CN114566556A - Processing method of semiconductor substrate layer, solar cell and preparation method of solar cell - Google Patents
Processing method of semiconductor substrate layer, solar cell and preparation method of solar cell Download PDFInfo
- Publication number
- CN114566556A CN114566556A CN202210195148.XA CN202210195148A CN114566556A CN 114566556 A CN114566556 A CN 114566556A CN 202210195148 A CN202210195148 A CN 202210195148A CN 114566556 A CN114566556 A CN 114566556A
- Authority
- CN
- China
- Prior art keywords
- semiconductor substrate
- substrate layer
- layer
- initial
- texturing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F77/00—Constructional details of devices covered by this subclass
- H10F77/70—Surface textures, e.g. pyramid structures
- H10F77/703—Surface textures, e.g. pyramid structures of the semiconductor bodies, e.g. textured active layers
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F71/00—Manufacture or treatment of devices covered by this subclass
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F71/00—Manufacture or treatment of devices covered by this subclass
- H10F71/121—The active layers comprising only Group IV materials
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F77/00—Constructional details of devices covered by this subclass
- H10F77/30—Coatings
- H10F77/306—Coatings for devices having potential barriers
- H10F77/311—Coatings for devices having potential barriers for photovoltaic cells
- H10F77/315—Coatings for devices having potential barriers for photovoltaic cells the coatings being antireflective or having enhancing optical properties
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Photovoltaic Devices (AREA)
Abstract
本发明提供一种半导体衬底层的处理方法、太阳能电池及其制备方法。所述半导体衬底层的处理方法包括:提供初始半导体衬底层;在所述初始半导体衬底层表面进行激光点阵列扫描,形成均匀排布的若干个微损伤点;以若干个所述微损伤点为起绒点,对所述初始半导体衬底层进行制绒处理,以形成所述半导体衬底层。本发明通过在所述初始半导体衬底层表面上使用激光点阵列扫描得到大量排布均匀的微损伤点,可以作为制绒过程中均匀分布的起绒点,有利于形成小尺寸、均匀排布的减反射结构,从而降低半导体衬底层的反射率。
The invention provides a processing method of a semiconductor substrate layer, a solar cell and a preparation method thereof. The processing method of the semiconductor substrate layer includes: providing an initial semiconductor substrate layer; performing laser spot array scanning on the surface of the initial semiconductor substrate layer to form a plurality of uniformly arranged micro-damage points; and taking a number of the micro-damage points as At the raising point, the initial semiconductor substrate layer is subjected to a texturing process to form the semiconductor substrate layer. In the present invention, a large number of uniformly arranged micro-damage points are obtained by scanning the surface of the initial semiconductor substrate layer with a laser point array, which can be used as uniformly distributed raised points in the texturing process, which is conducive to the formation of small-sized and uniformly arranged micro-damage points. Anti-reflection structure, thereby reducing the reflectivity of the semiconductor substrate layer.
Description
技术领域technical field
本发明涉及太阳能电池技术领域,具体涉及一种半导体衬底层的处理方法、太阳能电池及其制备方法。The invention relates to the technical field of solar cells, in particular to a method for processing a semiconductor substrate layer, a solar cell and a preparation method thereof.
背景技术Background technique
目前,在晶体硅太阳电池的生产工艺中,为了获得更高的光电转换效率,除了要求晶体硅材料本身的高质量、能形成理想P-N结等内在特性外,还需要电池片表面有很好的陷光效果。陷光效应通常由表面织构化来实现的,即电池片生产中的重要工序——制绒。它通过增加电池对光的吸收,降低表面反射率,增大太阳能电池的短路电流从而达到提高太阳电池效率的目的。At present, in the production process of crystalline silicon solar cells, in order to obtain higher photoelectric conversion efficiency, in addition to the high quality of the crystalline silicon material itself and its ability to form an ideal P-N junction and other inherent characteristics, it is also required that the cell surface has a good surface. Light trapping effect. The light trapping effect is usually achieved by surface texture, that is, an important process in the production of cell sheets - texturing. It achieves the purpose of improving the efficiency of the solar cell by increasing the light absorption of the cell, reducing the surface reflectivity, and increasing the short-circuit current of the solar cell.
异质结电池由于优异的非晶硅钝化表现,其开路电压可以达到740mV以上,远高于传统晶体硅电池,具有广阔的应用前景。由于非晶硅薄膜厚度仅有10nm左右,而现有技术中制绒金字塔绒面尺寸在微米级别,导致金字塔绒面尺寸的大小和均匀性对于非晶硅膜层的影响非常大,同时也会影响到制绒反射率。目前高效电池的半导体衬底层制绒反射率基本为10%-12%,金字塔大小尺寸为1μm-5μm。因此,对于异质结电池来说,更小的金字塔绒面尺寸,更加均匀的金字塔绒面分布对于增强非晶硅薄膜的钝化和降低制绒反射率非常重要。Due to the excellent passivation performance of amorphous silicon, the open circuit voltage of heterojunction cells can reach more than 740mV, which is much higher than that of traditional crystalline silicon cells, and has broad application prospects. Since the thickness of the amorphous silicon film is only about 10 nm, and the size of the textured pyramid texture in the prior art is in the micrometer level, the size and uniformity of the textured pyramid have a great influence on the amorphous silicon film layer, and also Affects texturing reflectivity. At present, the textured reflectivity of the semiconductor substrate layer of the high-efficiency battery is basically 10%-12%, and the size of the pyramid is 1 μm-5 μm. Therefore, for heterojunction cells, smaller pyramid texture size and more uniform pyramid texture distribution are very important to enhance the passivation of amorphous silicon films and reduce texturing reflectivity.
发明内容SUMMARY OF THE INVENTION
因此,本发明要解决的技术问题在于克服现有制绒技术中半导体衬底层的反射率较大的缺陷,进而提供一种半导体衬底层的处理方法、太阳能电池及其制备方法。Therefore, the technical problem to be solved by the present invention is to overcome the defect of the high reflectivity of the semiconductor substrate layer in the existing texturing technology, and further provide a processing method of the semiconductor substrate layer, a solar cell and a preparation method thereof.
本发明提供一种半导体衬底层的处理方法,包括:提供初始半导体衬底层;在所述初始半导体衬底层表面进行激光点阵列扫描,形成均匀排布的若干个微损伤点;以若干个所述微损伤点为起绒点,对所述初始半导体衬底层进行制绒处理,以形成所述半导体衬底层。The present invention provides a method for processing a semiconductor substrate layer, comprising: providing an initial semiconductor substrate layer; performing laser spot array scanning on the surface of the initial semiconductor substrate layer to form a number of uniformly arranged micro-damage points; The micro-damage points are raised points, and the initial semiconductor substrate layer is subjected to a texturing treatment to form the semiconductor substrate layer.
可选的,所述激光点阵列扫描采用的激光的光斑直径为0.1μm-1μm,光斑间距为1μm-3μm。Optionally, the spot diameter of the laser used in the laser spot array scanning is 0.1 μm-1 μm, and the spot spacing is 1 μm-3 μm.
可选的,所述激光点阵列扫描使用的激光波长为500nm-1064nm。Optionally, the laser wavelength used for the laser spot array scanning is 500nm-1064nm.
可选的,所述激光点阵列扫描的刻蚀深度小于或等于0.5μm。Optionally, the etching depth scanned by the laser spot array is less than or equal to 0.5 μm.
可选的,在进行所述激光点阵列扫描之前,对所述初始半导体衬底层表面进行去除损伤层的预处理工艺。Optionally, before performing the laser spot array scanning, a pretreatment process of removing the damaged layer is performed on the surface of the initial semiconductor substrate layer.
可选的,所述预处理工艺包括酸腐蚀或碱腐蚀。Optionally, the pretreatment process includes acid etching or alkali etching.
可选的,所述酸腐蚀采用氢氟酸溶液和硝酸溶液的混合液。Optionally, the acid etching adopts a mixed solution of hydrofluoric acid solution and nitric acid solution.
可选的,所述氢氟酸溶液和所述硝酸溶液的体积比为1:3-1:9。Optionally, the volume ratio of the hydrofluoric acid solution and the nitric acid solution is 1:3-1:9.
可选的,所述氢氟酸溶液中氢氟酸的浓度为45wt%-50wt%,所述硝酸溶液中硝酸的浓度为60wt%-70wt%。Optionally, the concentration of hydrofluoric acid in the hydrofluoric acid solution is 45wt%-50wt%, and the concentration of nitric acid in the nitric acid solution is 60wt%-70wt%.
可选的,所述碱腐蚀采用氢氧化钠溶液或氢氧化钾溶液。Optionally, the alkali corrosion adopts sodium hydroxide solution or potassium hydroxide solution.
可选的,所述氢氧化钠溶液的浓度为2wt%-15wt%,所述氢氧化钾溶液的浓度为2wt%-15wt%。Optionally, the concentration of the sodium hydroxide solution is 2wt%-15wt%, and the concentration of the potassium hydroxide solution is 2wt%-15wt%.
可选的,还包括:进行所述激光点阵列扫描之后、对所述初始半导体衬底层进行制绒处理之前,去除所述初始半导体衬底层表面形成的氧化层。Optionally, the method further includes: removing the oxide layer formed on the surface of the initial semiconductor substrate layer after scanning the laser spot array and before performing the texturing treatment on the initial semiconductor substrate layer.
可选的,去除所述初始半导体衬底层表面的氧化层的步骤中,采用浓度为1wt%-5wt%的氢氟酸溶液,采用的时间为5秒-20秒。Optionally, in the step of removing the oxide layer on the surface of the initial semiconductor substrate layer, a hydrofluoric acid solution with a concentration of 1 wt % to 5 wt % is used for 5 seconds to 20 seconds.
可选的,所述制绒处理采用的制绒液为碱性溶液。Optionally, the texturing liquid used in the texturing treatment is an alkaline solution.
可选的,所述碱性溶液包括氢氧化钠溶液或氢氧化钾溶液。Optionally, the alkaline solution includes sodium hydroxide solution or potassium hydroxide solution.
可选的,所述碱性溶液的浓度为1wt%-5wt%。Optionally, the concentration of the alkaline solution is 1wt%-5wt%.
可选的,所述制绒处理采用的温度为80℃-90℃,时间为200秒-500秒。Optionally, the temperature used in the texturing treatment is 80°C-90°C, and the time is 200 seconds-500 seconds.
可选的,对所述初始半导体衬底层进行制绒处理之后,对所述半导体衬底层表面进行清洗处理。Optionally, after the initial semiconductor substrate layer is subjected to the texturing treatment, the surface of the semiconductor substrate layer is cleaned.
本发明还提供一种太阳能电池的制备方法,包括:形成半导体衬底层,采用本发明的半导体衬底层的处理方法形成。The present invention also provides a method for preparing a solar cell, comprising: forming a semiconductor substrate layer, which is formed by the processing method for the semiconductor substrate layer of the present invention.
可选的,在所述半导体衬底层的一侧表面形成第一本征钝化层;在所述半导体衬底层的另一侧表面形成第二本征钝化层;在所述第一本征钝化层背离所述半导体衬底层的一侧表面形成第一掺杂半导体层;在所述第二本征钝化层背离所述半导体衬底层的一侧表面形成第二掺杂半导体层。Optionally, a first intrinsic passivation layer is formed on one side surface of the semiconductor substrate layer; a second intrinsic passivation layer is formed on the other side surface of the semiconductor substrate layer; A first doped semiconductor layer is formed on a side surface of the passivation layer away from the semiconductor substrate layer; a second doped semiconductor layer is formed on a side surface of the second intrinsic passivation layer away from the semiconductor substrate layer.
本发明还提供一种太阳能电池,包括半导体衬底层,所述半导体衬底层至少一侧具有若干个阵列排布且均匀分布的减反射结构。The present invention also provides a solar cell, comprising a semiconductor substrate layer, and at least one side of the semiconductor substrate layer has several anti-reflection structures arranged in an array and uniformly distributed.
可选的,各所述减反射结构在所述半导体衬底层上的投影的面积小于或等于9μm2。Optionally, the projected area of each of the anti-reflection structures on the semiconductor substrate layer is less than or equal to 9 μm 2 .
可选的,所述减反射结构的高度为0.5μm-3μm。Optionally, the height of the anti-reflection structure is 0.5 μm-3 μm.
可选的,任意两个所述减反射结构中底面的高度差小于或等于1μm。Optionally, the height difference between the bottom surfaces of any two of the anti-reflection structures is less than or equal to 1 μm.
可选的,所述减反射结构的形状为金字塔形。Optionally, the shape of the anti-reflection structure is a pyramid.
本发明技术方案具有如下有益效果:The technical scheme of the present invention has the following beneficial effects:
1.本发明技术方案提供的半导体衬底层的处理方法中,首先提供初始半导体衬底层;在所述初始半导体衬底层表面进行激光点阵列扫描,形成均匀排布的若干个微损伤点;进行所述激光点阵列扫描之后,去除所述初始半导体衬底层表面形成的氧化层;以若干个所述微损伤点为起绒点,对所述初始半导体衬底层进行制绒处理,以形成所述半导体衬底层。通过在所述初始半导体衬底层表面上使用激光点阵列扫描得到大量排布均匀的微损伤点,可以作为制绒过程中均匀分布的起绒点。由于在绒面形成初期,所述初始半导体衬底层表面上成核均匀,成核密度大,有利于形成大小均匀且尺寸较小的减反射结构,从而降低所述半导体衬底层的反射率。1. In the processing method of the semiconductor substrate layer provided by the technical solution of the present invention, an initial semiconductor substrate layer is provided first; laser spot array scanning is performed on the surface of the initial semiconductor substrate layer to form several micro-damage points evenly arranged; After the laser spot array is scanned, the oxide layer formed on the surface of the initial semiconductor substrate layer is removed; and the initial semiconductor substrate layer is subjected to a texturing treatment with a number of the micro-damage points as raised points to form the semiconductor substrate layer. substrate layer. A large number of uniformly arranged micro-damage points are obtained by scanning the surface of the initial semiconductor substrate layer with a laser point array, which can be used as uniformly distributed raised points in the texturing process. In the early stage of texture formation, the initial semiconductor substrate layer has uniform nucleation and high nucleation density, which is conducive to forming an anti-reflection structure with uniform size and small size, thereby reducing the reflectivity of the semiconductor substrate layer.
2.进一步,对所述初始半导体衬底层进行制绒处理的时间为200秒-500秒。在使用激光点阵列扫描形成排布均匀的起绒点基础上,通过控制制绒时间,可以得到小尺寸、生长均匀、紧密排布的所述减反射结构。制绒时间过短则所述减反射结构覆盖率低,制绒时间过长则所述减反射结构生长过大,两者都不利于降低所述半导体衬底层的反射率。2. Further, the time for performing the texturing treatment on the initial semiconductor substrate layer is 200 seconds to 500 seconds. The anti-reflection structure with small size, uniform growth and close arrangement can be obtained by controlling the texturing time on the basis of using the laser spot array scanning to form the evenly arranged raising points. If the texturing time is too short, the coverage of the anti-reflection structure will be low, and if the texturing time is too long, the growth of the anti-reflection structure will be too large, both of which are not conducive to reducing the reflectivity of the semiconductor substrate layer.
附图说明Description of drawings
为了更清楚地说明本发明具体实施方式或现有技术中的技术方案,下面将对具体实施方式或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。In order to illustrate the specific embodiments of the present invention or the technical solutions in the prior art more clearly, the following briefly introduces the accompanying drawings that need to be used in the description of the specific embodiments or the prior art. Obviously, the accompanying drawings in the following description The drawings are some embodiments of the present invention. For those of ordinary skill in the art, other drawings can also be obtained based on these drawings without creative efforts.
图1为本发明实施例中半导体衬底层的处理方法的流程示意图;1 is a schematic flowchart of a method for processing a semiconductor substrate layer in an embodiment of the present invention;
图2至图6为本发明实施例中半导体衬底层的处理过程中的结构示意图。FIG. 2 to FIG. 6 are schematic structural diagrams of the semiconductor substrate layer in the processing process according to the embodiment of the present invention.
附图标识:Attached identification:
10-初始半导体衬底层;11-氧化层;12-微损伤点;13-半导体衬底层;14-减反射结构。10-initial semiconductor substrate layer; 11-oxide layer; 12-micro-damage point; 13-semiconductor substrate layer; 14-anti-reflection structure.
具体实施方式Detailed ways
下面将结合附图对本发明的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。The technical solutions of the present invention will be clearly and completely described below with reference to the accompanying drawings. Obviously, the described embodiments are a part of the embodiments of the present invention, but not all of the embodiments. Based on the embodiments of the present invention, all other embodiments obtained by those of ordinary skill in the art without creative efforts shall fall within the protection scope of the present invention.
在本发明的描述中,需要说明的是,术语“中心”、“上”、“下”、“左”、“右”、“竖直”、“水平”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。此外,术语“第一”、“第二”、“第三”仅用于描述目的,而不能理解为指示或暗示相对重要性。In the description of the present invention, it should be noted that the terms "center", "upper", "lower", "left", "right", "vertical", "horizontal", "inner", "outer", etc. The indicated orientation or positional relationship is based on the orientation or positional relationship shown in the accompanying drawings, which is only for the convenience of describing the present invention and simplifying the description, rather than indicating or implying that the indicated device or element must have a specific orientation or a specific orientation. construction and operation, and therefore should not be construed as limiting the invention. Furthermore, the terms "first", "second", and "third" are used for descriptive purposes only and should not be construed to indicate or imply relative importance.
在本发明的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本发明中的具体含义。In the description of the present invention, it should be noted that the terms "installed", "connected" and "connected" should be understood in a broad sense, unless otherwise expressly specified and limited, for example, it may be a fixed connection or a detachable connection Connection, or integral connection; can be mechanical connection, can also be electrical connection; can be directly connected, can also be indirectly connected through an intermediate medium, can be internal communication between two elements. For those of ordinary skill in the art, the specific meanings of the above terms in the present invention can be understood in specific situations.
此外,下面所描述的本发明不同实施方式中所涉及的技术特征只要彼此之间未构成冲突就可以相互结合。In addition, the technical features involved in the different embodiments of the present invention described below can be combined with each other as long as they do not conflict with each other.
实施例1Example 1
本实施例提供一种半导体衬底层的处理方法,如图1所示,包括以下步骤:This embodiment provides a method for processing a semiconductor substrate layer, as shown in FIG. 1 , including the following steps:
步骤S1:提供初始半导体衬底层;Step S1: providing an initial semiconductor substrate layer;
步骤S2:在所述初始半导体衬底层表面进行激光点阵列扫描,形成均匀排布的若干个微损伤点;Step S2: performing laser spot array scanning on the surface of the initial semiconductor substrate layer to form evenly arranged several micro-damage spots;
步骤S3:进行所述激光点阵列扫描之后,去除所述初始半导体衬底层表面形成的氧化层;Step S3: after scanning the laser spot array, remove the oxide layer formed on the surface of the initial semiconductor substrate layer;
步骤S4:以若干个所述微损伤点为起绒点,对所述初始半导体衬底层进行制绒处理,以形成所述半导体衬底层。Step S4 : taking several of the micro-damage points as raising points, performing a texturing process on the initial semiconductor substrate layer to form the semiconductor substrate layer.
下面结合图2至图6详细进行介绍。The following describes in detail with reference to FIGS. 2 to 6 .
参考图2,提供初始半导体衬底层10。Referring to Figure 2, an initial
所述初始半导体衬底层10的材料包括单晶硅。在其他实施例中,所述初始半导体衬底层10的材料为其他的半导体材料,如多晶硅、锗或硅锗。所述初始半导体衬底层10的材料还可以为其他的半导体材料,这里不做限定。The material of the initial
本实施例中,所述初始半导体衬底层10的表面具有损伤区,所述损伤区是在切割硅棒原料以形成初始半导体衬底层10的过程中造成的。在一个具体的实施例中,所述初始半导体衬底层10的正面和背面均具有损伤区。In this embodiment, the surface of the initial
本实施例中,首先对所述初始半导体衬底层10表面进行去除损伤层的预处理工艺,损伤层包括硅片切割导致的表面微裂纹。对表面进行预处理工艺的目的是去除损伤区,由于所述初始半导体衬底层10在切割过程中表面留有大约10μm-20μm的锯后损伤层,对制绒有很大影响,若损伤层去除不足可能会残留切割时所遗留的杂质,在制绒时会因为损伤层的缘故而导致减反射结构14难以出现,而且会在后序工序中继续破坏所述初始半导体衬底层10的表面,导致电池各类参数不符合要求,因此在制绒前必须将其除去。In this embodiment, the surface of the initial
在一个实施例中,对所述初始半导体衬底层10表面进行去除损伤层的预处理工艺包括酸腐蚀或碱腐蚀。In one embodiment, the pretreatment process for removing the damaged layer on the surface of the initial
在一个实施例中,所述酸腐蚀采用氢氟酸溶液和硝酸溶液的混合液,所述氢氟酸溶液和所述硝酸溶液的体积比为1:3-1:9,例如1:3、1:6或1:9。所述氢氟酸溶液中氢氟酸的浓度为45wt%-50wt%,例如45wt%、48wt%或50wt%。所述硝酸溶液中硝酸的浓度为60wt%-70wt%,例如65wt%、69wt%或70wt%。In one embodiment, the acid etching adopts a mixed solution of hydrofluoric acid solution and nitric acid solution, and the volume ratio of the hydrofluoric acid solution and the nitric acid solution is 1:3-1:9, such as 1:3, 1:6 or 1:9. The concentration of hydrofluoric acid in the hydrofluoric acid solution is 45wt%-50wt%, such as 45wt%, 48wt% or 50wt%. The concentration of nitric acid in the nitric acid solution is 60wt%-70wt%, such as 65wt%, 69wt% or 70wt%.
在一个实施例中,所述碱腐蚀采用氢氧化钠溶液或氢氧化钾溶液。所述氢氧化钠溶液的浓度为2wt%-15wt%,例如2wt%、5wt%、10wt%或15wt%;所述氢氧化钾溶液的浓度为2wt%-15wt%,例如2wt%、5wt%、10wt%或15wt%。当选择在高浓度氢氧化钠溶液或氢氧化钾溶液的条件下腐蚀时,腐蚀速率可达到6μm/min-10μm/min,由于此时腐蚀速度过快,应注意在达到去除损伤层的基础上尽量减短腐蚀时间,以防所述初始半导体衬底层10被过度腐蚀。In one embodiment, the alkali corrosion adopts sodium hydroxide solution or potassium hydroxide solution. The concentration of the sodium hydroxide solution is 2wt%-15wt%, such as 2wt%, 5wt%, 10wt% or 15wt%; the concentration of the potassium hydroxide solution is 2wt%-15wt%, such as 2wt%, 5wt%, 10wt% or 15wt%. When choosing to corrode under the condition of high concentration sodium hydroxide solution or potassium hydroxide solution, the corrosion rate can reach 6μm/min-10μm/min. Since the corrosion rate is too fast at this time, attention should be paid to removing the damaged layer on the basis of The etching time is minimized to prevent the initial
本实施例中,将去除损伤层的所述初始半导体衬底层10水洗后进行烘干,保持硅片表面洁净和干燥。In this embodiment, the initial
参考图3,在所述初始半导体衬底层10表面进行激光点阵列扫描,形成均匀排布的若干个所述微损伤点12。为了得到减反射结构尺寸均匀一致的绒面,激光点阵列扫描需要进行均匀排布,否则在非扫描点会形成随机金字塔,导致大小和尺寸具有相对的随机性。Referring to FIG. 3 , laser spot array scanning is performed on the surface of the initial
图3中阴影区域示意为由于激光点阵列扫描在所述初始半导体衬底层10表面形成的氧化层11,氧化层11是硅半导体衬底在空气暴露过程中被氧化形成的氧化层。The shaded area in FIG. 3 shows the
本实施例中,所述激光点阵列扫描使用的激光波长为500nm-1064nm,例如532nm、660nm、808nm或1064nm。In this embodiment, the laser wavelength used in the laser spot array scanning is 500 nm-1064 nm, for example, 532 nm, 660 nm, 808 nm or 1064 nm.
本实施例中,所述激光点阵列扫描的光斑直径为0.1μm-1μm,例如0.1μm、0.3μm、0.5μm或1μm,光斑间距为1μm-3μm,例如1μm、1.5μm、2μm或3μm。本实施例中激光点阵列扫描的目的是形成所述微损伤点12作为制绒的起绒点,所以激光点阵列扫描的光斑间距不宜过大,这样更有利于形成尺寸较小的减反射结构14。In this embodiment, the spot diameter of the laser spot array scanning is 0.1 μm-1 μm, such as 0.1 μm, 0.3 μm, 0.5 μm or 1 μm, and the spot spacing is 1 μm-3 μm, such as 1 μm, 1.5 μm, 2 μm or 3 μm. In this embodiment, the purpose of the laser spot array scanning is to form the
本实施例中通过在所述初始半导体衬底层10表面上进行激光点阵列扫描得到大量排布均匀的所述微损伤点12,可以作为制绒过程中均匀分布的起绒点。这样在绒面形成初期,所述初始半导体衬底层10的表面成核均匀,成核密度大,有利于形成大小均匀的减反射结构14的绒面,从而降低半导体衬底层13的反射率。在此基础上,通过调整激光点阵列扫描的激光波长、光斑直径、光斑间距、刻蚀深度,可以有效提升起绒点密度,从而缩减制绒时间,改善绒面的性能。In this embodiment, a large number of uniformly distributed
参考图4,进行所述激光点阵列扫描之后,去除所述初始半导体衬底层10表面形成的氧化层11。Referring to FIG. 4 , after the laser spot array scanning is performed, the
本实施例中,所述初始半导体衬底层10表面在激光点阵列扫描过程中受热会被部分氧化,优选的是,通过酸洗可以去除所述初始半导体衬底层10表面形成的氧化层11。In this embodiment, the surface of the initial
在一个实施例中,去除所述初始半导体衬底层10表面形成的氧化层11的步骤中采用浓度为1wt%-5wt%的氢氟酸溶液在所述初始半导体衬底层10表面清洗5秒-20秒,氢氟酸溶液的浓度例如1wt%、2wt%、3wt%或5wt%,清洗时间例如5秒、10秒或20秒。In one embodiment, in the step of removing the
参考图5和图6,以若干个所述微损伤点12为起绒点,对所述初始半导体衬底层10进行制绒处理,以形成所述半导体衬底层13。Referring to FIGS. 5 and 6 , the initial
本实施例中,所述制绒处理采用的制绒液为碱性溶液。在一个实施例中,所述碱性溶液包括氢氧化钠溶液或氢氧化钾溶液。所述氢氧化钠溶液的浓度为1wt%-5wt%,例如1wt%、2wt%、3wt%或5wt%;所述氢氧化钾溶液的浓度为1wt%-5wt%,例如1wt%、2wt%、3wt%或5wt%。由于不同晶向的所述初始半导体衬底层10材料在碱性溶液中腐蚀的速率不同,利用这种差异可以在所述初始半导体衬底层10材料的不同晶向上腐蚀出带有减反射结构14的绒面。制绒液腐蚀性随氢氧化钠或氢氧化钾浓度的变化显著。若碱性制绒液的浓度高,碱性制绒液与所述初始半导体衬底层10进行化学反应的速度加快,反应相同时间后,所述减反射结构14的体积更大。当碱性制绒液的浓度超过一定阈值,溶液的腐蚀力度过强,各向异性因子变小,绒面会越来越差,直至出现类似“抛光”的效果。所以制绒时若采用的碱性溶液浓度过小时,腐蚀速度太慢;若采用的碱性溶液的浓度过大时,腐蚀度过强,碱性溶液的浓度过小或过大都不利于形成低反射率的绒面。In this embodiment, the texturing liquid used in the texturing treatment is an alkaline solution. In one embodiment, the alkaline solution includes sodium hydroxide solution or potassium hydroxide solution. The concentration of the sodium hydroxide solution is 1wt%-5wt%, such as 1wt%, 2wt%, 3wt% or 5wt%; the concentration of the potassium hydroxide solution is 1wt%-5wt%, such as 1wt%, 2wt%, 3wt% or 5wt%. Since the materials of the initial
在一个实施例中,对所述初始半导体衬底层10进行制绒处理的温度条件为80℃-90℃,工作时间为200秒-500秒。在使用激光点阵列扫描形成排布均匀起绒点的基础上,通过控制制绒时间,可以得到小尺寸(1μm-2μm)、生长均匀、紧密排布的减反射结构14。制绒时间过短则绒面覆盖率低;制绒时间过长则所述减反射结构14向外扩张兼并,体积逐渐膨胀,降低了所述减反射结构14的效率。两者都不利于降低所述半导体衬底层13的反射率。In one embodiment, the temperature conditions for the texturing treatment on the initial
在一个实施例中,所述减反射结构14的高度为0.5μm-3μm。所述减反射结构14的高度较小,有利于形成小尺寸且密度较大的所述减反射结构14。In one embodiment, the height of the
在一个实施例中,各所述减反射结构14在所述半导体衬底层13上的投影的面积小于或等于9μm2。In one embodiment, the projected area of each of the
在一个实施例中,任意两个所述减反射结构14中底面的高度差小于或等于1μm。所述减反射结构14中底面的高度差反映了所述半导体衬底层13表面的均匀性,较小的所述减反射结构14中底面的高度差表明所述半导体衬底层13表面的均匀性较好。In one embodiment, the height difference between the bottom surfaces of any two
在一个实施例中,所述减反射结构14的形状为金字塔形,均匀一致的相对小尺寸的金字塔有利于绒面反射率的降低。In one embodiment, the shape of the
在一个具体的实施例中,对所述初始半导体衬底层10进行制绒处理的步骤中,使用浓度1wt%-3wt%的氢氧化钾溶液,例如2wt%,温度84℃-86℃,例如85℃;工作时间340秒-360秒,例如350秒,得到具有金字塔形减反射结构14的所述半导体衬底层13,金字塔形减反射结构14的高度1μm-2μm,所述半导体衬底层13的反射率为8%-10%,例如9.5%。在制绒过程中,腐蚀一般优先从损伤处开始,通过激光点阵列扫描形成的均匀排布微损伤点12可以使腐蚀优先从预设的位置开始,降低了腐蚀的随机性,更有利于获得生长均匀的减反射结构14。腐蚀开始后,所述初始半导体衬底层10表面会有气泡产生,气泡扩大到一定程度后,浮力大于表面附着力,气泡便脱离所述初始半导体衬底层10的表面,制绒液又重新与初始半导体衬底层10表面接触发生腐蚀。周而复始,初始半导体衬底层10表面逐层被腐蚀掉,并形成与表面晶向、制绒液浓度、制绒液粘度、温度、腐蚀时间等因素相关的表面腐蚀形貌。例如:如前述制绒液浓度的碱的溶度越高,各向异性越弱;制绒液粘度的粘度越高越不利于反应的进行;温度决定反应的速率,同时对于各向异性具有增强作用;腐蚀时间的长短决定腐蚀的程度。同样的,无论是P型半导体衬底层还是N型半导体衬底层,其表面晶向的形成结构一致,形成机理一致。In a specific embodiment, in the step of performing the texturing treatment on the initial
在一个具体的实施例中,采用单晶硅作为初始半导体衬底层10,单晶硅各晶面的悬挂键密度不同,从而使单晶硅片在碱性溶液中腐蚀产生各向异性。从材料微观结构中的晶面法线方向来看,由于单晶硅的(100)、(110)、(111)三个晶面的面密度不同,造成制绒液对三个晶面的刻蚀速度不同,(100)晶面的刻蚀速度最大,(111)晶面的刻蚀最小,导致刻蚀量小的(111)晶面易于暴露在表面,从而形成金字塔形的减反射结构14。In a specific embodiment, single crystal silicon is used as the initial
现有技术中半导体衬底层的金字塔绒面的形成取决且仅取决于添加剂和药液状态,其金字塔形成的位置及大小具有相对的随机性。而在本实施例中,通过在初始半导体衬底层表面上使用激光点阵列扫描得到大量排布均匀的微损伤点来作为制绒过程中的起绒点,通过起绒点位置的控制,从而能得到位置更均匀、尺寸大小更一致的较小金字塔绒面,降低半导体衬底层的反射率。In the prior art, the formation of the pyramid texture of the semiconductor substrate layer depends on and only depends on the state of the additive and the liquid medicine, and the position and size of the pyramid formed are relatively random. In this embodiment, a large number of uniformly arranged micro-damage points are obtained by scanning the surface of the initial semiconductor substrate layer with a laser point array as the raising points in the texturing process. A smaller pyramid texture surface with more uniform position and more consistent size is obtained, which reduces the reflectivity of the semiconductor substrate layer.
实施例2Example 2
本实施例提供一种太阳能电池的制备方法,包括以下步骤:The present embodiment provides a method for preparing a solar cell, comprising the following steps:
形成半导体衬底层13,采用本发明实施例1的半导体衬底层13的处理方法形成;The
本实施例中,以异质结太阳能电池的制备方法作为示例,太阳能电池的制备方法还包括:In this embodiment, taking the preparation method of a heterojunction solar cell as an example, the preparation method of the solar cell further includes:
在所述半导体衬底层13的一侧表面形成第一本征钝化层;在所述半导体衬底层13的另一侧表面形成第二本征钝化层;A first intrinsic passivation layer is formed on one side surface of the
在所述第一本征钝化层背离所述半导体衬底层13的一侧表面形成第一掺杂半导体层;在所述第二本征钝化层背离所述半导体衬底层13的一侧表面形成第二掺杂半导体层;A first doped semiconductor layer is formed on the surface of the first intrinsic passivation layer facing away from the
在所述第一掺杂半导体层背离所述半导体衬底层13的一侧表面形成第一透明导电氧化层;在所述第二掺杂半导体层背离所述半导体衬底层13的一侧表面形成第二透明导电氧化层;A first transparent conductive oxide layer is formed on the surface of the first doped semiconductor layer away from the
在所述第一透明导电氧化层背离所述半导体衬底层13的一侧表面形成第一栅电极;在所述第二透明导电氧化层背离所述半导体衬底层13的一侧表面形成第二栅电极。A first gate electrode is formed on the surface of the first transparent conductive oxide layer away from the
实施例3Example 3
本实施例还提供一种太阳能电池,包括半导体衬底层13,所述半导体衬底层13至少一侧具有若干个阵列排布的减反射结构14。This embodiment also provides a solar cell, which includes a
在一个实施例中,各所述减反射结构14在所述半导体衬底层13上的投影的面积小于或等于9μm2,例如6μm2、7μm2或8μm2。In one embodiment, the projected area of each of the
在一个实施例中,所述减反射结构14的高度为0.5μm-3μm。In one embodiment, the height of the
在一个实施例中,任意两个所述减反射结构14中底面的高度差小于或等于1μm。所述减反射结构14中底面的高度差反映了所述半导体衬底层13表面的均匀性,较小的所述减反射结构14中底面的高度差表明所述半导体衬底层13表面的均匀性较好。In one embodiment, the height difference between the bottom surfaces of any two
在一个实施例中,所述减反射结构14的形状为金字塔形。小尺寸(高度1μm-2μm)、位置均匀、紧密排布的金字塔形减反射结构14,有利于降低半导体衬底层13的反射率。In one embodiment, the shape of the
这里应该理解的是,大尺寸(高度大于5μm)金字塔的绒面性能之所以逊于小尺寸金字塔的绒面,是由于大尺寸金字塔反射率更高,不利于绒面陷光。因此,本实施例中选择小尺寸的减反射结构14,降低制绒后的反射率。It should be understood here that the reason why the texture performance of large-sized pyramids (height greater than 5 μm) is inferior to that of small-sized pyramids is that the large-sized pyramids have higher reflectivity, which is not conducive to light trapping on the textured surfaces. Therefore, in this embodiment, the
本实施例中,太阳能电池还包括:位于所述半导体衬底层13的一侧表面的第一本征钝化层;位于所述半导体衬底层13的另一侧表面的第二本征钝化层;位于所述第一本征钝化层背离所述半导体衬底层13的一侧表面的第一掺杂半导体层;位于所述第二本征钝化层背离所述半导体衬底层13的一侧表面的第二掺杂半导体层;位于所述第一掺杂半导体层背离所述半导体衬底层13的一侧表面的第一透明导电氧化层;位于所述第二掺杂半导体层背离所述半导体衬底层13的一侧表面的第二透明导电氧化层;位于所述第一透明导电氧化层背离所述半导体衬底层13的一侧表面的第一栅电极;位于所述第二透明导电氧化层背离所述半导体衬底层13的一侧表面的第二栅电极。In this embodiment, the solar cell further includes: a first intrinsic passivation layer located on one side surface of the
显然,上述实施例仅仅是为清楚地说明所作的举例,而并非对实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动。这里无需也无法对所有的实施方式予以穷举。而由此所引伸出的显而易见的变化或变动仍处于本发明创造的保护范围之中。Obviously, the above-mentioned embodiments are only examples for clear description, and are not intended to limit the implementation manner. For those of ordinary skill in the art, changes or modifications in other different forms can also be made on the basis of the above description. There is no need and cannot be exhaustive of all implementations here. And the obvious changes or changes derived from this are still within the protection scope of the present invention.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210195148.XA CN114566556A (en) | 2022-02-28 | 2022-02-28 | Processing method of semiconductor substrate layer, solar cell and preparation method of solar cell |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210195148.XA CN114566556A (en) | 2022-02-28 | 2022-02-28 | Processing method of semiconductor substrate layer, solar cell and preparation method of solar cell |
Publications (1)
Publication Number | Publication Date |
---|---|
CN114566556A true CN114566556A (en) | 2022-05-31 |
Family
ID=81716277
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210195148.XA Pending CN114566556A (en) | 2022-02-28 | 2022-02-28 | Processing method of semiconductor substrate layer, solar cell and preparation method of solar cell |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114566556A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2024140775A1 (en) * | 2022-12-30 | 2024-07-04 | 比亚迪股份有限公司 | Pre-textured silicon wafer and preparation method therefor, textured wafer, and solar cell |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2005053037A1 (en) * | 2003-11-10 | 2005-06-09 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V | Method for reducing reflection on semiconductor surfaces |
KR101215543B1 (en) * | 2011-08-10 | 2012-12-26 | 재단법인 서남권청정에너지기술연구원 | Texturing method for using double texturing method of polycrystal silicon wafer for solar cell |
CN103026497A (en) * | 2010-07-26 | 2013-04-03 | 浜松光子学株式会社 | Method for manufacturing light-absorbing substrate and method for manufacturing die for manufacturing light-absorbing substrate |
CN205028905U (en) * | 2015-09-30 | 2016-02-10 | 江苏盎华光伏工程技术研究中心有限公司 | Silicon chip and solar wafer |
CN106299027A (en) * | 2016-08-30 | 2017-01-04 | 浙江启鑫新能源科技股份有限公司 | A kind of preparation method of N-type monocrystalline double-side cell |
CN109950336A (en) * | 2019-04-18 | 2019-06-28 | 电子科技大学 | A kind of black silicon material and preparation method thereof |
CN111799339A (en) * | 2020-06-29 | 2020-10-20 | 韩华新能源(启东)有限公司 | Surface treatment methods for silicon wafers for solar cells |
-
2022
- 2022-02-28 CN CN202210195148.XA patent/CN114566556A/en active Pending
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2005053037A1 (en) * | 2003-11-10 | 2005-06-09 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V | Method for reducing reflection on semiconductor surfaces |
CN103026497A (en) * | 2010-07-26 | 2013-04-03 | 浜松光子学株式会社 | Method for manufacturing light-absorbing substrate and method for manufacturing die for manufacturing light-absorbing substrate |
KR101215543B1 (en) * | 2011-08-10 | 2012-12-26 | 재단법인 서남권청정에너지기술연구원 | Texturing method for using double texturing method of polycrystal silicon wafer for solar cell |
CN205028905U (en) * | 2015-09-30 | 2016-02-10 | 江苏盎华光伏工程技术研究中心有限公司 | Silicon chip and solar wafer |
CN106299027A (en) * | 2016-08-30 | 2017-01-04 | 浙江启鑫新能源科技股份有限公司 | A kind of preparation method of N-type monocrystalline double-side cell |
CN109950336A (en) * | 2019-04-18 | 2019-06-28 | 电子科技大学 | A kind of black silicon material and preparation method thereof |
CN111799339A (en) * | 2020-06-29 | 2020-10-20 | 韩华新能源(启东)有限公司 | Surface treatment methods for silicon wafers for solar cells |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2024140775A1 (en) * | 2022-12-30 | 2024-07-04 | 比亚迪股份有限公司 | Pre-textured silicon wafer and preparation method therefor, textured wafer, and solar cell |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109888061B (en) | Alkali polishing efficient PERC battery and preparation process thereof | |
JP5868503B2 (en) | Solar cell and method for manufacturing the same | |
JP2005150614A (en) | Solar cell and manufacturing method thereof | |
JP2012517121A (en) | Damage etching and texturing method for silicon single crystal substrate | |
CN104195645A (en) | Acidic texturing solution for etching solar cell silicon wafer, texturing method, solar cell silicon wafer and manufacturing method of solar cell silicon wafer | |
WO2023213088A1 (en) | Solar cell and preparation method therefor, and photovoltaic system | |
WO2021136196A1 (en) | Monocrystalline silicon wafer with pyramid superposed structure | |
CN104393104B (en) | A kind for the treatment of technology for HIT solar cell texture | |
CN117153953B (en) | Preparation method of split-film type double-sided TOPCON battery | |
CN111455467A (en) | Monocrystalline silicon texturing additive, texturing method and textured monocrystalline silicon piece preparation method | |
CN104157724A (en) | Solar cell with selective nano emitter electrode and preparation method of solar cell | |
CN113314626A (en) | Manufacturing method of solar cell | |
CN114388639A (en) | Ingot crystalline silicon heterojunction solar cell and manufacturing method thereof | |
CN110137302A (en) | Cleaning and texturing method of silicon heterojunction solar cell crystalline silicon substrate and silicon heterojunction solar cell | |
CN115084314A (en) | IBC solar cell preparation method of TOPCon passivation contact structure | |
CN105161553A (en) | Preparation method of novel all back electrode crystalline silicon solar cell | |
CN118099290A (en) | A post-texturing method for manufacturing a combined passivation back contact battery | |
JP4193962B2 (en) | Solar cell substrate and thin film solar cell | |
CN118658928A (en) | Preparation method of photovoltaic cell for improving fill factor and photovoltaic cell | |
CN113013293A (en) | Preparation method of heterojunction battery | |
CN204311157U (en) | For the silicon chip of solar cell | |
CN114566556A (en) | Processing method of semiconductor substrate layer, solar cell and preparation method of solar cell | |
CN111640807B (en) | Textured sheet with V-groove textured structure and preparation method and application thereof | |
CN113035978A (en) | Silicon wafer with different-surface structure and preparation method thereof, and solar cell and preparation method thereof | |
CN118231489A (en) | P-type TOPCon battery and preparation method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
CB02 | Change of applicant information | ||
CB02 | Change of applicant information |
Country or region after: China Address after: No. 99 Qingliu Road, Xuancheng Economic and Technological Development Zone, Xuancheng City, Anhui Province Applicant after: Anhui Huasheng New Energy Technology Co.,Ltd. Address before: Science and Technology Park, Xuancheng Economic and Technological Development Zone, Xuancheng City, Anhui Province Applicant before: Anhui Huasheng New Energy Technology Co.,Ltd. Country or region before: China |
|
RJ01 | Rejection of invention patent application after publication | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20220531 |