[go: up one dir, main page]

CN114574458A - Chalcone synthetase mutant capable of increasing naringenin yield - Google Patents

Chalcone synthetase mutant capable of increasing naringenin yield Download PDF

Info

Publication number
CN114574458A
CN114574458A CN202210187146.6A CN202210187146A CN114574458A CN 114574458 A CN114574458 A CN 114574458A CN 202210187146 A CN202210187146 A CN 202210187146A CN 114574458 A CN114574458 A CN 114574458A
Authority
CN
China
Prior art keywords
mutant
naringenin
chalcone synthase
lysine
gene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202210187146.6A
Other languages
Chinese (zh)
Other versions
CN114574458B (en
Inventor
周景文
童颖佳
高松
徐沙
陈坚
余世琴
曾伟主
堵国成
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangnan University
Original Assignee
Jiangnan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangnan University filed Critical Jiangnan University
Priority to CN202210187146.6A priority Critical patent/CN114574458B/en
Publication of CN114574458A publication Critical patent/CN114574458A/en
Application granted granted Critical
Publication of CN114574458B publication Critical patent/CN114574458B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/1025Acyltransferases (2.3)
    • C12N9/1029Acyltransferases (2.3) transferring groups other than amino-acyl groups (2.3.1)
    • C12N9/1037Naringenin-chalcone synthase (2.3.1.74), i.e. chalcone synthase
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/80Vectors or expression systems specially adapted for eukaryotic hosts for fungi
    • C12N15/81Vectors or expression systems specially adapted for eukaryotic hosts for fungi for yeasts
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P17/00Preparation of heterocyclic carbon compounds with only O, N, S, Se or Te as ring hetero atoms
    • C12P17/02Oxygen as only ring hetero atoms
    • C12P17/06Oxygen as only ring hetero atoms containing a six-membered hetero ring, e.g. fluorescein
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y203/00Acyltransferases (2.3)
    • C12Y203/01Acyltransferases (2.3) transferring groups other than amino-acyl groups (2.3.1)
    • C12Y203/01074Naringenin-chalcone synthase (2.3.1.74), i.e. chalcone synthase

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Mycology (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Enzymes And Modification Thereof (AREA)

Abstract

本发明公开了一种查尔酮合成酶突变体及其应用,属于基因工程和酶工程技术领域。本发明提供了一系列有助于柚皮素积累量提高的查尔酮合成酶突变体。在适当的培养条件下,突变体A308K、A308R、S208N、S208C、E61K、E61R、E61A、E61T、E61C、A308K‑S208N、A308K‑E61K和S208N‑E61K查尔酮合成酶合成柚皮素的产量分别为野生酶的1.41倍、1.24倍、1.44倍、1.28倍、1.30倍、1.10倍、1.17倍、1.09倍、1.11倍、1.05倍、1.23倍和1.23倍。

Figure 202210187146

The invention discloses a chalcone synthase mutant and an application thereof, belonging to the technical field of genetic engineering and enzyme engineering. The present invention provides a series of chalcone synthase mutants that contribute to the increased accumulation of naringenin. Under appropriate culture conditions, the yields of mutants A308K, A308R, S208N, S208C, E61K, E61R, E61A, E61T, E61C, A308K‑S208N, A308K‑E61K and S208N‑E61K chalcone synthases synthesized naringenin, respectively It is 1.41 times, 1.24 times, 1.44 times, 1.28 times, 1.30 times, 1.10 times, 1.17 times, 1.09 times, 1.11 times, 1.05 times, 1.23 times and 1.23 times of the wild enzyme.

Figure 202210187146

Description

可以提高柚皮素产量的查尔酮合成酶突变体Chalcone synthase mutants that increase naringenin production

技术领域technical field

本发明涉及可以提高柚皮素产量的查尔酮合成酶突变体,属于基因工程和酶工程技术领域。The invention relates to a chalcone synthase mutant capable of increasing the yield of naringenin, and belongs to the technical field of genetic engineering and enzyme engineering.

背景技术Background technique

黄酮类化合物(flavonoids)是一类由中央三碳联结两个具有酚羟基苯环的植物次级代谢产物,在植物界广泛存在。该类化合物以C6-C3-C6结构为基础,根据三碳键(C3)的氧化程度和构象的差别分为以下几类:黄酮、黄酮醇、黄烷酮(二氢黄酮)、黄烷酮醇(二氢黄酮醇)、异黄酮、异黄烷酮(二氢异黄酮)、查耳酮、二氢查耳酮、黄烷、黄烷醇及其他黄酮类等。其在植物体内通常与糖类结合形成配基形式的苷类,少部分以游离态的苷元形式存在。黄酮类化合物不仅在植物的生长发育中起着重要作用,而且还具有抗菌、抗氧化自由基、抗衰老、抗心脑血管疾病、保肝等药理活性。因此,黄酮类化合物的研究一直是国内外生物医药领域研究的热门课题。Flavonoids are a class of plant secondary metabolites with two phenolic hydroxyl benzene rings linked by the central three carbons, and are widely present in the plant kingdom. Based on the C6-C3-C6 structure, these compounds are divided into the following categories according to the degree of oxidation of the three carbon bonds (C3) and the difference in conformation: flavonoids, flavonols, flavanones (dihydroflavones), flavanones Alcohols (dihydroflavonols), isoflavones, isoflavones (dihydroisoflavones), chalcones, dihydrochalcones, flavans, flavanols and other flavonoids. In plants, it is usually combined with sugars to form glycosides in the form of ligands, and a small part exists in the form of free aglycones. Flavonoids not only play an important role in the growth and development of plants, but also have pharmacological activities such as antibacterial, anti-oxidative free radicals, anti-aging, anti-cardiovascular and cerebrovascular diseases, and liver protection. Therefore, the study of flavonoids has always been a hot topic in the field of biomedicine at home and abroad.

在植物中,黄酮类化合物的生物合成途径始于苯丙氨酸解氨酶(PAL)和肉桂酸4-羟化酶(C4H)催化L-苯丙氨酸合成对香豆酸,或始于酪氨酸解氨酶(TAL)催化L-酪氨酸转化为对香豆酸。随后,4-羟基肉桂酸-CoA连接酶(4CL)、查尔酮合成酶(CHS)和查尔酮异构酶(CHI)将对香豆酸转化为柚皮素。柚皮素作为平台化合物,通过一系列衍生反应,如甲氧基化、羟基化、糖基化和异戊烯基化等可以合成各种高附加值黄酮类化合物。在柚皮素合成途径的4种酶中,催化1分子对香豆酰辅酶A和3分子丙二酰辅酶A合成一分子查尔酮柚皮素的查尔酮合成酶已经被证实是其中的关键限速步骤。提高查尔酮合成酶的拷贝数或者是表达强度均能显著提高柚皮素的产量。In plants, the biosynthetic pathway of flavonoids begins with phenylalanine ammonia lyase (PAL) and cinnamic acid 4-hydroxylase (C4H) catalyzing the synthesis of p-coumaric acid from L-phenylalanine, or starting with Tyrosine ammonia lyase (TAL) catalyzes the conversion of L-tyrosine to p-coumaric acid. Subsequently, 4-hydroxycinnamic acid-CoA ligase (4CL), chalcone synthase (CHS) and chalcone isomerase (CHI) convert p-coumaric acid to naringenin. As a platform compound, naringenin can synthesize various high value-added flavonoids through a series of derivatization reactions, such as methoxylation, hydroxylation, glycosylation and prenylation. Among the four enzymes in the naringenin synthesis pathway, chalcone synthase, which catalyzes the synthesis of one molecule of chalcone naringenin by 1 molecule of p-coumaroyl-CoA and 3 molecules of malonyl-CoA, has been confirmed to be one of them. Critical speed-limiting steps. Increasing the copy number or expression intensity of chalcone synthase can significantly increase the production of naringenin.

对于限速酶,提高其拷贝数或者表达量有可能会增加宿主菌代谢负担从而影响菌体的生长和产物的合成。通过定点突变技术提高酶的催化效率可以在不影响菌体生长前提下提高途径效率。CaoWeijia等(《Enhanced pinocembrin production in Escherichiacoli by regulating cinnamic acid metabolism》,公开日2016年)通过定点突变查尔酮合成酶提高了生松素的产量,但是截至目前,通过定向进化查尔酮合成酶提高柚皮素的产量仍未见报道。For rate-limiting enzymes, increasing the copy number or expression level may increase the metabolic burden of host bacteria and thus affect the growth of bacteria and the synthesis of products. Improving the catalytic efficiency of enzymes by site-directed mutagenesis can improve the pathway efficiency without affecting the growth of bacteria. CaoWeijia et al. ("Enhanced pinocembrin production in Escherichiacoli by regulating cinnamic acid metabolism", published in 2016) increased the production of pinocinocin through site-directed mutation of chalcone synthase, but so far, through directed evolution of chalcone synthase to improve The yield of naringenin has not yet been reported.

发明内容SUMMARY OF THE INVENTION

为提高柚皮素的产量,本发明利用基因工程和酶工程的手段,将来源于Sophorajaponica的查尔酮合成酶的第61位、208位和308位的氨基酸中的一个或多个进行取代得到的突变体,并进行发酵验证,制备出了可以提高柚皮素产量的查尔酮合成酶突变体,为发酵法高产柚皮素提供了高效酶元件。In order to improve the yield of naringenin, the present invention utilizes the means of genetic engineering and enzyme engineering to replace one or more of the amino acids at the 61st, 208th and 308th positions of the chalcone synthase derived from Sophorajaponica. The mutant of naringenin was prepared, and the chalcone synthase mutant that could increase the production of naringenin was prepared, and the high-efficiency enzyme element was provided for the high production of naringenin by fermentation.

本发明提供了查尔酮合成酶突变体,所述突变体以氨基酸序列如SEQ ID NO.1所示的查尔酮合成酶为亲本,分别将下述位点进行取代得到(a)~(f)的突变体:The present invention provides a chalcone synthase mutant, the mutant takes the chalcone synthase whose amino acid sequence is shown in SEQ ID NO. f) mutants:

(a)所述突变体是将第308位置的丙氨酸取代为赖氨酸或者精氨酸,突变体命名为A308K和A308R;(a) The mutants replace the alanine at position 308 with lysine or arginine, and the mutants are named A308K and A308R;

(b)所述突变体是将第208位置的丝氨酸取代为天冬酰胺或者半胱氨酸,突变体命名为S208N和S208C;(b) the mutants replace serine at position 208 with asparagine or cysteine, and the mutants are named S208N and S208C;

(c)所述突变体是将第61位置的谷氨酸取代为赖氨酸或者精氨酸或者丙氨酸或者苏氨酸或者半胱氨酸,突变体分别命名为E61K、E61R、E61A、E61T和E61C;(c) the mutant is to replace the glutamic acid at position 61 with lysine or arginine or alanine or threonine or cysteine, and the mutants are named as E61K, E61R, E61A, E61T and E61C;

(d)所述突变体是将第308位置的丙氨酸取代为赖氨酸,将第208位置的丝氨酸取代为天冬酰胺,突变体命名为A308K-S208N;(d) the mutant is to replace the alanine at the 308th position with lysine, and replace the serine at the 208th position with asparagine, and the mutant is named A308K-S208N;

(e)所述突变体是将第308位置的丙氨酸取代为赖氨酸,将第61位置的谷氨酸取代为赖氨酸,突变体命名为A308K-E61K;(e) the mutant is to replace the alanine at the 308th position with lysine, and replace the glutamic acid at the 61st position with lysine, and the mutant is named A308K-E61K;

(f)所述突变体是将第208位置的丝氨酸取代为天冬酰胺,将第61位置的谷氨酸取代为赖氨酸,突变体命名为S208N-E61K。(f) In the mutant, serine at position 208 was substituted with asparagine, and glutamic acid at position 61 was substituted with lysine, and the mutant was named S208N-E61K.

在一种实施方式中,所述查尔酮合成酶来源于Sophora japonica。In one embodiment, the chalcone synthase is derived from Sophora japonica.

在一种实施方式中,编码所述查尔酮合成酶的基因的核苷酸序列如SEQ ID NO.2所示。In one embodiment, the nucleotide sequence of the gene encoding the chalcone synthase is shown in SEQ ID NO.2.

本发明提供了编码所述突变体的基因。The present invention provides genes encoding the mutants.

本发明提供了携带所述基因的重组载体。The present invention provides a recombinant vector carrying the gene.

在一种实施方式中,所述重组载体包括但不限于pY26系列。In one embodiment, the recombinant vectors include, but are not limited to, the pY26 series.

本发明提供了表达所述突变体,或携带所述基因,或含有所述重组载体的微生物细胞。The present invention provides microbial cells expressing the mutant, or carrying the gene, or containing the recombinant vector.

在一种实施方式中,所述微生物细胞包括原核微生物和真核微生物。In one embodiment, the microbial cells include prokaryotic and eukaryotic microorganisms.

在一种实施方式中,所述微生物细胞的出发菌株包括酿酒酵母。In one embodiment, the starting strain of the microbial cell comprises Saccharomyces cerevisiae.

优选地,以酿酒酵母YJ1为出发菌株,所述酿酒酵母YJ1是在酿酒酵母CEN.PK2-1D中敲除了GAL80基因,并在其基因组整合表达4-香豆酰辅酶A连接酶和查尔酮异构酶;所述4-香豆酰辅酶A连接酶的NCBI登录号为KF765780.1,所述查尔酮异构酶的NCBI登录号为P28012.1;所述GAL80基因的Gene ID:854954。Preferably, Saccharomyces cerevisiae YJ1 is used as the starting strain, and the Saccharomyces cerevisiae YJ1 has knocked out the GAL80 gene in Saccharomyces cerevisiae CEN.PK2-1D, and integrated and expressed 4-coumaroyl-CoA ligase and chalcone in its genome Isomerase; the NCBI accession number of the 4-coumaroyl-CoA ligase is KF765780.1, the NCBI accession number of the chalcone isomerase is P28012.1; the Gene ID of the GAL80 gene: 854954 .

在一种实施方式中,将整合表达4-香豆酰辅酶A连接酶和查尔酮异构酶的pY26-aro10UD-PGAL1-Pc4CL-PGAL7-MsCHI-TRP1质粒整合至敲除了GAL80基因的酿酒酵母的aro10位点。In one embodiment, the pY26-aro10UD-P GAL1 -Pc4CL-P GAL7 -MsCHI-TRP1 plasmid expressing 4-coumaroyl-CoA ligase and chalcone isomerase is integrated into a GAL80 knockout gene The aro10 locus of Saccharomyces cerevisiae.

在一种实施方式中,所述pY26-aro10UD-PGAL1-Pc4CL-PGAL7-MsCHI-TRP1质粒公开于文献《Improving(2S)-naringenin production by exploring native precursorpathways and screening higher-active chalcone synthases from plants rich inflavonoids》中。In one embodiment, the pY26-aro10UD-P GAL1 -Pc4CL-P GAL7 -MsCHI-TRP1 plasmid is disclosed in the document "Improving(2S)-naringenin production by exploring native precursorpathways and screening higher-active chalcone synthases from plants rich inflavonoids.

在一种实施方式中,所述aro10的Gene ID:851987。In one embodiment, the aro10 has Gene ID: 851987.

本发明提供了一种生产柚皮素的方法,利用所述的微生物细胞转化对香豆酸生产柚皮素。The invention provides a method for producing naringenin, which utilizes the microbial cells to transform p-coumaric acid to produce naringenin.

在一种实施方式中,将所述微生物细胞的单菌落在不含尿嘧啶的YNB培养基中,在220rpm培养培养20~24h得到菌液,将菌液按照1~5%(v/v)的量转接至YPD培养基,并向YPD培养基中添加200~250mg/L对香豆酸。In one embodiment, a single colony of the microbial cells is placed in a YNB medium without uracil, cultured at 220 rpm for 20 to 24 hours to obtain a bacterial liquid, and the bacterial liquid is adjusted according to 1 to 5% (v/v) The amount was transferred to YPD medium, and 200-250 mg/L p-coumaric acid was added to the YPD medium.

在一种实施方式中,在28~35℃、220rpm下培养不少于60h。In one embodiment, the culture is carried out at 28-35° C. and 220 rpm for not less than 60 h.

优选地,培养不少于72h。Preferably, the culture is not less than 72h.

本发明提供了所述查尔酮合成酶突变体,或所述基因,或所述微生物细胞在制备柚皮素、柚皮素衍生物或含有柚皮素的产品中的应用。The present invention provides the application of the chalcone synthase mutant, or the gene, or the microbial cell in preparing naringenin, naringenin derivatives or products containing naringenin.

本发明的有益效果:Beneficial effects of the present invention:

本发明以槐米(Sophora japonica)中查尔酮合成酶为出发基因,通过定点突变技术改变查尔酮合成酶氨基酸序列,最终获得12株能提升柚皮素产量的查尔酮合成酶突变体A308K、A308R、S208N、S208C、E61K、E61R、E61A、E61T、E61C、A308K-S208N、A308K-E61K和S208N-E61K。通过对表达查尔酮合成酶突变体的菌株进行发酵,柚皮素产量达到165.33mg/L、145.11mg/L、168.98mg/L、149.87mg/L、152.82mg/L、129.24mg/L、137.49mg/L、128.75mg/L、130.05mg/L、123.92mg/L、143.96mg/L和143.71mg/L,分别为表达野生型查尔酮合成酶菌株的1.41倍、1.24倍、1.44倍、1.28倍、1.30倍、1.10倍、1.17倍、1.09倍、1.11倍、1.05倍、1.23倍和1.23倍。The invention uses chalcone synthase in Sophora japonica as the starting gene, changes the amino acid sequence of chalcone synthase through site-directed mutation technology, and finally obtains 12 chalcone synthase mutants that can improve the production of naringenin A308K, A308R, S208N, S208C, E61K, E61R, E61A, E61T, E61C, A308K-S208N, A308K-E61K and S208N-E61K. By fermenting strains expressing chalcone synthase mutants, the yields of naringenin reached 165.33mg/L, 145.11mg/L, 168.98mg/L, 149.87mg/L, 152.82mg/L, 129.24mg/L, 137.49mg/L, 128.75mg/L, 130.05mg/L, 123.92mg/L, 143.96mg/L and 143.71mg/L, respectively 1.41 times, 1.24 times and 1.44 times of the strains expressing wild-type chalcone synthase. , 1.28 times, 1.30 times, 1.10 times, 1.17 times, 1.09 times, 1.11 times, 1.05 times, 1.23 times and 1.23 times.

附图说明Description of drawings

图1为定点突变改造的查尔酮合成酶表达载体(pY26-SjCHS1)构建图。Figure 1 is the construction diagram of the chalcone synthase expression vector (pY26-SjCHS1) transformed by site-directed mutagenesis.

图2为查尔酮合成酶突变体A308K、A308R、S208N、S208C、E61K、E61R、E61A、E61T、E61C与野生型查尔酮合成酶积累柚皮素的比较图。Figure 2 is a graph comparing the accumulation of naringenin by chalcone synthase mutants A308K, A308R, S208N, S208C, E61K, E61R, E61A, E61T, E61C and wild-type chalcone synthase.

图3为查尔酮合成酶突变体A308K-S208N、A308K-E61K和S208N-E61K与野生型查尔酮合成酶积累柚皮素的比较图。Figure 3 is a graph comparing naringenin accumulation of chalcone synthase mutants A308K-S208N, A308K-E61K and S208N-E61K with wild-type chalcone synthase.

图4为将第308位的丙氨酸突变为其他17种氨基酸的查尔酮合成酶突变体合成酶积累柚皮素的产量图。Fig. 4 is a graph showing the production of naringenin accumulated by a chalcone synthase mutant synthase in which alanine at position 308 is mutated to other 17 amino acids.

图5为将第208位的丙氨酸突变为其他17种氨基酸的查尔酮合成酶突变体合成酶积累柚皮素的产量图。Fig. 5 is a graph showing the production of naringenin accumulated by a chalcone synthase mutant synthase in which alanine at position 208 is mutated to other 17 amino acids.

图6为将第61位的谷氨酸突变为其他17种氨基酸的查尔酮合成酶突变体合成酶积累柚皮素的产量图。Fig. 6 is a graph showing the production of naringenin accumulated by a chalcone synthase mutant synthase in which glutamic acid at position 61 is mutated to other 17 amino acids.

具体实施方式Detailed ways

1、培养基及试剂1. Culture medium and reagents

LB培养基:蛋白胨10g/L,酵母粉5g/L,氯化钠10g/L。加入20g/L琼脂粉,以配制LB固体培养基。LB medium: peptone 10g/L, yeast powder 5g/L, sodium chloride 10g/L. Add 20g/L agar powder to prepare LB solid medium.

YPD培养基:蛋白胨20g/L,酵母粉10g/L,葡萄糖20g/L。加入20g/L琼脂粉,以配制YPD固体培养基。YPD medium: peptone 20g/L, yeast powder 10g/L, glucose 20g/L. Add 20g/L agar powder to prepare YPD solid medium.

YNB培养基:酵母氮源基础培养基1.74g/L(不含硫酸铵),硫酸铵5g/L,葡萄糖20g/L,氨基酸(5g/L尿嘧啶,10g/L色氨酸,10g/L亮氨酸,10g/L组氨酸,根据需要适当缺失相应氨基酸)。YNB medium: Yeast nitrogen source basal medium 1.74g/L (without ammonium sulfate), ammonium sulfate 5g/L, glucose 20g/L, amino acids (5g/L uracil, 10g/L tryptophan, 10g/L Leucine, 10g/L histidine, appropriate amino acids to be deleted as needed).

2、底盘细胞YJ1的构建2. Construction of chassis cell YJ1

基于酿酒酵母CEN.PK2-1D构建敲除GAL80的底盘细胞(GAL80涉及半乳糖代谢调控,敲除之后可以组成型表达GAL7启动子,而不需要诱导表达);利用酵母同源重组的原理敲除GAL80(Gene ID:854954),以G418为筛选标记,构建得底盘细胞C800,具体构建过程见文献Promoter-Library-Based Pathway Optimization for Efficient(2S)-NaringeninProduction From p-Coumaric Acid in Saccharomyces cerevisiae,Song Gao,Hengruizhou,Jingwen Zhou,Jian chen.J Agric Food Chem,2020Jun 24。Construction of GAL80 knockout chassis cells based on Saccharomyces cerevisiae CEN.PK2-1D (GAL80 is involved in the regulation of galactose metabolism, and the GAL7 promoter can be constitutively expressed after knockout without inducible expression); knockout using the principle of yeast homologous recombination GAL80 (Gene ID: 854954), with G418 as the selection marker, was constructed to obtain the chassis cell C800. For the specific construction process, see the document Promoter-Library-Based Pathway Optimization for Efficient(2S)-NaringeninProduction From p-Coumaric Acid in Saccharomyces cerevisiae, Song Gao , Hengruizhou, Jingwen Zhou, Jian chen. J Agric Food Chem, 2020 Jun 24.

基于酿酒酵母C800构建底盘细胞YJ1;利用酵母同源重组的原理将pY26-aro10UD-PGAL1-Pc4CL-PGAL7-MsCHI-TRP1(《Improving(2S)-naringenin production by exploringnative precursor pathways and screening higher-active chalcone synthases fromplants rich in flavonoids》,公开日2021年)整合至酿酒酵母C800基因组的aro10位点,所述aro10的Gene ID:851987;以TRP为筛选标记,构建得底盘细胞YJ1。Chassis cell YJ1 was constructed based on Saccharomyces cerevisiae C800; pY26-aro10UD-P GAL1 -Pc4CL-P GAL7 -MsCHI-TRP1 (《Improving(2S)-naringenin production by exploring native precursor pathways and screening higher-active chalcone synthases from plants rich in flavonoids", published in 2021) was integrated into the aro10 site of the Saccharomyces cerevisiae C800 genome, the Gene ID of the aro10: 851987; using TRP as the selection marker, the chassis cell YJ1 was constructed.

3、柚皮素的HPLC检测3. HPLC detection of naringenin

利用色谱柱(250×4.6mm,5μm,Thermo-Fisher,MA,USA),在40℃检测条件用日本岛津的SPD-20A检测器,流动相以含0.1%的三氟乙酸的水溶液(A)和含0.1%的三氟乙酸的乙腈(B),1mL/min的流速洗脱,检测波长290nm,洗脱条件为0-10min,90%-60%A;10-15min,60%-40%A;15-17min,40%-90%A;17-25min,90%A。Using a chromatographic column (250×4.6mm, 5μm, Thermo-Fisher, MA, USA), the detection conditions were at 40°C with a SPD-20A detector from Shimadzu, Japan, and the mobile phase was an aqueous solution containing 0.1% trifluoroacetic acid (A ) and acetonitrile (B) containing 0.1% trifluoroacetic acid, elution at a flow rate of 1 mL/min, detection wavelength 290 nm, elution conditions 0-10 min, 90%-60% A; 10-15 min, 60%-40 %A; 15-17min, 40%-90%A; 17-25min, 90%A.

实施例1:重组质粒pY26-SjCHS1的构建及表达 Example 1 : Construction and expression of recombinant plasmid pY26-SjCHS1

(1)重组质粒pY26-SjCHS1的构建(1) Construction of recombinant plasmid pY26-SjCHS1

来源于Sophora japonica的查尔酮合成酶1具有催化3分子对香豆酰辅酶A和1分子丙二酰辅酶A合成1分子查尔酮柚皮素的能力,密码子优化后最终获得核苷酸序列如SEQID NO.2所示,构建于pY26质粒上,命名为pY26-SjCHS1,由苏州金唯智公司合成。Chalcone synthase 1 from Sophora japonica has the ability to catalyze 3 molecules of p-coumaroyl-CoA and 1 molecule of malonyl-CoA to synthesize 1 molecule of chalcone-naringenin, and finally obtains nucleotides after codon optimization The sequence is shown in SEQID NO.2, constructed on the pY26 plasmid, named pY26-SjCHS1, and synthesized by Suzhou Jinweizhi Company.

(2)查尔酮合成酶的表达(2) Expression of chalcone synthase

将测序正确的质粒用醋酸锂化学转化法转化至酿酒酵母YJ1中,在不含尿嘧啶的YNB平板上,30℃培养3天,至长出单菌落;挑取单菌落于不含尿嘧啶的YNB培养基中,220rpm培养24h;然后按照1%(v/v)的量转接于YPD培养基中,并添加250mg/L对香豆酸,在30℃下培养72h取样液相检测柚皮素产量,结果显示,柚皮素产量为74.36mg/L。The correctly sequenced plasmid was transformed into Saccharomyces cerevisiae YJ1 by the lithium acetate chemical transformation method, and cultured on a YNB plate without uracil at 30 °C for 3 days until a single colony grew; In YNB medium, cultured at 220rpm for 24h; then transferred to YPD medium according to the amount of 1% (v/v), and added 250mg/L p-coumaric acid, cultured at 30°C for 72h and sampled the liquid phase for detection of pomelo peel The yield of naringenin was 74.36 mg/L.

实施例2:查尔酮合成酶单突突变体制备及表达Example 2: Preparation and expression of chalcone synthase single mutant mutant

(1)突变体的制备(1) Preparation of mutants

根据pY26-SjCHS1质粒序列,分别设计并合成引入A308K、A308R、S208N、S208C、E61K、E61R、E61A、E61T和E61C突变的引物,对查尔酮合成酶的基因序列进行定点突变,分别测序确认查尔酮合成酶突变体的编码基因是否正确,得到单突变查尔酮合成酶;将携带突变体基因的载体导入酿酒酵母YJ1中进行表达。According to the pY26-SjCHS1 plasmid sequence, primers introducing mutations A308K, A308R, S208N, S208C, E61K, E61R, E61A, E61T and E61C were designed and synthesized respectively, and the gene sequence of chalcone synthase was site-directed mutation, and sequenced to confirm the search. Check whether the coding gene of the chalcone synthase mutant is correct, and obtain a single mutant chalcone synthase; introduce the vector carrying the mutant gene into Saccharomyces cerevisiae YJ1 for expression.

定点突变体编码基因的PCR扩增:利用PCR技术,以携带编码野生型查尔酮合成酶基因的表达载体pY26-SjCHS1质粒为模板,进行PCR扩增,引物对如下(大写字母为突变碱基):PCR amplification of site-directed mutant encoding gene: using PCR technology, with the expression vector pY26-SjCHS1 plasmid that encodes the wild-type chalcone synthase gene as a template, PCR amplification is performed, and the primer pairs are as follows (capital letters are mutant bases) ):

引入A308K突变的定点突变引物对F1/R1为:The site-directed mutagenesis primer pair F1/R1 for introducing the A308K mutation is:

F1:gctcatccaggtggtcccAAAattctagatcaag,F1: gctcatccaggtggtcccAAAattctagatcaag,

R1:gggaccacctggatgagctacccag;R1:gggaccacctggatgagctacccag;

引入A308R突变的定点突变引物对F2/R2为:The site-directed mutagenesis primer pair F2/R2 for introducing the A308R mutation is:

F2:gtagctcatccaggtggtcccAGAattctagatcaagtcgaag,F2: gtagctcatccaggtggtcccAGAattctagatcaagtcgaag,

R2:cttcgacttgatctagaatTCTgggaccacctggatgagctac;R2: cttcgacttgatctagaatTCTgggaccacctggatgagctac;

引入S208N突变的定点突变引物对为F3/R3:The site-directed mutagenesis primer pair for introducing the S208N mutation is F3/R3:

F3:agtgatactcacttggatAATttggtgggccaag,F3: agtgatactcacttggatAATttggtgggccaag,

R3:tccaagtgagtatcactaggaccacgaaaggtcacc;R3: tccaagtgagtatcactaggaccacgaaaggtcacc;

引入S208C突变的定点突变引物对为F4/R4:The site-directed mutagenesis primer pair for introducing the S208C mutation is F4/R4:

F4:agtgatactcacttggatTGTttggtgggccaagc,F4: agtgatactcacttggatTGTttggtgggccaagc,

R4:atccaagtgagtatcactaggaccacgaaag;R4: atccaagtgagtatcactaggaccacgaaag;

引入E61K突变的定点突变引物对为F5/R5:The site-directed mutagenesis primer pair for introducing E61K mutation is F5/R5:

F5:gaaaagttcaagcgtatgtgcAAAaaatctatgataaagaagag,F5: gaaaagttcaagcgtatgtgcAAAaaatctatgataaagaagag,

R5:ctcttctttatcatagatttTTTgcacatacgcttgaacttttc;R5: ctcttctttatcatagatttTTTgcacatacgcttgaacttttc;

引入E61R突变的定点突变引物对为F6/R6:The primer pair for site-directed mutagenesis to introduce the E61R mutation is F6/R6:

F6:gaaaagttcaagcgtatgtgcAGAaaatctatgataaagaagag,F6: gaaaagttcaagcgtatgtgcAGAaaatctatgataaagaagag,

R6:ctcttctttatcatagatttTCTgcacatacgcttgaacttttc;R6: ctcttctttatcatagatttTCTgcacatacgcttgaacttttc;

引入E61A突变的定点突变引物对为F7/R7:The primer pair for site-directed mutagenesis to introduce the E61A mutation is F7/R7:

F7:aagttcaagcgtatgtgcGCTaaatctatgataaag,F7: aagttcaagcgtatgtgcGCTaaatctatgataaag,

R7:gcacatacgcttgaacttttcctttaggtct;R7: gcacatacgcttgaacttttcctttaggtct;

引入E61T突变的定点突变引物对为F8/R8:The site-directed mutagenesis primer pair for introducing E61T mutation is F8/R8:

F8:aagttcaagcgtatgtgcACTaaatctatgataaag,F8: aagttcaagcgtatgtgcACTaaatctatgataaag,

R8:gcacatacgcttgaacttttcctttaggtct;R8: gcacatacgcttgaacttttcctttaggtct;

引入E61C突变的定点突变引物对为F9/R9:The primer pair for site-directed mutagenesis to introduce the E61C mutation is F9/R9:

F9:aagttcaagcgtatgtgcTGTaaatctatgataaag,F9: aagttcaagcgtatgtgcTGTaaatctatgataaag,

R9:gcacatacgcttgaacttttcctttaggtct。R9: gcacatacgcttgaacttttcctttaggtct.

PCR体系为:25μL 2×Phanta Max Master Mix,1μL正向引物(10μmol·L-1),1μL反向引物(10μmol·L-1),1μL模板DNA,加入蒸馏水至50μL。查尔酮合成酶PCR扩增程序设定为:首先,95℃预变性3min;然后进入30个循环:95℃变性30s,56℃退火30s,72℃延伸5min;最后72℃延伸5min,4℃保温。The PCR system was: 25 μL 2×Phanta Max Master Mix, 1 μL forward primer (10 μmol·L −1 ), 1 μL reverse primer (10 μmol·L −1 ), 1 μL template DNA, and distilled water was added to 50 μL. The chalcone synthase PCR amplification program was set as follows: first, pre-denaturation at 95°C for 3 min; then into 30 cycles: denaturation at 95°C for 30s, annealing at 56°C for 30s, extension at 72°C for 5min; final extension at 72°C for 5min, 4°C Insulation.

(2)突变体的表达(2) Expression of mutants

将测序正确的突变体质粒用醋酸锂化学转化法转化至酿酒酵母YJ1中,在不含尿嘧啶的YNB平板上,30℃培养3天,至长出单菌落;挑取单菌落于不含尿嘧啶的YNB培养基中,220rpm培养24h得到活化菌液;将活化的菌液按照1%(v/v)转接于YPD培养基中,并添加250mg/L对香豆酸,72h取样液相检测柚皮素产量。The mutant plasmid with correct sequencing was transformed into Saccharomyces cerevisiae YJ1 by lithium acetate chemical transformation method, and cultured on YNB plate without uracil at 30 °C for 3 days until a single colony grew; pick a single colony without urine In the YNB medium of pyrimidine, cultivate at 220rpm for 24h to obtain activated bacterial liquid; transfer the activated bacterial liquid to YPD medium according to 1% (v/v), add 250mg/L p-coumaric acid, and sample the liquid phase for 72h Detection of naringenin production.

结果显示表达包含突变体A308K、A308R、S208N、S208C、E61K、E61R、E61A、E61T和E61C查尔酮合成酶突变体质粒的菌株柚皮素的产量分别为165.33mg/L、145.11mg/L、168.98mg/L、149.87mg/L、152.82mg/L、129.24mg/L、137.49mg/L、128.75mg/L和130.05mg/L,柚皮素产量分别为表达野生型查尔酮合成酶菌株的1.41倍、1.24倍、1.44倍、1.28倍、1.30倍、1.10倍、1.17倍、1.09倍和1.11倍。The results showed that the yields of naringenin from strains expressing plasmids containing mutants A308K, A308R, S208N, S208C, E61K, E61R, E61A, E61T and E61C chalcone synthase mutants were 165.33 mg/L, 145.11 mg/L, 168.98mg/L, 149.87mg/L, 152.82mg/L, 129.24mg/L, 137.49mg/L, 128.75mg/L and 130.05mg/L, the naringenin yields were respectively the strains expressing wild-type chalcone synthase. 1.41 times, 1.24 times, 1.44 times, 1.28 times, 1.30 times, 1.10 times, 1.17 times, 1.09 times and 1.11 times.

实施例3:查尔酮合成酶双突突变体的制备及表达Example 3: Preparation and expression of chalcone synthase double mutant mutants

(1)突变体A308K-S208N的制备(1) Preparation of mutant A308K-S208N

以实施例2构建的突变体A308K为初始模板,并利用实施例2设计的S208N突变的引物,利用PCR技术(方法如实施例2中所述),对携带有编码突变体A308K基因的质粒进行定点突变,构建突变体A308K-S208N。并通过测序确认查尔酮合成酶A308K-S208N突变体是否正确。The mutant A308K constructed in Example 2 was used as the initial template, and the S208N mutant primers designed in Example 2 were used to carry out PCR technology (method as described in Example 2) to carry the plasmid encoding the mutant A308K gene. Site-directed mutagenesis to construct mutant A308K-S208N. And confirmed by sequencing whether the chalcone synthase A308K-S208N mutant is correct.

(2)突变体A308K-E61K的制备(2) Preparation of mutant A308K-E61K

以实施例2构建的突变体A308K为初始模板,并利用实施例2设计的E61K突变的引物,利用PCR技术(方法如实施例2中所述),对携带有编码突变体A308K基因的质粒进行定点突变,构建突变体A308K-E61K。并通过测序确认查尔酮合成酶A308K-E61K突变体是否正确。Using the mutant A308K constructed in Example 2 as the initial template, and using the E61K mutant primers designed in Example 2, using PCR technology (the method is as described in Example 2), the plasmid carrying the gene encoding the mutant A308K was carried out. Site-directed mutagenesis to construct mutant A308K-E61K. And confirmed by sequencing whether the chalcone synthase A308K-E61K mutant is correct.

(3)突变体S208N-E61K的制备(3) Preparation of mutant S208N-E61K

以实施例2构建的突变体S208N为初始模板,并利用实施例2设计的E61K突变的引物,利用PCR技术(方法如实施例2中所述),对携带有编码突变体S208N基因的质粒进行定点突变,构建突变体S208N-E61K。并通过测序确认查尔酮合成酶S208N-E61K突变体是否正确。Using the mutant S208N constructed in Example 2 as the initial template, and using the E61K mutant primers designed in Example 2, using PCR technology (the method is as described in Example 2), the plasmid carrying the gene encoding the mutant S208N was carried out. Site-directed mutagenesis to construct mutant S208N-E61K. And confirmed by sequencing whether the chalcone synthase S208N-E61K mutant is correct.

(4)突变体的表达(4) Expression of mutants

突变体表达过程如实施例1中查尔酮合成酶的表达所述。结果显示表达包含突变体A308K-S208N、A308K-E61K和S208N-E61K查尔酮合成酶突变体质粒的菌株柚皮素的产量分别为123.92mg/L、143.96mg/L和143.71mg/L,柚皮素产量分别为表达野生型查尔酮合成酶菌株的1.17倍、1.09倍和1.11倍。The mutant expression procedure was as described in Example 1 for the expression of chalcone synthase. The results showed that the yields of naringenin from strains expressing plasmids containing mutants A308K-S208N, A308K-E61K and S208N-E61K chalcone synthase mutants were 123.92 mg/L, 143.96 mg/L and 143.71 mg/L, respectively. The yields of corticosteroids were 1.17 times, 1.09 times and 1.11 times that of strains expressing wild-type chalcone synthase, respectively.

对比例1Comparative Example 1

具体实施方式参见实施例2,区别在于,将第308位的丙氨酸突变为其余17中氨基酸,分别构建得到突变体A308N、A308D、A308C、A308Q、A308E、A308G、A308H、A308I、A308L、A308M、A308F、A308P、A308S、A308T、A308W、A308Y、A308V;For specific embodiments, see Example 2, the difference is that the alanine at position 308 was mutated to the remaining 17 amino acids, and the mutants A308N, A308D, A308C, A308Q, A308E, A308G, A308H, A308I, A308L, A308M were constructed respectively. , A308F, A308P, A308S, A308T, A308W, A308Y, A308V;

同样的,将第208位的丝氨酸突变为其余17个氨基酸,分别构建得到突变体S208N、A208D、A208R、A208Q、A208E、A208G、A208H、A208I、A208L、A208M、A208F、A208P、A208S、A208T、A208W、A208Y、A208V;Similarly, the serine at position 208 was mutated to the remaining 17 amino acids to construct mutants S208N, A208D, A208R, A208Q, A208E, A208G, A208H, A208I, A208L, A208M, A208F, A208P, A208S, A208T, A208W , A208Y, A208V;

将第61位的谷氨酸突变为其余14个氨基酸,分别构建得到突变体E61N、A308D、E61Q、E61G、E61H、E61I、E61L、E61M、E61F、E61P、E61S、E61W、E61Y、E61V。The glutamic acid at position 61 was mutated to the remaining 14 amino acids, and mutants E61N, A308D, E61Q, E61G, E61H, E61I, E61L, E61M, E61F, E61P, E61S, E61W, E61Y, and E61V were respectively constructed.

将上述构建得到的突变体按照实施例2中的方法进行突变体的表达,72h检测发酵液中的柚皮素的含量,结果如图4、图5、图6所示,发酵所得的柚皮素含量均低于原始酶。The mutant obtained by the above construction was expressed according to the method in Example 2, and the content of naringenin in the fermentation broth was detected at 72 h. The results are shown in Figure 4, Figure 5, and Figure 6. The element content is lower than the original enzyme.

虽然本发明已以较佳实施例公开如上,但其并非用以限定本发明,任何熟悉此技术的人,在不脱离本发明的精神和范围内,都可做各种的改动与修饰,因此本发明的保护范围应该以权利要求书所界定的为准。Although the present invention has been disclosed above with preferred embodiments, it is not intended to limit the present invention. Anyone who is familiar with this technology can make various changes and modifications without departing from the spirit and scope of the present invention. Therefore, The protection scope of the present invention should be defined by the claims.

SEQUENCE LISTINGSEQUENCE LISTING

<110> 江南大学<110> Jiangnan University

<120> BAA220031A<120> BAA220031A

<130> 可以提高柚皮素产量的查尔酮合成酶突变体<130> Chalcone synthase mutant that increases naringenin production

<160> 2<160> 2

<170> PatentIn version 3.3<170> PatentIn version 3.3

<210> 1<210> 1

<211> 391<211> 391

<212> PRT<212> PRT

<213> Sophora japonica<213> Sophora japonica

<400> 1<400> 1

Met Val Thr Val Glu Glu Ile Arg Asn Ala Gln Arg Ser Gln Gly ProMet Val Thr Val Glu Glu Ile Arg Asn Ala Gln Arg Ser Gln Gly Pro

1 5 10 151 5 10 15

Ala Thr Ile Leu Ala Phe Gly Thr Ala Thr Pro Ser Asn Cys Ile ThrAla Thr Ile Leu Ala Phe Gly Thr Ala Thr Pro Ser Asn Cys Ile Thr

20 25 30 20 25 30

Gln Ala Asp Tyr Pro Asp Tyr Tyr Phe Arg Ile Thr Asp Ser Glu HisGln Ala Asp Tyr Pro Asp Tyr Tyr Phe Arg Ile Thr Asp Ser Glu His

35 40 45 35 40 45

Met Thr Asp Leu Lys Glu Lys Phe Lys Arg Met Cys Glu Lys Ser MetMet Thr Asp Leu Lys Glu Lys Phe Lys Arg Met Cys Glu Lys Ser Met

50 55 60 50 55 60

Ile Lys Lys Arg Tyr Met His Val Thr Glu Glu Phe Leu Lys Glu AsnIle Lys Lys Arg Tyr Met His Val Thr Glu Glu Phe Leu Lys Glu Asn

65 70 75 8065 70 75 80

Pro Asn Met Cys Ala Tyr Met Ala Pro Ser Leu Asp Val Arg Gln AspPro Asn Met Cys Ala Tyr Met Ala Pro Ser Leu Asp Val Arg Gln Asp

85 90 95 85 90 95

Ile Val Val Val Glu Val Pro Lys Leu Gly Lys Glu Ala Ala Ser LysIle Val Val Val Glu Val Pro Lys Leu Gly Lys Glu Ala Ala Ser Lys

100 105 110 100 105 110

Ala Ile Lys Glu Trp Gly Gln Pro Lys Ser Lys Ile Thr His Leu ValAla Ile Lys Glu Trp Gly Gln Pro Lys Ser Lys Ile Thr His Leu Val

115 120 125 115 120 125

Phe Cys Thr Thr Ser Gly Val Asp Met Pro Gly Ala Asp Tyr Gln LeuPhe Cys Thr Thr Ser Gly Val Asp Met Pro Gly Ala Asp Tyr Gln Leu

130 135 140 130 135 140

Thr Lys Leu Leu Gly Leu Arg Pro Ser Val Lys Arg Leu Met Met TyrThr Lys Leu Leu Gly Leu Arg Pro Ser Val Lys Arg Leu Met Met Tyr

145 150 155 160145 150 155 160

Gln Gln Gly Cys Phe Ala Gly Gly Thr Val Leu Arg Leu Ala Lys AspGln Gln Gly Cys Phe Ala Gly Gly Thr Val Leu Arg Leu Ala Lys Asp

165 170 175 165 170 175

Leu Ala Glu Asn Asn Lys Gly Ala Arg Val Leu Val Val Cys Ser GluLeu Ala Glu Asn Asn Lys Gly Ala Arg Val Leu Val Val Cys Ser Glu

180 185 190 180 185 190

Ile Thr Ala Val Thr Phe Arg Gly Pro Ser Asp Thr His Leu Asp SerIle Thr Ala Val Thr Phe Arg Gly Pro Ser Asp Thr His Leu Asp Ser

195 200 205 195 200 205

Leu Val Gly Gln Ala Leu Phe Gly Asp Gly Ala Ala Ala Met Ile IleLeu Val Gly Gln Ala Leu Phe Gly Asp Gly Ala Ala Ala Met Ile Ile

210 215 220 210 215 220

Gly Ala Asp Pro Asp Thr Ala Val Glu Arg Pro Ile Phe Gln Leu ValGly Ala Asp Pro Asp Thr Ala Val Glu Arg Pro Ile Phe Gln Leu Val

225 230 235 240225 230 235 240

Ser Ala Ala Gln Thr Ile Leu Pro Asp Ser Asp Gly Ala Ile Asp GlySer Ala Ala Gln Thr Ile Leu Pro Asp Ser Asp Gly Ala Ile Asp Gly

245 250 255 245 250 255

His Leu Arg Glu Val Gly Leu Thr Phe His Leu Leu Lys Asp Val ProHis Leu Arg Glu Val Gly Leu Thr Phe His Leu Leu Lys Asp Val Pro

260 265 270 260 265 270

Gly Ile Ile Ser Lys Asn Ile Glu Lys Ser Leu Val Glu Ala Phe AlaGly Ile Ile Ser Lys Asn Ile Glu Lys Ser Leu Val Glu Ala Phe Ala

275 280 285 275 280 285

Pro Val Gly Ile Ser Asp Trp Asn Ser Ile Phe Trp Val Ala His ProPro Val Gly Ile Ser Asp Trp Asn Ser Ile Phe Trp Val Ala His Pro

290 295 300 290 295 300

Gly Gly Pro Ala Ile Leu Asp Gln Val Glu Ala Lys Leu Gly Leu LysGly Gly Pro Ala Ile Leu Asp Gln Val Glu Ala Lys Leu Gly Leu Lys

305 310 315 320305 310 315 320

Glu Glu Lys Leu Arg Ser Thr Arg His Val Leu Ser Glu Tyr Gly AsnGlu Glu Lys Leu Arg Ser Thr Arg His Val Leu Ser Glu Tyr Gly Asn

325 330 335 325 330 335

Met Ser Ser Ala Cys Val Leu Phe Ile Leu Asp Glu Met Arg Lys LysMet Ser Ser Ala Cys Val Leu Phe Ile Leu Asp Glu Met Arg Lys Lys

340 345 350 340 345 350

Ser Val Glu Glu Gly Arg Ala Thr Thr Gly Glu Gly Leu Glu Trp GlySer Val Glu Glu Gly Arg Ala Thr Thr Gly Glu Gly Leu Glu Trp Gly

355 360 365 355 360 365

Val Leu Phe Gly Phe Gly Pro Gly Leu Thr Val Glu Thr Val Val LeuVal Leu Phe Gly Phe Gly Pro Gly Leu Thr Val Glu Thr Val Val Leu

370 375 380 370 375 380

His Ser Val Pro Leu Gln GlyHis Ser Val Pro Leu Gln Gly

385 390385 390

<210> 2<210> 2

<211> 1176<211> 1176

<212> DNA<212> DNA

<213> 人工序列<213> Artificial sequences

<400> 2<400> 2

atggtcaccg ttgaagaaat taggaatgcc caacgttccc aaggacctgc caccattctt 60atggtcaccg ttgaagaaat taggaatgcc caacgttccc aaggacctgc caccattctt 60

gcgtttggca cggctacccc ctctaactgc attacccaag cagactatcc agattactat 120gcgtttggca cggctacccc ctctaactgc attacccaag cagactatcc agattactat 120

tttcgtatta ccgattccga gcacatgaca gacctaaagg aaaagttcaa gcgtatgtgc 180tttcgtatta ccgattccga gcacatgaca gacctaaagg aaaagttcaa gcgtatgtgc 180

gagaaatcta tgataaagaa gagatatatg catgtaactg aggagtttct gaaggaaaac 240gagaaatcta tgataaagaa gagatatatg catgtaactg aggagtttct gaaggaaaac 240

cccaacatgt gtgcttacat ggctccttca ctagatgtta gacaagacat cgtagttgta 300cccaacatgt gtgcttacat ggctccttca ctagatgtta gacaagacat cgtagttgta 300

gaggtaccta agttgggtaa agaggcagcg agtaaggcaa taaaggagtg ggggcaaccc 360gaggtaccta agttgggtaa agaggcagcg agtaaggcaa taaaggagtg ggggcaaccc 360

aagtccaaga ttacacacct tgttttttgc acaactagtg gggtagacat gccaggtgct 420aagtccaaga ttacacacct tgtttttttgc acaactagtg gggtagacat gccaggtgct 420

gattatcagc taaccaagtt gcttggtcta aggccgtcag taaagaggct tatgatgtat 480gattatcagc taaccaagtt gcttggtcta aggccgtcag taaagaggct tatgatgtat 480

caacaaggat gcttcgcagg aggaaccgtg cttaggcttg caaaagacct tgccgagaac 540caacaaggat gcttcgcagg aggaaccgtg cttaggcttg caaaagacct tgccgagaac 540

aacaagggtg cgagagtatt ggttgtttgt tcagagatca cggcggtgac ctttcgtggt 600aacaagggtg cgagagtatt ggttgtttgt tcagagatca cggcggtgac ctttcgtggt 600

cctagtgata ctcacttgga tagcttggtg ggccaagccc tattcggaga tggagcagct 660cctagtgata ctcacttgga tagcttggtg ggccaagccc tattcggaga tggagcagct 660

gcaatgataa ttggcgcgga cccggatacc gctgtcgaga ggcctatctt ccagttggtt 720gcaatgataa ttggcgcgga cccggatacc gctgtcgaga ggcctatctt ccagttggtt 720

tcagctgctc aaaccatttt acctgattcc gacggtgcga tcgacggtca tctgagggaa 780tcagctgctc aaaccatttt acctgattcc gacggtgcga tcgacggtca tctgagggaa 780

gtcggactaa ccttccatct attgaaagac gtccctggaa ttatctcaaa gaacatagaa 840gtcggactaa ccttccatct attgaaagac gtccctggaa ttatctcaaa gaacatagaa 840

aaatcactgg ttgaggcttt tgcgcccgtt ggaatttcag actggaacag tatattctgg 900aaatcactgg ttgaggcttt tgcgcccgtt ggaatttcag actggaacag tatattctgg 900

gtagctcatc caggtggtcc cgcgattcta gatcaagtcg aagccaaact aggactaaaa 960gtagctcatc caggtggtcc cgcgattcta gatcaagtcg aagccaaact aggactaaaa 960

gaggagaaac ttaggtcaac taggcacgta ctatcagaat atgggaatat gagtagcgcg 1020gaggagaaac ttaggtcaac taggcacgta ctatcagaat atgggaatat gagtagcgcg 1020

tgtgtactat ttatcttgga cgaaatgagg aaaaaatctg tcgaggaggg cagggccacg 1080tgtgtactat ttatcttgga cgaaatgagg aaaaaatctg tcgaggaggg cagggccacg 1080

actggtgaag gcctggaatg gggagtttta tttgggtttg ggccaggttt gacagtggag 1140actggtgaag gcctggaatg gggagtttta tttgggtttg ggccaggttt gacagtggag 1140

accgtagttc tgcattcagt tcccctacag gggtaa 1176accgtagttc tgcattcagt tcccctacag gggtaa 1176

Claims (10)

1.查尔酮合成酶突变体,其特征在于,所述突变体以氨基酸序列如SEQ ID NO.1所示的查尔酮合成酶为亲本,分别将下述位点进行取代得到(a)~(f)的突变体:1. chalcone synthase mutant, it is characterized in that, described mutant takes aminoacid sequence as the chalcone synthase shown in SEQ ID NO.1 as parent, and the following positions are replaced respectively to obtain (a) Mutants of ~(f): (a)所述突变体是将第308位置的丙氨酸取代为赖氨酸或者精氨酸;(a) the mutant replaces the alanine at position 308 with lysine or arginine; (b)所述突变体是将第208位置的丝氨酸取代为天冬酰胺或者半胱氨酸;(b) the mutant replaces serine at position 208 with asparagine or cysteine; (c)所述突变体是将第61位置的谷氨酸取代为赖氨酸或者精氨酸或者丙氨酸或者苏氨酸或者半胱氨酸;(c) the mutant replaces glutamic acid at position 61 with lysine or arginine or alanine or threonine or cysteine; (d)所述突变体是将第308位置的丙氨酸取代为赖氨酸,将第208位置的丝氨酸取代为天冬酰胺;(d) in the mutant, alanine at position 308 is substituted with lysine, and serine at position 208 is substituted with asparagine; (e)所述突变体是将第308位置的丙氨酸取代为赖氨酸,将第61位置的谷氨酸取代为赖氨酸;(e) the mutant replaces alanine at position 308 with lysine, and replaces glutamic acid at position 61 with lysine; (f)所述突变体是将第208位置的丝氨酸取代为天冬酰胺,将第61位置的谷氨酸取代为赖氨酸。(f) In the mutant, serine at position 208 is substituted with asparagine, and glutamic acid at position 61 is substituted with lysine. 2.编码权利要求1所述突变体的基因。2. A gene encoding the mutant of claim 1. 3.携带权利要求2所述基因的重组载体。3. A recombinant vector carrying the gene of claim 2. 4.表达权利要求1所述的突变体,或携带权利要求2所述基因,或含有权利要求3所述重组载体的微生物细胞。4. A microbial cell expressing the mutant of claim 1, or carrying the gene of claim 2, or containing the recombinant vector of claim 3. 5.根据权利要求4所述的微生物细胞,其特征在于,所述微生物细胞包括原核微生物和真核微生物。5. The microbial cell according to claim 4, wherein the microbial cell comprises a prokaryotic microorganism and a eukaryotic microorganism. 6.根据权利要求4或5所述的微生物细胞,其特征在于,所述微生物细胞的出发菌株包括酿酒酵母YJ1。6. The microbial cell according to claim 4 or 5, wherein the starting strain of the microbial cell comprises Saccharomyces cerevisiae YJ1. 7.一种生产柚皮素的方法,其特征在于,利用权利要求4~6任一所述微生物细胞转化对香豆酸生产柚皮素。7. A method for producing naringenin, characterized in that naringenin is produced by transforming p-coumaric acid with the microbial cells described in any one of claims 4 to 6. 8.根据权利要求7所述的方法,其特征在于,将所述微生物细胞的单菌落培养20~24h得到菌液,将菌液按照1~5%(v/v)的量转接至YPD培养基,并向YPD培养基中添加200~250mg/L对香豆酸。8 . The method according to claim 7 , wherein the bacterial solution is obtained by culturing a single colony of the microbial cells for 20 to 24 hours, and the bacterial solution is transferred to YPD in an amount of 1 to 5% (v/v). 9 . medium, and 200-250 mg/L p-coumaric acid was added to the YPD medium. 9.根据权利要求8所述的方法,其特征在于,在28~35℃下培养不少于60h。9 . The method according to claim 8 , wherein the culture is carried out at 28-35° C. for not less than 60 hours. 10 . 10.权利要求1所述的查尔酮合成酶突变体,或权利要求2所述的基因,或权利要求4~6任一所述的微生物细胞在制备柚皮素、柚皮素衍生物或含有柚皮素的产品中的应用。10. The chalcone synthase mutant of claim 1, or the gene of claim 2, or the microbial cell of any one of claims 4 to 6 in the preparation of naringenin, naringenin derivatives or Use in products containing naringenin.
CN202210187146.6A 2022-02-28 2022-02-28 A mutant of chalcone synthase that can increase the production of naringenin Active CN114574458B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210187146.6A CN114574458B (en) 2022-02-28 2022-02-28 A mutant of chalcone synthase that can increase the production of naringenin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210187146.6A CN114574458B (en) 2022-02-28 2022-02-28 A mutant of chalcone synthase that can increase the production of naringenin

Publications (2)

Publication Number Publication Date
CN114574458A true CN114574458A (en) 2022-06-03
CN114574458B CN114574458B (en) 2023-07-18

Family

ID=81771235

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210187146.6A Active CN114574458B (en) 2022-02-28 2022-02-28 A mutant of chalcone synthase that can increase the production of naringenin

Country Status (1)

Country Link
CN (1) CN114574458B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4410972A1 (en) * 2023-02-03 2024-08-07 BGene Genetics Modified benzalacetone synthase enzymes and uses thereof

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003031622A1 (en) * 2001-10-05 2003-04-17 Agriculture Victoria Services Pty Ltd Manipulation of flavonoid biosynthesis in plants
WO2004090136A1 (en) * 2003-04-14 2004-10-21 Agriculture Victoria Services Pty Ltd Chalcone synthase dihydroflavonol 4-reductase and leucoanthocyanidine reductase from clover, medic ryegrass or fescue
WO2005084305A2 (en) * 2004-03-01 2005-09-15 Regents Of The University Of Minnesota Flavonoids
WO2013148325A1 (en) * 2012-03-26 2013-10-03 Pronutria, Inc. Nutritive fragments, proteins and methods
CN106047905A (en) * 2016-04-15 2016-10-26 中国农业科学院烟草研究所 Chalcone synthetase NtCHS1 gene of tobacco, and application thereof
CN110896642A (en) * 2018-06-08 2020-03-20 韩国科学技术院 Novel malonyl-CoA biosensor based on type III polyketide synthase and its use
CN113574177A (en) * 2019-02-11 2021-10-29 法国施维雅药厂 Method for Biosynthesizing Geranin and/or Hesperidin in Microorganisms

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003031622A1 (en) * 2001-10-05 2003-04-17 Agriculture Victoria Services Pty Ltd Manipulation of flavonoid biosynthesis in plants
WO2004090136A1 (en) * 2003-04-14 2004-10-21 Agriculture Victoria Services Pty Ltd Chalcone synthase dihydroflavonol 4-reductase and leucoanthocyanidine reductase from clover, medic ryegrass or fescue
WO2005084305A2 (en) * 2004-03-01 2005-09-15 Regents Of The University Of Minnesota Flavonoids
WO2013148325A1 (en) * 2012-03-26 2013-10-03 Pronutria, Inc. Nutritive fragments, proteins and methods
CN106047905A (en) * 2016-04-15 2016-10-26 中国农业科学院烟草研究所 Chalcone synthetase NtCHS1 gene of tobacco, and application thereof
CN110896642A (en) * 2018-06-08 2020-03-20 韩国科学技术院 Novel malonyl-CoA biosensor based on type III polyketide synthase and its use
CN113574177A (en) * 2019-02-11 2021-10-29 法国施维雅药厂 Method for Biosynthesizing Geranin and/or Hesperidin in Microorganisms

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
TONG ET AL.: "Improving (2S)-naringenin production by exploring native precursor pathways and screening higher-active chalcone synthases from plants rich in flavonoids", MICROB TECHNOL, pages 1 - 7 *
李明佳等: "关键酶泛素化位点对柚皮素生物合成的影响", 生物工程学报, vol. 38, no. 2, pages 691 - 704 *
高洁: "槐米槐叶中黄酮类物质合成相关酶基因研究", 山西农业大学学报(自然科学版), vol. 38, no. 9, pages 58 - 65 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4410972A1 (en) * 2023-02-03 2024-08-07 BGene Genetics Modified benzalacetone synthase enzymes and uses thereof

Also Published As

Publication number Publication date
CN114574458B (en) 2023-07-18

Similar Documents

Publication Publication Date Title
KR101814888B1 (en) 5-aminolevulinic acid high-yield bacterial strain, preparation method and uses thereof
CN111269900B (en) Preparation and application of L-amino acid deaminase mutant
CN113755354B (en) Recombinant saccharomyces cerevisiae for producing gastrodin by utilizing glucose and application thereof
CN110499260B (en) Engineering bacterium for high yield of salidroside and/or tyrosol and application thereof
CN112143764B (en) A kind of method for preparing brivaracetam intermediate compound catalyzed by biological enzyme
CN109022338B (en) Process for producing phenylpyruvic acid by enzymatic conversion of phenylalanine
CN115838702B (en) A 3′-O-methyltransferase mutant and its application
CN110885846A (en) Microorganism for synthesizing baicalein and scutellarein, preparation method and application thereof
CN116376950A (en) Preparation method and application of nucleic acid construct, cell and tetrahydrocurcumin
CN108841844B (en) Method for efficiently producing phenylpyruvic acid
WO2024140379A1 (en) Enzyme, strain for producing salidroside, and production method
CN114574458B (en) A mutant of chalcone synthase that can increase the production of naringenin
CN109055417B (en) Recombinant microorganism, preparation method thereof and application thereof in production of coenzyme Q10
CN115851810A (en) Engineering strain for de novo synthesis of naringenin by saccharomyces cerevisiae and construction method and application thereof
CN114480512B (en) Application of oxidoreductase and its mutants in the biosynthesis of grapefruit
CN114317306A (en) Genetic engineering strain for synthesizing resveratrol and construction method and application thereof
CN112280723B (en) Recombinant bacterium for co-production of 1, 3-propylene glycol and 1, 3-butanediol and application thereof
CN112941002B (en) Recombinant strain of escherichia coli for producing dopamine as well as construction method and application thereof
CN116064362A (en) A genetically engineered bacterium that uses glucose to synthesize 12-aminolauric acid de novo and its construction and application
CN112391360B (en) Flavone 3 beta-hydroxylase reductase mutant and application thereof
CN114657160B (en) Glycosyltransferase mutant and application thereof
CN110684811B (en) A kind of method for improving methionine output
CN108102941A (en) The Gluconobacter oxvdans of one plant of glycerol dehydrogenase gene sequence of combination containing certain films and its application
CN113025546B (en) Method for producing tyrosol by converting L-tyrosine through multienzyme cascade
CN117737015B (en) A method for improving the catalytic activity of flavanone-3-hydroxylase and its application

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant