CN114566423A - Silicon III-V semiconductor epitaxial structure and preparation method thereof - Google Patents
Silicon III-V semiconductor epitaxial structure and preparation method thereof Download PDFInfo
- Publication number
- CN114566423A CN114566423A CN202011359732.1A CN202011359732A CN114566423A CN 114566423 A CN114566423 A CN 114566423A CN 202011359732 A CN202011359732 A CN 202011359732A CN 114566423 A CN114566423 A CN 114566423A
- Authority
- CN
- China
- Prior art keywords
- iii
- layer
- silicon
- epitaxial structure
- semiconductor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 229910052710 silicon Inorganic materials 0.000 title claims abstract description 162
- 239000010703 silicon Substances 0.000 title claims abstract description 162
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 title claims abstract description 161
- 239000004065 semiconductor Substances 0.000 title claims abstract description 151
- 238000002360 preparation method Methods 0.000 title claims abstract description 29
- 230000006978 adaptation Effects 0.000 claims abstract description 176
- 239000000758 substrate Substances 0.000 claims abstract description 67
- 238000000034 method Methods 0.000 claims abstract description 42
- 150000001875 compounds Chemical class 0.000 claims abstract description 24
- 229910002056 binary alloy Inorganic materials 0.000 claims abstract description 7
- 239000010410 layer Substances 0.000 claims description 358
- 239000000463 material Substances 0.000 claims description 52
- 229910001218 Gallium arsenide Inorganic materials 0.000 claims description 46
- 239000000203 mixture Substances 0.000 claims description 24
- 230000007704 transition Effects 0.000 claims description 20
- 239000002356 single layer Substances 0.000 claims description 6
- 239000013078 crystal Substances 0.000 claims description 4
- 230000003287 optical effect Effects 0.000 claims description 4
- 238000005457 optimization Methods 0.000 claims description 4
- WGPCGCOKHWGKJJ-UHFFFAOYSA-N sulfanylidenezinc Chemical compound [Zn]=S WGPCGCOKHWGKJJ-UHFFFAOYSA-N 0.000 claims description 2
- 229910052984 zinc sulfide Inorganic materials 0.000 claims description 2
- 230000008569 process Effects 0.000 abstract description 8
- 230000033228 biological regulation Effects 0.000 abstract description 3
- 238000004519 manufacturing process Methods 0.000 abstract 1
- 230000007547 defect Effects 0.000 description 35
- 230000000737 periodic effect Effects 0.000 description 17
- XYFCBTPGUUZFHI-UHFFFAOYSA-N Phosphine Chemical compound P XYFCBTPGUUZFHI-UHFFFAOYSA-N 0.000 description 16
- 230000006911 nucleation Effects 0.000 description 13
- 238000010899 nucleation Methods 0.000 description 13
- 239000001257 hydrogen Substances 0.000 description 12
- 229910052739 hydrogen Inorganic materials 0.000 description 12
- 229910021421 monocrystalline silicon Inorganic materials 0.000 description 12
- 229910005542 GaSb Inorganic materials 0.000 description 10
- 238000010586 diagram Methods 0.000 description 9
- XCZXGTMEAKBVPV-UHFFFAOYSA-N trimethylgallium Chemical compound C[Ga](C)C XCZXGTMEAKBVPV-UHFFFAOYSA-N 0.000 description 9
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 8
- 229910000673 Indium arsenide Inorganic materials 0.000 description 8
- 238000004140 cleaning Methods 0.000 description 8
- RPQDHPTXJYYUPQ-UHFFFAOYSA-N indium arsenide Chemical compound [In]#[As] RPQDHPTXJYYUPQ-UHFFFAOYSA-N 0.000 description 8
- 229910000073 phosphorus hydride Inorganic materials 0.000 description 8
- 229910000530 Gallium indium arsenide Inorganic materials 0.000 description 6
- 238000000407 epitaxy Methods 0.000 description 6
- 230000000903 blocking effect Effects 0.000 description 5
- RBFQJDQYXXHULB-UHFFFAOYSA-N arsane Chemical compound [AsH3] RBFQJDQYXXHULB-UHFFFAOYSA-N 0.000 description 4
- 239000012159 carrier gas Substances 0.000 description 4
- 239000007789 gas Substances 0.000 description 4
- 150000002431 hydrogen Chemical class 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- IBEFSUTVZWZJEL-UHFFFAOYSA-N trimethylindium Chemical compound C[In](C)C IBEFSUTVZWZJEL-UHFFFAOYSA-N 0.000 description 4
- 101100341026 Caenorhabditis elegans inx-2 gene Proteins 0.000 description 3
- 125000004429 atom Chemical group 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 125000005842 heteroatom Chemical group 0.000 description 3
- 230000007246 mechanism Effects 0.000 description 3
- 238000000137 annealing Methods 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 230000010354 integration Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 230000003044 adaptive effect Effects 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000001534 heteroepitaxy Methods 0.000 description 1
- 230000010365 information processing Effects 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 238000004020 luminiscence type Methods 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000004377 microelectronic Methods 0.000 description 1
- 238000001451 molecular beam epitaxy Methods 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 229910052950 sphalerite Inorganic materials 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02367—Substrates
- H01L21/0237—Materials
- H01L21/02373—Group 14 semiconducting materials
- H01L21/02381—Silicon, silicon germanium, germanium
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02436—Intermediate layers between substrates and deposited layers
- H01L21/02439—Materials
- H01L21/02455—Group 13/15 materials
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02436—Intermediate layers between substrates and deposited layers
- H01L21/02439—Materials
- H01L21/02455—Group 13/15 materials
- H01L21/02463—Arsenides
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02518—Deposited layers
- H01L21/02521—Materials
- H01L21/02538—Group 13/15 materials
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Recrystallisation Techniques (AREA)
Abstract
Description
技术领域technical field
本发明涉及半导体集成领域,尤其涉及一种硅上III-V族半导体外延结构及其制备方法。The invention relates to the field of semiconductor integration, in particular to a III-V group semiconductor epitaxial structure on silicon and a preparation method thereof.
背景技术Background technique
集成电路为代表的硅基微电子技术自上世纪50年代问世以来,得到了高度发展和长足进步,已遍布于计算机、手机、互联网等各个领域,为人们的生产、学习和生活带来了极大便利。随着信息社会的进一步发展,大数据时代来临,人们对数据传输速率、信息处理速度等的需求也越来越高,现今集成电路维持摩尔定律已力不从心,摩尔定律面临着失效的危险。The silicon-based microelectronics technology represented by integrated circuits has been highly developed and made great progress since its inception in the 1950s. Great convenience. With the further development of the information society and the advent of the era of big data, people's demands for data transmission rate and information processing speed are also getting higher and higher. Today's integrated circuits are unable to maintain Moore's Law, and Moore's Law is facing the danger of failure.
随着硅基光子学的发展,以光作为信息传输的载体,在克服电互连缺陷的同时又可以发挥光互连系统中信息传输低损耗、高速率等优势。然而,硅是间接带隙材料,发光效率极低,难以作为增益介质,为此硅基光源已成制约硅基光子学发展的最大障碍。With the development of silicon-based photonics, using light as the carrier of information transmission can not only overcome the defects of electrical interconnection, but also give full play to the advantages of low loss and high speed of information transmission in the optical interconnection system. However, silicon is an indirect bandgap material with extremely low luminous efficiency, making it difficult to be used as a gain medium. For this reason, silicon-based light sources have become the biggest obstacle to the development of silicon-based photonics.
研究人员在硅基光源方面开展了许多工作,但是依然没有取得彻底突破。在硅基光源的实现方案中,硅上单片集成III-V族半导体光源最具应用前景,但在硅与III-V族半导体材料之间存在晶格失配、热失配和极性失配的问题,严重影响着硅基光源的性能,尤其是硅上III-V族半导体材料中出现的高密度穿透位错会极大地降低硅基光源的寿命(譬如,目前硅基GaAs系量子阱激光器的寿命仅有几百小时)。目前,降低硅上单片集成III-V族半导体材料中的穿透位错密度,主要是在二步法生长、三步法生长的基础上,引入热循环退火、位错阻挡层或位错过滤层、图形衬底等阻挡穿透位错、改变+穿透位错向上传播方向这些传统方案及其组合,虽然均有一定的效果,但是都未能将硅上III-V族半导体材料中的穿透位错密度降低到一个理想范围。Researchers have carried out a lot of work on silicon-based light sources, but still have not made a complete breakthrough. Among the realization schemes of silicon-based light sources, the monolithic integration of III-V semiconductor light sources on silicon is the most promising, but there are lattice mismatches, thermal mismatches and polarity mismatches between silicon and III-V semiconductor materials. The problem of matching seriously affects the performance of silicon-based light sources, especially the high density of threading dislocations in III-V semiconductor materials on silicon will greatly reduce the life of silicon-based light sources (for example, the current silicon-based GaAs system quantum The lifetime of the trap laser is only a few hundred hours). At present, to reduce the threading dislocation density in monolithically integrated III-V semiconductor materials on silicon, mainly on the basis of two-step growth and three-step growth, thermal cycle annealing, dislocation barrier layers or dislocations are introduced. Filter layers, patterned substrates and other traditional solutions such as blocking threading dislocations, changing the upward propagation direction of + threading dislocations, and their combinations have certain effects, but they have failed to combine III-V semiconductor materials on silicon. The threading dislocation density is reduced to an ideal range.
发明内容SUMMARY OF THE INVENTION
本发明实施例提供一种硅上III-V族半导体外延结构及其制备方法,用以解决现有技术中的问题。Embodiments of the present invention provide a III-V semiconductor epitaxial structure on silicon and a preparation method thereof, so as to solve the problems in the prior art.
本发明实施例提供一种硅上III-V族半导体外延结构的制备方法,包括:在硅衬底上直接或间接生长适配层;在所述适配层上直接或间接生长III-V族半导体目标外延结构;其中,所述适配层包括三元系III族砷化物适配层或二元系III-V族化合物适配层。An embodiment of the present invention provides a method for preparing a III-V semiconductor epitaxial structure on silicon, including: growing an adaptation layer directly or indirectly on a silicon substrate; directly or indirectly growing a III-V group on the adaptation layer A semiconductor target epitaxial structure; wherein, the adaptation layer comprises a ternary system III group arsenide adaptation layer or a binary system III-V group compound adaptation layer.
根据本发明一个实施例的硅上III-V族半导体外延结构的制备方法,在硅衬底上间接生长适配层,包括:在硅衬底上生长III族磷化物缓冲层后,在所述III族磷化物缓冲层上生长所述适配层。According to a method for preparing a III-V semiconductor epitaxial structure on silicon according to an embodiment of the present invention, indirectly growing an adaptation layer on a silicon substrate includes: after growing a group III phosphide buffer layer on the silicon substrate, The adaptation layer is grown on the III-phosphide buffer layer.
根据本发明一个实施例的硅上III-V族半导体外延结构的制备方法,在所述适配层上直接生长III-V族半导体目标外延结构,包括:在所述适配层上生长晶格常数相匹配的III-V族目标半导体外延结构,或适配层晶格失配度介于-5.2%~-7.8%之间的III-V族目标半导体外延结构;在所述适配层上间接生长III-V族半导体目标外延结构,包括:在所述适配层上生长III-V族化合物过渡层后,在所述III-V族化合物过渡层上生长所述III-V族半导体目标外延结构。According to a method for preparing a III-V semiconductor epitaxial structure on silicon according to an embodiment of the present invention, directly growing a III-V semiconductor target epitaxial structure on the adaptation layer includes: growing a crystal lattice on the adaptation layer A III-V group target semiconductor epitaxial structure with matching constants, or a III-V group target semiconductor epitaxial structure with a lattice mismatch of the adaptation layer between -5.2% and -7.8%; on the adaptation layer Indirectly growing a III-V semiconductor target epitaxial structure, comprising: after growing a III-V group compound transition layer on the adaptation layer, growing the III-V group semiconductor target on the III-V group compound transition layer Epitaxial structure.
根据本发明一个实施例的硅上III-V族半导体外延结构的制备方法,所述适配层,是具有闪锌矿晶体结构,且晶格常数介于与之间的III-V族化合物外延层;或者所述适配层的材料为Inx1Ga1-x1As(0.15≤x1≤1)或Inx2Al1-x2As(0.13≤x2≤1);所述三元系III族砷化物适配层的组分优化值结合待生长的III-V族半导体目标外延结构予以确定。According to a method for preparing a III-V semiconductor epitaxial structure on silicon according to an embodiment of the present invention, the adaptation layer has a zinc blende crystal structure, and the lattice constant is between and The III-V compound epitaxial layer between them; or the material of the adaptation layer is In x1 Ga 1-x1 As (0.15≤x1≤1) or Inx2 Al 1-x2 As (0.13≤x2≤1); The composition optimization value of the ternary group III arsenide adaptation layer is determined in combination with the target epitaxial structure of the III-V group semiconductor to be grown.
根据本发明一个实施例的硅上III-V族半导体外延结构的制备方法,所述III-V族半导体目标外延结构为单层或多层结构,且晶格常数介于与之间。According to an embodiment of the present invention, a method for preparing a III-V semiconductor epitaxial structure on silicon, the III-V semiconductor target epitaxial structure is a single-layer or multi-layer structure, and the lattice constant is between and between.
根据本发明一个实施例的硅上III-V族半导体外延结构的制备方法,所述III族磷化物缓冲层由GaP、AlGaP或AlP中任意一种或多种构成,其中AlGaP层中Al组分为y1,Ga组分为y2,且y1+y2=1,0<y1、y2<1,所述III族磷化物缓冲层与硅的晶格失配度介于0.368%~0.372%之间。According to a method for preparing a group III-V semiconductor epitaxial structure on silicon according to an embodiment of the present invention, the group III phosphide buffer layer is composed of any one or more of GaP, AlGaP or AlP, wherein Al composition in the AlGaP layer is y1, the Ga component is y2, and y1+y2=1, 0<y1, y2<1, the lattice mismatch between the group III phosphide buffer layer and silicon is between 0.368% and 0.372%.
根据本发明一个实施例的硅上III-V族半导体外延结构的制备方法,在硅衬底上生长III族磷化物缓冲层,包括:According to a method for preparing a III-V semiconductor epitaxial structure on silicon according to an embodiment of the present invention, growing a III-phosphide buffer layer on a silicon substrate includes:
在350-450℃低温下生长5~50nm的GaP缓冲层;Grow a 5-50nm GaP buffer layer at a low temperature of 350-450℃;
在500-750℃高温下生长0~150nm的GaP缓冲层;Grow a GaP buffer layer of 0-150nm at a high temperature of 500-750℃;
在所述III族磷化物缓冲层上生长所述适配层,包括:Growing the adaptation layer on the Group III phosphide buffer layer includes:
在400~500℃下生长厚度为0.5~30nm、In组分为0.15的In0.15Ga0.85As适配层;A In 0.15 Ga 0.85 As adaptation layer with a thickness of 0.5 to 30 nm and an In composition of 0.15 was grown at 400 to 500 °C;
在所述适配层上生长III-V族化合物过渡层,包括:A III-V compound transition layer is grown on the adaptation layer, including:
在400~550℃下生长厚度10nm~100nm的低温GaAs缓冲层作为过渡层;A low-temperature GaAs buffer layer with a thickness of 10nm-100nm is grown at 400-550℃ as a transition layer;
在所述III-V族化合物过渡层生长所述III-V族半导体目标外延结构,包括:Growing the III-V semiconductor target epitaxial structure on the III-V compound transition layer includes:
在580~730℃生长GaAs及与GaAs相适配的材料体系,完成硅上GaAs系半导体目标外延结构的制备。GaAs and a material system suitable for GaAs are grown at 580-730 ℃, and the preparation of the target epitaxial structure of GaAs series semiconductor on silicon is completed.
根据本发明一个实施例的硅上III-V族半导体外延结构的制备方法,在硅衬底上直接生长适配层,包括:According to a method for preparing a III-V semiconductor epitaxial structure on silicon according to an embodiment of the present invention, the adaptation layer is directly grown on the silicon substrate, including:
在400~500℃下生长厚度为0.5~30nm的InP适配层;Growing an InP adaptation layer with a thickness of 0.5-30 nm at 400-500 °C;
在所述适配层上直接生长III-V族半导体目标外延结构,包括:Directly growing a III-V semiconductor target epitaxial structure on the adaptation layer, including:
在580~730℃下生长InP及与InP相适配的材料体系,完成硅上InP系半导体目标外延结构的制备。InP and a material system suitable for InP are grown at 580-730 ℃, and the preparation of the target epitaxial structure of InP-based semiconductor on silicon is completed.
根据本发明一个实施例的硅上III-V族半导体外延结构的制备方法,在硅衬底上生长III族磷化物缓冲层,包括:According to a method for preparing a III-V semiconductor epitaxial structure on silicon according to an embodiment of the present invention, growing a III-phosphide buffer layer on a silicon substrate includes:
在350-450℃低温下生长5~50nm的AlP缓冲层;Growth of 5-50nm AlP buffer layer at low temperature of 350-450℃;
在500-750℃高温下继续生长0~150nm的AlP缓冲层;Continue to grow AlP buffer layer of 0-150nm at high temperature of 500-750℃;
在所述III族磷化物缓冲层上生长所述适配层,包括:Growing the adaptation layer on the Group III phosphide buffer layer includes:
在400~500℃下生长厚度为0.5~30nm的In0.73Ga0.27As适配层;growing an In 0.73 Ga 0.27 As adaptation layer with a thickness of 0.5-30 nm at 400-500 ℃;
在适配层上生长III-V族半导体目标外延结构,包括:Growth of III-V semiconductor target epitaxial structures on the adaptation layer, including:
在400~750℃下生长GaAs及与GaAs相适配的材料体系,完成硅上GaAs系半导体目标外延结构的制备。GaAs and a material system suitable for GaAs are grown at 400-750 ℃, and the preparation of the target epitaxial structure of GaAs series semiconductor on silicon is completed.
本发明实施例还提供一种硅上III-V族半导体外延结构,由上述任一硅上III--V族半导体外延结构的制备方法制备得到,所述硅上III-V族半导体外延结构,用于制备硅基光子学器件或硅基电子学器件,所述硅基光子学器件包括:硅基III-V族半导体激光器、硅基III-V超辐射发光二极管、硅基III-V族发光二极管、硅基III-V族光放大器、硅基III-V族光探测器或硅基III-V族无源器件。The embodiment of the present invention also provides a III-V semiconductor epitaxial structure on silicon, which is prepared by any of the above-mentioned methods for preparing a III-V semiconductor epitaxial structure on silicon. The silicon III-V semiconductor epitaxial structure, For preparing silicon-based photonics devices or silicon-based electronic devices, the silicon-based photonics devices include: silicon-based III-V semiconductor lasers, silicon-based III-V superluminescent diodes, silicon-based III-V group luminescence Diodes, silicon-based III-V optical amplifiers, silicon-based III-V photodetectors, or silicon-based III-V passive devices.
本发明实施例提供的硅上III-V族半导体外延结构及其制备方法,生长工艺简单,易调控,对生长设备没有特殊要求。特别是,降低穿透位错密度所需的适配层的厚度薄,使得后续通过增加层数和厚度来优化III-V族半导体外延结构变为可能,利于硅上高性能III-V族半导体器件的制备。The III-V semiconductor epitaxial structure on silicon and the preparation method thereof provided by the embodiments of the present invention have simple growth process, easy regulation, and no special requirements for growth equipment. In particular, the thickness of the adaptation layer required to reduce the threading dislocation density is thin, making it possible to optimize the III-V semiconductor epitaxial structure by increasing the number and thickness of the layers, which is beneficial for high-performance III-V semiconductors on silicon. device preparation.
附图说明Description of drawings
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。In order to more clearly illustrate the embodiments of the present invention or the technical solutions in the prior art, the following briefly introduces the accompanying drawings that need to be used in the description of the embodiments or the prior art. Obviously, the accompanying drawings in the following description These are some embodiments of the present invention. For those of ordinary skill in the art, other drawings can also be obtained according to these drawings without creative efforts.
图1是适配层与其下层的原子排布截面示意图;Fig. 1 is the atomic arrangement cross-sectional schematic diagram of the adaptation layer and its lower layer;
图2是本发明实施例提供的一种硅上III-V族半导体外延结构的制备方法的流程示意图;2 is a schematic flowchart of a method for preparing a III-V semiconductor epitaxial structure on silicon provided by an embodiment of the present invention;
图3是本发明实施例提供的引入适配层的硅上GaAs系半导体外延结构示意图;3 is a schematic diagram of an epitaxial structure of a GaAs-based semiconductor on silicon incorporating an adaptation layer provided by an embodiment of the present invention;
图4是本发明实施例提供的引入适配层的硅上InP系半导体外延结构示意图;4 is a schematic diagram of an epitaxial structure of an InP-based semiconductor on silicon incorporating an adaptation layer provided by an embodiment of the present invention;
图5是本发明实施例提供的引入双界面驻留缺陷的硅上GaAs系半导体外延结构示意图;5 is a schematic diagram of an epitaxial structure of a GaAs-based semiconductor on silicon that introduces double-interface resident defects according to an embodiment of the present invention;
图6是本发明实施例提供的引入适配层的硅上GaSb系半导体外延结构示意图;6 is a schematic diagram of an epitaxial structure of a GaSb-based semiconductor on silicon incorporating an adaptation layer provided by an embodiment of the present invention;
图7是本发明另一实施例提供的一种硅上III-V族半导体外延结构的制备方法的流程示意图。7 is a schematic flowchart of a method for fabricating a III-V semiconductor epitaxial structure on silicon provided by another embodiment of the present invention.
具体实施方式Detailed ways
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。In order to make the purposes, technical solutions and advantages of the embodiments of the present invention clearer, the technical solutions in the embodiments of the present invention will be clearly and completely described below with reference to the accompanying drawings in the embodiments of the present invention. Obviously, the described embodiments These are some embodiments of the present invention, but not all embodiments. Based on the embodiments of the present invention, all other embodiments obtained by those of ordinary skill in the art without creative efforts shall fall within the protection scope of the present invention.
下面结合图1-图7描述本发明实施例的硅上III-V族半导体外延结构及其制备方法。The following describes the III-V semiconductor-on-silicon epitaxial structure and the preparation method thereof according to the embodiments of the present invention with reference to FIG. 1 to FIG. 7 .
图1是适配层与其下层的原子排布截面示意图。其中,101是适配层,102是界面驻留缺陷,103是下层(具体是指硅衬底或III族磷化物缓冲层)。图1为适配层101与其下层103的纵截面示意图,适配层101与其下层103在界面处存在着界面驻留缺陷102(图1有两个界面驻留缺陷102),界面驻留缺陷102产生的原因是由于适配层101与其下层103具有较大的晶格失配度,设适配层101与其下层103之间的晶格失配度为α,自然地,适配层101与其下层103所构成的界面为一平面,以x、y代表该平面内相互垂直的两个方向,那么在紧邻界面的适配层101的x方向上会以1/α个原子为周期产生一个悬空键,即一个界面驻留缺陷02。进一步地,当适配层101与其下层103的晶格失配度α为11.1%,那么在紧邻界面的适配层101的x方向上,一行中每9个适配层材料的原子后面就产生一个悬空键,即一个界面驻留缺陷(如图1所示)。由于横截面是由一系列相互平行的平面构成,每个平面产生的界面驻留缺陷组合在一起便在y方向上对齐排成了一列。同理,根据对称性原理可知,在紧邻界面的适配层101的y方向上,一列中每9个适配层材料的原子后面同样产生一个缺陷,这些缺陷组合在一起便在x方向上对齐排布成了一行。也就是说,在紧邻界面的适配层101里面产生了既以行(x方向)为周期,又以列(y方向)为周期的缺陷。并且这些缺陷只存在于界面处,不向上传播,即“驻留”在界面处。由于周期性界面驻留缺陷的存在,适配层101与其下层103的晶格失配所带来的应力得到了有效释放,在界面处因晶格失配形成的穿透位错密度显著降低。Figure 1 is a schematic cross-sectional view of the atomic arrangement of the adaptation layer and its lower layer. Wherein, 101 is an adaptation layer, 102 is an interface resident defect, and 103 is a lower layer (specifically refers to a silicon substrate or a group III phosphide buffer layer). FIG. 1 is a schematic longitudinal cross-sectional view of the
图2是本发明实施例提供的一种硅上III-V族半导体外延结构的制备方法的流程示意图,如图2所示,本发明实施例提供一种硅上III-V族半导体外延结构的制备方法,包括:FIG. 2 is a schematic flowchart of a method for preparing a III-V semiconductor epitaxial structure on silicon provided by an embodiment of the present invention. As shown in FIG. 2 , an embodiment of the present invention provides a III-V semiconductor epitaxial structure on silicon. Methods of preparation, including:
201、在硅衬底上直接或间接生长适配层;所述适配层包括三元系III族砷化物适配层或二元系III-V族化合物适配层。201. Grow an adaptation layer directly or indirectly on a silicon substrate; the adaptation layer includes a ternary group III arsenide adaptation layer or a binary system III-V group compound adaptation layer.
202、在所述适配层上直接或间接生长III-V族半导体目标外延结构。202. Directly or indirectly grow a III-V semiconductor target epitaxial structure on the adaptation layer.
目前常见的异变外延(也称为异质外延)方案基本都是在穿透位错传播过程中通过阻挡穿透位错或改变穿透位错向上传播方向,从而降低顶部异变外延层中的穿透位错密度。众所周知,穿透位错产生于衬底与异变外延层的异质界面处,其产生的物理机制在于外延层与衬底之间存在一定晶格失配度,且晶格失配度越大,衬底上异变外延层在生长过程中积累的应变能就越多,最终在异变外延层与衬底的异质界面处为了释放应变能而产生的穿透位错密度就越高。即,晶格常数显著失配的两种材料的异质界面是穿透位错的根源。因此,对于晶格失配度较大的异变外延,譬如硅上生长III-V族半导体,硅衬底与III-V族半导体的异质界面处生成的穿透位错密度非常高,因此对于硅上生长III-V族半导体,由于硅衬底上最先生长的III-V低温成核层基本不能对穿透位错有任何有效控制措施,若仅在穿透位错向上传播过程中采用降低位错密度的常见方案(如热循环退火、位错阻挡层或位错过滤层、图形衬底等),由于这些常见方案控制穿透位错的能力十分有限,最终导致顶部异变外延层中穿透位错密度降低的效果并不理想。At present, the common variant epitaxy (also known as heteroepitaxy) scheme basically reduces the amount of material in the top variant epitaxial layer by blocking the threading dislocation or changing the upward propagation direction of the threading dislocation during the propagation of the threading dislocation. the threading dislocation density. It is well known that threading dislocations occur at the hetero-interface between the substrate and the hetero-epitaxial layer. The physical mechanism of the threading dislocation is that there is a certain degree of lattice mismatch between the epitaxial layer and the substrate, and the greater the degree of lattice mismatch is. , the more strain energy accumulated in the growth process of the metamorphic epitaxial layer on the substrate, the higher the threading dislocation density generated at the hetero interface between the metamorphic epitaxial layer and the substrate in order to release the strain energy. That is, the heterointerface of two materials with a significant mismatch in lattice constants is the source of threading dislocations. Therefore, for metamorphic epitaxy with a large lattice mismatch, such as growing III-V semiconductors on silicon, the density of threading dislocations generated at the hetero interface between the silicon substrate and the III-V semiconductors is very high. For the growth of III-V semiconductors on silicon, since the first growing III-V low-temperature nucleation layer on the silicon substrate cannot have any effective control measures for threading dislocations, if only the threading dislocations propagate upwards Common schemes to reduce dislocation density (such as thermal cycle annealing, dislocation blocking or dislocation filter layers, patterned substrates, etc.) are used, which ultimately lead to top variant epitaxy due to the limited ability of these common schemes to control threading dislocations The effect of reducing the density of threading dislocations in the layer is not ideal.
而本发明实施例打破上述常规思维和技术局限,将控制穿透位错密度的位置前移至异质界面处,也就是从源头上大幅降低穿透位错密度。为此,本发明实施例在硅上生长III-V族半导体外延结构时引入III族砷化物半导体“适配层”,所述适配层直接或间接生长在硅衬底上,这里所谓的“间接”包括在硅衬底上先生长晶格失配度介于0.368%~0.372%之间(基本可以认为是晶格匹配)的III族磷化物缓冲层,继而在III族磷化物缓冲层上生长适配层。所述适配层的核心作用是,利用其与底层硅或III族磷化物缓冲层之间足够高的晶格失配度,在与底层硅或III族磷化物缓冲层的界面处产生不向上穿透但能释放III-V族半导体目标外延结构与硅之间应力的周期性界面驻留缺陷。However, the embodiment of the present invention breaks the above-mentioned conventional thinking and technical limitations, and moves the position of controlling the threading dislocation density to the hetero interface, that is, the threading dislocation density is greatly reduced from the source. To this end, the embodiments of the present invention introduce a group III arsenide semiconductor "adaptation layer" when growing a III-V semiconductor epitaxial structure on silicon, and the adaptation layer is directly or indirectly grown on the silicon substrate, the so-called "adaptive layer" here "Indirect" includes growing a III-phosphide buffer layer on a silicon substrate with a lattice mismatch between 0.368% and 0.372% (basically, it can be considered as lattice matching), and then growing on the III-phosphide buffer layer. Growth adaptation layer. The core function of the adaptation layer is to use a sufficiently high degree of lattice mismatch with the underlying silicon or group III phosphide buffer layer to generate non-upward at the interface with the underlying silicon or group III phosphide buffer layer. Periodic interface resident defects that penetrate but can relieve stress between the III-V semiconductor target epitaxial structure and silicon.
众所周知,界面应力是由界面缺陷和界面穿透位错共同来释放,在总应力不变的情况下,适配层释放的应力越多,留给界面穿透位错释放的应力就越少。由于适配层已经释放掉一部分甚至绝大部分应力,此时通过生成穿透位错释放的剩余应力相比没有引入适配层时已大幅减少,因此引入适配层的最终效果就是大幅度降低适配层顶部生长的III-V半导体目标外延结构中的穿透位错密度。并且本发明在适配层以上的外延生长中依然可以引入常规的应力释放层或位错阻挡层等方案来进一步降低穿透位错密度。It is well known that interfacial stress is released by interfacial defects and interfacial threading dislocations. Under the condition of constant total stress, the more stress released by the adaptation layer, the less stress is left for interfacial threading dislocations. Since the adaptation layer has released some or even most of the stress, the residual stress released by the generation of threading dislocations has been greatly reduced compared with the case where the adaptation layer is not introduced, so the final effect of introducing the adaptation layer is greatly reduced. Threading dislocation density in III-V semiconductor target epitaxial structures grown on top of the adaptation layer. In addition, the present invention can still introduce conventional solutions such as a stress release layer or a dislocation blocking layer in the epitaxial growth above the adaptation layer to further reduce the threading dislocation density.
此外,本发明实施例中适配层包括但不限于,组分可调的三元系III族砷化物适配层和二元系III-V族化合物适配层。可选为三元系组分可调的InGaAs或InAlAs半导体材料和二元系InP半导体材料,组分变化使得适配层的晶格常数随之发生变化,正是由于组分可调就可以结合待生长的目标外延结构对组分进行优化,保证适配层内缺陷很少甚至无缺陷,同时也保证半导体外延结构内缺陷很少甚至无缺陷。本发明实施例限定的组分变化范围在保证适配层与底层硅或III族磷化物缓冲层的界面处产生周期性界面驻留缺陷的同时,适配层还可与III-V族半导体外延结构的界面处产生周期性界面驻留缺陷,并向上灵活兼容多种晶格常数的III-V族半导体外延结构,也就是说仅需简单调整适配层的组分就可以在其上面生长多种不同晶格常数且内部穿透位错密度很低的III-V族半导体外延结构,因此适配层的适用范围广。In addition, the adaptation layer in the embodiment of the present invention includes, but is not limited to, a ternary system III group III arsenide adaptation layer and a binary system III-V group compound adaptation layer with adjustable composition. It can be selected from InGaAs or InAlAs semiconductor materials with tunable composition of ternary system and InP semiconductor material of binary system. The change of composition makes the lattice constant of the adaptation layer change accordingly. It is precisely because the composition is tunable that it can be combined The composition of the target epitaxial structure to be grown is optimized to ensure that there are few or no defects in the adaptation layer, and at the same time, it is also ensured that there are few or no defects in the semiconductor epitaxial structure. The composition variation range defined by the embodiments of the present invention ensures that periodic interface resident defects are generated at the interface between the adaptation layer and the underlying silicon or group III phosphide buffer layer, and the adaptation layer can also be combined with III-V semiconductor epitaxy. Periodic interface resident defects are generated at the interface of the structure, and the III-V semiconductor epitaxial structure with various lattice constants is flexibly compatible upward, that is to say, it is only necessary to simply adjust the composition of the adaptation layer to grow on it. It is a kind of III-V semiconductor epitaxial structure with different lattice constants and very low internal threading dislocation density, so the adaptation layer has a wide range of applications.
作为可选实施例,所述III-V族半导体目标外延结构为单层或多层结构,且晶格常数介于与之间。As an optional embodiment, the III-V semiconductor target epitaxial structure is a single-layer or multi-layer structure, and the lattice constant is between and between.
具体地,构成III-V族半导体目标外延结构的材料可以是GaAs、InGaAs、InAlAs、GaAsSb、InP、InAs和GaSb等材料中的任何一种,也可以是分别与这些材料相适配的材料体系。Specifically, the material constituting the target epitaxial structure of the III-V semiconductor can be any one of GaAs, InGaAs, InAlAs, GaAsSb, InP, InAs and GaSb, etc., or can be a material system suitable for these materials respectively .
本发明实施例的硅上III-V族半导体外延结构的制备方法,生长工艺简单,易调控,对生长设备没有特殊要求。特别是,降低穿透位错密度所需的适配层的厚度薄,使得后续通过增加层数和厚度来优化III-V族半导体外延结构变为可能,利于硅上高性能III-V族半导体器件的制备。The preparation method of the III-V semiconductor epitaxial structure on silicon according to the embodiment of the present invention has the advantages of simple growth process, easy regulation and no special requirements for growth equipment. In particular, the thickness of the adaptation layer required to reduce the threading dislocation density is thin, making it possible to optimize the III-V semiconductor epitaxial structure by increasing the number and thickness of the layers, which is beneficial for high-performance III-V semiconductors on silicon. device preparation.
基于上述实施例的内容,作为一种可选实施例,在硅衬底上间接生长适配层,包括:在硅衬底上生长III族磷化物缓冲层后,在所述III族磷化物缓冲层上生长所述适配层。Based on the content of the foregoing embodiments, as an optional embodiment, indirectly growing the adaptation layer on the silicon substrate includes: after growing the group III phosphide buffer layer on the silicon substrate, then growing the group III phosphide buffer layer on the silicon substrate. The adaptation layer is grown on the layer.
具体地,在硅衬底上首先生长III族磷化物缓冲层,接着在III族磷化物缓冲层上生长适配层,继而在适配层上直接上生长III-V族半导体目标外延结构。Specifically, a group III phosphide buffer layer is first grown on a silicon substrate, then an adaptation layer is grown on the group III phosphide buffer layer, and then a III-V semiconductor target epitaxial structure is grown directly on the adaptation layer.
基于上述实施例的内容,作为一种可选实施例,在所述适配层上间接生长III-V族半导体目标外延结构,包括:在所述适配层上生长III-V族化合物过渡层后,在所述III-V族化合物过渡层上生长所述III-V族半导体目标外延结构。Based on the contents of the foregoing embodiments, as an optional embodiment, indirectly growing a III-V semiconductor target epitaxial structure on the adaptation layer includes: growing a III-V compound transition layer on the adaptation layer Then, the III-V group semiconductor target epitaxial structure is grown on the III-V group compound transition layer.
具体地,在硅衬底上直接生长适配层,继而在适配层上生长III-V族化合物过渡层,再生长III-V族半导体目标外延结构。Specifically, the adaptation layer is directly grown on the silicon substrate, then the transition layer of the III-V group compound is grown on the adaptation layer, and then the target epitaxial structure of the III-V group semiconductor is grown.
III-V族化合物过渡层位于适配层和III-V族半导体目标外延结构之间,且过渡层中引入常规应力释放机制和/或位错阻挡机制,可以继续降低III-V族半导体目标外延结构与硅衬底之间的应力。The III-V compound transition layer is located between the adaptation layer and the III-V semiconductor target epitaxial structure, and the introduction of a conventional stress release mechanism and/or a dislocation blocking mechanism in the transition layer can continue to reduce the III-V semiconductor target epitaxy Stress between the structure and the silicon substrate.
基于上述间接生长适配层和间接生长III-V族半导体目标外延结构的结合,可选实施例为,在硅衬底上首先生长III族磷化物缓冲层,接着在III族磷化物缓冲层上生长适配层,继而在适配层上生长III-V族化合物过渡层,再生长III-V族半导体目标外延结构。Based on the combination of the above-mentioned indirect growth adaptation layer and the indirect growth of the III-V semiconductor target epitaxial structure, an alternative embodiment is to first grow the III phosphide buffer layer on the silicon substrate, and then grow the III phosphide buffer layer on the silicon substrate. The adaptation layer is grown, and then the transition layer of the III-V group compound is grown on the adaptation layer, and then the target epitaxial structure of the III-V group semiconductor is grown.
基于上述实施例的内容,作为一种可选实施例,在所述适配层上直接生长III-V族半导体目标外延结构,包括:在所述适配层上生长晶格常数相匹配的III-V族目标半导体外延结构,或者适配层晶格失配度介于-5.2%~-7.8%之间的III-V族目标半导体外延结构。Based on the content of the foregoing embodiments, as an optional embodiment, directly growing the III-V semiconductor target epitaxial structure on the adaptation layer includes: growing a III-V semiconductor with matching lattice constants on the adaptation layer -V group target semiconductor epitaxial structure, or III-V group target semiconductor epitaxial structure with the lattice mismatch degree of the adaptation layer between -5.2% and -7.8%.
在适配层上直接生长III-V族半导体目标外延结构时,若III-V族目标半导体外延结构与适配层的晶格失配度介于-5.2%~-7.8%之间,则所述适配层与III-V族半导体目标外延结构的界面处产生周期性界面驻留缺陷,释放III-V族半导体目标外延结构与适配层之间的应力。而若III-V族目标半导体外延结构与适配层的晶格失配度为0,即所述适配层与III-V族半导体目标外延结构的晶格常数完全相同,则适配层与III-V族半导体目标外延结构之间自然不产生应力。When the III-V semiconductor target epitaxial structure is directly grown on the adaptation layer, if the lattice mismatch between the III-V target semiconductor epitaxial structure and the adaptation layer is between -5.2% and -7.8%, the Periodic interface resident defects are generated at the interface between the adaptation layer and the III-V group semiconductor target epitaxial structure, and the stress between the III-V group semiconductor target epitaxial structure and the adaptation layer is released. However, if the lattice mismatch between the III-V group semiconductor epitaxial structure and the adaptation layer is 0, that is, the lattice constants of the adaptation layer and the III-V group semiconductor target epitaxial structure are exactly the same, then the adaptation layer and the adaptation layer have the same lattice constant. Naturally no stress is generated between the III-V semiconductor target epitaxial structures.
基于上述实施例的内容,作为一种可选实施例,所述适配层,是具有闪锌矿晶体结构,且晶格常数介于与之间的III-V族化合物外延层。Based on the content of the foregoing embodiment, as an optional embodiment, the adaptation layer has a sphalerite crystal structure, and the lattice constant is between and between the III-V compound epitaxial layers.
即所述适配层与硅的晶格失配度介于+5.2%~+11.5%之间,包括但不限于,组分可调的三元系III族砷化物适配层和二元系III族砷化物适配层。所述适配层与硅衬底或III族磷化物缓冲层在界面处产生周期性界面驻留缺陷,释放适配层与硅衬底之间的应力。That is, the lattice mismatch between the adaptation layer and silicon is between +5.2% and +11.5%, including but not limited to, the ternary system III arsenide adaptation layer with adjustable composition and the binary system Group III arsenide adaptation layer. Periodic interface resident defects are generated at the interface between the adaptation layer and the silicon substrate or the group III phosphide buffer layer, thereby releasing the stress between the adaptation layer and the silicon substrate.
在适配层上直接生长III-V族半导体目标外延结构时,若III-V族目标半导体外延结构与适配层的晶格失配度介于-5.2%~-7.8%之间,则所述适配层与III-V族半导体目标外延结构的界面处产生周期性界面驻留缺陷,释放III-V族半导体目标外延结构与适配层之间的应力;而若III-V族目标半导体外延结构与适配层的晶格失配度为0,即所述适配层与III-V族半导体目标外延结构的晶格常数完全相同,则适配层与III-V族半导体目标外延结构之间自然不产生应力。When the III-V semiconductor target epitaxial structure is directly grown on the adaptation layer, if the lattice mismatch between the III-V target semiconductor epitaxial structure and the adaptation layer is between -5.2% and -7.8%, the Periodic interface resident defects are generated at the interface between the adaptation layer and the III-V semiconductor target epitaxial structure, releasing the stress between the III-V semiconductor target epitaxial structure and the adaptation layer; and if the III-V semiconductor target epitaxial structure is The lattice mismatch between the epitaxial structure and the adaptation layer is 0, that is, the lattice constant of the adaptation layer and the III-V semiconductor target epitaxial structure are exactly the same, then the adaptation layer and the III-V semiconductor target epitaxial structure Naturally there is no stress between them.
基于上述实施例的内容,作为一种可选实施例,所述适配层的材料为Inx1Ga1-x1As(0.15≤x1≤1)或Inx2Al1-x2As(0.13≤x2≤1)。所述三元系III族砷化物适配层的组分优化值结合待生长的III-V族半导体目标外延结构予以确定,得到组分优化的适配层。Based on the content of the foregoing embodiment, as an optional embodiment, the material of the adaptation layer is In x1 Ga 1-x1 As (0.15≤x1≤1) or Inx2 Al 1-x2 As (0.13≤x2≤1) 1). The composition optimization value of the ternary group III arsenide adaptation layer is determined in combination with the target epitaxial structure of the III-V group semiconductor to be grown to obtain an adaptation layer with optimized composition.
组分可调的三元系III族砷化物适配层的材料为Inx1Ga1-x1As(0.15≤x1≤1)或Inx2Al1-x2As(0.13≤x2≤1),且所述三元系III族砷化物适配层的组分优化值结合待生长的III-V族半导体目标外延结构予以确定,得到组分优化的适配层。The material of the ternary group III arsenide adaptation layer with adjustable composition is In x1 Ga 1-x1 As (0.15≤x1≤1) or Inx2 Al 1-x2 As (0.13≤x2≤1), and the The composition optimization value of the ternary group III arsenide adaptation layer is determined in combination with the target epitaxial structure of the III-V group semiconductor to be grown to obtain an adaptation layer with optimized composition.
基于上述实施例的内容,作为一种可选实施例,所述III-V族半导体目标外延结构为单层或多层结构,且晶格常数介于与之间。具体地,构成III-V族半导体目标外延结构的材料可以是GaAs、InGaAs、InAlAs、GaAsSb、InP、InAs和GaSb等材料中的任何一种,也可以是分别与这些材料相适配的材料体系。Based on the content of the above embodiment, as an optional embodiment, the III-V semiconductor target epitaxial structure is a single-layer or multi-layer structure, and the lattice constant is between and between. Specifically, the material constituting the target epitaxial structure of the III-V semiconductor can be any one of GaAs, InGaAs, InAlAs, GaAsSb, InP, InAs and GaSb, etc., or can be a material system that is suitable for these materials respectively .
基于上述实施例的内容,作为一种可选实施例,所述III族磷化物缓冲层由GaP、AlGaP或AlP中任意一种或多种构成,其中AlGaP层中Al组分为y1,Ga组分为y2,且y1+y2=1,0<y1、y2<1,所述III族磷化物缓冲层与硅的晶格失配度介于0.368%~0.372%之间。Based on the content of the above embodiment, as an optional embodiment, the group III phosphide buffer layer is composed of any one or more of GaP, AlGaP or AlP, wherein the Al component in the AlGaP layer is y1, and the Ga group is y1. Divided into y2, and y1+y2=1, 0<y1, y2<1, the lattice mismatch between the group III phosphide buffer layer and silicon is between 0.368% and 0.372%.
具体地,III族磷化物缓冲层可以是由GaP、AlGaP、AlP中任一种材料构成的单层结构,也可以是由GaP、AlGaP、AlP中两种或三种材料构成的多层结构,其中,可以包含若干个不同组分的AlGaP层。Specifically, the group III phosphide buffer layer may be a single-layer structure composed of any one of GaP, AlGaP, and AlP, or a multi-layer structure composed of two or three materials of GaP, AlGaP, and AlP, Among them, several AlGaP layers of different compositions may be included.
基于上述实施例的内容,作为一种可选实施例,在硅衬底上生长III族磷化物缓冲层,包括:Based on the content of the foregoing embodiments, as an optional embodiment, growing a group III phosphide buffer layer on a silicon substrate includes:
在350-450℃低温下生长5~50nm的GaP缓冲层;Grow a 5-50nm GaP buffer layer at a low temperature of 350-450℃;
在500-750℃高温下生长0~150nm的GaP缓冲层;Grow a GaP buffer layer of 0-150nm at a high temperature of 500-750℃;
在所述III族磷化物缓冲层上生长所述适配层,包括:Growing the adaptation layer on the Group III phosphide buffer layer includes:
在400~500℃下生长厚度为0.5~30nm、In组分为0.15的In0.15Ga0.85As适配层;A In 0.15 Ga 0.85 As adaptation layer with a thickness of 0.5 to 30 nm and an In composition of 0.15 was grown at 400 to 500 °C;
在所述适配层上生长III-V族化合物过渡层,包括:A III-V compound transition layer is grown on the adaptation layer, including:
在400~550℃下生长厚度10nm~100nm的低温GaAs缓冲层作为过渡层;A low-temperature GaAs buffer layer with a thickness of 10nm-100nm is grown at 400-550℃ as a transition layer;
在所述III-V族化合物过渡层生长所述III-V族半导体目标外延结构,包括:Growing the III-V semiconductor target epitaxial structure on the III-V compound transition layer includes:
在580~730℃生长GaAs及与GaAs相适配的材料体系,完成硅上GaAs系半导体目标外延结构的制备。GaAs and a material system suitable for GaAs are grown at 580-730 ℃, and the preparation of the target epitaxial structure of GaAs series semiconductor on silicon is completed.
基于上述实施例的内容,作为一种可选实施例,在硅衬底上直接生长适配层,包括:Based on the content of the foregoing embodiment, as an optional embodiment, the adaptation layer is directly grown on the silicon substrate, including:
在400~500℃下生长厚度为0.5~30nm的InP适配层;Growing an InP adaptation layer with a thickness of 0.5-30 nm at 400-500 °C;
在所述适配层上直接生长III-V族半导体目标外延结构,包括:Directly growing a III-V semiconductor target epitaxial structure on the adaptation layer, including:
在580~730℃下生长InP及与InP相适配的材料体系,完成硅上InP系半导体目标外延结构的制备。InP and a material system suitable for InP are grown at 580-730 ℃, and the preparation of the target epitaxial structure of InP-based semiconductor on silicon is completed.
基于上述实施例的内容,作为一种可选实施例,在硅衬底上生长III族磷化物缓冲层,包括:Based on the content of the foregoing embodiments, as an optional embodiment, growing a group III phosphide buffer layer on a silicon substrate includes:
在350-450℃低温下生长5~50nm的AlP缓冲层;Growth of 5-50nm AlP buffer layer at low temperature of 350-450℃;
在500-750℃高温下继续生长0~150nm的AlP缓冲层;Continue to grow AlP buffer layer of 0-150nm at high temperature of 500-750℃;
在所述III族磷化物缓冲层上生长所述适配层,包括:Growing the adaptation layer on the Group III phosphide buffer layer includes:
在400~500℃下生长厚度为0.5~30nm的In0.73Ga0.27As适配层;growing an In 0.73 Ga 0.27 As adaptation layer with a thickness of 0.5-30 nm at 400-500 ℃;
在适配层上生长III-V族半导体目标外延结构,包括:Growth of III-V semiconductor target epitaxial structures on the adaptation layer, including:
在400~750℃下生长GaAs及与GaAs相适配的材料体系,完成硅上GaAs系半导体目标外延结构的制备。GaAs and a material system suitable for GaAs are grown at 400-750 ℃, and the preparation of the target epitaxial structure of GaAs series semiconductor on silicon is completed.
基于上述实施例的内容,作为一种可选实施例,所述硅衬底为纯硅衬底或绝缘体上硅(SOI)衬底。进一步可选地,所述硅衬底表面可刻蚀出图形。Based on the contents of the foregoing embodiments, as an optional embodiment, the silicon substrate is a pure silicon substrate or a silicon-on-insulator (SOI) substrate. Further optionally, a pattern can be etched on the surface of the silicon substrate.
所述III-V族半导体目标外延结构为单层或多层结构,且晶格常数介于与之间。具体地,构成III-V族半导体目标外延结构的材料可以是GaAs、InGaAs、InAlAs、GaAsSb、InP、InAs和GaSb等材料中的任何一种,也可以是分别与这些材料相适配的材料体系。The III-V semiconductor target epitaxial structure is a single-layer or multi-layer structure, and the lattice constant is between and between. Specifically, the material constituting the target epitaxial structure of the III-V semiconductor can be any one of GaAs, InGaAs, InAlAs, GaAsSb, InP, InAs and GaSb, etc., or can be a material system that is suitable for these materials respectively .
外延生长可以采用分子束外延(MBE)和/或金属有机化学气相沉积(MOCVD)设备进行。Epitaxial growth can be performed using molecular beam epitaxy (MBE) and/or metal organic chemical vapor deposition (MOCVD) equipment.
本发明实施例还提供一种由上述任意方法实施例制备得到的硅上III-V族半导体外延结构。该硅上III-V族半导体外延结构,用于制备硅基光子学器件或硅基电子学器件,该述硅基光子学器件包括:硅基III-V族半导体激光器、硅基III-V超辐射发光二极管、硅基III-V族发光二极管、硅基III-V族光放大器、硅基III-V族光探测器或硅基III-V族无源器件。The embodiment of the present invention also provides a III-V semiconductor epitaxial structure on silicon prepared by any of the above method embodiments. The III-V semiconductor epitaxial structure on silicon is used for preparing silicon-based photonics devices or silicon-based electronic devices, and the silicon-based photonics devices include silicon-based III-V semiconductor lasers, silicon-based III-V ultra Radiation light-emitting diodes, silicon-based III-V light-emitting diodes, silicon-based III-V optical amplifiers, silicon-based III-V photodetectors, or silicon-based III-V passive devices.
结合上述各方法实施例,以下通过具体的实例对本发明实施例作进一步说明。需要说明的是,以下实例是结合现有技术对本发明实施例进行描述,而非对本发明实施例方法的限制。In conjunction with the above-mentioned method embodiments, the following specific examples are used to further illustrate the embodiments of the present invention. It should be noted that the following examples are used to describe the embodiments of the present invention in combination with the prior art, rather than limiting the methods of the embodiments of the present invention.
实例1:Example 1:
以下描述为利用MOCVD外延生长方法制备硅上GaAs系半导体外延结构,但不限于MOCVD。在本实例中,III族磷化物采用GaP材料,III族砷化物采用InGaAs材料,MOCVD载气为高纯度氢气,III族有机源为高纯度三甲基镓、三甲基铟,V族源为高纯度砷烷、磷烷,反应室压力为100托尔。The following description is to use the MOCVD epitaxial growth method to prepare the GaAs-based semiconductor epitaxial structure on silicon, but it is not limited to MOCVD. In this example, the group III phosphide uses GaP material, the group III arsenide uses InGaAs material, the MOCVD carrier gas is high-purity hydrogen, the group III organic source is high-purity trimethylgallium and trimethylindium, and the group V source is High-purity arsine, phosphine, the reaction chamber pressure is 100 Torr.
图3是本发明实施例提供的引入适配层的硅上GaAs系半导体外延结构示意图,包括:3 is a schematic diagram of an epitaxial structure of a GaAs-based semiconductor on silicon incorporating an adaptation layer provided by an embodiment of the present invention, including:
硅衬底301;设置在硅衬底301上的GaP低温成核层302;设置在GaP低温缓冲层302上的GaP高温缓冲层303;设置在GaP高温缓冲层303上的In0.15Ga0.85As适配层305;设置在GaP高温缓冲层303与In0.15Ga0.85As适配层305界面处的周期性界面驻留缺陷304;设置在In0.15Ga0.85As适配层305上的低温GaAs缓冲层306;设置在低温GaAs缓冲层306上的n型GaAs欧姆接触层307;设置在n型GaAs欧姆接触层307上的n型Al0.4Ga0.6As下限制层308;设置在n型Al0.4Ga0.6As下限制层308上的Al0.1Ga0.9As下波导层309;设置在Al0.1Ga0.9As下波导层309上的GaAs量子阱有源区310;设置在GaAs量子阱有源区310上的Al0.1Ga0.9As上波导层311;设置在Al0.1Ga0.9As上波导层311上的p型Al0.4Ga0.6As上限制层312;设置在p型Al0.4Ga0.6As上限制层312上的p型GaAs欧姆接触层313;。在本实例中各层的材料如图3所示,具体制备的步骤如下:
在清洁的单晶硅衬底上生长GaP低温成核层,可以包括:利用湿法化学清洗方法清洁单晶硅衬底,将清洁的单晶硅衬底放入MOCVD的生长腔室中,再将硅衬底在氢气氛围升温到220℃烘烤30分钟;然后在氢气和磷烷混合气体氛围升温到950℃烘烤15分钟;最后降温到450℃生长5nm的GaP低温成核层,五族源与三族源之比为20;Growing a GaP low temperature nucleation layer on a clean single crystal silicon substrate may include: cleaning the single crystal silicon substrate by a wet chemical cleaning method, placing the cleaned single crystal silicon substrate in a MOCVD growth chamber, and then The silicon substrate was heated to 220 °C for 30 minutes in a hydrogen atmosphere; then it was heated to 950 °C for 15 minutes in a mixed gas atmosphere of hydrogen and phosphine; finally, the temperature was lowered to 450 °C to grow a 5nm low-temperature nucleation layer of GaP. The ratio of the source to the three-family source is 20;
在GaP低温成核层上生长GaP高温缓冲层,可以包括:首先经10分钟升温到675℃,生长20nm的GaP高温缓冲层,其中五族源与三族源之比为10;Growing a GaP high-temperature buffer layer on the GaP low-temperature nucleation layer may include: first, the temperature is raised to 675° C. for 10 minutes, and a GaP high-temperature buffer layer of 20 nm is grown, wherein the ratio of the Group V source to the Group III source is 10;
在GaP高温缓冲层上生长In0.15Ga0.85As适配层,可以包括:首先在三甲基镓的氛围保持15分钟,然后将温度降低至470℃,生长1nm的In组分0.15的In0.15Ga0.85As适配层;本层生长过程中,为了产生高质量、周期性界面驻留缺陷(如图1所示),需要保证较为缓慢生长速度,生长速度为每秒0.3个分子层,五族源与三族源之比为10;Growing the In 0.15 Ga 0.85 As adaptation layer on the GaP high temperature buffer layer may include: first maintaining the atmosphere of trimethyl gallium for 15 minutes, then reducing the temperature to 470° C., growing 1 nm In 0.15 Ga of In composition 0.15 0.85 As adaptation layer; in the growth process of this layer, in order to generate high-quality and periodic interface resident defects (as shown in Figure 1), it is necessary to ensure a relatively slow growth rate, and the growth rate is 0.3 molecular layers per second. The ratio of the source to the three-family source is 10;
在In0.15Ga0.85As适配层上生长低温GaAs缓冲层,可以包括:在400~550℃温度下,设定As源与三族Ga源之比为50,生长30nm GaAs;Growing a low-temperature GaAs buffer layer on the In 0.15 Ga 0.85 As adaptation layer may include: at a temperature of 400-550 ℃, setting the ratio of the As source to the III-group Ga source to 50, and growing 30 nm GaAs;
在低温GaAs缓冲层上生长与GaAs相适配的材料体系,可以是GaAs基量子阱激光器结构,包括如下步骤:A material system suitable for GaAs is grown on the low-temperature GaAs buffer layer, which can be a GaAs-based quantum well laser structure, including the following steps:
在680℃下,生长厚度1μm的n型GaAs欧姆接触层,掺杂浓度为2×1018/cm3;At 680°C, grow an n-type GaAs ohmic contact layer with a thickness of 1 μm with a doping concentration of 2×10 18 /cm 3 ;
在680℃下,生长厚度1.5μm的n型Al0.4Ga0.6As下限制层,掺杂浓度为2×1018/cm3;At 680℃, grow an n-type Al 0.4 Ga 0.6 As lower confinement layer with a thickness of 1.5 μm, and the doping concentration is 2×10 18 /cm 3 ;
在680℃下,生长厚度100nm的无掺杂Al0.1Ga0.9As下波导层;At 680℃, the undoped Al 0.1 Ga 0.9 As lower waveguide layer was grown with a thickness of 100 nm;
在680℃下,生长厚度10nm的无掺杂GaAs量子阱有源区;At 680℃, the undoped GaAs quantum well active region with a thickness of 10nm was grown;
在680℃下,生长厚度100nm的无掺杂Al0.1Ga0.9As上波导层;At 680°C, a 100nm-thick undoped Al 0.1 Ga 0.9 As upper waveguide layer was grown;
在680℃下,生长厚度1.5μm的p型Al0.4Ga0.6As上限制层,掺杂浓度为2×1018/cm3;At 680℃, a p-type Al 0.4 Ga 0.6 As upper confinement layer with a thickness of 1.5 μm was grown with a doping concentration of 2×10 18 /cm 3 ;
在680℃下,生长厚度200nm的p型GaAs欧姆接触层,掺杂浓度为2×1019/cm3。At 680°C, a p-type GaAs ohmic contact layer with a thickness of 200 nm was grown with a doping concentration of 2×10 19 /cm 3 .
实例2:Example 2:
以下描述为利用MOCVD外延生长方法制备硅上InP系半导体外延结构,但不限于MOCVD。在本实例中,III族砷化物采用InGaAs材料,MOCVD载气为高纯度氢气,III族有机源为高纯度三甲基镓、三甲基铟,V族源为高纯度砷烷、磷烷,反应室压力为100托尔。The following description is to use the MOCVD epitaxial growth method to prepare the InP-based semiconductor epitaxial structure on silicon, but it is not limited to MOCVD. In this example, the group III arsenide uses InGaAs material, the MOCVD carrier gas is high-purity hydrogen, the group III organic source is high-purity trimethylgallium, trimethylindium, the group V source is high-purity arsine, phosphine, The reaction chamber pressure was 100 Torr.
图4是本发明实施例提供的引入适配层的硅上InP系半导体外延结构示意图,该结构包括:4 is a schematic diagram of an epitaxial structure of an InP-based semiconductor on silicon incorporating an adaptation layer provided by an embodiment of the present invention, and the structure includes:
硅衬底401;设置在硅衬底401上的适配层402;设置在衬底401与适配层402界面处的周期性界面驻留缺陷403;设置在适配层402上的InP半导体外延结构404。在本实例中各层的材料如图4所示,具体制备的步骤如下:
在清洁的单晶硅衬底上直接生长InP适配层,可以包括:利用湿法化学清洗方法清洁单晶硅衬底,将清洁的单晶硅衬底放入MOCVD的生长腔室中,再将硅衬底在氢气氛围升温到220℃烘烤30分钟;然后在氢气和磷烷混合气体氛围升温到950℃烘烤15分钟;最后降温到450℃生长InP适配层,可以包括:首先在三甲基镓的氛围保持15分钟,然后将温度降低至470℃,生长1nm的InP适配层;本层生长过程中,为了产生高质量、周期性界面驻留缺陷(如图1所示),需要保证较为缓慢生长速度,生长速度为每秒0.3个分子层,五族源与三族源之比为10;Directly growing the InP adaptation layer on the cleaned single crystal silicon substrate may include: cleaning the single crystal silicon substrate by a wet chemical cleaning method, placing the cleaned single crystal silicon substrate in a MOCVD growth chamber, and then The silicon substrate is heated to 220°C for 30 minutes in a hydrogen atmosphere; then heated to 950°C for 15 minutes in a mixed gas atmosphere of hydrogen and phosphine; finally, the temperature is lowered to 450°C to grow an InP adaptation layer, which may include: The atmosphere of trimethylgallium was maintained for 15 minutes, and then the temperature was lowered to 470 °C to grow a 1 nm InP adaptation layer; during the growth of this layer, in order to generate high-quality, periodic interface resident defects (as shown in Figure 1) , it is necessary to ensure a relatively slow growth rate, the growth rate is 0.3 molecular layers per second, and the ratio of the five-group source to the three-group source is 10;
在In0.53Ga0.47As适配层上生长与InP相适配的材料体系,可以包括:在680℃下,生长厚度100nm的InP外延层,之后可以在该InP外延层上继续生长其他材料。Growing a material system suitable for InP on the In 0.53 Ga 0.47 As adaptation layer may include: growing an InP epitaxial layer with a thickness of 100 nm at 680° C., and then continuing to grow other materials on the InP epitaxial layer.
实例3:Example 3:
以下描述为利用MOCVD外延生长方法制备硅上GaAs系半导体外延结构,但不限于MOCVD。在本实例中,III族磷化物采用Al0.2Ga0.8P材料,III族砷化物采用InAs材料,MOCVD载气为高纯度氢气,III族有机源为高纯度三甲基镓、三甲基铟,V族源为高纯度砷烷、磷烷,反应室压力为100托尔。The following description is to use the MOCVD epitaxial growth method to prepare the GaAs-based semiconductor epitaxial structure on silicon, but it is not limited to MOCVD. In this example, the group III phosphide uses Al 0.2 Ga 0.8 P material, the group III arsenide uses the InAs material, the MOCVD carrier gas is high-purity hydrogen, the group III organic source is high-purity trimethyl gallium, trimethyl indium, Group V sources are high-purity arsine and phosphine, and the pressure in the reaction chamber is 100 Torr.
图5是本发明实施例提供的引入双界面驻留缺陷的硅上GaAs系半导体外延结构示意图,该结构包括:5 is a schematic diagram of an epitaxial structure of a GaAs-based semiconductor on silicon that introduces dual-interface resident defects according to an embodiment of the present invention, and the structure includes:
硅衬底501;设置在硅衬底501上的III族磷化物低温成核层502;设置在III族磷化物低温缓冲层502上的III族磷化物高温缓冲层503;设置在III族磷化物高温缓冲层503上的适配层505;设置在III族磷化物高温缓冲层503与适配层505界面处的周期性界面驻留缺陷504;设置在适配层505上的GaAs系半导体外延结构507;设置在适配层505上与GaAs系半导体外延结构507界面处的周期性界面驻留缺陷506。在本实例中各层的材料如图5所示,具体制备的步骤如下:
在清洁的单晶硅衬底上生长AlP低温成核层,可以包括:利用湿法化学清洗方法清洁单晶硅衬底,将清洁的单晶硅衬底放入MOCVD的生长腔室中,再将硅衬底在氢气氛围升温到220℃烘烤30分钟;然后在氢气和磷烷混合气体氛围升温到950℃烘烤15分钟;最后降温到450℃生长5nm的AlP低温成核层,五族源与三族源之比为20;Growing an AlP low-temperature nucleation layer on a clean single-crystal silicon substrate may include: cleaning the single-crystal silicon substrate by a wet chemical cleaning method, placing the cleaned single-crystal silicon substrate in a MOCVD growth chamber, and then The silicon substrate was heated to 220°C for 30 minutes in a hydrogen atmosphere; then heated to 950°C for 15 minutes in a mixed gas atmosphere of hydrogen and phosphine; finally, the temperature was lowered to 450°C to grow a 5nm AlP low-temperature nucleation layer. The ratio of the source to the three-family source is 20;
在AlP低温成核层上生长AlP高温缓冲层,可以包括:首先经10分钟升温到675℃,生长20nm的AlP高温缓冲层,其中五族源与三族源之比为10;Growing an AlP high-temperature buffer layer on the AlP low-temperature nucleation layer may include: first, the temperature is raised to 675° C. for 10 minutes, and a 20 nm AlP high-temperature buffer layer is grown, wherein the ratio of the Group V source to the Group III source is 10;
在AlP高温缓冲层上生长In组分为0.73的In0.73Ga0.27As适配层,可以包括:首先在三甲基镓的氛围保持15分钟,然后将温度降低至470℃,生长50nm的In0.73Ga0.27As适配层;本层生长过程中,为了产生高质量、周期性界面驻留缺陷(如图1所示),需要保证较为缓慢生长速度,生长速度为每秒0.3个分子层,五族源与三族源之比为10;Growing an In 0.73 Ga 0.27 As adaptation layer with an In composition of 0.73 on the AlP high temperature buffer layer may include: first maintaining the atmosphere of trimethyl gallium for 15 minutes, then reducing the temperature to 470 °C, and growing 50 nm of In 0.73 Ga 0.27 As adaptation layer; in the growth process of this layer, in order to generate high-quality, periodic interface resident defects (as shown in Figure 1), it is necessary to ensure a relatively slow growth rate, the growth rate is 0.3 molecular layers per second, five The ratio of clan source to three clan source is 10;
在In0.73Ga0.27As适配层上生长与GaAs相适配的材料体系,可以包括:首先在三甲基镓的氛围保持15分钟,然后将温度保持在470℃,生长1nm的可产生界面驻留缺陷的GaAs层;本层生长过程中,为了产生高质量、周期性界面驻留缺陷(如图1所示),需要保证较为缓慢生长速度,生长速度为每秒0.3个分子层,五族源与三族源之比为10;然后将温度提升至680℃,生长厚度100nm的GaAs外延层,之后可以在该GaAs外延层上继续生长其他材料。Growing a material system suitable for GaAs on the In 0.73 Ga 0.27 As adaptation layer may include: first maintaining the atmosphere of trimethyl gallium for 15 minutes, and then maintaining the temperature at 470 ° C, growing 1 nm can produce interface retention GaAs layer with defects; in the growth process of this layer, in order to generate high-quality, periodic interface resident defects (as shown in Figure 1), it is necessary to ensure a relatively slow growth rate, and the growth rate is 0.3 molecular layers per second. The ratio of the source to the Group III source is 10; then the temperature is raised to 680° C. to grow a GaAs epitaxial layer with a thickness of 100 nm, after which other materials can be grown on the GaAs epitaxial layer.
实例4:Example 4:
以下描述为利用MOCVD外延生长方法制备硅上GaSb系半导体外延结构,但不限于MOCVD。在本实例中,III族磷化物采用Al0.2Ga0.8P材料,III族砷化物采用InAs材料,MOCVD载气为高纯度氢气,III族有机源为高纯度三甲基镓、三甲基铟、V族源为高纯度砷烷、磷烷,反应室压力为100托尔。The following description is to use the MOCVD epitaxial growth method to prepare the GaSb-based semiconductor epitaxial structure on silicon, but it is not limited to MOCVD. In this example, the group III phosphide is made of Al 0.2 Ga 0.8 P material, the group III arsenide is made of InAs material, the MOCVD carrier gas is high-purity hydrogen, and the group III organic source is high-purity trimethyl gallium, trimethyl indium, Group V sources are high-purity arsine and phosphine, and the pressure in the reaction chamber is 100 Torr.
图6是本发明实施例提供的引入适配层的硅上GaSb系半导体外延结构示意图,该结构包括:6 is a schematic diagram of an epitaxial structure of a GaSb-based semiconductor on silicon incorporating an adaptation layer provided by an embodiment of the present invention, and the structure includes:
硅衬底601;设置在硅衬底601上的III族磷化物低温成核层602;设置在III族磷化物低温缓冲层602上的III族磷化物高温缓冲层603;设置在III族磷化物高温缓冲层603上的适配层605;设置在III族磷化物高温缓冲层603与适配层605界面处的周期性界面驻留缺陷604;设置在适配层605上的GaSb系半导体外延结构606。在本实例中各层的材料如图6所示,具体制备的步骤如下:
在清洁的单晶硅衬底上生长Al0.2Ga0.8P低温成核层,可以包括:利用湿法化学清洗方法清洁单晶硅衬底,将清洁的单晶硅衬底放入MOCVD的生长腔室中,再将硅衬底在氢气氛围升温到220℃烘烤30分钟;然后在氢气和磷烷混合气体氛围升温到950℃烘烤15分钟;最后降温到450℃生长5nm的Al0.2Ga0.8P低温成核层,五族源与三族源之比为20;Growing an Al 0.2 Ga 0.8 P low-temperature nucleation layer on a clean single-crystal silicon substrate may include: cleaning the single-crystal silicon substrate by a wet chemical cleaning method, and placing the cleaned single-crystal silicon substrate into a MOCVD growth chamber In the chamber, the silicon substrate was heated to 220 °C for 30 minutes in a hydrogen atmosphere; then heated to 950 °C for 15 minutes in a mixed gas atmosphere of hydrogen and phosphine; finally, the temperature was lowered to 450 °C to grow 5 nm Al 0.2 Ga 0.8 P low-temperature nucleation layer, the ratio of the fifth group source to the third group source is 20;
在Al0.2Ga0.8P低温成核层上生长Al0.2Ga0.8P高温缓冲层,可以包括:首先经10分钟升温到675℃,生长20nm的Al0.2Ga0.8P高温缓冲层,其中五族源与三族源之比为10;Growing the Al 0.2 Ga 0.8 P high-temperature buffer layer on the Al 0.2 Ga 0.8 P low-temperature nucleation layer may include: first, the temperature is raised to 675° C. for 10 minutes, and a 20 nm Al 0.2 Ga 0.8 P high-temperature buffer layer is grown, wherein the Group V source and The ratio of the three sources is 10;
在Al0.2Ga0.8P高温缓冲层上生长InAs适配层,可以包括:首先在三甲基镓的氛围保持15分钟,然后将温度降低至470℃,生长0.5nm的InAs适配层;本层生长过程中,为了产生高质量、周期性界面驻留缺陷(如图1所示),需要保证较为缓慢生长速度,生长速度为每秒0.3个分子层,五族源与三族源之比为10;Growing an InAs adaptation layer on the Al 0.2 Ga 0.8 P high temperature buffer layer may include: first maintaining the atmosphere of trimethyl gallium for 15 minutes, then reducing the temperature to 470°C, and growing a 0.5 nm InAs adaptation layer; this layer During the growth process, in order to generate high-quality and periodic interface resident defects (as shown in Figure 1), it is necessary to ensure a relatively slow growth rate, the growth rate is 0.3 molecular layers per second, and the ratio of the five-group source to the three-group source is 10;
在InAs适配层上生长与GaSb相适配的材料体系,可以包括:在680℃下,生长厚度100nm的GaSb外延层,之后可以在该GaSb外延层上继续生长其他材料。Growing a material system suitable for GaSb on the InAs adaptation layer may include: growing a GaSb epitaxial layer with a thickness of 100 nm at 680° C., and then continuing to grow other materials on the GaSb epitaxial layer.
图7是本发明另一实施例提供的一种硅上III-V族半导体外延结构的制备方法的流程示意,具体可参加上述各方法实施例。FIG. 7 is a schematic flowchart of a method for preparing a III-V semiconductor epitaxial structure on silicon provided by another embodiment of the present invention, and details can be found in the above method embodiments.
最后应说明的是:以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。Finally, it should be noted that the above embodiments are only used to illustrate the technical solutions of the present invention, but not to limit them; although the present invention has been described in detail with reference to the foregoing embodiments, those of ordinary skill in the art should understand: it can still be Modifications are made to the technical solutions described in the foregoing embodiments, or some technical features thereof are equivalently replaced; and these modifications or replacements do not make the essence of the corresponding technical solutions depart from the spirit and scope of the technical solutions of the embodiments of the present invention.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011359732.1A CN114566423A (en) | 2020-11-27 | 2020-11-27 | Silicon III-V semiconductor epitaxial structure and preparation method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011359732.1A CN114566423A (en) | 2020-11-27 | 2020-11-27 | Silicon III-V semiconductor epitaxial structure and preparation method thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
CN114566423A true CN114566423A (en) | 2022-05-31 |
Family
ID=81712350
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202011359732.1A Pending CN114566423A (en) | 2020-11-27 | 2020-11-27 | Silicon III-V semiconductor epitaxial structure and preparation method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114566423A (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101300663A (en) * | 2005-05-17 | 2008-11-05 | 琥珀波系统公司 | Lattice-mismatched semiconductor structures with reduced dislocation defect densities related methods for device fabrication |
US20100263707A1 (en) * | 2009-04-17 | 2010-10-21 | Dan Daeweon Cheong | Base structure for iii-v semiconductor devices on group iv substrates and method of fabrication thereof |
CN105448675A (en) * | 2014-09-29 | 2016-03-30 | 北京邮电大学 | MOCAD preparation method of GaAs/Si epitaxial materials |
TW201705471A (en) * | 2015-04-02 | 2017-02-01 | 應用材料股份有限公司 | MOCVD growth of highly mismatched III-V CMOS channel materials on germanium substrates |
CN108376640A (en) * | 2018-01-09 | 2018-08-07 | 北京邮电大学 | The preparation method of InGaAs/Si epitaxial materials |
-
2020
- 2020-11-27 CN CN202011359732.1A patent/CN114566423A/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101300663A (en) * | 2005-05-17 | 2008-11-05 | 琥珀波系统公司 | Lattice-mismatched semiconductor structures with reduced dislocation defect densities related methods for device fabrication |
US20100263707A1 (en) * | 2009-04-17 | 2010-10-21 | Dan Daeweon Cheong | Base structure for iii-v semiconductor devices on group iv substrates and method of fabrication thereof |
CN105448675A (en) * | 2014-09-29 | 2016-03-30 | 北京邮电大学 | MOCAD preparation method of GaAs/Si epitaxial materials |
TW201705471A (en) * | 2015-04-02 | 2017-02-01 | 應用材料股份有限公司 | MOCVD growth of highly mismatched III-V CMOS channel materials on germanium substrates |
CN108376640A (en) * | 2018-01-09 | 2018-08-07 | 北京邮电大学 | The preparation method of InGaAs/Si epitaxial materials |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR920006262B1 (en) | Thin film forming method of semiconductor | |
US8410523B2 (en) | Misfit dislocation forming interfacial self-assembly for growth of highly-mismatched III-SB alloys | |
US9799737B2 (en) | Method for forming group III/V conformal layers on silicon substrates | |
CN108418095B (en) | Preparation method of epitaxial material for electrically injected long-wavelength silicon-based nanolaser array | |
WO2021212597A1 (en) | Quaternary system tensile strain semiconductor laser epitaxial wafer and preparation method therefor | |
US20220006264A1 (en) | Semiconductor device and fabrication method | |
Wang et al. | Extremely low-threshold current density InGaAs/AlGaAs quantum-well lasers on silicon | |
JP2010225870A (en) | Semiconductor element | |
CN115085009B (en) | InAs quantum dot laser and preparation method thereof | |
WO2013078807A1 (en) | Monolithical integrated lattice mismatched crystal template and fabrication method therefor | |
CN116364820B (en) | Light-emitting diode epitaxial wafer and preparation method thereof, LED | |
CN112397374B (en) | Growth method of low threading dislocation density silicon-based gallium arsenide layer based on nano-cavity | |
CN111564756B (en) | Silicon-based non-phosphorus laser and preparation method thereof | |
CN202616233U (en) | A tensile strain germanium thin film epitaxy structure | |
CN113178771B (en) | InAs quantum dot laser structure based on GaAsOI substrate and preparation method | |
CN114497298A (en) | LED epitaxial structure and preparation method thereof, LED chip and preparation method thereof | |
CN114566423A (en) | Silicon III-V semiconductor epitaxial structure and preparation method thereof | |
CN212907773U (en) | Gallium nitride epitaxial chip | |
CN106601839B (en) | A kind of low defect varied buffer layer of chirp numeral tapered structure | |
CN108376640A (en) | The preparation method of InGaAs/Si epitaxial materials | |
CN114142344B (en) | Method and device for improving electrical characteristics of blue and green light semiconductor lasers | |
CN115663596A (en) | Semiconductor quantum well structure for inhibiting lateral diffusion of current carrier and preparation method | |
JP3061321B2 (en) | Method for manufacturing compound semiconductor device with improved crystal | |
JPH08264456A (en) | Growing method for crystal of compound semiconductor | |
CN109378368B (en) | Method for epitaxial growth of GaN substrate on PSS substrate along semi-polar surface |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |