CN114577099A - Position detection system, lens, zooming method and terminal - Google Patents
Position detection system, lens, zooming method and terminal Download PDFInfo
- Publication number
- CN114577099A CN114577099A CN202011280550.5A CN202011280550A CN114577099A CN 114577099 A CN114577099 A CN 114577099A CN 202011280550 A CN202011280550 A CN 202011280550A CN 114577099 A CN114577099 A CN 114577099A
- Authority
- CN
- China
- Prior art keywords
- magnet
- magnetic induction
- induction intensity
- hall
- hall sensor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 28
- 238000001514 detection method Methods 0.000 title claims abstract description 27
- 230000006698 induction Effects 0.000 claims abstract description 111
- 238000013519 translation Methods 0.000 claims abstract description 34
- 230000008859 change Effects 0.000 claims abstract description 13
- 230000003321 amplification Effects 0.000 claims description 3
- 238000003199 nucleic acid amplification method Methods 0.000 claims description 3
- 230000008569 process Effects 0.000 abstract description 10
- 238000010586 diagram Methods 0.000 description 10
- 230000003287 optical effect Effects 0.000 description 3
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000006073 displacement reaction Methods 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 238000013507 mapping Methods 0.000 description 1
- 238000012634 optical imaging Methods 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B7/00—Measuring arrangements characterised by the use of electric or magnetic techniques
- G01B7/003—Measuring arrangements characterised by the use of electric or magnetic techniques for measuring position, not involving coordinate determination
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B7/00—Mountings, adjusting means, or light-tight connections, for optical elements
- G02B7/02—Mountings, adjusting means, or light-tight connections, for optical elements for lenses
- G02B7/04—Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification
- G02B7/08—Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification adapted to co-operate with a remote control mechanism
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
Abstract
Description
技术领域technical field
本申请涉及光学影像设备技术领域,具体涉及一种位置检测系统、镜头、变焦方法及终端。The present application relates to the technical field of optical imaging equipment, and in particular, to a position detection system, a lens, a zooming method, and a terminal.
背景技术Background technique
镜头进行连续光学变焦需要用到实现大行程(一般至少2毫米)高精度定位的马达,现有的马达闭环反馈控制镜头中,安装在镜头载体上的磁铁相对于霍尔传感器是水平移动的,且磁铁的运动方向是由磁铁的一个极指向另一个极的方向,在运动过程中霍尔传感器位置的磁场磁通量密度变化较大,导致霍尔传感器能感测到的该磁铁行程的线性变化区间只有500至600微米,超过这个区间后,磁感应强度变的非线性了,导致得到的行程数据相对于磁感应强度变化也是非线性的,由于非线性区间对磁铁位置的检测精度较低,可实现精确变焦的行程仅限于线性变化区间,行程数据相对磁感应强度的线性变化区间比较短,无法满足镜头的连续光学变焦的行程需求。The continuous optical zoom of the lens requires a motor that achieves high-precision positioning with a large stroke (generally at least 2 mm). In the existing motor closed-loop feedback control lens, the magnet installed on the lens carrier moves horizontally relative to the Hall sensor. And the moving direction of the magnet is from one pole of the magnet to the other pole. During the movement, the magnetic flux density of the magnetic field at the position of the Hall sensor changes greatly, resulting in a linear change interval of the magnet stroke that the Hall sensor can sense. It is only 500 to 600 microns. After exceeding this range, the magnetic induction intensity becomes non-linear, resulting in the obtained stroke data is also non-linear with respect to the magnetic induction intensity. Due to the low detection accuracy of the magnet position in the non-linear range, accurate detection can be achieved. The zoom stroke is limited to a linear change interval, and the linear change interval of the stroke data relative to the magnetic induction intensity is relatively short, which cannot meet the travel requirements of the lens for continuous optical zoom.
前面的叙述在于提供一般的背景信息,并不一定构成现有技术。The preceding statements are intended to provide general background information and do not necessarily constitute prior art.
发明内容SUMMARY OF THE INVENTION
鉴于此,本申请提供一种位置检测系统、镜头、变焦方法及终端,以解决现有的行程数据相对磁感应强度的线性变化区间比较短的问题。In view of this, the present application provides a position detection system, a lens, a zooming method and a terminal to solve the problem that the linear variation interval of the relative magnetic induction intensity of the current travel data is relatively short.
第一方面,本申请提供的一种位置检测系统,包括:In a first aspect, a position detection system provided by this application includes:
用于设置在镜头载体上的磁铁,以及霍尔传感器;Magnets for setting on the lens carrier, and Hall sensors;
所述磁铁为长方体,所述磁铁的厚度方向为由磁铁的一极指向另一极的方向,所述磁铁的长度方向为与所述厚度方向垂直的方向;The magnet is a cuboid, the thickness direction of the magnet is a direction from one pole of the magnet to the other pole, and the length direction of the magnet is a direction perpendicular to the thickness direction;
所述霍尔传感器设置在所述磁铁外,用于采集所述磁铁沿与所述长度方向呈第一夹角的方向平移时的磁感应强度变化,以检测所述镜头载体的位置。The Hall sensor is arranged outside the magnet, and is used for collecting the change of the magnetic induction intensity when the magnet is translated along the direction forming a first included angle with the length direction, so as to detect the position of the lens carrier.
可选的,所述磁铁的宽度方向为分别垂直于所述长度方和厚度方向的方向,所述磁铁位于初始位置时,所述霍尔传感器沿所述磁铁的宽度方向的正投影落在所述磁铁上。Optionally, the width direction of the magnet is a direction perpendicular to the length direction and the thickness direction, respectively, and when the magnet is at the initial position, the orthographic projection of the Hall sensor along the width direction of the magnet falls on the magnet. on the magnet.
可选的,所述霍尔传感器包括两个,所述两个霍尔传感器在所述磁铁上的投影镜像对称,对称轴垂直于所述磁铁的平移方向。Optionally, the Hall sensor includes two, the projections of the two Hall sensors on the magnet are mirror-symmetrical, and the axis of symmetry is perpendicular to the translation direction of the magnet.
可选的,所述位置检测系统还包括霍尔电压计算电路,所述霍尔电压计算电路包括运算器、模数转换器以及两个电压获取模块;Optionally, the position detection system further includes a Hall voltage calculation circuit, and the Hall voltage calculation circuit includes an operator, an analog-to-digital converter, and two voltage acquisition modules;
所述两个电压获取模块的输出端分别与所述运算器的输入端连接,所述两个电压获取模块分别用于获取对应的霍尔传感器采集到的霍尔电压,所述运算器用于根据所述两个电压获取模块输出的霍尔电压计算目标霍尔电压;The output ends of the two voltage acquisition modules are respectively connected with the input ends of the arithmetic unit, and the two voltage acquisition modules are respectively used to acquire the Hall voltage collected by the corresponding Hall sensor, and the arithmetic unit is used to obtain the Hall voltage collected by the corresponding Hall sensor. Calculate the target Hall voltage from the Hall voltages output by the two voltage acquisition modules;
所述运算器的输出端与所述模数转换器的输入端连接,所述模数转换器用于将所述运算器输出的目标霍尔电压转换为霍尔电压数据并输出。The output terminal of the arithmetic unit is connected to the input terminal of the analog-to-digital converter, and the analog-to-digital converter is used for converting the target Hall voltage output by the arithmetic unit into Hall voltage data and outputting the data.
可选的,每个所述电压获取模块均包括一霍尔传感器与一运算放大器,所述霍尔传感器的正负输入端分别连接正负驱动电压,所述霍尔传感器的两个输出端分别连接所述运算放大器的正负输入端,所述运算放大器的输出端作为电压获取模块的输出端连接所述运算器的输入端,所述运算放大器用于接入所述霍尔传感器输出的霍尔电压,进行运算放大后输出放大后的霍尔电压至所述运算器,所述运算器用于根据接入的两个放大后的霍尔电压计算目标霍尔电压。Optionally, each of the voltage acquisition modules includes a Hall sensor and an operational amplifier, the positive and negative input ends of the Hall sensor are respectively connected to positive and negative driving voltages, and the two output ends of the Hall sensor are respectively Connect the positive and negative input terminals of the operational amplifier, the output terminal of the operational amplifier is connected to the input terminal of the operational unit as the output terminal of the voltage acquisition module, and the operational amplifier is used to connect to the Hall sensor output by the Hall sensor. After performing operational amplification, the amplified Hall voltage is output to the operator, and the operator is used to calculate the target Hall voltage according to the two connected amplified Hall voltages.
可选的,所述运算器根据下述公式计算所述目标霍尔电压:Optionally, the operator calculates the target Hall voltage according to the following formula:
其中,U0为目标霍尔电压,U1和U2分别为所述两个电压获取模块输出的霍尔电压。Wherein, U 0 is the target Hall voltage, and U 1 and U 2 are respectively the Hall voltages output by the two voltage acquisition modules.
第二方面,本申请提供一种镜头,包括:In a second aspect, the present application provides a lens, including:
镜头载体、马达及如上述第一方面任一项所述的位置检测系统,所述镜头载体与磁铁连接,所述马达用于驱动所述镜头载体带动所述磁铁平移进行变焦,所述霍尔传感器用于采集磁铁的磁感应强度A lens carrier, a motor, and the position detection system according to any one of the first aspects above, the lens carrier is connected to a magnet, the motor is used to drive the lens carrier to drive the magnet to translate and zoom, and the Hall The sensor is used to collect the magnetic induction intensity of the magnet
第三方面,本申请提供一种镜头的变焦方法,所述镜头包括镜头载体、马达、设置在镜头载体上的磁铁,以及霍尔传感器,所述镜头的变焦方法包括:In a third aspect, the present application provides a zoom method of a lens, the lens includes a lens carrier, a motor, a magnet arranged on the lens carrier, and a Hall sensor, and the zoom method of the lens includes:
控制马达驱动镜头载体带动磁铁沿与磁铁的长度方向呈第一夹角的方向平移;Controlling the motor to drive the lens carrier to drive the magnet to translate along the direction of the first included angle with the length direction of the magnet;
获取霍尔传感器采集磁铁平移时的目标磁感应强度;Obtain the target magnetic induction intensity when the Hall sensor collects the magnet translation;
根据所述目标磁感应强度确定所述镜头载体的位置,当所述镜头载体位于目标位置时,控制马达停止工作,完成变焦。The position of the lens carrier is determined according to the target magnetic induction intensity, and when the lens carrier is at the target position, the motor is controlled to stop working to complete the zooming.
可选的,所述霍尔传感器包括两个,所述获取霍尔传感器采集磁铁平移时的目标磁感应强度,包括:Optionally, the Hall sensor includes two, and the acquiring the target magnetic induction intensity when the Hall sensor collects the magnet translation includes:
获取所述两个霍尔传感器采集的第一磁感应强度与第二磁感应强度;acquiring the first magnetic induction intensity and the second magnetic induction intensity collected by the two Hall sensors;
根据所述第一磁感应强度与第二磁感应强度计算所述目标磁感应强度。The target magnetic induction intensity is calculated according to the first magnetic induction intensity and the second magnetic induction intensity.
可选的,所述根据所述第一磁感应强度与第二磁感应强度计算所述目标磁感应强度,包括:按照如下公式计算所述目标磁感应强度:Optionally, the calculating the target magnetic induction intensity according to the first magnetic induction intensity and the second magnetic induction intensity includes: calculating the target magnetic induction intensity according to the following formula:
其中,H为所述目标磁感应强度,P1为所述第一目标磁感应强度,M1为所述第二目标磁感应强度。Wherein, H is the target magnetic induction intensity, P 1 is the first target magnetic induction intensity, and M 1 is the second target magnetic induction intensity.
第四方面,本申请提供一种终端,包括:包括终端本体,以及如上述第二方面所述的镜头。In a fourth aspect, the present application provides a terminal, including: a terminal body, and the lens according to the second aspect.
本申请上述位置检测系统、镜头、变焦方法及终端,将磁铁的一极指向另一极的方向作为厚度方向,将与厚度方向垂直的方向作为长度方向,磁铁长度方向上各处的磁场强度较为均匀,设置霍尔传感器采集磁铁沿与长度方向呈第一夹角的方向平移时的磁感应强度变化,可以理解的是,磁铁的平移方向与磁铁长度方向呈一定角度,由于磁铁为长方体,倾斜一定角度后可以使磁铁在平移方向上的有效长度由长边增加为对角线,且当磁铁平移时霍尔传感器采集到的磁感应强度的会产生变化。通过将磁铁沿与长度方向呈一定的角度进行平移,增大了磁铁平移过程中霍尔传感器位置的磁感应强度均匀的行程范围,有效增加了磁感应强度相对磁铁行程的线性变化区间,提高了对镜头载体位置检测的精度。In the above position detection system, lens, zoom method and terminal of the present application, the direction in which one pole of the magnet points to the other pole is taken as the thickness direction, and the direction perpendicular to the thickness direction is taken as the length direction, and the magnetic field strength at various places along the length direction of the magnet is relatively high. Evenly, the Hall sensor is set to collect the change of the magnetic induction intensity when the magnet is translated along the direction of the first included angle with the length direction. It can be understood that the translation direction of the magnet is at a certain angle with the length direction of the magnet. Since the magnet is a cuboid, the inclination is certain. After the angle, the effective length of the magnet in the translation direction can be increased from the long side to the diagonal, and when the magnet is translated, the magnetic induction intensity collected by the Hall sensor will change. By translating the magnet at a certain angle to the length direction, the range of the uniform magnetic induction intensity of the Hall sensor position during the magnet translation process is increased, and the linear variation range of the magnetic induction intensity relative to the magnet stroke is effectively increased, which improves the accuracy of the lens. The accuracy of carrier position detection.
附图说明Description of drawings
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。In order to illustrate the technical solutions in the embodiments of the present application more clearly, the following briefly introduces the drawings that are used in the description of the embodiments. Obviously, the drawings in the following description are only some embodiments of the present application. For those skilled in the art, other drawings can also be obtained from these drawings without creative effort.
图1为本申请实施例提供的位置检测系统的结构示意图;FIG. 1 is a schematic structural diagram of a position detection system provided by an embodiment of the present application;
图2为本申请实施例提供的位置检测系统的双霍尔结构示意图;FIG. 2 is a schematic diagram of a double Hall structure of a position detection system provided by an embodiment of the present application;
图3为本申请实施例提供的磁感应强度与磁铁行程的关系示意图;3 is a schematic diagram of the relationship between the magnetic induction intensity and the magnet stroke provided by the embodiment of the present application;
图4为本申请实施例提供的C1线性区间的示意图;FIG. 4 is a schematic diagram of a C 1 linear interval provided by an embodiment of the present application;
图5为本申请实施例提供的磁感应强度与磁铁行程的另一种关系示意图;5 is a schematic diagram of another relationship between the magnetic induction intensity and the magnet stroke provided by the embodiment of the present application;
图6为本申请实施例提供的(P1+M1)/(P1-M1)的线性区间的示意图;FIG. 6 is a schematic diagram of a linear interval of (P 1 +M 1 )/(P 1 −M 1 ) provided in an embodiment of the present application;
图7为本申请实施例提供的霍尔电压计算电路的结构示意图;7 is a schematic structural diagram of a Hall voltage calculation circuit provided by an embodiment of the present application;
图8为本申请实施例提供的变焦方法的基础流程示意图。FIG. 8 is a schematic diagram of a basic flow of a zooming method provided by an embodiment of the present application.
具体实施方式Detailed ways
下面结合附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本申请一部分实施例,而非全部实施例。基于本申请中的实施例,本领域技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。在不冲突的情况下,下述各个实施例及其技术特征可以相互组合。The technical solutions in the embodiments of the present application will be clearly and completely described below with reference to the accompanying drawings. Obviously, the described embodiments are only a part of the embodiments of the present application, but not all of the embodiments. Based on the embodiments in the present application, all other embodiments obtained by those skilled in the art without creative work fall within the protection scope of the present application. In the case of no conflict, the following various embodiments and their technical features can be combined with each other.
本申请的第一方面,提供一种位置检测系统,如图1所示,包括:用于设置在镜头载体上的磁铁11,以及霍尔传感器21。磁铁11为长方体,本实施方式中,以磁铁11的一极指向另一极的方向为磁铁11的厚度方向,以垂直于厚度方向的方向作为磁铁11的长度方向,磁铁11可以与镜头载体一同沿与磁铁11的长度方向呈第一夹角θ的方向进行平移。霍尔传感器21设置在磁铁11外,用于采集磁铁11沿与长度方向呈第一夹角θ的方向(下称磁铁11的平移方向)进行平移时的磁感应强度,通过磁感应强度检测镜头载体的位置。A first aspect of the present application provides a position detection system, as shown in FIG. 1 , which includes: a
具体的,当磁铁11位于初始位置时,霍尔传感器21感应部位的几何中心与磁铁11的几何中心的连线垂直于磁铁11的长度方向,通过镜头载体的平移带动磁铁11进行平移,平移过程中霍尔传感器采集对应的磁感应强度,并与事先采集的磁感应强度与磁铁11行程的关系进行对比,确定磁铁11的行程位置,从而实现镜头载体的位置检测。Specifically, when the
以一个具体的实施方式为例,使用单个霍尔传感器,磁铁11的长度方向尺寸为3mm(毫米),厚度方向的尺寸为1mm,磁铁11长度方向与平移方向之间的第一夹角θ为1度,霍尔传感器与磁铁11的距离为0.5mm,测得磁铁11平移过程中行程与霍尔传感器21采集的磁感应强度的关系如图3的C1所示,其中,纵轴表示霍尔传感器采集到的磁感应强度,单位为mT(毫特斯拉),横轴表示磁铁11的行程,单位为mm,原点表示磁铁11位于初始位置时采集到的磁感应强度为0,在本实施方式中,磁感应强度的正负值表示磁感应强度的方向,磁铁11行程的正负值表示磁铁11相于对初始位置的正负方向位移行程,本申请说明书附图4、5和6的坐标系横纵坐标表示的内容与图3一致,后续不再赘述。Taking a specific embodiment as an example, using a single Hall sensor, the length direction of the
由图3可以看出,在一定的区间范围内,霍尔传感器C采集到的磁感应强度C1与磁铁11的行程接近线性关系,提取其中的线性区间,得到如图4所示的关系图,在磁铁11正负1mm的行程范围内磁感应强度C1与磁铁11的行程接近线性关系,因此,在该区间内以霍尔传感器C采集到的磁感应强度C1可以确定磁铁11的行程,从而确定镜头载体的位置。本实施方式中磁铁11的尺寸、第一夹角θ的大小、霍尔传感器21与磁铁11的距离等参数为实验时采用的一个具体的应用实例,用于更加清晰地解释说明本申请的方案,并非对本申请保护范围的限定。It can be seen from Figure 3 that within a certain range, the magnetic induction intensity C 1 collected by the Hall sensor C and the stroke of the
上述实施例通过将磁铁11的一极指向另一极的方向作为厚度方向,将与厚度方向垂直的方向作为长度方向,磁铁11长度方向上各处的磁场强度较为均匀,设置霍尔传感器21采集磁铁11沿与长度方向呈第一夹角θ的方向平移时的磁感应强度变化,可以理解的是,磁铁11的平移方向与磁铁11长度方向呈一定角度,由于磁铁11为长方体,倾斜一定角度后可以使磁铁11在平移方向上的有效长度由长边增加为对角线,且当磁铁11平移时霍尔传感器21采集到的磁感应强度的会产生变化。通过将磁铁11沿与长度方向呈一定的角度进行平移,增大了磁铁11平移过程中霍尔传感器21位置的磁感应强度均匀的行程范围,有效增加了磁感应强度相对磁铁11行程的线性变化区间,提高了对镜头载体位置检测的精度。In the above embodiment, the direction in which one pole of the
在一些实施方式中,磁铁11的宽度方向为分别垂直于长度方和厚度方向的方向,如图1所示,磁铁11位于初始位置时,霍尔传感器沿磁铁11的宽度方向的正投影落在磁铁11上。In some embodiments, the width direction of the
在一些实施方式中,如图2所示,霍尔传感器21包括两个,为方便描述,分别记为霍尔传感器P与霍尔传感器M,两个霍尔传感器21沿磁铁11的平移方向设置,当磁铁11在初始位置时,两个霍尔传感器21在磁铁11上的投影镜像对称,对称轴经过磁铁11的几何中心,且垂直于磁铁11的平移方向,即LP=LM。在磁铁11的运动过程中,通过两个霍尔传感器21采集到的磁感应强度计算目标磁感应强度,然后根据目标磁感应强度确定磁铁11的行程,从而确定镜头载体的位置。具体的,通过下述公式计算目标磁感应强度:In some embodiments, as shown in FIG. 2 , there are two
其中,H为所述目标磁感应强度,P1和M1分别表示两霍尔传感器采集到的磁感应强度。Wherein, H is the magnetic induction intensity of the target, and P 1 and M 1 respectively represent the magnetic induction intensity collected by the two Hall sensors.
在一个具体的实施方式中,使用两个霍尔传感器21,磁铁11的长度方向尺寸为3mm,厚度方向的尺寸为1mm,磁铁11长度方向与平移方向之间的第一夹角θ为1度,霍尔传感器21与磁铁11的距离为0.5mm,两个霍尔传感器21之间的距离为2.5mm,测得磁铁11平移过程中行程与两个霍尔传感器21采集的磁感应强度的关系如图3中的P1和M1所示,通过上述方法计算得到的目标磁感应强度与磁铁11行程的关系如图5的(P1+M1)/(P1-M1)所示,提取其中的线性区间,可以得到如图6所示的目标磁感应强度与磁铁11行程的关系图,可以看出,在磁铁11的行程中,(P1+M1)/(P1-M1)的变化数值远大于C1的变化数值,相对于单霍尔传感器的方案,双霍尔传感器的方案磁感应强度的放大倍数约为H/C1=35,即磁感应强度的变化更加明显,精度更高。In a specific embodiment, two
通过设置两个霍尔传感器,可以有效放大目标磁感应强度,从而提高磁感应强度的精度,对镜头载体的位置检测更加准确。By arranging two Hall sensors, the magnetic induction intensity of the target can be effectively amplified, thereby improving the accuracy of the magnetic induction intensity and detecting the position of the lens carrier more accurately.
在一些实施方式中,霍尔传感器21为两个时,由于霍尔传感器21位置的磁感应强度与霍尔传感器21采集到的霍尔电压成线性关系,因此,可以先通过两个霍尔传感器21的霍尔电压,运算得到目标霍尔电压,从而计算出目标磁感应强度。In some embodiments, when there are two
具体的,检测系统还包括霍尔电压计算电路,如图7所示,霍尔电压计算电路包括运算器、模数转换器以及两个电压获取模块;两个电压获取模块的输出端分别与运算器的输入端连接,两个电压获取模块分别用于获取对应的霍尔传感器采集到的霍尔电压,运算器用于根据两个电压获取模块输出的霍尔电压计算目标霍尔电压;运算器的输出端与模数转换器的输入端连接,模数转换器用于将运算器输出的目标霍尔电压转换为霍尔电压数据并输出。根据输出的霍尔电压数据计算目标磁感应强度,确定磁铁11的行程,从而检测镜头载体的位置。Specifically, the detection system also includes a Hall voltage calculation circuit. As shown in FIG. 7 , the Hall voltage calculation circuit includes an operator, an analog-to-digital converter, and two voltage acquisition modules; the output ends of the two voltage acquisition modules are respectively connected with the calculation The two voltage acquisition modules are respectively used to acquire the Hall voltage collected by the corresponding Hall sensor, and the operator is used to calculate the target Hall voltage according to the Hall voltage output by the two voltage acquisition modules; The output terminal is connected with the input terminal of the analog-to-digital converter, and the analog-to-digital converter is used for converting the target Hall voltage output by the operator into Hall voltage data and outputting it. The target magnetic induction intensity is calculated according to the output Hall voltage data, and the stroke of the
在一些实施方式中,运算器根据下述公式计算目标霍尔电压:In some embodiments, the operator calculates the target Hall voltage according to the following formula:
其中,U0为目标霍尔电压,U1和U2分别为两个电压获取模块输出的霍尔电压。Among them, U 0 is the target Hall voltage, and U 1 and U 2 are the Hall voltages output by the two voltage acquisition modules, respectively.
在一些实施方式中,如图7所示,每个电压获取模块均包括一霍尔传感器与一运算放大器,霍尔传感器的正负输入端分别连接正负驱动电压,霍尔传感器的两个输出端分别连接运算放大器的正负输入端,运算放大器的输出端作为电压获取模块的输出端连接运算器的输入端,运算放大器用于接入霍尔传感器输出的霍尔电压,进行运算放大后输出放大后的霍尔电压至运算器,运算器用于根据接入的两个放大后的霍尔电压计算目标霍尔电压。In some embodiments, as shown in FIG. 7 , each voltage acquisition module includes a Hall sensor and an operational amplifier, the positive and negative input ends of the Hall sensor are respectively connected to the positive and negative driving voltages, and the two outputs of the Hall sensor The terminals are respectively connected to the positive and negative input terminals of the operational amplifier. The output terminal of the operational amplifier is used as the output terminal of the voltage acquisition module to connect to the input terminal of the operator. The operational amplifier is used to connect to the Hall voltage output by the Hall sensor, and output after operational amplification. The amplified Hall voltage is sent to the operator, and the operator is used to calculate the target Hall voltage according to the connected two amplified Hall voltages.
在另一些实施方式中,磁铁11的长度方向尺寸为2.5-3.5mm,厚度方向的尺寸为0.8-1mm,磁铁11的长度方向与平移方向之间的第一夹角θ为0.8-1.5度,霍尔传感器与磁铁11的距离为0.2-0.5mm。In other embodiments, the length direction dimension of the
在一些实施方式中,当设置两个霍尔传感器21时,两个霍尔传感器之间的距离为2-3mm,且不大于磁铁11的长度方向尺寸。In some embodiments, when two
基于同样的发明构思,本申请的第二方面,提供一种镜头,包括:镜头载体、马达及如上述第一方面任一项所述的位置检测系统,所述镜头载体与磁铁11连接,所述马达用于驱动所述镜头载体带动所述磁铁11平移进行变焦,所述霍尔传感器21用于采集磁铁11的磁感应强度。Based on the same inventive concept, a second aspect of the present application provides a lens, comprising: a lens carrier, a motor, and the position detection system according to any one of the above-mentioned first aspects, wherein the lens carrier is connected to the
基于同样的发明构思,本申请的第三方面,提供一种镜头的变焦方法,镜头包括镜头载体、马达、设置在镜头载体上的磁铁,以及霍尔传感器,如图8所示,所述镜头的变焦方法包括:Based on the same inventive concept, a third aspect of the present application provides a method for zooming a lens. The lens includes a lens carrier, a motor, a magnet arranged on the lens carrier, and a Hall sensor. As shown in FIG. 8 , the lens The zoom methods include:
S1100、控制马达驱动镜头载体带动磁铁沿与磁铁的长度方向呈第一夹角的方向平移;S1100, controlling the motor to drive the lens carrier to drive the magnet to translate in a direction that forms a first included angle with the length direction of the magnet;
在需要进行变焦时,处理器确定需要达到的变焦后的镜头载体的目标位置,根据目标位置与镜头载体当前的位置控制马达驱动镜头载体进行平移,镜头的平移方向与镜头的光轴平行,由于镜头载体与磁铁连接,镜头载体平移时带动磁铁一起平移,镜头平移的方向与磁铁平移的方向一致,即与磁铁的长度方向呈第一夹角θ的方向。When zooming is required, the processor determines the target position of the zoomed lens carrier to be achieved, and controls the motor to drive the lens carrier to translate according to the target position and the current position of the lens carrier. The translation direction of the lens is parallel to the optical axis of the lens. The lens carrier is connected with the magnet. When the lens carrier translates, it drives the magnet to translate together. The direction of the lens translation is consistent with the direction of the magnet translation, that is, the direction of the first angle θ with the length direction of the magnet.
S1200、获取霍尔传感器采集磁铁平移时的目标磁感应强度;S1200, acquiring the target magnetic induction intensity when the Hall sensor collects the magnet translation;
霍尔传感器设置在磁铁外,当磁铁与镜头载体位于初始位置时,霍尔传感器沿磁铁的宽度方向的正投影落在所述磁铁上。在镜头载体带动磁铁平移的过程中,霍尔传感器实时采集磁铁的目标磁感应强度,当霍尔传感器为一个时,目标磁感应强度为霍尔传感器采集到的磁感应强度。The hall sensor is arranged outside the magnet, and when the magnet and the lens carrier are in the initial position, the orthographic projection of the hall sensor along the width direction of the magnet falls on the magnet. In the process that the lens carrier drives the magnet to translate, the Hall sensor collects the target magnetic induction intensity of the magnet in real time. When there is one Hall sensor, the target magnetic induction intensity is the magnetic induction intensity collected by the Hall sensor.
S1300、根据所述目标磁感应强度确定所述镜头载体的位置,当所述镜头载体位于目标位置时,控制马达停止工作,完成变焦。S1300. Determine the position of the lens carrier according to the target magnetic induction intensity, and when the lens carrier is at the target position, control the motor to stop working to complete zooming.
系统中设置有目标磁感应强度与磁铁行程的映射关系,在获取到目标磁感应强度后,根据目标磁感应强度确定磁铁的行程,从而确定镜头载体的位置。当监控到镜头载体位于目标位置时,处理器控制马达停止工作,使镜头载体暂时固定在目标位置,完成变焦。A mapping relationship between the target magnetic induction intensity and the magnet stroke is set in the system. After the target magnetic induction intensity is obtained, the stroke of the magnet is determined according to the target magnetic induction intensity, thereby determining the position of the lens carrier. When it is monitored that the lens carrier is at the target position, the processor controls the motor to stop working, so that the lens carrier is temporarily fixed at the target position to complete the zooming.
在一个具体的实施方式中,使用单个霍尔传感器,记作霍尔传感器C,磁铁的长度方向尺寸为3mm(毫米),厚度方向的尺寸为1mm,磁铁长度方向与平移方向之间的第一夹角θ为1度,霍尔传感器与磁铁的距离为0.5mm,测得磁铁平移过程中行程与霍尔传感器C采集的磁感应强度的关系如图3的C1所示,提取其中的线性区间,得到如图4所示的关系图,可以看出,在磁铁正负1mm的行程范围内磁感应强度与磁铁的行程接近线性关系,因此,在该区间内以霍尔传感器C采集到的磁感应强度可以确定磁铁的行程,从而确定镜头载体的位置。In a specific embodiment, a single Hall sensor is used, denoted as Hall sensor C, the length direction of the magnet is 3mm (millimeters), the thickness direction is 1mm, and the first dimension between the length direction and the translation direction of the magnet is The included angle θ is 1 degree, and the distance between the Hall sensor and the magnet is 0.5mm. The relationship between the travel of the magnet and the magnetic induction intensity collected by the Hall sensor C during the translation process of the magnet is measured as shown in C1 of Figure 3, and the linear interval is extracted. , the relationship diagram shown in Figure 4 is obtained. It can be seen that the magnetic induction intensity and the stroke of the magnet are close to a linear relationship within the stroke range of plus or minus 1 mm. Therefore, the magnetic induction intensity collected by the Hall sensor C in this interval is It is possible to determine the travel of the magnet and thus the position of the lens carrier.
在一些实施方式中,如图2所示,采用两个霍尔传感器,分别记作霍尔传感器P与霍尔传感器M,两个霍尔传感器沿磁铁的平移方向设置,当磁铁在初始位置时,两个霍尔传感器在磁铁上的投影镜像对称,对称轴经过磁铁的几何中心,且垂直于磁铁的平移方向,即LP=LM。所述S1200、获取霍尔传感器采集磁铁平移时的目标磁感应强度,具体包括:In some embodiments, as shown in FIG. 2 , two Hall sensors are used, which are denoted as Hall sensor P and Hall sensor M respectively. The two Hall sensors are arranged along the translation direction of the magnet. When the magnet is in the initial position , the projections of the two Hall sensors on the magnet are mirror-symmetrical, and the symmetry axis passes through the geometric center of the magnet and is perpendicular to the translation direction of the magnet, that is, L P =L M . The S1200, acquiring the target magnetic induction intensity when the Hall sensor collects the magnet translation, specifically includes:
S1210、获取所述两个霍尔传感器采集的第一磁感应强度与第二磁感应强度;S1210, acquiring the first magnetic induction intensity and the second magnetic induction intensity collected by the two Hall sensors;
获取到两个霍尔传感器采集的第一磁感应强度与第二磁感应强度,分别计为P1和M1。The first magnetic induction intensity and the second magnetic induction intensity collected by the two Hall sensors are acquired, which are respectively counted as P 1 and M 1 .
S1220、根据所述第一磁感应强度与第二磁感应强度计算所述目标磁感应强度。S1220. Calculate the target magnetic induction intensity according to the first magnetic induction intensity and the second magnetic induction intensity.
通过两个霍尔传感器采集到的磁感应强度计算目标磁感应强度,然后根据目标磁感应强度确定磁铁的行程,从而确定镜头载体的位置。具体的,通过下述公式计算目标磁感应强度:The target magnetic induction intensity is calculated through the magnetic induction intensity collected by the two Hall sensors, and then the stroke of the magnet is determined according to the target magnetic induction intensity, thereby determining the position of the lens carrier. Specifically, the target magnetic induction intensity is calculated by the following formula:
其中,H为所述目标磁感应强度,P1为第一磁感应强度,M1为第二磁感应强度。Wherein, H is the target magnetic induction intensity, P 1 is the first magnetic induction intensity, and M 1 is the second magnetic induction intensity.
在一个具体的实施方式中,使用两个霍尔传感器,磁铁的长度方向尺寸为3mm,厚度方向的尺寸为1mm,磁铁长度方向与平移方向之间的第一夹角θ为1度,霍尔传感器与磁铁的距离为0.5mm,两个霍尔传感器之间的距离为2.5mm,测得磁铁平移过程中行程与两个霍尔传感器采集的磁感应强度的关系如图3中的P1和M1所示,通过上述方法计算得到的目标磁感应强度与磁铁行程的关系如图5的(P1+M1)/(P1-M1)所示,提取其中的线性区间,可以得到如图6所示的目标磁感应强度与磁铁行程的关系图,可以看出,在磁铁的行程中,(P1+M1)/(P1-M1)的变化数值远大于C1的变化数值,即磁感应强度的变化更加明显,精度更高。In a specific embodiment, two Hall sensors are used, the length of the magnet is 3 mm, the thickness of the magnet is 1 mm, the first angle θ between the length of the magnet and the translation direction is 1 degree, the Hall The distance between the sensor and the magnet is 0.5mm, and the distance between the two Hall sensors is 2.5mm. The relationship between the stroke during the magnet translation process and the magnetic induction intensity collected by the two Hall sensors is shown in Figure 3. P 1 and M As shown in Figure 1 , the relationship between the target magnetic induction intensity and the magnet stroke calculated by the above method is shown in (P 1 +M 1 )/(P 1 -M 1 ) in Figure 5, and the linear interval is extracted, and the figure can be obtained. 6 shows the relationship between the target magnetic induction intensity and the magnet stroke, it can be seen that in the stroke of the magnet, the change value of (P 1 +M 1 )/(P 1 -M 1 ) is much larger than the change value of C1, that is, The change of magnetic induction intensity is more obvious and the precision is higher.
基于同样的发明构思,本申请的第四方面,提供一种终端,包括终端本体,以及如上述第二方面所述的镜头,镜头设置在终端上,通过终端控制镜头进行变焦或采集图像数据。Based on the same inventive concept, a fourth aspect of the present application provides a terminal, including a terminal body, and the lens as described in the second aspect above. The lens is disposed on the terminal, and the terminal controls the lens to zoom or collect image data.
尽管已经相对于一个或多个实现方式示出并描述了本申请,但是本领域技术人员基于对本说明书和附图的阅读和理解将会想到等价变型和修改。本申请包括所有这样的修改和变型,并且仅由所附权利要求的范围限制。特别地关于由上述组件执行的各种功能,用于描述这样的组件的术语旨在对应于执行所述组件的指定功能(例如其在功能上是等价的)的任意组件(除非另外指示),即使在结构上与执行本文所示的本说明书的示范性实现方式中的功能的公开结构不等同。While the application has been shown and described with respect to one or more implementations, equivalent variations and modifications will occur to those skilled in the art based on a reading and understanding of this specification and the accompanying drawings. This application includes all such modifications and variations and is limited only by the scope of the appended claims. In particular with respect to the various functions performed by the above-described components, the terms used to describe such components are intended to correspond to any component that performs the specified function of the component (eg, which is functionally equivalent) (eg, which is functionally equivalent) (unless otherwise indicated) , even if it is not structurally equivalent to the disclosed structure that performs the functions of the exemplary implementations of the specification shown herein.
即,以上所述仅为本申请的实施例,并非因此限制本申请的专利范围,凡是利用本申请说明书及附图内容所作的等效结构或等效流程变换,例如各实施例之间技术特征的相互结合,或直接或间接运用在其他相关的技术领域,均同理包括在本申请的专利保护范围内。That is, the above descriptions are only the embodiments of the present application, which are not intended to limit the scope of the patent of the present application. Any equivalent structure or equivalent process transformation made by using the contents of the description and drawings of the present application, such as the technical features between the embodiments Combining with each other, or directly or indirectly used in other related technical fields, are also included in the scope of patent protection of this application.
另外,在本申请的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。另外,对于特性相同或相似的结构元件,本申请可采用相同或者不相同的标号进行标识。此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个特征。在本申请的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。In addition, in the description of this application, it should be understood that the terms "center", "longitudinal", "lateral", "length", "width", "thickness", "upper", "lower", "front" , "rear", "left", "right", "vertical", "horizontal", "top", "bottom", "inside", "outside" and other indicated orientation or positional relationships are based on the drawings The orientation or positional relationship is only for the convenience of describing the application and simplifying the description, rather than indicating or implying that the referred device or element must have a specific orientation, be constructed and operated in a specific orientation, and therefore should not be construed as a limitation on the application . In addition, for structural elements with the same or similar characteristics, the present application may use the same or different reference numerals to identify them. In addition, the terms "first" and "second" are only used for descriptive purposes, and should not be understood as indicating or implying relative importance or implying the number of indicated technical features. Thus, a feature defined as "first", "second" may expressly or implicitly include one or more features. In the description of the present application, "plurality" means two or more, unless otherwise expressly and specifically defined.
在本申请中,“示例性”一词是用来表示“用作例子、例证或说明”。本申请中被描述为“示例性”的任何一个实施例不一定被解释为比其它实施例更加优选或更加具优势。为了使本领域任何技术人员能够实现和使用本申请,本申请给出了以上描述。在以上描述中,为了解释的目的而列出了各个细节。应当明白的是,本领域普通技术人员可以认识到,在不使用这些特定细节的情况下也可以实现本申请。在其它实施例中,不会对公知的结构和过程进行详细阐述,以避免不必要的细节使本申请的描述变得晦涩。因此,本申请并非旨在限于所示的实施例,而是与符合本申请所公开的原理和特征的最广范围相一致。In this application, the word "exemplary" is used to mean "serving as an example, illustration, or illustration." Any one embodiment described in this application as "exemplary" is not necessarily to be construed as preferred or advantageous over other embodiments. The above description is presented in the present application to enable any person skilled in the art to make and use the present application. In the above description, various details are set forth for the purpose of explanation. It is to be understood that one of ordinary skill in the art can realize that the present application may be practiced without the use of these specific details. In other instances, well-known structures and procedures have not been described in detail so as not to obscure the description of the present application with unnecessary detail. Therefore, this application is not intended to be limited to the embodiments shown but is to be accorded the widest scope consistent with the principles and features disclosed herein.
Claims (11)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011280550.5A CN114577099B (en) | 2020-11-16 | 2020-11-16 | Position detection system, lens, zoom method and terminal |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011280550.5A CN114577099B (en) | 2020-11-16 | 2020-11-16 | Position detection system, lens, zoom method and terminal |
Publications (2)
Publication Number | Publication Date |
---|---|
CN114577099A true CN114577099A (en) | 2022-06-03 |
CN114577099B CN114577099B (en) | 2023-11-28 |
Family
ID=81767577
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202011280550.5A Active CN114577099B (en) | 2020-11-16 | 2020-11-16 | Position detection system, lens, zoom method and terminal |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114577099B (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117781832A (en) * | 2023-12-29 | 2024-03-29 | 武汉盛势启创科技有限公司 | Nonlinear position sensor and detection method |
CN119065187A (en) * | 2024-11-04 | 2024-12-03 | 深圳新智联软件有限公司 | Projector focusing method based on linear Hall distance measurement |
Citations (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002005613A (en) * | 2000-06-15 | 2002-01-09 | Yazaki Corp | Rotation angle detection sensor |
US20050258825A1 (en) * | 2004-05-20 | 2005-11-24 | Konica Minolta Photo Imaging, Inc. | Position detector, camera-shake compensation mechanism, and image capture apparatus |
CN101017308A (en) * | 2006-02-10 | 2007-08-15 | 松下电器产业株式会社 | shake compensation device |
CN101331385A (en) * | 2005-12-16 | 2008-12-24 | 旭化成电子材料元件株式会社 | Position detector |
US20090072818A1 (en) * | 2005-04-19 | 2009-03-19 | Osamu Mizuno | Position sensor, optical head device, head moving mechanism, information recordng/reproducing device and position control system |
JP2009192261A (en) * | 2008-02-12 | 2009-08-27 | Aisin Seiki Co Ltd | Rectilinear displacement detector |
JP2010096540A (en) * | 2008-10-14 | 2010-04-30 | Asahi Kasei Electronics Co Ltd | Position detection device, and electronic device using the same |
JP2012068339A (en) * | 2010-09-22 | 2012-04-05 | Ps-Tokki Inc | Position detection sensor and lens drive device |
JP2012083313A (en) * | 2010-10-14 | 2012-04-26 | Asahi Kasei Electronics Co Ltd | Position detection device and electronic apparatus with the same |
JP2013033179A (en) * | 2011-07-29 | 2013-02-14 | Shicoh Engineering Co Ltd | Lens drive device, autofocus camera, and portable terminal device with camera |
CN103135195A (en) * | 2011-12-01 | 2013-06-05 | 佛山普立华科技有限公司 | Zoom lens and imaging device |
CN203535293U (en) * | 2013-11-08 | 2014-04-09 | 惠州友华微电子科技有限公司 | Camera lens attitude control device |
JP2014202697A (en) * | 2013-04-09 | 2014-10-27 | Hoya株式会社 | Position detection device for rectilinearly moving body |
JP2015094715A (en) * | 2013-11-13 | 2015-05-18 | リコーイメージング株式会社 | Position detection device, position correction device, and imaging apparatus |
DE102014011245B3 (en) * | 2014-08-01 | 2015-06-11 | Micronas Gmbh | Magnetic field measuring device |
CN105659137A (en) * | 2013-12-27 | 2016-06-08 | 日本电产科宝株式会社 | Lens-driving device |
CN107197124A (en) * | 2017-05-19 | 2017-09-22 | 信利光电股份有限公司 | A kind of camera module and electronic equipment |
CN108344356A (en) * | 2017-12-29 | 2018-07-31 | 江西合力泰科技有限公司 | A kind of method actively carrying out motor precision calibration |
CN208419856U (en) * | 2018-03-19 | 2019-01-22 | 上海同驭汽车科技有限公司 | A kind of embedded hall displacement transducer of magnet and electronic hydraulic brake system |
CN110581952A (en) * | 2019-09-17 | 2019-12-17 | 深圳市万普拉斯科技有限公司 | Camera lifting control method and device and mobile terminal |
-
2020
- 2020-11-16 CN CN202011280550.5A patent/CN114577099B/en active Active
Patent Citations (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002005613A (en) * | 2000-06-15 | 2002-01-09 | Yazaki Corp | Rotation angle detection sensor |
US20050258825A1 (en) * | 2004-05-20 | 2005-11-24 | Konica Minolta Photo Imaging, Inc. | Position detector, camera-shake compensation mechanism, and image capture apparatus |
US20090072818A1 (en) * | 2005-04-19 | 2009-03-19 | Osamu Mizuno | Position sensor, optical head device, head moving mechanism, information recordng/reproducing device and position control system |
CN101331385A (en) * | 2005-12-16 | 2008-12-24 | 旭化成电子材料元件株式会社 | Position detector |
CN101017308A (en) * | 2006-02-10 | 2007-08-15 | 松下电器产业株式会社 | shake compensation device |
JP2009192261A (en) * | 2008-02-12 | 2009-08-27 | Aisin Seiki Co Ltd | Rectilinear displacement detector |
JP2010096540A (en) * | 2008-10-14 | 2010-04-30 | Asahi Kasei Electronics Co Ltd | Position detection device, and electronic device using the same |
JP2012068339A (en) * | 2010-09-22 | 2012-04-05 | Ps-Tokki Inc | Position detection sensor and lens drive device |
JP2012083313A (en) * | 2010-10-14 | 2012-04-26 | Asahi Kasei Electronics Co Ltd | Position detection device and electronic apparatus with the same |
JP2013033179A (en) * | 2011-07-29 | 2013-02-14 | Shicoh Engineering Co Ltd | Lens drive device, autofocus camera, and portable terminal device with camera |
CN103135195A (en) * | 2011-12-01 | 2013-06-05 | 佛山普立华科技有限公司 | Zoom lens and imaging device |
JP2014202697A (en) * | 2013-04-09 | 2014-10-27 | Hoya株式会社 | Position detection device for rectilinearly moving body |
CN203535293U (en) * | 2013-11-08 | 2014-04-09 | 惠州友华微电子科技有限公司 | Camera lens attitude control device |
JP2015094715A (en) * | 2013-11-13 | 2015-05-18 | リコーイメージング株式会社 | Position detection device, position correction device, and imaging apparatus |
CN105659137A (en) * | 2013-12-27 | 2016-06-08 | 日本电产科宝株式会社 | Lens-driving device |
DE102014011245B3 (en) * | 2014-08-01 | 2015-06-11 | Micronas Gmbh | Magnetic field measuring device |
CN107197124A (en) * | 2017-05-19 | 2017-09-22 | 信利光电股份有限公司 | A kind of camera module and electronic equipment |
CN108344356A (en) * | 2017-12-29 | 2018-07-31 | 江西合力泰科技有限公司 | A kind of method actively carrying out motor precision calibration |
CN208419856U (en) * | 2018-03-19 | 2019-01-22 | 上海同驭汽车科技有限公司 | A kind of embedded hall displacement transducer of magnet and electronic hydraulic brake system |
CN110581952A (en) * | 2019-09-17 | 2019-12-17 | 深圳市万普拉斯科技有限公司 | Camera lifting control method and device and mobile terminal |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117781832A (en) * | 2023-12-29 | 2024-03-29 | 武汉盛势启创科技有限公司 | Nonlinear position sensor and detection method |
CN119065187A (en) * | 2024-11-04 | 2024-12-03 | 深圳新智联软件有限公司 | Projector focusing method based on linear Hall distance measurement |
Also Published As
Publication number | Publication date |
---|---|
CN114577099B (en) | 2023-11-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN114577099B (en) | Position detection system, lens, zoom method and terminal | |
US7248037B2 (en) | Position sensing device for determining a relative position of a magnet with respect to a magnetic field sensing element pair | |
JPH10253351A (en) | Distance measuring device | |
CN106331447B (en) | Photographic device | |
CN106949822B (en) | Real-time displacement feedback system and feedback method of micro device | |
CN107084680A (en) | Target depth measuring method based on machine monocular vision | |
CN111829439B (en) | High-precision translation measuring method and device | |
CN108931240A (en) | A kind of path tracking sensor and tracking method based on electromagnetic induction | |
CN107359829A (en) | The sensor-less control device of linear actuators | |
CN116294947B (en) | Perpendicular double-axis displacement measurement device, system and method based on magnetic induction | |
CN102759788A (en) | Surface multi-point focusing system and surface multi-point focusing method | |
CN115378305A (en) | Permanent magnet synchronous linear motor control method and control system | |
CN101408596B (en) | Method and device for measuring relative permeability of weak magnetic materials and coercive force of electrical pure iron | |
CN106840217A (en) | A kind of signal processing method based on PSD | |
CN117506888A (en) | Visual guiding grabbing method and system based on monocular and structured light sensor fusion | |
CN1405736A (en) | EEG electrode space positioning method based on up shot measure | |
JP3972116B2 (en) | Magnetic attractive force measuring device for magnet body | |
CN113733078B (en) | Method for interpreting fine control quantity of mechanical arm and computer-readable storage medium | |
CN208765670U (en) | Optical displacement sensor device and the measuring scale for using the sensor device | |
CN210609394U (en) | Camera module | |
CN100455988C (en) | Micro size measuring instrument | |
CN108759680A (en) | A kind of optical displacement sensor device and the measuring scale using the sensor device | |
JP3961265B2 (en) | Magnetic sensor | |
CN114167330A (en) | Method and system for testing motion characteristic curve of voice coil motor | |
CN206656691U (en) | A dual-lens optical image measuring instrument |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
TR01 | Transfer of patent right |
Effective date of registration: 20250211 Address after: Changan town in Guangdong province Dongguan 523860 usha Beach Road No. 18 Patentee after: GUANGDONG OPPO MOBILE TELECOMMUNICATIONS Corp.,Ltd. Country or region after: China Address before: 518000 Room 201, building A, 1 front Bay Road, Shenzhen Qianhai cooperation zone, Shenzhen, Guangdong Patentee before: ONEPLUS TECHNOLOGY (SHENZHEN) Co.,Ltd. Country or region before: China |
|
TR01 | Transfer of patent right |