CN114566633A - Novel cobalt-free cathode material and preparation method thereof - Google Patents
Novel cobalt-free cathode material and preparation method thereof Download PDFInfo
- Publication number
- CN114566633A CN114566633A CN202210212960.9A CN202210212960A CN114566633A CN 114566633 A CN114566633 A CN 114566633A CN 202210212960 A CN202210212960 A CN 202210212960A CN 114566633 A CN114566633 A CN 114566633A
- Authority
- CN
- China
- Prior art keywords
- positive electrode
- cobalt
- electrode material
- free
- ltoreq
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000010406 cathode material Substances 0.000 title claims abstract description 43
- 238000002360 preparation method Methods 0.000 title abstract description 14
- 239000002994 raw material Substances 0.000 claims abstract description 23
- 229910052721 tungsten Inorganic materials 0.000 claims abstract description 18
- 229910052719 titanium Inorganic materials 0.000 claims abstract description 13
- 229910052804 chromium Inorganic materials 0.000 claims abstract description 7
- 229910052735 hafnium Inorganic materials 0.000 claims abstract description 7
- 229910052749 magnesium Inorganic materials 0.000 claims abstract description 7
- 229910052712 strontium Inorganic materials 0.000 claims abstract description 7
- 229910052715 tantalum Inorganic materials 0.000 claims abstract description 7
- 229910052727 yttrium Inorganic materials 0.000 claims abstract description 7
- 229910052726 zirconium Inorganic materials 0.000 claims abstract description 7
- 239000000126 substance Substances 0.000 claims abstract description 6
- 229910052791 calcium Inorganic materials 0.000 claims abstract description 4
- 229910052758 niobium Inorganic materials 0.000 claims abstract description 4
- 229910052706 scandium Inorganic materials 0.000 claims abstract description 4
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 4
- 239000010405 anode material Substances 0.000 claims abstract 7
- 239000007774 positive electrode material Substances 0.000 claims description 142
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 50
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 49
- 239000002245 particle Substances 0.000 claims description 35
- 239000000463 material Substances 0.000 claims description 33
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 26
- 238000002156 mixing Methods 0.000 claims description 23
- ZNOKGRXACCSDPY-UHFFFAOYSA-N tungsten trioxide Chemical compound O=[W](=O)=O ZNOKGRXACCSDPY-UHFFFAOYSA-N 0.000 claims description 21
- 239000012298 atmosphere Substances 0.000 claims description 20
- 239000010936 titanium Substances 0.000 claims description 20
- 229910052796 boron Inorganic materials 0.000 claims description 18
- 238000000227 grinding Methods 0.000 claims description 18
- 229910052742 iron Inorganic materials 0.000 claims description 18
- 229910001416 lithium ion Inorganic materials 0.000 claims description 18
- 229910052759 nickel Inorganic materials 0.000 claims description 18
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 claims description 17
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 claims description 17
- 229910052782 aluminium Inorganic materials 0.000 claims description 17
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 claims description 16
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 16
- 238000000498 ball milling Methods 0.000 claims description 15
- 238000000034 method Methods 0.000 claims description 15
- 238000004321 preservation Methods 0.000 claims description 14
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 claims description 13
- 239000000843 powder Substances 0.000 claims description 13
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 claims description 11
- WMFOQBRAJBCJND-UHFFFAOYSA-M Lithium hydroxide Chemical compound [Li+].[OH-] WMFOQBRAJBCJND-UHFFFAOYSA-M 0.000 claims description 11
- MCDLETWIOVSGJT-UHFFFAOYSA-N acetic acid;iron Chemical compound [Fe].CC(O)=O.CC(O)=O MCDLETWIOVSGJT-UHFFFAOYSA-N 0.000 claims description 11
- 229910052799 carbon Inorganic materials 0.000 claims description 11
- 239000008103 glucose Substances 0.000 claims description 11
- 229910052744 lithium Inorganic materials 0.000 claims description 11
- XGZVUEUWXADBQD-UHFFFAOYSA-L lithium carbonate Chemical compound [Li+].[Li+].[O-]C([O-])=O XGZVUEUWXADBQD-UHFFFAOYSA-L 0.000 claims description 10
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 claims description 9
- 239000004327 boric acid Substances 0.000 claims description 8
- 239000011261 inert gas Substances 0.000 claims description 7
- 239000004408 titanium dioxide Substances 0.000 claims description 7
- WNROFYMDJYEPJX-UHFFFAOYSA-K aluminium hydroxide Chemical compound [OH-].[OH-].[OH-].[Al+3] WNROFYMDJYEPJX-UHFFFAOYSA-K 0.000 claims description 5
- 229910052750 molybdenum Inorganic materials 0.000 claims description 5
- BFDHFSHZJLFAMC-UHFFFAOYSA-L nickel(ii) hydroxide Chemical compound [OH-].[OH-].[Ni+2] BFDHFSHZJLFAMC-UHFFFAOYSA-L 0.000 claims description 5
- 229910021389 graphene Inorganic materials 0.000 claims description 4
- 239000004277 Ferrous carbonate Substances 0.000 claims description 3
- 229910021578 Iron(III) chloride Inorganic materials 0.000 claims description 3
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 claims description 3
- 229930006000 Sucrose Natural products 0.000 claims description 3
- 229910052788 barium Inorganic materials 0.000 claims description 3
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 claims description 3
- 229960004652 ferrous carbonate Drugs 0.000 claims description 3
- RAQDACVRFCEPDA-UHFFFAOYSA-L ferrous carbonate Chemical compound [Fe+2].[O-]C([O-])=O RAQDACVRFCEPDA-UHFFFAOYSA-L 0.000 claims description 3
- 235000019268 ferrous carbonate Nutrition 0.000 claims description 3
- 229960002089 ferrous chloride Drugs 0.000 claims description 3
- 235000003891 ferrous sulphate Nutrition 0.000 claims description 3
- 239000011790 ferrous sulphate Substances 0.000 claims description 3
- NMCUIPGRVMDVDB-UHFFFAOYSA-L iron dichloride Chemical compound Cl[Fe]Cl NMCUIPGRVMDVDB-UHFFFAOYSA-L 0.000 claims description 3
- RBTARNINKXHZNM-UHFFFAOYSA-K iron trichloride Chemical compound Cl[Fe](Cl)Cl RBTARNINKXHZNM-UHFFFAOYSA-K 0.000 claims description 3
- BAUYGSIQEAFULO-UHFFFAOYSA-L iron(2+) sulfate (anhydrous) Chemical compound [Fe+2].[O-]S([O-])(=O)=O BAUYGSIQEAFULO-UHFFFAOYSA-L 0.000 claims description 3
- 229910000015 iron(II) carbonate Inorganic materials 0.000 claims description 3
- 229910000359 iron(II) sulfate Inorganic materials 0.000 claims description 3
- 229910052808 lithium carbonate Inorganic materials 0.000 claims description 3
- LGQLOGILCSXPEA-UHFFFAOYSA-L nickel sulfate Chemical compound [Ni+2].[O-]S([O-])(=O)=O LGQLOGILCSXPEA-UHFFFAOYSA-L 0.000 claims description 3
- 229910000363 nickel(II) sulfate Inorganic materials 0.000 claims description 3
- ZULUUIKRFGGGTL-UHFFFAOYSA-L nickel(ii) carbonate Chemical compound [Ni+2].[O-]C([O-])=O ZULUUIKRFGGGTL-UHFFFAOYSA-L 0.000 claims description 3
- 239000005720 sucrose Substances 0.000 claims description 3
- 125000005619 boric acid group Chemical group 0.000 claims description 2
- 229940032296 ferric chloride Drugs 0.000 claims description 2
- 229960001781 ferrous sulfate Drugs 0.000 claims description 2
- 229910000008 nickel(II) carbonate Inorganic materials 0.000 claims description 2
- 238000010438 heat treatment Methods 0.000 claims 2
- 239000002105 nanoparticle Substances 0.000 claims 1
- 238000012216 screening Methods 0.000 claims 1
- GELKBWJHTRAYNV-UHFFFAOYSA-K lithium iron phosphate Chemical compound [Li+].[Fe+2].[O-]P([O-])([O-])=O GELKBWJHTRAYNV-UHFFFAOYSA-K 0.000 abstract description 5
- 238000004519 manufacturing process Methods 0.000 abstract description 4
- 238000012360 testing method Methods 0.000 description 46
- 238000005245 sintering Methods 0.000 description 23
- 239000011230 binding agent Substances 0.000 description 20
- 239000006258 conductive agent Substances 0.000 description 20
- 239000002904 solvent Substances 0.000 description 18
- 239000006229 carbon black Substances 0.000 description 16
- 235000019241 carbon black Nutrition 0.000 description 16
- 239000011812 mixed powder Substances 0.000 description 15
- 229910003002 lithium salt Inorganic materials 0.000 description 13
- 159000000002 lithium salts Chemical class 0.000 description 13
- 230000000052 comparative effect Effects 0.000 description 12
- 239000003792 electrolyte Substances 0.000 description 12
- 238000003756 stirring Methods 0.000 description 12
- KMTRUDSVKNLOMY-UHFFFAOYSA-N Ethylene carbonate Chemical compound O=C1OCCO1 KMTRUDSVKNLOMY-UHFFFAOYSA-N 0.000 description 11
- JBTWLSYIZRCDFO-UHFFFAOYSA-N ethyl methyl carbonate Chemical compound CCOC(=O)OC JBTWLSYIZRCDFO-UHFFFAOYSA-N 0.000 description 11
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 11
- 239000010937 tungsten Substances 0.000 description 11
- 239000002033 PVDF binder Substances 0.000 description 10
- 229910002804 graphite Inorganic materials 0.000 description 10
- 239000010439 graphite Substances 0.000 description 10
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 10
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 9
- 239000004743 Polypropylene Substances 0.000 description 9
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 9
- 239000010410 layer Substances 0.000 description 9
- 229920001155 polypropylene Polymers 0.000 description 9
- 238000007873 sieving Methods 0.000 description 9
- 229910013870 LiPF 6 Inorganic materials 0.000 description 8
- 230000014759 maintenance of location Effects 0.000 description 8
- AIBQNUOBCRIENU-UHFFFAOYSA-N nickel;dihydrate Chemical compound O.O.[Ni] AIBQNUOBCRIENU-UHFFFAOYSA-N 0.000 description 8
- 239000007787 solid Substances 0.000 description 8
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 7
- 238000012512 characterization method Methods 0.000 description 7
- 230000001351 cycling effect Effects 0.000 description 7
- 239000003292 glue Substances 0.000 description 7
- 239000007773 negative electrode material Substances 0.000 description 7
- 238000011056 performance test Methods 0.000 description 7
- 239000012798 spherical particle Substances 0.000 description 7
- 238000012546 transfer Methods 0.000 description 7
- 239000012856 weighed raw material Substances 0.000 description 7
- KGBXLFKZBHKPEV-UHFFFAOYSA-N boric acid Chemical compound OB(O)O KGBXLFKZBHKPEV-UHFFFAOYSA-N 0.000 description 6
- 229910017052 cobalt Inorganic materials 0.000 description 6
- 239000010941 cobalt Substances 0.000 description 6
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 6
- 229910052810 boron oxide Inorganic materials 0.000 description 5
- 239000011248 coating agent Substances 0.000 description 5
- 238000000576 coating method Methods 0.000 description 5
- 238000001816 cooling Methods 0.000 description 5
- JKWMSGQKBLHBQQ-UHFFFAOYSA-N diboron trioxide Chemical compound O=BOB=O JKWMSGQKBLHBQQ-UHFFFAOYSA-N 0.000 description 5
- 239000012528 membrane Substances 0.000 description 5
- 239000000203 mixture Substances 0.000 description 5
- 238000012986 modification Methods 0.000 description 5
- 230000004048 modification Effects 0.000 description 5
- 239000012299 nitrogen atmosphere Substances 0.000 description 5
- -1 polytetrafluoroethylene Polymers 0.000 description 5
- 238000001291 vacuum drying Methods 0.000 description 5
- YEJRWHAVMIAJKC-UHFFFAOYSA-N 4-Butyrolactone Chemical compound O=C1CCCO1 YEJRWHAVMIAJKC-UHFFFAOYSA-N 0.000 description 4
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- 230000009286 beneficial effect Effects 0.000 description 4
- 150000005676 cyclic carbonates Chemical class 0.000 description 4
- 239000011267 electrode slurry Substances 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 229920005597 polymer membrane Polymers 0.000 description 4
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 3
- 150000005678 chain carbonates Chemical class 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000002347 injection Methods 0.000 description 3
- 239000007924 injection Substances 0.000 description 3
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 3
- 239000003960 organic solvent Substances 0.000 description 3
- RUOJZAUFBMNUDX-UHFFFAOYSA-N propylene carbonate Chemical compound CC1COC(=O)O1 RUOJZAUFBMNUDX-UHFFFAOYSA-N 0.000 description 3
- ZZXUZKXVROWEIF-UHFFFAOYSA-N 1,2-butylene carbonate Chemical compound CCC1COC(=O)O1 ZZXUZKXVROWEIF-UHFFFAOYSA-N 0.000 description 2
- 229920000049 Carbon (fiber) Polymers 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical group [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- OIFBSDVPJOWBCH-UHFFFAOYSA-N Diethyl carbonate Chemical compound CCOC(=O)OCC OIFBSDVPJOWBCH-UHFFFAOYSA-N 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 239000004917 carbon fiber Substances 0.000 description 2
- 239000003660 carbonate based solvent Substances 0.000 description 2
- 239000000919 ceramic Substances 0.000 description 2
- 239000003153 chemical reaction reagent Substances 0.000 description 2
- 239000011889 copper foil Substances 0.000 description 2
- 238000005520 cutting process Methods 0.000 description 2
- IEJIGPNLZYLLBP-UHFFFAOYSA-N dimethyl carbonate Chemical compound COC(=O)OC IEJIGPNLZYLLBP-UHFFFAOYSA-N 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 238000011534 incubation Methods 0.000 description 2
- 150000002506 iron compounds Chemical class 0.000 description 2
- 238000003475 lamination Methods 0.000 description 2
- VDVLPSWVDYJFRW-UHFFFAOYSA-N lithium;bis(fluorosulfonyl)azanide Chemical compound [Li+].FS(=O)(=O)[N-]S(F)(=O)=O VDVLPSWVDYJFRW-UHFFFAOYSA-N 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 238000005096 rolling process Methods 0.000 description 2
- 239000007790 solid phase Substances 0.000 description 2
- 230000002195 synergetic effect Effects 0.000 description 2
- 238000002604 ultrasonography Methods 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- IXPNQXFRVYWDDI-UHFFFAOYSA-N 1-methyl-2,4-dioxo-1,3-diazinane-5-carboximidamide Chemical compound CN1CC(C(N)=N)C(=O)NC1=O IXPNQXFRVYWDDI-UHFFFAOYSA-N 0.000 description 1
- 229910000733 Li alloy Inorganic materials 0.000 description 1
- 229910015015 LiAsF 6 Inorganic materials 0.000 description 1
- 229910013063 LiBF 4 Inorganic materials 0.000 description 1
- 229910001290 LiPF6 Inorganic materials 0.000 description 1
- 241000080590 Niso Species 0.000 description 1
- 239000004372 Polyvinyl alcohol Substances 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- SYRDSFGUUQPYOB-UHFFFAOYSA-N [Li+].[Li+].[Li+].[O-]B([O-])[O-].FC(=O)C(F)=O Chemical compound [Li+].[Li+].[Li+].[O-]B([O-])[O-].FC(=O)C(F)=O SYRDSFGUUQPYOB-UHFFFAOYSA-N 0.000 description 1
- HMPRYWSTSPTPFI-UHFFFAOYSA-N [Li].[F] Chemical compound [Li].[F] HMPRYWSTSPTPFI-UHFFFAOYSA-N 0.000 description 1
- 239000006230 acetylene black Substances 0.000 description 1
- 239000011203 carbon fibre reinforced carbon Substances 0.000 description 1
- 229910021393 carbon nanotube Inorganic materials 0.000 description 1
- 239000002041 carbon nanotube Substances 0.000 description 1
- PNEFIWYZWIQKEK-UHFFFAOYSA-N carbonic acid;lithium Chemical compound [Li].OC(O)=O PNEFIWYZWIQKEK-UHFFFAOYSA-N 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 229920001971 elastomer Polymers 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- 230000014509 gene expression Effects 0.000 description 1
- 125000002791 glucosyl group Chemical group C1([C@H](O)[C@@H](O)[C@H](O)[C@H](O1)CO)* 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000001989 lithium alloy Substances 0.000 description 1
- DEUISMFZZMAAOJ-UHFFFAOYSA-N lithium dihydrogen borate oxalic acid Chemical compound B([O-])(O)O.C(C(=O)O)(=O)O.C(C(=O)O)(=O)O.[Li+] DEUISMFZZMAAOJ-UHFFFAOYSA-N 0.000 description 1
- MHCFAGZWMAWTNR-UHFFFAOYSA-M lithium perchlorate Chemical compound [Li+].[O-]Cl(=O)(=O)=O MHCFAGZWMAWTNR-UHFFFAOYSA-M 0.000 description 1
- 229910001496 lithium tetrafluoroborate Inorganic materials 0.000 description 1
- QSZMZKBZAYQGRS-UHFFFAOYSA-N lithium;bis(trifluoromethylsulfonyl)azanide Chemical compound [Li+].FC(F)(F)S(=O)(=O)[N-]S(=O)(=O)C(F)(F)F QSZMZKBZAYQGRS-UHFFFAOYSA-N 0.000 description 1
- MCVFFRWZNYZUIJ-UHFFFAOYSA-M lithium;trifluoromethanesulfonate Chemical compound [Li+].[O-]S(=O)(=O)C(F)(F)F MCVFFRWZNYZUIJ-UHFFFAOYSA-M 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 239000004005 microsphere Substances 0.000 description 1
- SOQBVABWOPYFQZ-UHFFFAOYSA-N oxygen(2-);titanium(4+) Chemical compound [O-2].[O-2].[Ti+4] SOQBVABWOPYFQZ-UHFFFAOYSA-N 0.000 description 1
- 238000004806 packaging method and process Methods 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 229920000098 polyolefin Polymers 0.000 description 1
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 1
- 239000004810 polytetrafluoroethylene Substances 0.000 description 1
- 229920002635 polyurethane Polymers 0.000 description 1
- 239000004814 polyurethane Substances 0.000 description 1
- 229920002451 polyvinyl alcohol Polymers 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
- 239000005060 rubber Substances 0.000 description 1
- 238000007493 shaping process Methods 0.000 description 1
- 238000007086 side reaction Methods 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 235000010413 sodium alginate Nutrition 0.000 description 1
- 229940005550 sodium alginate Drugs 0.000 description 1
- 239000000661 sodium alginate Substances 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 229920003048 styrene butadiene rubber Polymers 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
- 239000003981 vehicle Substances 0.000 description 1
- 238000005303 weighing Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/362—Composites
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/483—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides for non-aqueous cells
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/485—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/52—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
- H01M4/525—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M2004/026—Electrodes composed of, or comprising, active material characterised by the polarity
- H01M2004/028—Positive electrodes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M2220/00—Batteries for particular applications
- H01M2220/20—Batteries in motive systems, e.g. vehicle, ship, plane
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Composite Materials (AREA)
- Materials Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Battery Electrode And Active Subsutance (AREA)
- Compositions Of Oxide Ceramics (AREA)
Abstract
Description
技术领域technical field
本发明属于锂离子电池正极材料领域,具体涉及一种新型无钴正极材料及其制备方法。The invention belongs to the field of positive electrode materials for lithium ion batteries, and in particular relates to a novel cobalt-free positive electrode material and a preparation method thereof.
背景技术Background technique
随着新能源车市场的逐渐崛起,动力锂离子电池成为了电池行业内的强劲增长点,产品需求放量趋势已成。在锂电池研发及应用中,要求正极材料具有电位高、比容量高、密度大等特点,能保持较长的使用寿命和较佳的使用密度。With the gradual rise of the new energy vehicle market, power lithium-ion batteries have become a strong growth point in the battery industry, and the trend of increasing product demand has become. In the research and development and application of lithium batteries, the positive electrode material is required to have the characteristics of high potential, high specific capacity and high density, and can maintain a long service life and better use density.
目前在乘用车领域得到规模应用的三元锂离子电池的一项关键原材料是金属钴。但全球钴矿藏储量有限,钴在地壳中的平均质量含量仅为0.001%,且世界钴储量主要集中分布在澳大利亚和常年局势不稳的非洲国家刚果,这两个国家的钴资源储量约占世界钴总储量的62.86%。因此低成本无钴化正极材料成为未来锂电池行业发展的主流趋势之一。A key raw material for ternary lithium-ion batteries that are currently used on a large scale in the field of passenger cars is metal cobalt. However, the global cobalt reserves are limited, the average mass content of cobalt in the earth's crust is only 0.001%, and the world's cobalt reserves are mainly concentrated in Australia and the African country Congo, which is unstable all the year round. 62.86% of total cobalt reserves. Therefore, low-cost cobalt-free cathode materials have become one of the mainstream trends in the future development of the lithium battery industry.
发明内容SUMMARY OF THE INVENTION
本发明公开了一种无钴正极材料及其制备方法。本发明的正极材料具有原料成本低、制备工艺简单、重复性好、易于量产化、对环境相对友好等优点,且放电平台电压高于磷酸铁锂正极材料。The invention discloses a cobalt-free positive electrode material and a preparation method thereof. The positive electrode material of the invention has the advantages of low cost of raw materials, simple preparation process, good repeatability, easy mass production, relatively friendly environment, and the like, and the discharge platform voltage is higher than that of the lithium iron phosphate positive electrode material.
具体而言,本发明提供一种无钴正极材料,所述无钴正极材料的化学式为LimNixFeyAlzM(1-x-y-z)O2·nB2O3,其中,M为选自W、Ta、Ti、Si、Mg、Ca、Sr、Ba、Ra、Sc、Y、Zr、Nb、Hf、Cr和Mo中的一种或多种元素,0.95≤m≤2,0.05≤x≤0.9,0.05≤y≤0.9,0.02≤z≤0.3,0≤n≤0.005。Specifically, the present invention provides a cobalt-free positive electrode material, the chemical formula of the cobalt-free positive electrode material is Li m Ni x Fe y Al z M (1-xyz) O 2 ·nB 2 O 3 , wherein M is an optional One or more elements from W, Ta, Ti, Si, Mg, Ca, Sr, Ba, Ra, Sc, Y, Zr, Nb, Hf, Cr and Mo, 0.95≤m≤2, 0.05≤x ≤0.9, 0.05≤y≤0.9, 0.02≤z≤0.3, 0≤n≤0.005.
在一个或多个实施方案中,所述M为选自W、Ta、Ti、Mg、Sr、Ba、Y、Zr、Hf、Cr和Mo中的一种或多种元素。In one or more embodiments, the M is one or more elements selected from the group consisting of W, Ta, Ti, Mg, Sr, Ba, Y, Zr, Hf, Cr and Mo.
在一个或多个实施方案中,所述无钴正极材料中,所述M的质量含量为500ppm-100000ppm,优选为1000-50000ppm。In one or more embodiments, in the cobalt-free positive electrode material, the mass content of M is 500 ppm-100,000 ppm, preferably 1,000-50,000 ppm.
在一个或多个实施方案中,所述M包含选自W元素和Ti元素中的一种或两种。In one or more embodiments, the M includes one or two selected from W element and Ti element.
在一个或多个实施方案中,所述M包含W元素;优选地,所述无钴正极材料中,W元素的含量为0.1-2wt%,优选为0.2-1wt%,更优选为0.25-0.5wt%。In one or more embodiments, the M contains W element; preferably, in the cobalt-free positive electrode material, the content of W element is 0.1-2wt%, preferably 0.2-1wt%, more preferably 0.25-0.5 wt%.
在一个或多个实施方案中,所述M包含Ti元素;优选地,所述无钴正极材料中,W元素的含量为0.1-2wt%,优选为0.2-1wt%。In one or more embodiments, the M contains Ti element; preferably, in the cobalt-free positive electrode material, the content of W element is 0.1-2 wt %, preferably 0.2-1 wt %.
在一个或多个实施方案中,所述无钴正极材料中,B元素的质量含量为500-2000ppm。In one or more embodiments, in the cobalt-free positive electrode material, the mass content of element B is 500-2000 ppm.
在一个或多个实施方案中,所述无钴正极材料具有以下一项或多项特征:In one or more embodiments, the cobalt-free cathode material has one or more of the following characteristics:
1≤m≤1.5,优选1.05≤m≤1.2;1≤m≤1.5, preferably 1.05≤m≤1.2;
0.5≤x≤0.8,优选0.6≤x≤0.7;0.5≤x≤0.8, preferably 0.6≤x≤0.7;
0.1≤y≤0.5,优选0.1≤y≤0.2;0.1≤y≤0.5, preferably 0.1≤y≤0.2;
0.05≤z≤0.2,优选0.1≤z≤0.2。0.05≤z≤0.2, preferably 0.1≤z≤0.2.
在一个或多个实施方案中,所述无钴正极材料由微米级类单晶颗粒堆叠而成,所述微米级类单晶颗粒由纳米级类球状颗粒团聚而成的;优选地,所述纳米级类球状颗粒的粒径为200-600nm;优选地,所述微米级类单晶颗粒的粒径为1-10μm。In one or more embodiments, the cobalt-free positive electrode material is formed by stacking micron-scale single-crystal-like particles, and the micron-scale single-crystal-like particles are agglomerated by nano-scale spherical particles; preferably, the The particle size of the nano-scale spherical-like particles is 200-600 nm; preferably, the particle size of the micro-scale single-crystal-like particles is 1-10 μm.
在一个或多个实施方案中,所述无钴正极材料的D50粒径大小为1-3μm。In one or more embodiments, the D50 particle size of the cobalt-free positive electrode material is 1-3 μm.
在一个或多个实施方案中,所述无钴正极材料的粉体振实密度为1-2g/cc。In one or more embodiments, the powder tap density of the cobalt-free positive electrode material is 1-2 g/cc.
本发明还提供一种制备本文任一实施方案所述的无钴正极材料的方法,所述方法包括以下步骤:The present invention also provides a method for preparing the cobalt-free positive electrode material described in any of the embodiments herein, the method comprising the following steps:
(1)将锂源、镍源、铁源、铝源、碳源和M源混合均匀;(1) Mix the lithium source, nickel source, iron source, aluminum source, carbon source and M source evenly;
(2)在惰性气体氛围、750-850℃下对步骤(1)得到的混合物料进行保温处理,得到无钴正极材料;(2) thermally insulating the mixture obtained in step (1) at 750-850° C. in an inert gas atmosphere to obtain a cobalt-free positive electrode material;
任选地,所述方法还包括:Optionally, the method further includes:
(3)将步骤(2)得到的无钴正极材料与硼源混合均匀后,在惰性气体氛围、250-350℃下进行保温处理,得到含硼元素的无钴正极材料。(3) After uniformly mixing the cobalt-free positive electrode material obtained in step (2) with the boron source, heat preservation treatment is performed in an inert gas atmosphere at 250-350° C. to obtain a boron-containing cobalt-free positive electrode material.
在一个或多个实施方案中,所述锂源选自碳酸锂和氢氧化锂中的一种或两种。In one or more embodiments, the lithium source is selected from one or both of lithium carbonate and lithium hydroxide.
在一个或多个实施方案中,所述镍源选自氢氧化镍、碳酸镍和硫酸镍中的一种或多种,优选为球形氢氧化镍。In one or more embodiments, the nickel source is selected from one or more of nickel hydroxide, nickel carbonate and nickel sulfate, preferably spherical nickel hydroxide.
在一个或多个实施方案中,所述铁源选自二水醋酸亚铁、硫酸亚铁、碳酸亚铁、氯化亚铁和氯化铁中的一种或多种。In one or more embodiments, the iron source is selected from one or more of ferrous acetate dihydrate, ferrous sulfate, ferrous carbonate, ferrous chloride, and ferric chloride.
在一个或多个实施方案中,所述铝源选自三氧化二铝和氢氧化铝,优选选自片层三氧化二铝和片层氢氧化铝中的一种或两种。In one or more embodiments, the aluminum source is selected from aluminum oxide and aluminum hydroxide, preferably selected from one or both of flake aluminum oxide and flake aluminum hydroxide.
在一个或多个实施方案中,所述碳源选自葡萄糖、蔗糖和石墨烯中的一种或多种。In one or more embodiments, the carbon source is selected from one or more of glucose, sucrose, and graphene.
在一个或多个实施方案中,所述碳源的用量为所有原料总质量的2-10%。In one or more embodiments, the carbon source is used in an amount of 2-10% of the total mass of all feedstocks.
在一个或多个实施方案中,所述M源包括选自三氧化钨和二氧化钛中的一种或两种;三氧化钨优选为纳米级三氧化钨,二氧化钛优选为纳米级二氧化钛。In one or more embodiments, the M source includes one or two selected from tungsten trioxide and titanium dioxide; tungsten trioxide is preferably nano-scale tungsten trioxide, and titanium dioxide is preferably nano-scale titanium dioxide.
在一个或多个实施方案中,步骤(1)中,使用行星式球磨机混合物料,球磨机的转速优选为150-250r/min,球磨时间优选为30-60min。In one or more embodiments, in step (1), a planetary ball mill is used to mix the materials, the rotation speed of the ball mill is preferably 150-250 r/min, and the ball milling time is preferably 30-60 min.
在一个或多个实施方案中,步骤(2)中,使用管式气氛炉进行保温。In one or more embodiments, in step (2), a tubular atmosphere furnace is used for holding the temperature.
在一个或多个实施方案中,步骤(2)中,以1-3℃/min的升温速率升至保温温度。In one or more embodiments, in step (2), the temperature is raised to the holding temperature at a ramp rate of 1-3°C/min.
在一个或多个实施方案中,步骤(2)中,保温时间为10-18h。In one or more embodiments, in step (2), the incubation time is 10-18 h.
在一个或多个实施方案中,步骤(2)中,保温后降温至100℃以下,降温速率优选为2-5℃/min。In one or more embodiments, in step (2), the temperature is lowered to below 100° C. after heat preservation, and the cooling rate is preferably 2-5° C./min.
在一个或多个实施方案中,步骤(2)还包括对所得到的无钴正极材料进行研磨和筛分。In one or more embodiments, step (2) further comprises grinding and sieving the obtained cobalt-free cathode material.
在一个或多个实施方案中,步骤(3)中,所述硼源为硼酸。In one or more embodiments, in step (3), the boron source is boric acid.
在一个或多个实施方案中,步骤(3)中,使用高速混合机进行混合,高速混合机的转速优选为1000-3000r/min,混合时间优选为10-30min。In one or more embodiments, in step (3), a high-speed mixer is used for mixing, and the rotation speed of the high-speed mixer is preferably 1000-3000 r/min, and the mixing time is preferably 10-30 min.
在一个或多个实施方案中,步骤(3)中,使用管式气氛炉进行保温。In one or more embodiments, in step (3), a tubular atmosphere furnace is used for holding the temperature.
在一个或多个实施方案中,步骤(3)中,以1-3℃/min的升温速率升至保温温度。In one or more embodiments, in step (3), the temperature is raised to the holding temperature at a ramp rate of 1-3°C/min.
在一个或多个实施方案中,步骤(3)中,保温时间为2-6h。In one or more embodiments, in step (3), the incubation time is 2-6 h.
在一个或多个实施方案中,步骤(3)中,保温后降温至100℃以下,降温优选为自然降温。In one or more embodiments, in step (3), the temperature is lowered to below 100° C. after heat preservation, and the cooling is preferably natural cooling.
本发明还提供采用本文任一实施方案所述的方法制备得到的无钴正极材料。The present invention also provides a cobalt-free positive electrode material prepared by the method described in any of the embodiments herein.
本发明还提供一种正极极片,所述正极极片包含本文任一实施方案所述的无钴正极材料。The present invention also provides a positive electrode sheet comprising the cobalt-free positive electrode material described in any one of the embodiments herein.
本发明还提供一种锂离子电池,所述锂离子电池包括本文任一实施方案所述的正极极片。The present invention also provides a lithium ion battery, the lithium ion battery comprising the positive electrode plate described in any one of the embodiments herein.
本发明还提供一种锂离子电池电芯,所述锂离子电池电芯包括本文任一实施方案所述的正极极片。The present invention also provides a lithium ion battery cell, the lithium ion battery cell comprising the positive electrode plate described in any one of the embodiments herein.
附图说明Description of drawings
图1为实施例1的正极材料的扫描电子显微镜照片(5k倍)。FIG. 1 is a scanning electron microscope photograph (5k magnification) of the positive electrode material of Example 1. FIG.
图2为实施例1的正极材料的扫描电子显微镜照片(20k倍)。FIG. 2 is a scanning electron microscope photograph (20k magnification) of the positive electrode material of Example 1. FIG.
图3为实施例2的正极材料的扫描电子显微镜照片(2k倍)。FIG. 3 is a scanning electron microscope photograph (2k magnification) of the positive electrode material of Example 2. FIG.
图4为实施例2的正极材料的扫描电子显微镜照片(20k倍)。FIG. 4 is a scanning electron microscope photograph (20k magnification) of the positive electrode material of Example 2. FIG.
图5为实施例3的正极材料的扫描电子显微镜照片(2k倍)。FIG. 5 is a scanning electron microscope photograph (2k magnification) of the positive electrode material of Example 3. FIG.
图6为实施例3的正极材料的扫描电子显微镜照片(20k倍)。FIG. 6 is a scanning electron microscope photograph (20k magnification) of the positive electrode material of Example 3. FIG.
图7为实施例4的正极材料的扫描电子显微镜照片(2k倍)。FIG. 7 is a scanning electron microscope photograph (2k magnification) of the positive electrode material of Example 4. FIG.
图8为实施例4的正极材料的扫描电子显微镜照片(20k倍)。FIG. 8 is a scanning electron microscope photograph (20k magnification) of the positive electrode material of Example 4. FIG.
图9为实施例1的正极材料的首轮充放电曲线图。FIG. 9 is a first-round charge-discharge curve diagram of the positive electrode material of Example 1. FIG.
图10为实施例1的正极材料1CC/1DC的50周容量保持率曲线图。10 is a graph showing the 50-cycle capacity retention rate of the positive electrode material 1CC/1DC of Example 1.
具体实施方式Detailed ways
为使本领域技术人员可了解本发明的特点及效果,以下谨就说明书及权利要求书中提及的术语及用语进行一般性的说明及定义。除非另有指明,否则文中使用的所有技术及科学上的字词,均为本领域技术人员对于本发明所了解的通常意义,当有冲突情形时,应以本说明书的定义为准。In order for those skilled in the art to understand the features and effects of the present invention, general descriptions and definitions of terms and expressions mentioned in the specification and claims are hereunder. Unless otherwise specified, all technical and scientific terms used in the text have the ordinary meaning understood by those skilled in the art to the present invention, and in case of conflict, the definitions in this specification shall prevail.
本文描述和公开的理论或机制,无论是对或错,均不应以任何方式限制本发明的范围,即本发明内容可以在不为任何特定的理论或机制所限制的情况下实施。The theory or mechanism described and disclosed herein, whether true or false, should not in any way limit the scope of the invention, ie, the present invention may be practiced without being limited by any particular theory or mechanism.
本文中,“包含”、“包括”、“含有”以及类似的用语涵盖了“基本由……组成”和“由……组成”的意思,例如,当本文公开了“A包含B和C”时,“A基本由B和C组成”和“A由B和C组成”应当认为已被本文所公开。As used herein, "comprising", "including", "containing" and similar terms encompass the meanings of "consisting essentially of" and "consisting of," eg, when it is disclosed herein that "A includes B and C" "A consists essentially of B and C" and "A consists of B and C" shall be deemed to have been disclosed herein.
在本文中,所有以数值范围或百分比范围形式界定的特征如数值、数量、含量与浓度仅是为了简洁及方便。据此,数值范围或百分比范围的描述应视为已涵盖且具体公开所有可能的次级范围及范围内的个别数值(包括整数与分数)。In this document, all characteristics such as numerical values, amounts, amounts, and concentrations defined as numerical ranges or percentage ranges are for brevity and convenience only. Accordingly, the description of numerical ranges or percentage ranges should be considered to encompass and specifically disclose all possible sub-ranges and individual numerical values (including integers and fractions) within the ranges.
本文中,若无特别说明,百分比是指质量百分比,比例是指质量比。Herein, unless otherwise specified, the percentage refers to the mass percentage, and the ratio refers to the mass ratio.
本文中,当描述实施方案或实施例时,应理解,其并非用来将本发明限定于这些实施方案或实施例。相反地,本发明所描述的方法及材料的所有的替代物、改良物及均等物,均可涵盖于权利要求书所限定的范围内。Herein, when embodiments or examples are described, it should be understood that it is not intended to limit the invention to those embodiments or examples. On the contrary, all alternatives, modifications and equivalents of the methods and materials described herein are intended to be included within the scope of the appended claims.
本文中,为使描述简洁,未对各个实施方案或实施例中的各个技术特征的所有可能的组合都进行描述。因此,只要这些技术特征的组合不存在矛盾,各个实施方案或实施例中的各个技术特征可以进行任意的组合,所有可能的组合都应当认为是本说明书记载的范围。Herein, for the sake of brevity of description, not all possible combinations of various technical features in various embodiments or examples are described. Therefore, as long as there is no contradiction in the combination of these technical features, each technical feature in each embodiment or example can be combined arbitrarily, and all possible combinations should be considered to be within the scope of the description.
无钴正极材料Cobalt-free cathode material
本发明的正极材料是以Ni、Fe、Al为主元素,经过某些特定种类的元素M(如W、Ta、Ti、Si、Mg、Ca、Sr、Ba、Ra、Sc、Y、Zr、Nb、Hf、Cr、Mo等)改性而成的LimNixFeyAlzM(1-x-y-z)O2无钴正极材料,其中0.95≤m≤2,0.05≤x≤0.90,0.05≤y≤0.90,0.02≤z≤0.30。M优选W、Ta、Ti、Mg、Sr、Ba、Y、Zr、Hf、Cr、Mo等。M既可以以掺杂形式存在也可以以包覆形式存在。在正极材料中,M的质量含量在500ppm-100000ppm之间,优选在1000-50000ppm之间。在该含量下,正极材料具有颗粒形貌均一性好、粒度适中、克容量较高、循环稳定性高等优点。本发明的正极材料中,Ni、Fe为变价元素,随着充电进行,Ni2+向高价态Ni3+以及Ni4+转变,Fe2+向Fe3+转变,Ni、Fe作为容量的贡献元素,而Al以及改性元素M未参与价态变化,主要起到稳定结构、改善倍率以及提高热稳定性的作用。The positive electrode material of the present invention is mainly composed of Ni, Fe, Al, and some specific types of elements M (such as W, Ta, Ti, Si, Mg, Ca, Sr, Ba, Ra, Sc, Y, Zr, Li m Ni x Fe y Al z M (1-xyz) O 2 cobalt-free cathode material modified with Nb, Hf, Cr, Mo, etc.), wherein 0.95≤m≤2, 0.05≤x≤0.90, 0.05≤ y≤0.90, 0.02≤z≤0.30. M is preferably W, Ta, Ti, Mg, Sr, Ba, Y, Zr, Hf, Cr, Mo, or the like. M can be present either in doped or encapsulated form. In the positive electrode material, the mass content of M is between 500 ppm and 100,000 ppm, preferably between 1,000 and 50,000 ppm. At this content, the cathode material has the advantages of good particle morphology uniformity, moderate particle size, high gram capacity, and high cycle stability. In the positive electrode material of the present invention, Ni and Fe are valence-changing elements. As charging progresses, Ni 2+ transforms into high-valence Ni 3+ and Ni 4+ , Fe 2+ transforms into Fe 3+ , and Ni and Fe contribute to the capacity. Elements, while Al and modified element M do not participate in the change of valence state, and mainly play the role of stabilizing the structure, improving the magnification and improving the thermal stability.
本发明发现,在本发明的正极材料中添加改性元素M、例如钨元素、钛元素,可以改善电池的首次充放电性能,包括首次充电比容量、首次放电比容量、首次效率,提高放电平台电压和循环容量保持率,并提升倍率性能,其中使用钨改性的效果要优于钛改性,钨改性还能提升低温性能。It is found in the present invention that adding modified element M, such as tungsten element and titanium element, to the positive electrode material of the present invention can improve the first charge and discharge performance of the battery, including the first charge specific capacity, the first discharge specific capacity and the first efficiency, and improve the discharge platform. The retention rate of voltage and cycle capacity is improved, and the rate performance is improved. The effect of using tungsten modification is better than that of titanium modification, and tungsten modification can also improve low temperature performance.
本发明的正极材料中,改性元素M的质量含量为500ppm-100000ppm,例如1000ppm、2000ppm、5000ppm、10000ppm、20000ppm、50000ppm。In the positive electrode material of the present invention, the mass content of the modifying element M is 500ppm-100000ppm, for example, 1000ppm, 2000ppm, 5000ppm, 10000ppm, 20000ppm, 50000ppm.
在改性元素M包括钨元素的实施方案中,钨元素的含量可以为0.1-2wt%,优选为0.2-1wt%,例如0.25wt%、0.3wt%、0.33wt%、0.35wt%、0.4wt%、0.5wt%、0.8wt%、0.9wt%、0.95wt%、0.98wt%。为了保持较好的首次充放电性能和低温性能,钨元素的含量优选为0.25-0.5wt%。In the embodiment where the modifying element M includes tungsten element, the content of tungsten element may be 0.1-2wt%, preferably 0.2-1wt%, such as 0.25wt%, 0.3wt%, 0.33wt%, 0.35wt%, 0.4wt% %, 0.5wt%, 0.8wt%, 0.9wt%, 0.95wt%, 0.98wt%. In order to maintain better initial charge-discharge performance and low-temperature performance, the content of tungsten element is preferably 0.25-0.5 wt %.
在改性元素M包括钛元素的实施方案中,钛元素的含量可以为0.1-2wt%,优选为0.2-1wt%,例如0.25wt%、0.3wt%、0.33wt%、0.35wt%、0.4wt%、0.5wt%、0.8wt%、0.9wt%、0.95wt%、0.98wt%。In the embodiment where the modifying element M includes titanium element, the content of titanium element may be 0.1-2wt%, preferably 0.2-1wt%, such as 0.25wt%, 0.3wt%, 0.33wt%, 0.35wt%, 0.4wt% %, 0.5wt%, 0.8wt%, 0.9wt%, 0.95wt%, 0.98wt%.
在一些实施方案中,本发明的正极材料的化学式LimNixFeyAlzM(1-x-y-z)O2·nB2O3中,1≤m≤1.5,优选1.05≤m≤1.2,例如m可以为1.08、1.1、1.12、1.15;0.5≤x≤0.8,优选0.6≤x≤0.7,例如x可以为0.65、2/3、0.68;0.1≤y≤0.5,优选0.1≤y≤0.2,例如y可以为0.15、1/6、0.18;0.05≤z≤0.2,优选0.1≤z≤0.2,例如z可以为0.15、0.1617、0.165、0.18。这有利于提升电池的性能。本发明中,x+y+z<1。In some embodiments, in the chemical formula Li m Ni x Fe y Al z M (1-xyz) O 2 ·nB 2 O 3 of the positive electrode material of the present invention, 1≤m≤1.5, preferably 1.05≤m≤1.2, for example m may be 1.08, 1.1, 1.12, 1.15; 0.5≤x≤0.8, preferably 0.6≤x≤0.7, for example x may be 0.65, 2/3, 0.68; 0.1≤y≤0.5, preferably 0.1≤y≤0.2, for example y may be 0.15, 1/6, 0.18; 0.05≤z≤0.2, preferably 0.1≤z≤0.2, for example, z may be 0.15, 0.1617, 0.165, 0.18. This helps to improve the performance of the battery. In the present invention, x+y+z<1.
本发明的正极材料具有适中的D50大小(1-3μm左右),较高的粉体振实密度(1-2g/cc),这有利于提升电池性能。例如,本发明的正极材料的D50粒径可以为1μm、1.3μm、1.5μm、1.8μm、2μm、2.5μm、3μm。本发明的正极材料的粉体振实密度可以为1g/cc、1.2g/cc、1.4g/cc、1.6g/cc、1.8g/cc、2g/cc。本发明中,粉体振实密度的测试方法为:将20g正极材料样品置于量筒中使用振实密度仪测试,其中振动3000次,频次250次/min。The positive electrode material of the present invention has a moderate D50 size (about 1-3 μm) and a relatively high powder tap density (1-2 g/cc), which is beneficial to improve battery performance. For example, the D50 particle size of the positive electrode material of the present invention may be 1 μm, 1.3 μm, 1.5 μm, 1.8 μm, 2 μm, 2.5 μm, and 3 μm. The powder tap density of the positive electrode material of the present invention may be 1 g/cc, 1.2 g/cc, 1.4 g/cc, 1.6 g/cc, 1.8 g/cc, and 2 g/cc. In the present invention, the testing method for powder tap density is as follows: place 20 g of positive electrode material sample in a graduated cylinder and use a tap density meter to test, wherein the vibration is 3000 times and the frequency is 250 times/min.
本发明中,粒径D50的测试方法为:取少量正极材料粉末样品于100mL烧杯中,加水40mL,240W外超声15s,全部倒入激光粒度仪进样系统中进行充分分散使遮光度在8~15%,内超声(约20W)一直开启,折射率2.90,以此进行正极材料粉末样品D50测试。In the present invention, the test method for particle size D50 is as follows: take a small amount of positive electrode material powder sample in a 100mL beaker, add 40mL of water, 240W external ultrasound for 15s, and pour all of them into the laser particle size analyzer sample injection system to fully disperse so that the shading degree is between 8~ 15%, the internal ultrasound (about 20W) is always on, the refractive index is 2.90, and the D50 test of the positive electrode material powder sample is carried out.
本发明的正极材料由微米级类单晶颗粒堆叠而成,其中微米级类单晶颗粒由纳米级类球状颗粒团聚而成的。纳米级类球状颗粒的粒径优选为200-600nm,例如300nm、400nm、500nm。微米级类单晶颗粒的粒径优选为1-10μm,例如2μm、4μm、6μm、8μm、9μm。这有利于提升电池性能。The positive electrode material of the present invention is formed by stacking micron-scale single crystal-like particles, wherein the micron-scale single-crystal-like particles are agglomerated by nano-scale spherical particles. The particle size of the nano-scale spherical particles is preferably 200-600 nm, such as 300 nm, 400 nm, 500 nm. The particle size of the micron-sized single-crystal-like particles is preferably 1-10 μm, for example, 2 μm, 4 μm, 6 μm, 8 μm, and 9 μm. This helps to improve battery performance.
本发明的正极材料任选或优选地还可以含有硼元素改性,例如可以在前述化学式为LimNixFeyAlzM(1-x-y-z)O2的正极材料的基础上掺杂或包覆氧化硼,得到化学式为LimNixFeyAlzM(1-x-y-z)O2·nB2O3的正极材料,以进一步提高正极活性材料的克容量、改善首次充放电性能、循环性能、倍率性能以及低温性能。在一些性能上,M与B还存在协同增效的作用,例如Ti与B在改善倍率充电容量保持率上存在协同作用。The positive electrode material of the present invention can optionally or preferably also contain boron element modification, for example, it can be doped or packaged on the basis of the positive electrode material whose chemical formula is Li m Ni x Fe y Al z M (1-xyz) O 2 Coated with boron oxide to obtain a positive electrode material with the chemical formula Li m Ni x Fe y Al z M (1-xyz) O 2 ·nB 2 O 3 to further increase the gram capacity of the positive electrode active material, improve the first charge-discharge performance, and cycle performance , rate performance and low temperature performance. In some properties, M and B also have a synergistic effect, for example, Ti and B have a synergistic effect in improving the rate charging capacity retention rate.
本发明的硼元素改性的正极材料LimNixFeyAlzM(1-x-y-z)O2·nB2O3中,m、x、y、z如前文所述,0≤n≤0.005,例如n可以为0.001、0.002、0.003、0.004。这有利于提升电池的性能。在优选的实施方案中,正极材料中,B元素的质量含量为500-2000ppm,例如800ppm、1000ppm、1200ppm、1500ppm。In the boron element-modified cathode material Li m Ni x Fe y Al z M (1-xyz) O 2 ·nB 2 O 3 of the present invention, m, x, y, and z are as described above, and 0≤n≤0.005 , for example n can be 0.001, 0.002, 0.003, 0.004. This helps to improve the performance of the battery. In a preferred embodiment, in the positive electrode material, the mass content of element B is 500-2000 ppm, such as 800 ppm, 1000 ppm, 1200 ppm, 1500 ppm.
本发明的正极材料不含钴元素,由锂源、镍源、铁源、铝源、碳源和M源混合均匀后在惰性气体氛围中经保温处理(烧结)而得到。The positive electrode material of the present invention does not contain cobalt element, and is obtained by mixing lithium source, nickel source, iron source, aluminum source, carbon source and M source uniformly and then heat preservation treatment (sintering) in an inert gas atmosphere.
本发明的正极材料的原料中,锂源可以是碳酸锂(Li2CO3)、氢氧化锂(LiOH·H2O)等。在一些实施方案中,锂源为碳酸锂。Among the raw materials of the positive electrode material of the present invention, the lithium source may be lithium carbonate (Li 2 CO 3 ), lithium hydroxide (LiOH·H 2 O), or the like. In some embodiments, the lithium source is lithium carbonate.
本发明的正极材料的原料中,镍源可以是氢氧化镍(Ni(OH)2)、碳酸镍(NiCO3)、硫酸镍(NiSO4)等。镍源优选呈球形。在一些实施方案中,镍源是球型氢氧化镍。Among the raw materials of the positive electrode material of the present invention, the nickel source may be nickel hydroxide (Ni(OH) 2 ), nickel carbonate (NiCO 3 ), nickel sulfate (NiSO 4 ), or the like. The nickel source is preferably spherical. In some embodiments, the nickel source is spherical nickel hydroxide.
本发明的正极材料的原料中,铁源可以是二价铁化合物、三价铁化合物或其混合,例如,铁源可以是二水醋酸亚铁(C4H6FeO4·2H2O)、硫酸亚铁(FeSO4)、碳酸亚铁(FeCO3)、氯化亚铁(FeCl2)、氯化铁(FeCl3)等。在一些实施方案中,铁源为二水醋酸亚铁。In the raw material of the positive electrode material of the present invention, the iron source can be a divalent iron compound, a trivalent iron compound or a mixture thereof, for example, the iron source can be ferrous acetate dihydrate (C 4 H 6 FeO 4 ·2H 2 O), Ferrous sulfate (FeSO 4 ), ferrous carbonate (FeCO 3 ), ferrous chloride (FeCl 2 ), ferric chloride (FeCl 3 ), and the like. In some embodiments, the iron source is ferrous acetate dihydrate.
本发明的正极材料的原料中,铝源可以是三氧化二铝、氢氧化铝等。铝源优选呈片层状。在一些实施方案中,铝源是片层三氧化二铝。In the raw material of the positive electrode material of the present invention, the aluminum source may be aluminum oxide, aluminum hydroxide, or the like. The aluminum source is preferably in the form of lamellae. In some embodiments, the aluminum source is flaky aluminum oxide.
本发明的正极材料的原料中,碳源可以是葡萄糖、蔗糖、石墨烯等。在一些实施方案中,碳源为葡萄糖。In the raw material of the positive electrode material of the present invention, the carbon source can be glucose, sucrose, graphene and the like. In some embodiments, the carbon source is glucose.
本发明中,M源可以是M元素的氧化物、氢氧化物、碳酸盐等。M源优选为纳米级。在一些实施方案中,M为选自钨元素和钛元素中的一者或两者。本发明的正极材料的原料中,钨源可以是三氧化钨,优选为纳米三氧化钨。本发明的正极材料的原料中,钛源可以是二氧化钛,优选为纳米二氧化钛。In the present invention, the M source may be an oxide, hydroxide, carbonate or the like of the M element. The M source is preferably nanoscale. In some embodiments, M is one or both selected from tungsten and titanium. In the raw material of the positive electrode material of the present invention, the tungsten source can be tungsten trioxide, preferably nano-tungsten trioxide. In the raw material of the positive electrode material of the present invention, the titanium source can be titanium dioxide, preferably nano titanium dioxide.
将各原料按照正极材料目标元素组成进行配料,混合均匀后进行烧结。优选地,烧结前对原料进行球磨,至目测混合粉体材料颜色均一且研磨无颗粒感。球磨机的转速优选为150-250r/min,例如200r/min,球磨时间优选为30-60min,这有利于烧结和提升材料性能。烧结可以在管式炉中进行。烧结时使用惰性气体、例如氮气进行保护。烧结温度可以为750-850℃,例如780℃、800℃、810℃、820℃、830℃、840℃。可以通过调控烧结温度调节正极材料性能。较高烧结温度下,电池首效、循环性能和低温性能较好,因此优选在800-850℃下进行烧结,在该温度下锂盐充分熔融且与原料固相烧结反应更充分,所生成的正极材料形貌更圆润同时在包覆及二次烧结中基体与包覆剂之间有更好的结合力。可以采用1-3℃/min,例如1.5℃/min、2℃/min、2.5℃/min的升温速率升至烧结温度。烧结时间可以为10-18h,例如12h、14h、16h。烧结后降温至100℃以下,降温速率优选为2-5℃/min,例如3℃/min、4℃/min。可以对正极材料进行后处理。后处理可以选自研磨、筛分、干燥。Each raw material is prepared according to the target element composition of the positive electrode material, and then sintered after mixing uniformly. Preferably, the raw materials are ball-milled before sintering, until the mixed powder material has a uniform color and no graininess during grinding. The rotation speed of the ball mill is preferably 150-250 r/min, for example, 200 r/min, and the ball milling time is preferably 30-60 min, which is beneficial to sintering and improving material properties. Sintering can be carried out in a tube furnace. An inert gas such as nitrogen is used for protection during sintering. The sintering temperature may be 750-850°C, such as 780°C, 800°C, 810°C, 820°C, 830°C, 840°C. The performance of the cathode material can be adjusted by adjusting the sintering temperature. At a higher sintering temperature, the first effect, cycle performance and low temperature performance of the battery are better, so it is preferably sintered at 800-850 ° C, at this temperature, the lithium salt is fully melted and the solid-phase sintering reaction with the raw materials is more sufficient. The morphology of the positive electrode material is more rounded and the bonding force between the matrix and the coating agent is better in coating and secondary sintering. The sintering temperature can be raised to a ramp rate of 1-3°C/min, eg, 1.5°C/min, 2°C/min, 2.5°C/min. The sintering time can be 10-18h, eg 12h, 14h, 16h. After sintering, the temperature is lowered to below 100°C, and the cooling rate is preferably 2-5°C/min, such as 3°C/min, 4°C/min. The cathode material can be post-treated. Post-treatment can be selected from grinding, sieving, drying.
在制备氧化硼改性的正极材料时,将前述烧结得到的正极材料进一步与硼源混合均匀后在惰性气体中进行保温处理(烧结)。硼源可以是硼酸。可以使用高速混合机对正极材料和硼源进行混合。高速混合机的转速优选为1000-3000r/min,例如2000r/min。混合时间优选为10-30min,例如15min。该步烧结中,烧结可以在管式炉中进行。烧结时使用惰性气体、例如氮气进行保护。烧结温度可以为250-350℃,例如280℃、290℃、300℃、310℃、320℃。可以采用1-3℃/min,例如1.5℃/min、2℃/min、2.5℃/min的升温速率升至烧结温度。烧结时间可以为2-6h,例如3h、4h、5h。烧结后降温至100℃以下,可以是自然降温。可以对氧化硼改性的正极材料进行后处理,例如进行干燥。When preparing a boron oxide-modified positive electrode material, the positive electrode material obtained by sintering is further mixed with a boron source uniformly, and then heat-retaining treatment (sintering) is performed in an inert gas. The boron source can be boric acid. The cathode material and boron source can be mixed using a high speed mixer. The rotational speed of the high-speed mixer is preferably 1000-3000 r/min, such as 2000 r/min. The mixing time is preferably 10-30 min, eg 15 min. In this step of sintering, the sintering may be performed in a tube furnace. An inert gas such as nitrogen is used for protection during sintering. The sintering temperature may be 250-350°C, such as 280°C, 290°C, 300°C, 310°C, 320°C. The sintering temperature can be raised to a ramp rate of 1-3°C/min, eg, 1.5°C/min, 2°C/min, 2.5°C/min. The sintering time can be 2-6h, such as 3h, 4h, 5h. After sintering, the temperature is lowered to below 100°C, which may be natural cooling. The boron oxide-modified cathode material may be post-treated, eg, dried.
正极极片和锂离子电池Positive pole piece and Li-ion battery
本发明提供含有本文任一实施方案所述的正极材料的正极极片、含有该正极极片的锂离子电池电芯、以及含有该正极极片的锂离子电池。The present invention provides a positive electrode sheet containing the positive electrode material described in any of the embodiments herein, a lithium ion battery cell containing the positive electrode sheet, and a lithium ion battery containing the positive electrode sheet.
锂离子电池电芯包含正极极片、负极极片和隔膜。按照设计要求对正极极片、负极极片和隔膜进行叠片(例如Z字形叠片或绕卷式叠片)可制得锂离子电池的电芯。Lithium-ion battery cells include positive pole pieces, negative pole pieces and separators. According to the design requirements, the positive electrode, negative electrode and separator can be laminated (for example, zigzag lamination or wound lamination) to obtain the battery cell of the lithium ion battery.
正极极片包括正极集流体和形成在正极集流体表面的正极材料层。正极材料层包括正极材料、导电剂和粘结剂。正极材料层通常由包含正极材料、导电剂、粘结剂和溶剂的正极浆料涂布到正极集流体上,再经过辊压、模切、烘烤而得到。正极浆料的溶剂可以是N-甲基吡咯烷酮(NMP)。正极集流体可以是铜箔、铝箔、钛箔、镍箔、铁箔、锌箔等。正极材料可以是选自磷酸铁锂、二元正极材料、三元正极材料、四元正极材料等。优选地,正极材料为本文任一实施方案所述的无钴正极材料。正极的导电剂可以是选自导电炭黑(SP)、碳纤维(CF)、乙炔黑、导电石墨、石墨烯、碳纳米管和碳微球中的一种或多种。导电炭黑的实例包括超级炭黑(super-c65)。正极的粘结剂可以是选自聚偏二氟乙烯(PVDF)、聚四氟乙烯、聚乙烯醇、聚烯烃、丁苯橡胶、氟化橡胶、聚氨酯和海藻酸钠中的一种或多种。在一些实施方案中,正极材料层中的导电剂是SP,粘结剂是PVDF。正极材料层中各组分的含量配比可以是常规的,例如正极活性物质的质量分数可以为80%-98%、例如84%、88%、92%、96%,导电剂的质量分数可以为1%-10%、例如2%、4%、6%、8%,粘结剂的质量分数可以为1%-10%、例如2%、4%、6%、8%。The positive electrode sheet includes a positive electrode current collector and a positive electrode material layer formed on the surface of the positive electrode current collector. The positive electrode material layer includes a positive electrode material, a conductive agent and a binder. The positive electrode material layer is usually obtained by coating a positive electrode slurry containing a positive electrode material, a conductive agent, a binder and a solvent onto a positive electrode current collector, and then rolling, die-cutting, and baking. The solvent of the positive electrode slurry may be N-methylpyrrolidone (NMP). The positive electrode current collector can be copper foil, aluminum foil, titanium foil, nickel foil, iron foil, zinc foil, and the like. The positive electrode material may be selected from lithium iron phosphate, binary positive electrode material, ternary positive electrode material, quaternary positive electrode material, and the like. Preferably, the positive electrode material is the cobalt-free positive electrode material described in any of the embodiments herein. The conductive agent of the positive electrode may be one or more selected from conductive carbon black (SP), carbon fiber (CF), acetylene black, conductive graphite, graphene, carbon nanotubes and carbon microspheres. Examples of conductive carbon blacks include super carbon black (super-c65). The binder of the positive electrode can be one or more selected from polyvinylidene fluoride (PVDF), polytetrafluoroethylene, polyvinyl alcohol, polyolefin, styrene-butadiene rubber, fluorinated rubber, polyurethane and sodium alginate . In some embodiments, the conductive agent in the positive electrode material layer is SP and the binder is PVDF. The content ratio of each component in the positive electrode material layer can be conventional, for example, the mass fraction of the positive active material can be 80%-98%, such as 84%, 88%, 92%, 96%, and the mass fraction of the conductive agent can be It is 1%-10%, such as 2%, 4%, 6%, 8%, and the mass fraction of the binder can be 1%-10%, such as 2%, 4%, 6%, 8%.
负极极片包括负极集流体和设置在负极集流体表面的负极材料层。负极集流体可以是铜箔。负极材料层包括负极材料、导电剂和粘结剂。负极材料层通过由包含负极材料的负极浆料涂布到正极集流体上,再经过辊压、模切、烘烤而得到。负极浆料的溶剂可以是水。负极材料可以是选自石墨、锂金属、锂合金等。在一些实施方案中,负极材料是石墨。The negative pole piece includes a negative electrode current collector and a negative electrode material layer disposed on the surface of the negative electrode current collector. The negative electrode current collector may be copper foil. The negative electrode material layer includes a negative electrode material, a conductive agent and a binder. The negative electrode material layer is obtained by coating the negative electrode slurry containing the negative electrode material on the positive electrode current collector, and then rolling, die-cutting, and baking. The solvent of the negative electrode slurry may be water. The negative electrode material can be selected from graphite, lithium metal, lithium alloy, and the like. In some embodiments, the negative electrode material is graphite.
隔膜可以是聚合物隔膜、陶瓷隔膜或聚合物/陶瓷复合隔膜。聚合物隔膜包括单层聚合物隔膜和多层聚合物隔膜。在一些实施方案中,隔膜是聚丙烯(PP)隔膜。The membrane may be a polymer membrane, a ceramic membrane or a polymer/ceramic composite membrane. Polymer membranes include single-layer polymer membranes and multi-layer polymer membranes. In some embodiments, the membrane is a polypropylene (PP) membrane.
获得电芯后,将电芯封装在外壳内,经过干燥、注液(注入电解液)、封装、静置、化成、整形,即可制得锂离子电池。After the battery cell is obtained, the battery core is packaged in a casing, and the lithium ion battery can be obtained through drying, liquid injection (injection of electrolyte), packaging, standing, formation and shaping.
锂离子电池电解液包含有机溶剂和锂盐。常用于电解液的有机溶剂为碳酸酯类溶剂。合适的碳酸酯类溶剂包括但不限于选自碳酸乙烯酯(EC)、碳酸丙烯酯(PC)、碳酸丁烯酯、γ-丁内酯、碳酸二甲酯(DMC)、碳酸二乙酯(DEC)、碳酸甲乙酯(EMC)中的一种或多种,优选两种或两种以上。优选地,碳酸酯类溶剂包含至少一种环状碳酸酯和至少一种链状碳酸酯。环状碳酸酯的实例包括碳酸乙烯酯、碳酸丙烯酯、碳酸丁烯酯和γ-丁内酯。链状碳酸酯的实例包括碳酸二甲酯、碳酸二乙酯和碳酸甲乙酯。环状碳酸酯和链状碳酸酯的质量比可以为1:4到1:1。例如1:3、3:7、1:2。在一些实施方案中,有机溶剂包括环状碳酸酯EC和链状碳酸酯EMC。本发明的电解液中的锂盐可以是本领域常用的锂盐,包括但不限于六氟磷酸锂(LiPF6)、双三氟甲烷磺酰亚胺锂(LiTFSI)、双(氟磺酰)亚胺锂(LiFSI)、双草酸硼酸锂(LiBOB)、二氟草酸硼酸锂(LiODFB)、四氟硼酸锂(LiBF4)、六氟砷酸锂(LiAsF6)、高氯酸锂(LiClO4)、氟化锂(LiF)、三氟甲磺酸锂(LiCF3SO3)等。在一些实施方案中,锂盐为LiPF6。锂盐在电解液中的浓度可以为0.5-2mol/L,例如0.8mol/L、1mol/L、1.2mol/L。Lithium-ion battery electrolytes contain organic solvents and lithium salts. The organic solvent commonly used in the electrolyte is a carbonate solvent. Suitable carbonate-based solvents include, but are not limited to, ethylene carbonate (EC), propylene carbonate (PC), butylene carbonate, γ-butyrolactone, dimethyl carbonate (DMC), diethyl carbonate ( One or more of DEC) and ethyl methyl carbonate (EMC), preferably two or more. Preferably, the carbonate-based solvent contains at least one cyclic carbonate and at least one chain carbonate. Examples of cyclic carbonates include ethylene carbonate, propylene carbonate, butylene carbonate, and γ-butyrolactone. Examples of the chain carbonate include dimethyl carbonate, diethyl carbonate, and ethyl methyl carbonate. The mass ratio of the cyclic carbonate to the chain carbonate may be 1:4 to 1:1. For example 1:3, 3:7, 1:2. In some embodiments, the organic solvent includes cyclic carbonate EC and linear carbonate EMC. The lithium salt in the electrolyte of the present invention may be a lithium salt commonly used in the art, including but not limited to lithium hexafluorophosphate (LiPF 6 ), lithium bistrifluoromethanesulfonimide (LiTFSI), lithium bis(fluorosulfonyl)imide (LiFSI), Lithium Bisoxalate Borate (LiBOB), Lithium Difluorooxalate Borate (LiODFB), Lithium Tetrafluoroborate (LiBF 4 ), Lithium Hexafluoroarsenate (LiAsF 6 ), Lithium Perchlorate (LiClO 4 ), Fluorine Lithium (LiF), lithium trifluoromethanesulfonate (LiCF 3 SO 3 ), etc. In some embodiments, the lithium salt is LiPF6. The concentration of the lithium salt in the electrolyte may be 0.5-2 mol/L, for example, 0.8 mol/L, 1 mol/L, 1.2 mol/L.
本发明具有以下有益效果:The present invention has the following beneficial effects:
本发明的正极材料具有原料成本低、制备工艺简单、重复性好、易于量产化、对环境相对友好等优点,且放电平台电压(约3.57V)高于磷酸铁锂正极材料,磷酸铁锂放电平台电压一般为3.2V。本发明的正极材料具有适中的D50大小(1-3μm左右),较高的粉体振实密度(1-2g/cc)。本发明的正极材料可以赋予电池改善的首次充放电性能、循环容量保持率和倍率性能。在一些优选的实施方案中,本发明的正极材料能够赋予电池较为优异的低温性能。本发明还提供采用固相烧结法制备本发明的正极材料的制备方法。相较于其它材料,本发明的正极材料具有合成工艺简单,量产化所需工艺条件较低的成本优势。The positive electrode material of the present invention has the advantages of low cost of raw materials, simple preparation process, good repeatability, easy mass production, relatively friendly environment, etc., and the discharge platform voltage (about 3.57V) is higher than that of lithium iron phosphate positive electrode material, lithium iron phosphate The discharge platform voltage is generally 3.2V. The positive electrode material of the present invention has a moderate D50 size (about 1-3 μm) and a relatively high powder tap density (1-2 g/cc). The positive electrode material of the present invention can endow the battery with improved initial charge-discharge performance, cycle capacity retention rate and rate performance. In some preferred embodiments, the cathode material of the present invention can endow the battery with relatively excellent low temperature performance. The present invention also provides a method for preparing the positive electrode material of the present invention by adopting the solid-phase sintering method. Compared with other materials, the cathode material of the present invention has the advantages of simple synthesis process and lower process conditions required for mass production.
下文将以具体实施例的方式阐述本发明。应理解,这些实施例仅仅是阐述性的,并非意图限制本发明的范围。实施例中所用到的方法、试剂和材料,除非另有说明,否则为本领域常规的方法、试剂和材料。实施例中的原料化合物均可通过市售途径购得。The invention will hereinafter be illustrated by way of specific examples. It should be understood that these examples are illustrative only and are not intended to limit the scope of the invention. The methods, reagents and materials used in the examples, unless otherwise specified, are conventional methods, reagents and materials in the art. The raw material compounds in the examples can be purchased from commercial sources.
实施例1Example 1
本实施例提供一种新型正极材料,制备、表征和性能测试方法如下:This embodiment provides a new type of positive electrode material, and the preparation, characterization and performance testing methods are as follows:
(1)按照镍、铁、铝、钨元素的摩尔比为400:100:99:1,分别称量球型氢氧化镍(Ni(OH)2)61.795g、二水醋酸亚铁(C4H6FeO4·2H2O)34.974g、片层三氧化二铝(Al2O3)8.412g、纳米级三氧化钨(WO3)0.3864g(W占最终正极材料质量分数为3300ppm)以及碳酸锂(Li2CO3)40.635g;称量质量分数为5%的葡萄糖7.695g(以所有原料的总和为基准);(1) According to the molar ratio of nickel, iron, aluminum and tungsten elements as 400:100:99:1, weigh 61.795 g of spherical nickel hydroxide (Ni(OH) 2 ), ferrous acetate dihydrate (C 4 ) H 6 FeO 4 ·2H 2 O) 34.974g, lamellar aluminum oxide (Al 2 O 3 ) 8.412g, nano-scale tungsten trioxide (WO 3 ) 0.3864g (W accounts for 3300ppm of the final positive electrode material mass fraction) and Lithium carbonate (Li 2 CO 3 ) 40.635g; Glucose with a weight fraction of 5% 7.695g (based on the sum of all raw materials);
(2)将上述称量好的原料置于球磨罐中,使用行星式球磨机200r/min球磨搅拌30-60min后,目测混合粉体材料颜色均一且研磨无颗粒感停止球磨混合;(2) Place the above-mentioned weighed raw materials in a ball mill tank, and use a planetary ball mill at 200 r/min for ball milling and stirring for 30-60 min. Visually observe that the color of the mixed powder material is uniform and the grinding has no graininess. Stop the ball milling and mixing;
(3)将上述混合好的粉体材料转入匣钵中,平铺均匀后,置于管式气氛炉中,在N2氛围下,以2℃/min升温至820℃,保温14h后,再以4℃/min降温至100℃后取出;( 3 ) Transfer the mixed powder materials into a saggar, spread them evenly, and place them in a tubular atmosphere furnace. Then cool down to 100°C at 4°C/min and take it out;
(4)对冷却至室温的正极材料进行超离心研磨以及筛分;(4) ultracentrifugal grinding and sieving of the cathode material cooled to room temperature;
(5)为进一步提高正极活性材料的克容量、改善循环以及低温性能,将所得正极材料与1000ppm(占正极材料总质量,按照硼元素质量计算)的硼酸进行机械搅拌混合后置于高速混合机2000r/min混合搅拌15min后,置于管式气氛炉中,在N2氛围下,以2℃/min升温至300℃,保温4h后,再自然降温至100℃后取出,最终得到氧化硼改性的Li1.1Ni2/3Fe1/ 6Al0.165W0.00167O2正极材料;将制备好的正极材料置于100℃真空干燥箱内干燥4h,取出后称量适量的粉末粘贴在样品台上,并放在仪器的样品腔内,在高真空条件下进行不同放大倍率下的表面微观形貌测试;称量20.00g制备好的正极材料样品,置于量筒中,使用振实密度仪测试振实密度,其中振动3000次,频次250次/min;(5) In order to further increase the gram capacity of the positive electrode active material, improve the cycle and low temperature performance, the obtained positive electrode material and 1000ppm (accounting for the total mass of the positive electrode material, calculated according to the mass of the boron element) boric acid are mechanically stirred and mixed and placed in a high-speed mixer. After mixing and stirring at 2000 r/min for 15 min, it was placed in a tubular atmosphere furnace, heated to 300 °C at 2 °C/min under N2 atmosphere, kept for 4 h, and then naturally cooled to 100 °C and taken out, and finally obtained boron oxide modified. Li 1.1 Ni 2/3 Fe 1/ 6 Al 0.165 W 0.00167 O 2 positive electrode material; put the prepared positive electrode material in a 100 ℃ vacuum drying box to dry for 4 hours, take out and weigh an appropriate amount of powder and stick it on the sample table , and put it in the sample chamber of the instrument, and test the surface micro-morphology at different magnifications under high vacuum conditions; weigh 20.00g of the prepared positive electrode material sample, put it in a graduated cylinder, and use a tap density meter to test the vibration. Solid density, in which vibration is 3000 times, frequency is 250 times/min;
(6)将制备好的正极材料、导电剂超级炭黑(super-c65)、粘结剂(固含量为6.25%的PVDF胶液)和NMP溶剂匀浆,涂布制备正极极片,其中正极材料的质量分数为92%,导电剂超级炭黑(super-c65)与粘结剂的质量分数各为4%;以石墨为负极,使用PP隔膜,电解液锂盐为1mol/L LiPF6,溶剂为质量比为3:7的EC与EMC,组装为2Ah软包电池;(6) Homogenize the prepared positive electrode material, conductive agent super carbon black (super-c65), binder (PVDF glue with a solid content of 6.25%) and NMP solvent, and coat to prepare a positive electrode sheet, wherein the positive electrode The mass fraction of the material is 92%, the mass fraction of the conductive agent super carbon black (super-c65) and the binder are 4% each; graphite is used as the negative electrode, PP separator is used, and the electrolyte lithium salt is 1mol/L LiPF 6 , The solvent is EC and EMC with a mass ratio of 3:7, and is assembled into a 2Ah soft pack battery;
(7)采用蓝电电池测试系统,电压范围为2.75-4.25V,在0.1C充电以及0.1C放电下进行首次充放电测试,循环两周后改为1C充电以及1C放电下进行充放电循环50周后,0.1C充电以及0.1C放电下充放电循环两周,数据见表2;(7) Using the blue battery test system, the voltage range is 2.75-4.25V, the first charge and discharge test is carried out under 0.1C charging and 0.1C discharge, and the charge and discharge cycle is changed to 1C charging and 1C discharge after two weeks of cycling for 50 After 2 weeks, 0.1C charge and 0.1C discharge charge and discharge cycle for two weeks, the data is shown in Table 2;
(8)采用蓝电电池测试系统,电压范围为2.75-4.25V,进行0.33C/0.5C/1C/2C倍率充电以及0.33C/0.5C/1C/2C/3C倍率放电测试,25℃/55℃/10℃/0℃/-10℃/-20℃高低温性能测试,数据见表3。(8) Using the blue battery test system, the voltage range is 2.75-4.25V, 0.33C/0.5C/1C/2C rate charge and 0.33C/0.5C/1C/2C/3C rate discharge test, 25℃/55 ℃/10℃/0℃/-10℃/-20℃ high and low temperature performance test, the data is shown in Table 3.
实施例2Example 2
本实施例提供一种新型正极材料,制备、表征和性能测试方法如下:This embodiment provides a new type of positive electrode material, and the preparation, characterization and performance testing methods are as follows:
(1)按照镍、铁、铝、钨元素的摩尔比为400:100:99:1,分别称量球型氢氧化镍(Ni(OH)2)61.795g、二水醋酸亚铁(C4H6FeO4·2H2O)34.974g、片层三氧化二铝(Al2O3)8.412g、纳米级三氧化钨(WO3)0.3864g(W占最终正极材料质量分数为3300ppm)以及碳酸锂(Li2CO3)40.635g;称量质量分数为5%的葡萄糖7.695g(以所有原料的总和为基准);(1) According to the molar ratio of nickel, iron, aluminum and tungsten elements as 400:100:99:1, weigh 61.795 g of spherical nickel hydroxide (Ni(OH) 2 ), ferrous acetate dihydrate (C 4 ) H 6 FeO 4 ·2H 2 O) 34.974g, lamellar aluminum oxide (Al 2 O 3 ) 8.412g, nano-scale tungsten trioxide (WO 3 ) 0.3864g (W accounts for 3300ppm of the final positive electrode material mass fraction) and Lithium carbonate (Li 2 CO 3 ) 40.635g; Glucose with a weight fraction of 5% 7.695g (based on the sum of all raw materials);
(2)将上述称量好的原料置于球磨罐中,使用行星式球磨机200r/min球磨搅拌30-60min后,目测混合粉体材料颜色均一且研磨无颗粒感停止球磨混合;(2) Place the above-mentioned weighed raw materials in a ball mill tank, and use a planetary ball mill at 200 r/min for ball milling and stirring for 30-60 min. Visually observe that the color of the mixed powder material is uniform and the grinding has no graininess. Stop the ball milling and mixing;
(3)将上述混合好的粉体材料转入匣钵中,平铺均匀后,置于管式气氛炉中,在N2氛围下,以2℃/min升温至780℃,保温14h后,再以4℃/min降温至100℃后取出;( 3 ) Transfer the above-mentioned mixed powder materials into a saggar, spread them evenly, and place them in a tubular atmosphere furnace. Then cool down to 100°C at 4°C/min and take it out;
(4)对冷却至室温的正极材料进行超离心研磨以及筛分;(4) ultracentrifugal grinding and sieving of the cathode material cooled to room temperature;
(5)为进一步提高正极活性材料的克容量、改善循环以及低温性能,将所得正极材料与1000ppm(占正极材料总质量,按照硼元素质量计算)的硼酸进行机械搅拌混合后置于高速混合机2000r/min混合搅拌15min后,置于管式气氛炉中,在N2氛围下,以2℃/min升温至300℃,保温4h后,再自然降温至100℃后取出,最终得到氧化硼改性的Li1.1Ni2/3Fe1/ 6Al0.165W0.00167O2无钴正极材料;将制备好的正极材料置于100℃真空干燥箱内干燥4h,取出后称量适量的粉末粘贴在样品台上,并放在仪器的样品腔内,在高真空条件下进行不同放大倍率下的表面微观形貌测试;称量20.00g制备好的正极材料样品,置于量筒中,使用振实密度仪测试振实密度,其中振动3000次,频次250次/min;(5) In order to further increase the gram capacity of the positive electrode active material, improve the cycle and low temperature performance, the obtained positive electrode material and 1000ppm (accounting for the total mass of the positive electrode material, calculated according to the mass of the boron element) boric acid are mechanically stirred and mixed and placed in a high-speed mixer. After mixing and stirring at 2000 r/min for 15 min, it was placed in a tubular atmosphere furnace, heated to 300 °C at 2 °C/min under N2 atmosphere, kept for 4 h, and then naturally cooled to 100 °C and taken out, and finally obtained boron oxide modified. Li 1.1 Ni 2/3 Fe 1/ 6 Al 0.165 W 0.00167 O 2 cobalt-free cathode material; put the prepared cathode material in a 100 ℃ vacuum drying box to dry for 4 hours, take out and weigh an appropriate amount of powder and paste it on the sample On the stage, and placed in the sample chamber of the instrument, the surface micro-morphology test under different magnifications was carried out under high vacuum conditions; 20.00g of the prepared positive electrode material sample was weighed, placed in a graduated cylinder, and a tap density meter was used. Test the tap density, in which the vibration is 3000 times, and the frequency is 250 times/min;
(6)将制备好的正极材料、导电剂超级炭黑(super-c65)、粘结剂(固含量为6.25%的PVDF胶液)和NMP溶剂匀浆,涂布制备正极极片,其中正极材料的质量分数为92%,导电剂超级炭黑(super-c65)与粘结剂的质量分数各为4%;以石墨为负极,使用PP隔膜,电解液锂盐为1mol/L LiPF6,溶剂为质量比为3:7的EC与EMC,组装为2Ah软包电池;(6) Homogenize the prepared positive electrode material, conductive agent super carbon black (super-c65), binder (PVDF glue with a solid content of 6.25%) and NMP solvent, and coat to prepare a positive electrode sheet, wherein the positive electrode The mass fraction of the material is 92%, the mass fraction of the conductive agent super carbon black (super-c65) and the binder are 4% each; graphite is used as the negative electrode, PP separator is used, and the electrolyte lithium salt is 1mol/L LiPF 6 , The solvent is EC and EMC with a mass ratio of 3:7, which is assembled into a 2Ah soft pack battery;
(7)采用蓝电电池测试系统,电压范围为2.75-4.25V,在0.1C充电以及0.1C放电下进行首次充放电测试,循环两周后改为1C充电以及1C放电下进行充放电循环50周后,0.1C充电以及0.1C放电下充放电循环两周,数据见表2;(7) Using the blue battery test system, the voltage range is 2.75-4.25V, the first charge and discharge test is carried out under 0.1C charging and 0.1C discharge, and the charge and discharge cycle is changed to 1C charging and 1C discharge after two weeks of cycling for 50 After 2 weeks, 0.1C charge and 0.1C discharge charge and discharge cycle for two weeks, the data is shown in Table 2;
(8)采用蓝电电池测试系统,电压范围为2.75-4.25V,进行0.33C/0.5C/1C/2C倍率充电以及0.33C/0.5C/1C/2C/3C倍率放电测试,25℃/55℃/10℃/0℃/-10℃/-20℃高低温性能测试,数据见表3。(8) Using the blue battery test system, the voltage range is 2.75-4.25V, 0.33C/0.5C/1C/2C rate charge and 0.33C/0.5C/1C/2C/3C rate discharge test, 25℃/55 ℃/10℃/0℃/-10℃/-20℃ high and low temperature performance test, the data is shown in Table 3.
实施例3Example 3
本实施例提供一种新型正极材料,制备、表征和性能测试方法如下:This embodiment provides a new type of positive electrode material, and the preparation, characterization and performance testing methods are as follows:
(1)按照镍、铁、铝、钨元素的摩尔比400:100:97:3,分别称量球型氢氧化镍(Ni(OH)2)61.795g、二水醋酸亚铁(C4H6FeO4·2H2O)34.974g、片层三氧化二铝(Al2O3)8.242g、纳米级三氧化钨(WO3)1.159g(W占最终正极材料质量分数为9800ppm)以及碳酸锂(Li2CO3)40.635g;称量质量分数为5%的葡萄糖7.727g(以所有原料的总和为基准);(1) According to the molar ratio of nickel, iron, aluminum and tungsten elements of 400:100:97:3, respectively weigh 61.795 g of spherical nickel hydroxide (Ni(OH) 2 ), ferrous acetate dihydrate (C 4 H 6 FeO 4 ·2H 2 O) 34.974g, lamellar aluminum oxide (Al 2 O 3 ) 8.242g, nano-scale tungsten trioxide (WO 3 ) 1.159g (W accounts for 9800ppm of the final positive electrode material mass fraction) and carbonic acid Lithium (Li 2 CO 3 ) 40.635g; Glucose with a weight fraction of 5% 7.727g (based on the sum of all raw materials);
(2)将上述称量好的原料置于球磨罐中,使用行星式球磨机200r/min球磨搅拌30-60min后,目测混合粉体材料颜色均一且研磨无颗粒感停止球磨混合;(2) Place the above-mentioned weighed raw materials in a ball mill tank, and use a planetary ball mill at 200 r/min for ball milling and stirring for 30-60 min. Visually observe that the color of the mixed powder material is uniform and the grinding has no graininess. Stop the ball milling and mixing;
(3)将上述混合好的粉体材料转入匣钵中,平铺均匀后,置于管式气氛炉中,在N2氛围下,以2℃/min升温至820℃,保温14h后,再以4℃/min降温至100℃后取出;( 3 ) Transfer the mixed powder materials into a saggar, spread them evenly, and place them in a tubular atmosphere furnace. Then cool down to 100°C at 4°C/min and take it out;
(4)对冷却至室温的正极材料进行超离心研磨以及筛分;(4) ultracentrifugal grinding and sieving of the cathode material cooled to room temperature;
(5)为进一步提高正极活性材料的克容量、改善循环以及低温性能,将所得正极材料与1000ppm(占正极材料总质量,按照硼元素质量计算)的硼酸进行机械搅拌混合后置于高速混合机2000r/min混合搅拌15min后,置于管式气氛炉中,在N2氛围下,以2℃/min升温至300℃,保温4h后,再自然降温至100℃后取出,最终得到氧化硼改性的Li1.1Ni2/3Fe1/ 6Al0.1617W0.005O2无钴正极材料;将制备好的正极材料置于100℃真空干燥箱内干燥4h,取出后称量适量的粉末粘贴在样品台上,并放在仪器的样品腔内,在高真空条件下进行不同放大倍率下的表面微观形貌测试;称量20.00g制备好的正极材料样品,置于量筒中,使用振实密度仪测试振实密度,其中振动3000次,频次250次/min;(5) In order to further increase the gram capacity of the positive electrode active material, improve the cycle and low temperature performance, the obtained positive electrode material and 1000ppm (accounting for the total mass of the positive electrode material, calculated according to the mass of the boron element) boric acid are mechanically stirred and mixed and placed in a high-speed mixer. After mixing and stirring at 2000 r/min for 15 min, it was placed in a tubular atmosphere furnace, and heated to 300 °C at 2 °C/min under N2 atmosphere. After holding for 4 hours, it was naturally cooled to 100 °C and taken out. Li 1.1 Ni 2/3 Fe 1/ 6 Al 0.1617 W 0.005 O 2 cobalt-free cathode material; put the prepared cathode material in a 100 ℃ vacuum drying box to dry for 4 hours, take out and weigh an appropriate amount of powder and stick it on the sample table 20.00g of the prepared positive electrode material sample was weighed, placed in a graduated cylinder, and tested with a tap density meter Tap density, in which the vibration is 3000 times, and the frequency is 250 times/min;
(6)将制备好的正极材料、导电剂超级炭黑(super-c65)、粘结剂(固含量为6.25%的PVDF胶液)和NMP溶剂匀浆,涂布制备正极极片,其中正极材料的质量分数为92%,导电剂超级炭黑(super-c65)与粘结剂的质量分数各为4%;以石墨为负极,使用PP隔膜,电解液锂盐为1mol/L LiPF6,溶剂为质量比为3:7的EC与EMC,组装为2Ah软包电池;(6) Homogenize the prepared positive electrode material, conductive agent super carbon black (super-c65), binder (PVDF glue with a solid content of 6.25%) and NMP solvent, and coat to prepare a positive electrode sheet, wherein the positive electrode The mass fraction of the material is 92%, the mass fraction of the conductive agent super carbon black (super-c65) and the binder are 4% each; graphite is used as the negative electrode, PP separator is used, and the electrolyte lithium salt is 1mol/L LiPF 6 , The solvent is EC and EMC with a mass ratio of 3:7, which is assembled into a 2Ah soft pack battery;
(7)采用蓝电电池测试系统,电压范围为2.75-4.25V,在0.1C充电以及0.1C放电下进行首次充放电测试,循环两周后改为1C充电以及1C放电下进行充放电循环50周后,0.1C充电以及0.1C放电下充放电循环两周,数据见表2;(7) Using the blue battery test system, the voltage range is 2.75-4.25V, the first charge and discharge test is carried out under 0.1C charging and 0.1C discharge, and the charge and discharge cycle is changed to 1C charging and 1C discharge after two weeks of cycling for 50 After 2 weeks, 0.1C charge and 0.1C discharge charge and discharge cycle for two weeks, the data is shown in Table 2;
(8)采用蓝电电池测试系统,电压范围为2.75-4.25V,进行0.33C/0.5C/1C/2C倍率充电以及0.33C/0.5C/1C/2C/3C倍率放电测试,25℃/55℃/10℃/0℃/-10℃/-20℃高低温性能测试,数据见表3。(8) Using the blue battery test system, the voltage range is 2.75-4.25V, 0.33C/0.5C/1C/2C rate charge and 0.33C/0.5C/1C/2C/3C rate discharge test, 25℃/55 ℃/10℃/0℃/-10℃/-20℃ high and low temperature performance test, the data is shown in Table 3.
实施例4Example 4
本实施例提供一种新型正极材料,制备、表征和性能测试方法如下:This embodiment provides a new type of positive electrode material, and the preparation, characterization and performance testing methods are as follows:
(1)按照镍、铁、铝、钛元素的摩尔比为400:100:99:1,分别称量球型氢氧化镍(Ni(OH)2)61.795g、二水醋酸亚铁(C4H6FeO4·2H2O)34.974g、片层三氧化二铝(Al2O3)8.412g、纳米级二氧化钛(TiO2)0.133g(Ti占最终正极材料质量分数为900ppm)以及碳酸锂(Li2CO3)40.635g;称量质量分数为5%的葡萄糖7.682g(以所有原料的总和为基准);(1) According to the molar ratio of nickel, iron, aluminum and titanium elements as 400:100:99:1, weigh 61.795 g of spherical nickel hydroxide (Ni(OH) 2 ), ferrous acetate dihydrate (C 4 ) H 6 FeO 4 ·2H 2 O) 34.974g, lamellar aluminum oxide (Al 2 O 3 ) 8.412g, nanoscale titanium dioxide (TiO 2 ) 0.133g (the mass fraction of Ti in the final positive electrode material is 900ppm) and lithium carbonate (Li 2 CO 3 ) 40.635g; 7.682g of glucose with a weight fraction of 5% (based on the sum of all raw materials);
(2)将上述称量好的原料置于球磨罐中,使用行星式球磨机200r/min球磨搅拌30-60min后,目测混合粉体材料颜色均一且研磨无颗粒感停止球磨混合;(2) Place the above-mentioned weighed raw materials in a ball mill tank, and use a planetary ball mill at 200 r/min for ball milling and stirring for 30-60 min. Visually observe that the color of the mixed powder material is uniform and the grinding has no graininess. Stop the ball milling and mixing;
(3)将上述混合好的粉体材料转入匣钵中,平铺均匀后,置于管式气氛炉中,在N2氛围下,以2℃/min升温至820℃,保温14h后,再以4℃/min降温至100℃后取出;( 3 ) Transfer the mixed powder materials into a saggar, spread them evenly, and place them in a tubular atmosphere furnace. Then cool down to 100°C at 4°C/min and take it out;
(4)对冷却至室温的正极材料进行超离心研磨以及筛分;(4) ultracentrifugal grinding and sieving of the cathode material cooled to room temperature;
(5)为进一步提高正极活性材料的克容量、改善循环以及低温性能,将所得正极材料与1000ppm(占正极材料总质量,按照硼元素质量计算)的硼酸进行机械搅拌混合后置于高速混合机2000r/min混合搅拌15min后,置于管式气氛炉中,在N2氛围下,以2℃/min升温至300℃,保温4h后,再自然降温至100℃后取出,最终得到氧化硼改性的Li1.1Ni2/3Fe1/ 6Al0.165Ti0.00167O2无钴正极材料;将制备好的正极材料置于100℃真空干燥箱内干燥4h,取出后称量适量的粉末粘贴在样品台上,并放在仪器的样品腔内,在高真空条件下进行不同放大倍率下的表面微观形貌测试;称量20.00g制备好的正极材料样品,置于量筒中,使用振实密度仪测试振实密度,其中振动3000次,频次250次/min;(5) In order to further increase the gram capacity of the positive electrode active material, improve the cycle and low temperature performance, the obtained positive electrode material and 1000ppm (accounting for the total mass of the positive electrode material, calculated according to the mass of the boron element) boric acid are mechanically stirred and mixed and placed in a high-speed mixer. After mixing and stirring at 2000 r/min for 15 min, it was placed in a tubular atmosphere furnace, heated to 300 °C at 2 °C/min under N2 atmosphere, kept for 4 h, and then naturally cooled to 100 °C and taken out, and finally obtained boron oxide modified. Li 1.1 Ni 2/3 Fe 1/ 6 Al 0.165 Ti 0.00167 O 2 cobalt-free cathode material; put the prepared cathode material in a 100 ℃ vacuum drying box to dry for 4 hours, take out and weigh an appropriate amount of powder and paste it on the sample On the stage, and placed in the sample chamber of the instrument, the surface micro-morphology test under different magnifications was carried out under high vacuum conditions; 20.00g of the prepared positive electrode material sample was weighed, placed in a graduated cylinder, and a tap density meter was used. Test the tap density, in which the vibration is 3000 times, and the frequency is 250 times/min;
(6)将制备好的正极材料、导电剂超级炭黑(super-c65)、粘结剂(固含量为6.25%的PVDF胶液)和NMP溶剂匀浆,涂布制备正极极片,其中正极材料的质量分数为92%,导电剂超级炭黑(super-c65)与粘结剂的质量分数各为4%;以石墨为负极,使用PP隔膜,电解液锂盐为1mol/L LiPF6,溶剂为质量比为3:7的EC与EMC,组装为2Ah软包电池;(6) Homogenize the prepared positive electrode material, conductive agent super carbon black (super-c65), binder (PVDF glue with a solid content of 6.25%) and NMP solvent, and coat to prepare a positive electrode sheet, wherein the positive electrode The mass fraction of the material is 92%, the mass fraction of the conductive agent super carbon black (super-c65) and the binder are 4% each; graphite is used as the negative electrode, PP separator is used, and the electrolyte lithium salt is 1mol/L LiPF 6 , The solvent is EC and EMC with a mass ratio of 3:7, which is assembled into a 2Ah soft pack battery;
(7)采用蓝电电池测试系统,电压范围为2.75-4.25V,在0.1C充电以及0.1C放电下进行首次充放电测试,循环两周后改为1C充电以及1C放电下进行充放电循环50周后,0.1C充电以及0.1C放电下充放电循环两周,数据见表2;(7) Using the blue battery test system, the voltage range is 2.75-4.25V, the first charge and discharge test is carried out under 0.1C charging and 0.1C discharge, and the charge and discharge cycle is changed to 1C charging and 1C discharge after two weeks of cycling for 50 After 2 weeks, 0.1C charge and 0.1C discharge charge and discharge cycle for two weeks, the data is shown in Table 2;
(8)采用蓝电电池测试系统,电压范围为2.75-4.25V,进行0.33C/0.5C/1C/2C倍率充电以及0.33C/0.5C/1C/2C/3C倍率放电测试,25℃/55℃/10℃/0℃/-10℃/-20℃高低温性能测试,数据见表3。(8) Using the blue battery test system, the voltage range is 2.75-4.25V, 0.33C/0.5C/1C/2C rate charge and 0.33C/0.5C/1C/2C/3C rate discharge test, 25℃/55 ℃/10℃/0℃/-10℃/-20℃ high and low temperature performance test, the data is shown in Table 3.
实施例5Example 5
本实施例提供一种新型正极材料,制备、表征和性能测试方法如下:This embodiment provides a new type of positive electrode material, and the preparation, characterization and performance testing methods are as follows:
(1)按照镍、铁、铝、钛元素的摩尔比为400:100:99:1,分别称量球型氢氧化镍(Ni(OH)2)61.795g、二水醋酸亚铁(C4H6FeO4·2H2O)34.974g、片层三氧化二铝(Al2O3)8.412g、纳米级二氧化钛(TiO2)0.133g(Ti占最终正极材料质量分数为900ppm)以及碳酸锂(Li2CO3)40.635g;称量质量分数为5%的葡萄糖7.682g(以所有原料的总和为基准);(1) According to the molar ratio of nickel, iron, aluminum and titanium elements as 400:100:99:1, weigh 61.795 g of spherical nickel hydroxide (Ni(OH) 2 ), ferrous acetate dihydrate (C 4 ) H 6 FeO 4 ·2H 2 O) 34.974g, lamellar aluminum oxide (Al 2 O 3 ) 8.412g, nanoscale titanium dioxide (TiO 2 ) 0.133g (the mass fraction of Ti in the final positive electrode material is 900ppm) and lithium carbonate (Li 2 CO 3 ) 40.635g; 7.682g of glucose with a weight fraction of 5% (based on the sum of all raw materials);
(2)将上述称量好的原料置于球磨罐中,使用行星式球磨机200r/min球磨搅拌30-60min后,目测混合粉体材料颜色均一且研磨无颗粒感停止球磨混合;(2) Place the above-mentioned weighed raw materials in a ball mill tank, and use a planetary ball mill at 200 r/min for ball milling and stirring for 30-60 min. Visually observe that the color of the mixed powder material is uniform and the grinding has no graininess. Stop the ball milling and mixing;
(3)将上述混合好的粉体材料转入匣钵中,平铺均匀后,置于管式气氛炉中,在N2氛围下,以2℃/min升温至820℃,保温14h后,再以4℃/min降温至100℃后取出;( 3 ) Transfer the mixed powder materials into a saggar, spread them evenly, and place them in a tubular atmosphere furnace. Then cool down to 100°C at 4°C/min and take it out;
(4)对冷却至室温的正极材料进行超离心研磨以及筛分,最终得到Li1.1Ni2/3Fe1/ 6Al0.165Ti0.00167O2无钴正极材料;将制备好的正极材料置于100℃真空干燥箱内干燥4h,取出后称量适量的粉末粘贴在样品台上,并放在仪器的样品腔内,在高真空条件下进行不同放大倍率下的表面微观形貌测试;称量20.00g制备好的正极材料样品,置于量筒中,使用振实密度仪测试振实密度,其中振动3000次,频次250次/min;(4) Perform ultracentrifugal grinding and sieving on the cathode material cooled to room temperature, and finally obtain Li 1.1 Ni 2/3 Fe 1/ 6 Al 0.165 Ti 0.00167 O 2 cobalt-free cathode material; place the prepared cathode material at 100 ℃ Dry in a vacuum drying box for 4 hours, take out and weigh an appropriate amount of powder and paste it on the sample table, and put it in the sample chamber of the instrument, and carry out the surface micro-morphology test under high vacuum conditions under different magnifications; weighing 20.00 g The prepared positive electrode material sample is placed in a graduated cylinder, and the tap density is tested by a tap density meter, wherein the vibration is 3000 times, and the frequency is 250 times/min;
(5)将制备好的正极材料、导电剂超级炭黑(super-c65)、粘结剂(固含量为6.25%的PVDF胶液)和NMP溶剂匀浆,涂布制备正极极片,其中正极材料的质量分数为92%,导电剂超级炭黑(super-c65)与粘结剂的质量分数各为4%;以石墨为负极,使用PP隔膜,电解液锂盐为1mol/L LiPF6,溶剂为质量比为3:7的EC与EMC,组装为2Ah软包电池;(5) Homogenize the prepared positive electrode material, conductive agent super carbon black (super-c65), binder (PVDF glue with a solid content of 6.25%) and NMP solvent, and coat to prepare a positive electrode sheet, wherein the positive electrode The mass fraction of the material is 92%, the mass fraction of the conductive agent super carbon black (super-c65) and the binder are 4% each; graphite is used as the negative electrode, PP separator is used, and the electrolyte lithium salt is 1mol/L LiPF 6 , The solvent is EC and EMC with a mass ratio of 3:7, and is assembled into a 2Ah soft pack battery;
(6)采用蓝电电池测试系统,电压范围为2.75-4.25V,在0.1C充电以及0.1C放电下进行首次充放电测试,循环两周后改为1C充电以及1C放电下进行充放电循环50周后,0.1C充电以及0.1C放电下充放电循环两周,数据见表2;(6) Using the blue battery test system, the voltage range is 2.75-4.25V, the first charge-discharge test is carried out under 0.1C charging and 0.1C discharge, and the charge-discharge cycle is changed to 1C charging and 1C discharge after two weeks of cycling for 50 After 2 weeks, 0.1C charge and 0.1C discharge charge and discharge cycle for two weeks, the data is shown in Table 2;
(7)采用蓝电电池测试系统,电压范围为2.75-4.25V,进行0.33C/0.5C/1C/2C倍率充电以及0.33C/0.5C/1C/2C/3C倍率放电测试,25℃/55℃/10℃/0℃/-10℃/-20℃高低温性能测试,数据见表3。(7) Using the blue battery test system, the voltage range is 2.75-4.25V, 0.33C/0.5C/1C/2C rate charge and 0.33C/0.5C/1C/2C/3C rate discharge test, 25℃/55 ℃/10℃/0℃/-10℃/-20℃ high and low temperature performance test, the data is shown in Table 3.
对比例1Comparative Example 1
本对比例提供一种正极材料,制备、表征和性能测试方法如下:This comparative example provides a positive electrode material, and the preparation, characterization and performance testing methods are as follows:
(1)按照镍、铁、铝的摩尔比为4:1:1,分别称量球型氢氧化镍(Ni(OH)2)61.795g、二水醋酸亚铁(C4H6FeO4·2H2O)34.974g、片层三氧化二铝(Al2O3)8.497g以及碳酸锂(Li2CO3)40.635g;称量质量分数为5%的葡萄糖7.679g(以所有原料的总和为基准);(1) According to the molar ratio of nickel, iron and aluminum to be 4:1:1, weigh 61.795 g of spherical nickel hydroxide (Ni(OH) 2 ) and ferrous acetate dihydrate (C 4 H 6 FeO 4 . 2H 2 O) 34.974g, lamellar aluminum oxide (Al 2 O 3 ) 8.497g and lithium carbonate (Li 2 CO 3 ) 40.635g; the weight fraction of 5% glucose 7.679g (the sum of all raw materials) as the benchmark);
(2)将上述称量好的原料置于球磨罐中,使用行星式球磨机200r/min球磨搅拌30-60min后,目测混合粉体材料颜色均一且研磨无颗粒感停止球磨混合(2) Place the above-mentioned weighed raw materials in a ball mill, and use a planetary ball mill at 200 r/min to mill and stir for 30-60 minutes. Visually observe that the mixed powder material has a uniform color and no graininess during grinding. Stop the ball milling and mixing.
(3)将上述混合好的粉体材料转入匣钵中,平铺均匀后,置于管式气氛炉中,在N2氛围下,以2℃/min升温至820℃,保温14h后,再以4℃/min降温至100℃后取出;( 3 ) Transfer the mixed powder materials into a saggar, spread them evenly, and place them in a tubular atmosphere furnace. Then cool down to 100°C at 4°C/min and take it out;
(4)对冷却至室温的正极材料进行超离心研磨以及筛分;(4) ultracentrifugal grinding and sieving of the cathode material cooled to room temperature;
(5)为进一步提高正极活性材料的克容量、改善循环以及低温性能,将所得正极材料与1000ppm(占正极材料总质量,按照硼元素质量计算)的硼酸进行机械搅拌混合后置于高速混合机2000r/min混合搅拌15min后,置于管式气氛炉中,在N2氛围下,以2℃/min升温至300℃,保温4h后,再自然降温至100℃后取出,最终得到氧化硼改性的Li1.1Ni2/3Fe1/6Al1/ 6O2无钴正极材料;称量20.00g制备好的正极材料样品,置于量筒中,使用振实密度仪测试振实密度,其中振动3000次,频次250次/min;(5) In order to further increase the gram capacity of the positive electrode active material, improve the cycle and low temperature performance, the obtained positive electrode material and 1000ppm (accounting for the total mass of the positive electrode material, calculated according to the mass of the boron element) boric acid are mechanically stirred and mixed and placed in a high-speed mixer. After mixing and stirring at 2000 r/min for 15 min, it was placed in a tubular atmosphere furnace, heated to 300 °C at 2 °C/min under N2 atmosphere, kept for 4 h, and then naturally cooled to 100 °C and taken out, and finally obtained boron oxide modified. Li 1.1 Ni 2/3 Fe 1/6 Al 1/ 6 O 2 cobalt-free cathode material; weigh 20.00g of the prepared cathode material sample, place it in a graduated cylinder, and use a tap density meter to test the tap density, where Vibration 3000 times, frequency 250 times/min;
(6)将制备好的正极材料、导电剂超级炭黑(super-c65)、粘结剂(固含量为6.25%的PVDF胶液)和NMP溶剂匀浆,涂布制备正极极片,其中正极材料的质量分数为92%,导电剂超级炭黑(super-c65)与粘结剂的质量分数各为4%;以石墨为负极,使用PP隔膜,电解液锂盐为1mol/L LiPF6,溶剂为质量比为3:7的EC+EMC,组装为2Ah软包电池;(6) Homogenize the prepared positive electrode material, conductive agent super carbon black (super-c65), binder (PVDF glue with a solid content of 6.25%) and NMP solvent, and coat to prepare a positive electrode sheet, wherein the positive electrode The mass fraction of the material is 92%, the mass fraction of the conductive agent super carbon black (super-c65) and the binder are 4% each; graphite is used as the negative electrode, PP separator is used, and the electrolyte lithium salt is 1mol/L LiPF 6 , The solvent is EC+EMC with a mass ratio of 3:7, which is assembled into a 2Ah soft pack battery;
(7)采用蓝电电池测试系统,电压范围为2.75-4.25V,在0.1C充电以及0.1C放电下进行首次充放电测试,循环两周后改为1C充电以及1C放电下进行充放电循环50周后,0.1C充电以及0.1C放电下充放电循环两周,数据见表2;(7) Using the blue battery test system, the voltage range is 2.75-4.25V, the first charge and discharge test is carried out under 0.1C charging and 0.1C discharge, and the charge and discharge cycle is changed to 1C charging and 1C discharge after two weeks of cycling for 50 After 2 weeks, 0.1C charge and 0.1C discharge charge and discharge cycle for two weeks, the data is shown in Table 2;
(8)采用蓝电电池测试系统,电压范围为2.75-4.25V,进行0.33C/0.5C/1C/2C倍率充电以及0.33C/0.5C/1C/2C/3C倍率放电测试,25℃/55℃/10℃/0℃/-10℃/-20℃高低温性能测试,数据见表3。(8) Using the blue battery test system, the voltage range is 2.75-4.25V, 0.33C/0.5C/1C/2C rate charge and 0.33C/0.5C/1C/2C/3C rate discharge test, 25℃/55 ℃/10℃/0℃/-10℃/-20℃ high and low temperature performance test, the data is shown in Table 3.
对比例2Comparative Example 2
本对比例提供一种正极材料,制备、表征和性能测试方法如下:This comparative example provides a positive electrode material, and the preparation, characterization and performance testing methods are as follows:
(1)按照镍、铁、铝的摩尔比为4:1:1,分别称量球型氢氧化镍(Ni(OH)2)61.795g、二水醋酸亚铁(C4H6FeO4·2H2O)34.974g、片层三氧化二铝(Al2O3)8.497g以及碳酸锂(Li2CO3)40.635g;称量质量分数为5%的葡萄糖7.679g(以所有原料的总和为基准);(1) According to the molar ratio of nickel, iron and aluminum to be 4:1:1, weigh 61.795 g of spherical nickel hydroxide (Ni(OH) 2 ) and ferrous acetate dihydrate (C 4 H 6 FeO 4 . 2H 2 O) 34.974g, lamellar aluminum oxide (Al 2 O 3 ) 8.497g and lithium carbonate (Li 2 CO 3 ) 40.635g; the weight fraction of 5% glucose 7.679g (the sum of all raw materials) as the benchmark);
(2)将上述称量好的原料置于球磨罐中,使用行星式球磨机200r/min球磨搅拌30-60min后,目测混合粉体材料颜色均一且研磨无颗粒感停止球磨混合(2) Place the above-mentioned weighed raw materials in a ball mill, and use a planetary ball mill at 200 r/min to mill and stir for 30-60 minutes. Visually observe that the mixed powder material has a uniform color and no graininess during grinding. Stop the ball milling and mixing.
(3)将上述混合好的粉体材料转入匣钵中,平铺均匀后,置于管式气氛炉中,在N2氛围下,以2℃/min升温至820℃,保温14h后,再以4℃/min降温至100℃后取出;( 3 ) Transfer the mixed powder materials into a saggar, spread them evenly, and place them in a tubular atmosphere furnace. Then cool down to 100°C at 4°C/min and take it out;
(4)对冷却至室温的正极材料进行超离心研磨以及筛分,最终得到Li1.1Ni2/3Fe1/ 6Al1/6O2无钴正极材料;称量20.00g制备好的正极材料样品,置于量筒中,使用振实密度仪测试振实密度,其中振动3000次,频次250次/min;(4) Perform ultracentrifugal grinding and sieving on the cathode material cooled to room temperature, and finally obtain Li 1.1 Ni 2/3 Fe 1/ 6 Al 1/6 O 2 cobalt-free cathode material; weigh 20.00 g of the prepared cathode material The sample is placed in a graduated cylinder, and the tap density is tested by a tap density meter, wherein the vibration is 3000 times, and the frequency is 250 times/min;
(5)将制备好的正极材料、导电剂超级炭黑(super-c65)、粘结剂(固含量为6.25%的PVDF胶液)和NMP溶剂匀浆,涂布制备正极极片,其中正极材料的质量分数为92%,导电剂超级炭黑(super-c65)与粘结剂的质量分数各为4%;以石墨为负极,使用PP隔膜,电解液锂盐为1mol/L LiPF6,溶剂为质量比为3:7的EC与EMC,组装为2Ah软包电池;(5) Homogenize the prepared positive electrode material, conductive agent super carbon black (super-c65), binder (PVDF glue with a solid content of 6.25%) and NMP solvent, and coat to prepare a positive electrode sheet, wherein the positive electrode The mass fraction of the material is 92%, the mass fraction of the conductive agent super carbon black (super-c65) and the binder are 4% each; graphite is used as the negative electrode, PP separator is used, and the electrolyte lithium salt is 1mol/L LiPF 6 , The solvent is EC and EMC with a mass ratio of 3:7, which is assembled into a 2Ah soft pack battery;
(6)采用蓝电电池测试系统,电压范围为2.75-4.25V,在0.1C充电以及0.1C放电下进行首次充放电测试,循环两周后改为1C充电以及1C放电下进行充放电循环50周后,0.1C充电以及0.1C放电下充放电循环两周,数据见表2;(6) Using the blue battery test system, the voltage range is 2.75-4.25V, the first charge and discharge test is carried out under 0.1C charging and 0.1C discharge, and the charge and discharge cycle is changed to 1C charging and 1C discharge after two weeks of cycling for 50 After 2 weeks, 0.1C charge and 0.1C discharge charge and discharge cycle for two weeks, the data is shown in Table 2;
(7)采用蓝电电池测试系统,电压范围为2.75-4.25V,进行0.33C/0.5C/1C/2C倍率充电以及0.33C/0.5C/1C/2C/3C倍率放电测试,25℃/55℃/10℃/0℃/-10℃/-20℃高低温性能测试,数据见表3。(7) Using the blue battery test system, the voltage range is 2.75-4.25V, 0.33C/0.5C/1C/2C rate charge and 0.33C/0.5C/1C/2C/3C rate discharge test, 25℃/55 ℃/10℃/0℃/-10℃/-20℃ high and low temperature performance test, the data is shown in Table 3.
图1、图2为实施例1的正极材料的扫描电子显微镜照片,由该电镜照片可以看出:正极材料由200-600nm纳米级类球状颗粒团聚体、1-10μm微米级类单晶颗粒堆叠而成,D50粒径大小约为1.5μm,颗粒表面存在较多岛状包覆物,包覆相对致密、均一,有利于减少副反应发生,改善材料性能。Fig. 1 and Fig. 2 are scanning electron microscope photos of the positive electrode material of Example 1. It can be seen from the electron microscope photos that the positive electrode material is composed of 200-600 nm nano-scale spherical particle agglomerates and 1-10 μm micron-sized single crystal-like particles stacked The particle size of D50 is about 1.5 μm, and there are many island-like coatings on the surface of the particles. The coating is relatively dense and uniform, which is beneficial to reduce the occurrence of side reactions and improve the material properties.
图3、图4为实施例2的正极材料的扫描电子显微镜照片,由该电镜照片可以看出:正极材料由200-500nm纳米级类球状颗粒团聚体、1-8μm微米级类单晶颗粒堆叠而成,D50粒径大小约为1.3μm。Figures 3 and 4 are scanning electron microscope photos of the positive electrode material of Example 2. From the electron microscope photos, it can be seen that the positive electrode material is composed of 200-500 nm nano-scale spherical particle agglomerates and 1-8 μm micron-scale single crystal-like particles stacked The particle size of D50 is about 1.3 μm.
图5、图6为实施例3的正极材料的扫描电子显微镜照片,由该电镜照片可以看出:正极材料由300-500纳米级类球状颗粒团聚体、1-9μm微米级类单晶颗粒堆叠而成,整体颗粒硬团聚体偏多,D50粒径大小约为1.5μm。5 and 6 are scanning electron microscope photographs of the positive electrode material of Example 3. It can be seen from the electron microscope photographs that the positive electrode material is composed of 300-500 nanometer-scale spherical particle agglomerates and 1-9 μm micron-scale single-crystal-like particles stacked As a result, the overall particle hard agglomerates are on the high side, and the D50 particle size is about 1.5 μm.
图7、图8为实施例4的正极材料的扫描电子显微镜照片,由该电镜照片可以看出:正极材料由200-600nm纳米级类球状颗粒团聚体、1-10μm的微米级类单晶颗粒堆叠而成,D50粒径大小约为2μm。7 and 8 are scanning electron microscope photographs of the positive electrode material of Example 4. From the electron microscope photographs, it can be seen that the positive electrode material is composed of 200-600 nm nano-scale spherical particle agglomerates and 1-10 μm micron-scale single crystal-like particles. Stacked, the D50 particle size is about 2 μm.
图9为实施例1的正极材料的首轮充放电曲线,该材料的首次充电容量、首次放电容量、首效分别为189.21mAh/g、98.41mAh/g、52.01%。9 is the first-round charge-discharge curve of the positive electrode material of Example 1. The first-time charge capacity, first-time discharge capacity, and first-efficiency of the material are 189.21mAh/g, 98.41mAh/g, and 52.01%, respectively.
图10为实施例1的正极材料1CC/1DC的50周容量保持率曲线图,该材料1CC/1DC循环下放电容量为74.31mAh/g,50周循环容量保持率为48.99%。10 is a graph showing the 50-cycle capacity retention rate of the positive electrode material 1CC/1DC of Example 1. The discharge capacity of the material under 1CC/1DC cycle is 74.31mAh/g, and the 50-cycle cycle capacity retention rate is 48.99%.
表1为实施例1、实施例2、实施例3、实施例4、实施例5和对比例1、对比例2对应的Li/Me配比(Li的摩尔数与除Li以外的所有金属元素的总摩尔数之比)、除Li以外的各金属元素占除Li以外的所有金属元素的摩尔分数、掺杂元素及其在正极材料中的质量分数。Table 1 shows the Li/Me ratios corresponding to Example 1, Example 2, Example 3, Example 4, Example 5, and Comparative Example 1 and Comparative Example 2 (the number of moles of Li and all metal elements except Li The ratio of the total moles), the mole fraction of each metal element except Li to all the metal elements except Li, the doping element and its mass fraction in the positive electrode material.
表1:实施例1-5和对比例1-2的正极材料的组成及振实密度Table 1: Composition and tap density of positive electrode materials of Examples 1-5 and Comparative Examples 1-2
表2为实施例1-5和对比例1-2对应的首次充电比容量、首次放电比容量、首次效率、平台电压、50周循环容量保持率。Table 2 shows the first charge specific capacity, first discharge specific capacity, first efficiency, plateau voltage, and 50-cycle cycle capacity retention rate corresponding to Examples 1-5 and Comparative Examples 1-2.
表2:实施例1-5和对比例1-2的首次充电比容量、首次放电比容量、首次效率、平台电压、50周循环容量保持率Table 2: First-time charge specific capacity, first-time discharge specific capacity, first-time efficiency, plateau voltage, and 50-cycle capacity retention rate of Examples 1-5 and Comparative Examples 1-2
表3为实施例1、实施例2、实施例3、实施例4、实施例5和对比例1、对比例2对应的电芯倍率充电、倍率放电以及低温性能数据。Table 3 shows the cell rate charging, rate discharging and low temperature performance data corresponding to Example 1, Example 2, Example 3, Example 4, Example 5, and Comparative Example 1 and Comparative Example 2.
表3:实施例1-5和对比例1-2的倍率充电、倍率放电以及低温性能数据Table 3: Rate charge, rate discharge and low temperature performance data for Examples 1-5 and Comparative Examples 1-2
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210212960.9A CN114566633B (en) | 2022-03-04 | 2022-03-04 | A novel cobalt-free positive electrode material and preparation method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210212960.9A CN114566633B (en) | 2022-03-04 | 2022-03-04 | A novel cobalt-free positive electrode material and preparation method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN114566633A true CN114566633A (en) | 2022-05-31 |
CN114566633B CN114566633B (en) | 2025-02-11 |
Family
ID=81718350
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210212960.9A Active CN114566633B (en) | 2022-03-04 | 2022-03-04 | A novel cobalt-free positive electrode material and preparation method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114566633B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115275183A (en) * | 2022-07-06 | 2022-11-01 | 上海电力大学 | Cobalt-free high-nickel cathode material of lithium ion battery and preparation method thereof |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101635349A (en) * | 2009-08-21 | 2010-01-27 | 广州市云通磁电有限公司 | Method for preparing metal-silver-doped carbon-covering lithium iron phosphate of lithium-ion battery cathode material |
CN101740768A (en) * | 2008-11-27 | 2010-06-16 | 比亚迪股份有限公司 | Hydrogen storage alloy and preparation method thereof and cathode and battery using same |
WO2012060084A1 (en) * | 2010-11-05 | 2012-05-10 | 株式会社豊田自動織機 | Lithium borate compound and method for producing same |
JP2013062082A (en) * | 2011-09-12 | 2013-04-04 | Nec Corp | Secondary battery |
CN103703593A (en) * | 2011-07-13 | 2014-04-02 | 日本电气株式会社 | Active material for secondary batteries |
WO2016110123A1 (en) * | 2015-01-05 | 2016-07-14 | 深圳新宙邦科技股份有限公司 | Non-aqueous electrolyte and lithium ion secondary battery |
WO2019050282A1 (en) * | 2017-09-08 | 2019-03-14 | 주식회사 엘지화학 | Lithium secondary battery cathode active material, preparation method therefor, lithium secondary battery cathode comprising same, and lithium secondary battery |
WO2020043153A1 (en) * | 2018-08-31 | 2020-03-05 | 宁德时代新能源科技股份有限公司 | Secondary lithium ion battery |
US20200235390A1 (en) * | 2019-01-23 | 2020-07-23 | Ut-Battelle, Llc | Cobalt-free layered oxide cathodes |
CN111933930A (en) * | 2020-08-13 | 2020-11-13 | 松山湖材料实验室 | Positive electrode active material, preparation method thereof, secondary battery positive electrode and lithium battery |
CN111943283A (en) * | 2020-08-13 | 2020-11-17 | 松山湖材料实验室 | A kind of positive electrode active material and preparation method thereof, secondary battery positive electrode, lithium battery |
-
2022
- 2022-03-04 CN CN202210212960.9A patent/CN114566633B/en active Active
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101740768A (en) * | 2008-11-27 | 2010-06-16 | 比亚迪股份有限公司 | Hydrogen storage alloy and preparation method thereof and cathode and battery using same |
CN101635349A (en) * | 2009-08-21 | 2010-01-27 | 广州市云通磁电有限公司 | Method for preparing metal-silver-doped carbon-covering lithium iron phosphate of lithium-ion battery cathode material |
WO2012060084A1 (en) * | 2010-11-05 | 2012-05-10 | 株式会社豊田自動織機 | Lithium borate compound and method for producing same |
CN103703593A (en) * | 2011-07-13 | 2014-04-02 | 日本电气株式会社 | Active material for secondary batteries |
JP2013062082A (en) * | 2011-09-12 | 2013-04-04 | Nec Corp | Secondary battery |
WO2016110123A1 (en) * | 2015-01-05 | 2016-07-14 | 深圳新宙邦科技股份有限公司 | Non-aqueous electrolyte and lithium ion secondary battery |
WO2019050282A1 (en) * | 2017-09-08 | 2019-03-14 | 주식회사 엘지화학 | Lithium secondary battery cathode active material, preparation method therefor, lithium secondary battery cathode comprising same, and lithium secondary battery |
WO2020043153A1 (en) * | 2018-08-31 | 2020-03-05 | 宁德时代新能源科技股份有限公司 | Secondary lithium ion battery |
US20200235390A1 (en) * | 2019-01-23 | 2020-07-23 | Ut-Battelle, Llc | Cobalt-free layered oxide cathodes |
CN111933930A (en) * | 2020-08-13 | 2020-11-13 | 松山湖材料实验室 | Positive electrode active material, preparation method thereof, secondary battery positive electrode and lithium battery |
CN111943283A (en) * | 2020-08-13 | 2020-11-17 | 松山湖材料实验室 | A kind of positive electrode active material and preparation method thereof, secondary battery positive electrode, lithium battery |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115275183A (en) * | 2022-07-06 | 2022-11-01 | 上海电力大学 | Cobalt-free high-nickel cathode material of lithium ion battery and preparation method thereof |
Also Published As
Publication number | Publication date |
---|---|
CN114566633B (en) | 2025-02-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US12199231B2 (en) | Negative electrode plate and secondary battery | |
JP7228975B2 (en) | Composite positive electrode active material, manufacturing method thereof, positive electrode containing same, and lithium battery | |
WO2021108945A1 (en) | Positive electrode sheet for rechargeable battery, rechargeable battery, battery module, battery pack, and device | |
WO2022062745A1 (en) | Positive electrode sheet for secondary battery, secondary battery, battery module, battery pack, and device | |
WO2020135767A1 (en) | Positive electrode active material, positive electrode plate, electrochemical energy storage apparatus, and apparatus | |
CN108292748B (en) | Negative electrode active material, lithium ion secondary battery and method for producing same, mixed negative electrode active material, negative electrode | |
CN107408678B (en) | Positive electrode active material for secondary battery and secondary battery comprising same | |
WO2020135766A1 (en) | Positive electrode active material, positive electrode plate, electrochemical energy storage apparatus, and apparatus | |
CN113471442B (en) | Negative active material, and negative electrode sheet, electrochemical device, and electronic device using same | |
TWI705603B (en) | Anode active material, mixed anode active material material, negative electrode for non-aqueous electrolyte secondary battery, lithium ion secondary battery, and method for manufacturing negative electrode active material | |
CN110268560A (en) | Positive electrode active material for secondary battery and lithium secondary battery including the same | |
CN113764666B (en) | Composite positive electrode active material, preparation method thereof, positive electrode and lithium battery | |
US20230335723A1 (en) | Positive electrode active material and preparation method therefor, positive electrode plate containing same, secondary battery, and power consuming device | |
CN114744183A (en) | Negative electrode active material and method for producing same, mixed negative electrode active material, negative electrode, lithium ion secondary battery, and method for producing same | |
JP7571304B2 (en) | Negative electrode and secondary battery including the same | |
JP7254402B2 (en) | Positive electrode active material for lithium secondary battery and lithium secondary battery | |
CN118983413A (en) | Composite graphite material and preparation method thereof, negative electrode sheet, and secondary battery | |
CN115706217A (en) | Positive electrode active material, preparation method thereof, and rechargeable lithium battery including same | |
WO2024174093A1 (en) | Separator, preparation method therefor, and secondary battery and powered device related thereto | |
CN114566633B (en) | A novel cobalt-free positive electrode material and preparation method thereof | |
CN1979929A (en) | Lamina-structure lithium-contained composite metal oxide coated with carbon and use thereof | |
JP2024050506A (en) | Composite positive electrode active material, positive electrode and lithium battery using the same, and manufacturing method thereof | |
JP2023545115A (en) | Positive electrode for lithium secondary battery and lithium secondary battery equipped with the same | |
CN114314689B (en) | Lithium battery anode material and preparation method thereof | |
EP4517859A1 (en) | Secondary battery and electrical apparatus |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |