal length and arranged in parallel, and the ends of the two horizontal segments pass through semicircular arcs respectively. segment connection. The projection of the
在本发明的实施例中,内嵌铁轭3也为环状结构,其一端的形状与线圈骨架11的内环形状相同,但是尺寸略小于线圈骨架11的内环尺寸,因此当内嵌铁轭3的一端嵌入线圈骨架11的内环后,二者之间存在一定距离。In the embodiment of the present invention, the
如图3所示,内嵌铁轭3嵌入线圈骨架11的内环中,线圈12通电后产生磁场B,此时内嵌铁轭3在线圈12内部充当了聚磁极头的作用,使得本发明的磁控拉单晶超导磁体装置的空间区域内获得的磁场具有更高的均匀性,便于提高单晶硅生产制备的效率。As shown in FIG. 3 , the built-in
同时,如图4所示,在线圈12在通电后,上下水平段的电流方向相反,因此会产生相互之间的排斥力F,在该排斥力F的作用下线圈12具有变形的风险,如图5。而内嵌铁轭3在磁场的作用下也会对线圈12的上下水平段产生竖直向下和竖直向上的吸引力f,该吸引力f对排斥力F具有一定的抵消。通过对内嵌铁轭3根据线圈12的结构进行优化设计,并对线圈12与磁屏蔽铁轭上顶板1的距离L1,以及线圈12与内嵌铁轭3的距离L2进行调整,使得内嵌铁轭3对线圈12产生适当的吸引力f,从而缓解线圈12通电励磁后由于上、下水平段电流相反而存在电磁排斥力F,这样极大的减小了线圈12上、下水平段的电磁排斥力,使得线圈12受力更为合理,缓解了线圈12在运行过程中因受力过大引起的失超风险。而且,采用内嵌铁轭3缓解了线圈12的受力,最终可以简化线圈12相关的支撑结构件,使加工与生产更方便,最终成本更为低廉。At the same time, as shown in FIG. 4 , after the
在一种可能的实施例中,还包括:磁屏蔽铁轭上顶板1,磁屏蔽铁轭上顶板1位于线圈骨架11上方;磁屏蔽铁轭下底板4,磁屏蔽铁轭下底板4位于线圈骨架11下方;杜瓦内筒2,杜瓦内筒2位于线圈骨架11内侧,且杜瓦内筒2的上下两端分别与磁屏蔽铁轭上顶板1和磁屏蔽铁轭下底板4的内侧端连接;磁屏蔽铁轭外筒5,磁屏蔽铁轭外筒5位于线圈骨架11外侧,且磁屏蔽铁轭外筒5的上下两端分别与磁屏蔽铁轭上顶板1和磁屏蔽铁轭下底板4的外侧端连接。In a possible embodiment, it further includes: the upper
示例性地,磁屏蔽铁轭上顶板1和磁屏蔽铁轭下底板4为大小和形状均相同的圆环,二者上下正对设置。杜瓦内筒2为圆筒状结构,其外径与磁屏蔽铁轭上顶板1的内径相同,高度与磁屏蔽铁轭上顶板1和磁屏蔽铁轭下底板4之间的距离相同。磁屏蔽铁轭外筒5也为圆筒状结构,其内径与磁屏蔽铁轭上顶板1的外径相同,高度与磁屏蔽铁轭上顶板1和磁屏蔽铁轭下底板4之间的距离相同。因此,上述磁屏蔽铁轭上顶板1、磁屏蔽铁轭下底板4、杜瓦内筒2和磁屏蔽铁轭外筒5围绕形成圆柱形环状结构,线圈骨架11、线圈12和内嵌铁轭3均处在该圆柱形环状结构的内部。Exemplarily, the upper
在本发明的实施例中,磁屏蔽铁轭外筒5的侧面上开设有与内嵌铁轭3的末端大小和形状均相同的开口,内嵌铁轭3的一端嵌入线圈骨架11的内环中,另一端与该开口连接,且内嵌铁轭3在嵌入线圈骨架11的一端内部使用金属材料填充,以对圆柱形环状结构内部的磁场进行屏蔽。同时,磁屏蔽铁轭上顶板1、磁屏蔽铁轭下底板4和磁屏蔽铁轭外筒5均使用金属材料制成,以屏蔽磁场外泄。杜瓦内筒2则使用透磁材料制成,使圆柱形环状结构内部的磁场能够穿出到轴向位置。而且,内嵌铁轭3使用铁磁性金属制成,例如铁、钴、镍及其合金等,使其能够对线圈12产生吸引力f。In the embodiment of the present invention, the side surface of the magnetic shielding iron yoke
本发明采用内嵌铁轭3作为低温真空杜瓦,省去了现有技术中需要单独设置的低温杜瓦部件,从而又利用缩减生产制造成本从而进一步缩减生产成本,同时由于省去了低温杜瓦部件,使得内部的空间更大,方便了生产操作,也避免了部件由于距离过近接触的风险。The present invention adopts the built-in
在一种可能的实施例中,还包括:冷屏10,冷屏10套设在线圈12以及线圈骨架11外部;G-M制冷机7;冷屏导冷结构8,冷屏导冷结构8与G-M制冷机7的制冷输出端连接,同时冷屏导冷结构8也与冷屏10接触,以使冷屏10内部保持低温环境。In a possible embodiment, it further includes: a
示例性地,G-M制冷机7通电后能够产生低温,其通过冷屏导冷结构8将低温传递至冷屏10,使冷屏10内部的线圈12时刻处在低温环境中,进而使线圈12工作在超导状态。Exemplarily, after the
在本发明的实施例中,冷屏导冷结构8包括一级冷头和冷屏导冷板,一级冷头与G-M制冷机7的制冷输出端连接,冷屏导冷板设置在一级冷头外部,且冷屏导冷板与冷屏10接触。G-M制冷机7输出的低温经过一级冷头传递给冷屏导冷板,再由冷屏导冷板传递给冷屏10。In the embodiment of the present invention, the cold
在一种可能的实施例中,还包括:线圈导冷结构9,线圈导冷结构9与冷屏导冷结构8的输出端连接,同时线圈导冷结构9也与线圈骨架11接触,以使线圈骨架11和线圈12保持低温。In a possible embodiment, it also includes: a coil cooling structure 9, the coil cooling structure 9 is connected to the output end of the cooling
示例性地,冷屏导冷结构8的低温一方面传递给冷屏10,另一方面也传递给线圈导冷结构9,线圈导冷结构9进一步将低温传递给线圈骨架11,使线圈12所处的环境温度进一步降低,使线圈12稳定工作在超导状态。Exemplarily, the low temperature of the cold
在本发明的实施例中,线圈骨架11的数量为两个,两个线圈骨架11相对设置。装置还包括导冷连接结构13,导冷连接结构13连接在两个线圈骨架11之间,线圈导冷结构9与导冷连接结构13接触,使两个线圈骨架11以及线圈12处在低温状态。In the embodiment of the present invention, the number of the
线圈导冷结构9包括:二级冷头,二级冷头与一级冷头的输出端连接;线圈导冷板,线圈导冷板设置在二级冷头外部,且线圈导冷板与线圈骨架11接触。一级冷头输出的低温经过二级冷头传递给线圈导冷板,再由线圈导冷板传递给线圈骨架11。The coil cooling structure 9 includes: a secondary cold head, which is connected to the output end of the primary cold head; a coil cold conducting plate, which is arranged outside the secondary cold head, and the coil cold conducting plate is connected to the coil. The
在一种可能的实施例中,还包括:杜瓦凸起部件6,杜瓦凸起部件6设置在磁屏蔽铁轭外筒5的外侧面上,G-M制冷机7设置在杜瓦凸起部件6的外侧面上,冷屏导冷结构8和线圈导冷结构9均设置在杜瓦凸起部件6内部。In a possible embodiment, it further includes: a
示例性地,杜瓦凸起部件6为立方体状的空心结构,且其与磁屏蔽铁轭外筒5的内部连通。G-M制冷机7设置在杜瓦凸起部件6的外顶面上,其制冷输出端穿过杜瓦凸起部件6的顶面后与位于杜瓦凸起部件6内部的一级冷头连接。Exemplarily, the
在一种可能的实施例中,还包括:真空接口14,真空接口14设置在杜瓦凸起部件6的外侧面上,真空接口14用于配合抽真空设备将杜瓦凸起部件6以及磁屏蔽铁轭上顶板1、磁屏蔽铁轭下底板4、杜瓦内筒2和磁屏蔽铁轭外筒5围成的空间内部抽真空。In a possible embodiment, it further includes: a
示例性地,将上述空间内部抽真空后,可以减少该空间内部和外部的热交换,进而减小G-M制冷机7的低温散失。Exemplarily, after the inside of the space is evacuated, the heat exchange between the inside and outside of the space can be reduced, thereby reducing the low temperature dissipation of the
尽管已描述了本发明的优选实施例,但本领域内的技术人员一旦得知了基本创造性概念,则可对这些实施例作出另外的变更和修改。所以,所附权利要求意欲解释为包括优选实施例以及落入本发明范围的所有变更和修改。Although preferred embodiments of the present invention have been described, additional changes and modifications to these embodiments may occur to those skilled in the art once the basic inventive concepts are known. Therefore, the appended claims are intended to be construed to include the preferred embodiment and all changes and modifications that fall within the scope of the present invention.
显然,本领域的技术人员可以对本发明进行各种改动和变型而不脱离本发明的精神和范围。这样,倘若本发明的这些修改和变型属于本发明权利要求及其等同技术的范围之内,则本发明也意图包含这些改动和变型在内。It will be apparent to those skilled in the art that various modifications and variations can be made in the present invention without departing from the spirit and scope of the invention. Thus, provided that these modifications and variations of the present invention fall within the scope of the claims of the present invention and their equivalents, the present invention is also intended to include these modifications and variations.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111572298.XA CN114582583A (en) | 2021-12-21 | 2021-12-21 | A magnetron pulling single crystal superconducting magnet device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111572298.XA CN114582583A (en) | 2021-12-21 | 2021-12-21 | A magnetron pulling single crystal superconducting magnet device |
Publications (1)
Publication Number | Publication Date |
---|---|
CN114582583A true CN114582583A (en) | 2022-06-03 |
Family
ID=81772944
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202111572298.XA Pending CN114582583A (en) | 2021-12-21 | 2021-12-21 | A magnetron pulling single crystal superconducting magnet device |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114582583A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115831527A (en) * | 2022-11-21 | 2023-03-21 | 苏州八匹马超导科技有限公司 | Superconducting magnet framework ejector rod mechanism |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11176630A (en) * | 1997-12-08 | 1999-07-02 | Toshiba Corp | Superconduction magnetic system for single crystal growth |
JP2008028147A (en) * | 2006-07-21 | 2008-02-07 | Mitsubishi Electric Corp | Saddle-like coil exciting superconducting electromagnet apparatus and saddle-like coil winder |
CN102360691A (en) * | 2011-06-24 | 2012-02-22 | 中国科学院电工研究所 | Open-type nuclear magnetic resonance magnet system with iron hoop structure |
CN111009375A (en) * | 2019-12-19 | 2020-04-14 | 西部超导材料科技股份有限公司 | Conduction cooling magnetic control single crystal pulling superconducting magnet device |
CN212694926U (en) * | 2020-07-14 | 2021-03-12 | 中国航天科工飞航技术研究院(中国航天海鹰机电技术研究院) | Dynamic low-temperature superconducting magnet |
CN113436825A (en) * | 2021-07-22 | 2021-09-24 | 西安聚能超导磁体科技有限公司 | Magnetic control single crystal pulling superconducting magnet for conduction cooling and cooling method thereof |
CN216287818U (en) * | 2021-12-21 | 2022-04-12 | 西安聚能超导磁体科技有限公司 | Magnetic control single crystal pulling superconducting magnet device |
-
2021
- 2021-12-21 CN CN202111572298.XA patent/CN114582583A/en active Pending
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11176630A (en) * | 1997-12-08 | 1999-07-02 | Toshiba Corp | Superconduction magnetic system for single crystal growth |
JP2008028147A (en) * | 2006-07-21 | 2008-02-07 | Mitsubishi Electric Corp | Saddle-like coil exciting superconducting electromagnet apparatus and saddle-like coil winder |
CN102360691A (en) * | 2011-06-24 | 2012-02-22 | 中国科学院电工研究所 | Open-type nuclear magnetic resonance magnet system with iron hoop structure |
CN111009375A (en) * | 2019-12-19 | 2020-04-14 | 西部超导材料科技股份有限公司 | Conduction cooling magnetic control single crystal pulling superconducting magnet device |
CN212694926U (en) * | 2020-07-14 | 2021-03-12 | 中国航天科工飞航技术研究院(中国航天海鹰机电技术研究院) | Dynamic low-temperature superconducting magnet |
CN113436825A (en) * | 2021-07-22 | 2021-09-24 | 西安聚能超导磁体科技有限公司 | Magnetic control single crystal pulling superconducting magnet for conduction cooling and cooling method thereof |
CN216287818U (en) * | 2021-12-21 | 2022-04-12 | 西安聚能超导磁体科技有限公司 | Magnetic control single crystal pulling superconducting magnet device |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115831527A (en) * | 2022-11-21 | 2023-03-21 | 苏州八匹马超导科技有限公司 | Superconducting magnet framework ejector rod mechanism |
CN115831527B (en) * | 2022-11-21 | 2023-09-12 | 苏州八匹马超导科技有限公司 | Superconducting magnet skeleton ejector rod mechanism |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102969873B (en) | A kind of high-temperature superconducting motor | |
CN210535437U (en) | Conduction cooling magnetic control single crystal pulling superconducting magnet device | |
CN111243821A (en) | Magnetic control czochralski single crystal superconducting magnet system | |
CN106449000A (en) | Superconducting magnet based on ReBCo coating superconducting sheet | |
WO2019184129A1 (en) | Magnet for magnetic control of czochralski single crystals and method for magnetic control of czochralski single crystals | |
CN113838626A (en) | Magnetic control single crystal pulling superconducting magnet and magnetic shielding method | |
CN110136915A (en) | A superconducting magnet and magnetron CZ single crystal device | |
CN103065759B (en) | Superconducting magnet supporting and positioning system | |
CN114582583A (en) | A magnetron pulling single crystal superconducting magnet device | |
CN111009375A (en) | Conduction cooling magnetic control single crystal pulling superconducting magnet device | |
CN110957099A (en) | Superconducting magnet with four-corner-shaped coils for magnetically controlled Czochralski single crystal pulling and method thereof | |
CN114927305A (en) | Magnetic control single crystal pulling superconducting magnet and equipment | |
TW460635B (en) | Superconducting magnet apparatus | |
CN101728050A (en) | MRI superconductive magnet system | |
CN216287818U (en) | Magnetic control single crystal pulling superconducting magnet device | |
JP2010171152A (en) | Heat conduction plate and superconductive device | |
CN109526132B (en) | A special-shaped large-size high-temperature superconducting magnet | |
CN215680369U (en) | Shielding structure of magnetic control single crystal pulling superconducting magnet | |
CN210837338U (en) | Superconducting magnet with four-corner-shaped coils for magnetically controlled Czochralski single crystal pulling | |
CN104900370A (en) | Superconducting magnet liquid helium container comprising vacuum chamber | |
JP5154512B2 (en) | Superconducting magnet device | |
CN113436825A (en) | Magnetic control single crystal pulling superconducting magnet for conduction cooling and cooling method thereof | |
CN105551779B (en) | A kind of superconductive controllable reactor | |
CN117854877A (en) | Superconducting magnet for magnetic control Czochralski single crystal and refrigerating method | |
CN217719177U (en) | Magnetic control single crystal pulling superconducting magnet and equipment |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |