[go: up one dir, main page]

CN114562982B - A weighting method and device for joint adjustment of optical and SAR heterosource satellite images - Google Patents

A weighting method and device for joint adjustment of optical and SAR heterosource satellite images Download PDF

Info

Publication number
CN114562982B
CN114562982B CN202210226596.1A CN202210226596A CN114562982B CN 114562982 B CN114562982 B CN 114562982B CN 202210226596 A CN202210226596 A CN 202210226596A CN 114562982 B CN114562982 B CN 114562982B
Authority
CN
China
Prior art keywords
image
sar
optical
error
point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210226596.1A
Other languages
Chinese (zh)
Other versions
CN114562982A (en
Inventor
李莹莹
吕守业
吴昊
汪源
张彪
李谦
冯鑫
王永刚
林郁卓越
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Remote Sensing and Digital Earth of CAS
Original Assignee
Institute of Remote Sensing and Digital Earth of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Remote Sensing and Digital Earth of CAS filed Critical Institute of Remote Sensing and Digital Earth of CAS
Priority to CN202210226596.1A priority Critical patent/CN114562982B/en
Publication of CN114562982A publication Critical patent/CN114562982A/en
Application granted granted Critical
Publication of CN114562982B publication Critical patent/CN114562982B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C11/00Photogrammetry or videogrammetry, e.g. stereogrammetry; Photographic surveying
    • G01C11/04Interpretation of pictures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/89Radar or analogous systems specially adapted for specific applications for mapping or imaging
    • G01S13/90Radar or analogous systems specially adapted for specific applications for mapping or imaging using synthetic aperture techniques, e.g. synthetic aperture radar [SAR] techniques
    • G01S13/9021SAR image post-processing techniques
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T3/00Geometric image transformations in the plane of the image
    • G06T3/02Affine transformations

Landscapes

  • Engineering & Computer Science (AREA)
  • Remote Sensing (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Multimedia (AREA)
  • Electromagnetism (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Theoretical Computer Science (AREA)
  • Radar Systems Or Details Thereof (AREA)
  • Image Processing (AREA)
  • Image Analysis (AREA)

Abstract

The invention discloses a weight determining method and device for optical and SAR heterologous satellite image joint adjustment, wherein the method comprises the following steps: constructing a SAR image and optical image heterogeneous regional network adjustment model; solving a weight matrix of an error equation set of the image side compensation parameters according to the priori positioning accuracy of the SAR image and the optical image; updating the weight of the compensation parameter of the image side; the device comprises: the system comprises a SAR image and optical image heterogeneous area network adjustment model construction module, a weight matrix solving module of an error equation set of image side compensation parameters and a weight updating module of the image side compensation parameters. According to the method, the contribution degree of the optical and SAR image sources with different geometric qualities to the positioning calculation is controlled, so that a more stable adjustment model is constructed, and the positioning precision of the combined adjustment of the heterogeneous images is improved.

Description

一种光学和SAR异源卫星影像联合平差的定权方法和装置A weight determination method and device for joint adjustment of optical and SAR heterogeneous satellite images

技术领域Technical Field

本发明涉及SAR图像处理技术领域,尤其涉及一种光学和SAR异源卫星影像联合平差的定权方法和装置。The invention relates to the technical field of SAR image processing, and in particular to a weight determination method and device for joint adjustment of optical and SAR heterogeneous satellite images.

背景技术Background Art

目前,光学卫星影像和SAR卫星影像是进行卫星立体测图的两大影像源。同源数据的联合处理仍然是遥感立体成像领域的主要手段。利用光学卫星影像和SAR卫星影像进行立体定位各有优缺点:光学卫星影像信噪比高,解译直观,但在参与立体定位的多个光学卫星影像交会角较小的情况下,直接进行区域网平差的定位结果无法满足立体定位精度要求。SAR卫星影像具有全天时全天候的独特优势,特有的侧视特点对高度敏感,随着星载SAR分辨率大幅度提高,可以很好地补充光学遥感,达到辅助定位的目的,当利用SAR卫星影像进行定位时,由于其定位过程不需要姿态信息,在经过系统定标后,具有较高的无控几何定位精度。将SAR影像和光学影像联合起来进行立体定位,不仅可以发挥几何精度高的SAR影像在整个区域网中的控制作用,而且由于SAR影像的距离成像方式和光学影像的中心投影截然不同,二者结合可实现优势互补,有效改善立体观测结构。At present, optical satellite images and SAR satellite images are the two major image sources for satellite stereo mapping. Joint processing of homologous data is still the main means in the field of remote sensing stereo imaging. Using optical satellite images and SAR satellite images for stereo positioning has its own advantages and disadvantages: optical satellite images have a high signal-to-noise ratio and intuitive interpretation, but when the intersection angle of multiple optical satellite images involved in stereo positioning is small, the positioning results of direct regional network adjustment cannot meet the requirements of stereo positioning accuracy. SAR satellite images have the unique advantage of all-day and all-weather, and their unique side-view characteristics are highly sensitive. With the substantial improvement of the resolution of spaceborne SAR, they can well supplement optical remote sensing and achieve the purpose of auxiliary positioning. When using SAR satellite images for positioning, since its positioning process does not require attitude information, it has a high uncontrolled geometric positioning accuracy after system calibration. Combining SAR images with optical images for stereo positioning can not only give play to the control role of SAR images with high geometric accuracy in the entire regional network, but also because the distance imaging method of SAR images is completely different from the central projection of optical images, the combination of the two can achieve complementary advantages and effectively improve the stereo observation structure.

在光学和SAR异源卫星影像联合平差过程中,由于参与平差的光学影像和SAR影像自身的几何质量不同,对平差精度的贡献差别很大,并且光学和SAR影像的成像几何模型不同,对应的单景几何定位误差对平差的影响也有区别,但是现有平差方法未考虑上述不同因素,均基于影像无差别输入假设进行平差,导致现有的光学和SAR异源卫星影像联合平差方法精度较低。In the process of joint adjustment of optical and SAR heterogeneous satellite images, due to the different geometric qualities of the optical images and SAR images involved in the adjustment, their contributions to the adjustment accuracy are very different. In addition, the imaging geometric models of optical and SAR images are different, and the corresponding single-view geometric positioning errors have different effects on the adjustment. However, the existing adjustment methods do not take the above different factors into consideration, and all of them are adjusted based on the assumption of indifferent image input, resulting in low accuracy of the existing joint adjustment methods for optical and SAR heterogeneous satellite images.

发明内容Summary of the invention

本发明所要解决的技术问题在于,现有光学和SAR异源卫星影像联合平差方法未考虑参与平差的光学影像和SAR影像自身的几何质量、成像几何模型和单景几何定位误差,导致其联合平差的精度较低。The technical problem to be solved by the present invention is that the existing joint adjustment method of optical and SAR heterogeneous satellite images does not take into account the geometric quality, imaging geometric model and single-view geometric positioning error of the optical images and SAR images involved in the adjustment, resulting in low accuracy of the joint adjustment.

为了解决上述技术问题,考虑到每型卫星的自主定位精度在相当长的时间内是相对平稳的,其先验值很大程度上可以反映参与平差影像自身的定位精度。为了提升联合定位精度,本发明在平差模型中分别考虑光学和SAR影像定位精度带来的影响,构建稳健的平差模型,提出了一种依据光学和SAR影像先验定位精度、区别设置联合平差模型中观测值权值的方法,通过控制不同几何质量的光学和SAR影像源对定位解算的贡献程度,从而构建更稳健的平差模型,提升异源影像联合平差的定位精度。In order to solve the above technical problems, considering that the autonomous positioning accuracy of each type of satellite is relatively stable over a long period of time, its prior value can largely reflect the positioning accuracy of the images involved in the adjustment. In order to improve the joint positioning accuracy, the present invention considers the influence of the positioning accuracy of optical and SAR images in the adjustment model, constructs a robust adjustment model, and proposes a method for setting the weights of observation values in the joint adjustment model based on the prior positioning accuracy of optical and SAR images. By controlling the contribution of optical and SAR image sources of different geometric qualities to the positioning solution, a more robust adjustment model is constructed to improve the positioning accuracy of the joint adjustment of heterogeneous images.

本发明实施例第一方面公开了一种光学和SAR异源卫星影像联合平差的定权方法,所述方法包括:The first aspect of the embodiment of the present invention discloses a weight determination method for joint adjustment of optical and SAR heterogeneous satellite images, the method comprising:

S1,构建SAR影像和光学影像异源区域网平差模型,其包括:S1, constructing a heterogeneous regional block adjustment model for SAR images and optical images, which includes:

S11,求解SAR影像(Synthetic Aperture Radar,合成孔径雷达)和光学影像的RPC(Rational Polynomial Coefficients,有理多项式系数)模型参数。分别基于SAR影像和光学影像的严密成像几何模型生成相应的影像坐标和对应地面坐标的虚拟控制点对集合,利用点对集合,采用拟合方法求解RPC模型函数的系数,得到相应影像的RPC模型函数s(B,L,H)和l(B,L,H)。(s,l)是卫星影像中像点的二维图像坐标,(B,L,H)为影像中像点对应的地面点在经纬度坐标系下的地面坐标。RPC模型函数用于将经纬度坐标系下的地面坐标转换为二维图像坐标。S11, solve the RPC (Rational Polynomial Coefficients) model parameters of SAR images (Synthetic Aperture Radar) and optical images. Generate a set of virtual control point pairs of corresponding image coordinates and corresponding ground coordinates based on the rigorous imaging geometry models of SAR images and optical images respectively. Use the point pair set and the fitting method to solve the coefficients of the RPC model function to obtain the RPC model functions s(B,L,H) and l(B,L,H) of the corresponding images. (s,l) are the two-dimensional image coordinates of the image point in the satellite image, and (B,L,H) are the ground coordinates of the ground point corresponding to the image point in the image in the longitude and latitude coordinate system. The RPC model function is used to convert the ground coordinates in the longitude and latitude coordinate system into two-dimensional image coordinates.

S12,为量测得到的位于第j张影像上的第i个像点的二维图像坐标,该影像点对应地面点的地面坐标为(Bk,Lk,Hk),k为地面点的序号,利用仿射变换模型构建光学影像和SAR卫星影像的像方补偿函数模型,构建第i个像点的量测误差方程为:S12, is the measured two-dimensional image coordinate of the i-th image point on the j-th image. The ground coordinates of the image point corresponding to the ground point are (B k , L k , H k ), k is the serial number of the ground point. The image compensation function model of optical image and SAR satellite image is constructed using the affine transformation model, and the measurement error equation of the i-th image point is constructed as follows:

其中,s(j)(Bk,Lk,Hk)和l(j)(Bk,Lk,Hk)为将地面点坐标(Bk,Lk,Hk)代入第j张影像的RPC模型函数后的结果,为位于第j张影像上的第i个像点的量测坐标误差,为第j张影像的像方补偿参数。Where s (j) ( Bk , Lk , Hk ) and l (j) ( Bk , Lk , Hk ) are the results of substituting the ground point coordinates ( Bk , Lk , Hk ) into the RPC model function of the jth image. is the measured coordinate error of the i-th image point on the j-th image, is the image compensation parameter of the jth image.

对第i个像点的量测误差方程进行求导和线性化处理,得到误差方程:The error equation of the measurement error of the i-th image point is derived and linearized to obtain the error equation:

式中,为第j张影像的RPC模型函数对地面点坐标(Bk,Lk,Hk)的偏导数,为未知数改正量,为根据第k个地面点的地面坐标初值和第j张影像的像方补偿参数初值计算得到的第j张影像上的第i个像点的二维图像坐标的初值,该计算过程表示为:In the formula, is the partial derivative of the RPC model function of the jth image with respect to the ground point coordinates (B k , L k , H k ), is the correction value for the unknown number, is the initial value of the ground coordinates of the kth ground point and the initial value of the image compensation parameter of the jth image The initial value of the two-dimensional image coordinates of the i-th image point on the j-th image is calculated. The calculation process is expressed as:

其中,为第j张影像的像方补偿参数初值。in, is the initial value of the image compensation parameter of the jth image.

S13,构建存在重叠区域的光学影像和SAR影像的像点坐标量测误差方程组。S13, constructing a set of image point coordinate measurement error equations for the optical image and the SAR image in the overlapping area.

对于影像中的n个像点,构建相应的像点坐标量测误差方程组,其表达式为:For n image points in the image, the corresponding image point coordinate measurement error equation group is constructed, and its expression is:

其中,AG和AA为误差方程组的系数矩阵,ΔxG为地面点坐标改正量,ΔxA为像方补偿参数改正量,对于该像点坐标量测误差方程组,其对应的权矩阵为PI,LI表示像点坐标量测值,表示像点坐标量测值的初值。Among them, AG and AA are the coefficient matrices of the error equation group, ΔxG is the ground point coordinate correction, ΔxA is the image compensation parameter correction, for the image point coordinate measurement error equation group, the corresponding weight matrix is P I , L I represents the image point coordinate measurement value, Represents the initial value of the image point coordinate measurement value.

S14,将量测误差方程中的像方补偿参数视为像方仿射变换参数的虚拟观测值,构建像方补偿参数的误差方程组,其表达式为,S14, the image-space compensation parameters in the measurement error equation are regarded as virtual observation values of the image-space affine transformation parameters, and the error equation group of the image-space compensation parameters is constructed, and its expression is:

其中,I为单位矩阵,VA为像方仿射变换参数的虚拟观测值的观测误差,其表达式为:Among them, I is the unit matrix, VA is the observation error of the virtual observation value of the image-side affine transformation parameter, and its expression is:

LA为像方仿射变换参数的虚拟观测值,其表达式为: LA is the virtual observation value of the image-side affine transformation parameter, and its expression is:

为虚拟观测值的初值,其取值在迭代中不断修正,其表达式为: is the initial value of the virtual observation value, and its value is constantly revised during iteration. Its expression is:

该像方补偿参数的误差方程组的权矩阵为PAThe weight matrix of the error equation group of the image compensation parameters is PA ;

S15,根据像点坐标量测误差方程组和像方补偿参数的误差方程组,构建不含控制点的异源影像带权区域网平差方程组,其表达式为:S15, based on the image point coordinate measurement error equation group and the image square compensation parameter error equation group, a weighted regional block adjustment equation group of heterogeneous images without control points is constructed, and its expression is:

该异源影像带权区域网平差方程组的权矩阵PI和PA分别为像点坐标量测误差方程组和像方补偿参数的误差方程组的权矩阵,通过迭代方法解算异源影像带权区域网平差方程组中的ΔxG和ΔxAThe weight matrix of the weighted regional network adjustment equations of the heterogeneous image PI and PA are the weight matrices of the image point coordinate measurement error equation group and the image square compensation parameter error equation group, respectively. The ΔxG and ΔxA in the weighted regional network adjustment equation group of heterogeneous images are solved by an iterative method.

S2,根据SAR影像和光学影像的先验定位精度求解像方补偿参数的误差方程组的权矩阵。S2, the weight matrix of the error equation group of image compensation parameters is solved according to the prior positioning accuracy of SAR images and optical images.

影像的像点坐标量测权值为其对应的像点坐标量测值的中误差的倒数。权矩阵PI对角线上的元素为对应像点坐标量测值的权值,权矩阵PI的其他元素为0。对于权矩阵PA,根据影像的先验精度信息分别确定各个像方补偿参数的中误差,权矩阵PA中的各个像方补偿参数的权值为其中误差的倒数,权矩阵PA对角线上的元素为对应像方补偿参数的权值,权矩阵PA的其他元素为0。The image point coordinate measurement weight of the image is the inverse of the mean error of the corresponding image point coordinate measurement value. The elements on the diagonal of the weight matrix P I are the weights of the corresponding image point coordinate measurement values, and the other elements of the weight matrix P I are 0. For the weight matrix PA , the mean error of each image compensation parameter is determined according to the prior accuracy information of the image, the weight of each image compensation parameter in the weight matrix PA is the inverse of the error, the elements on the diagonal of the weight matrix PA are the weights of the corresponding image compensation parameters, and the other elements of the weight matrix PA are 0.

作为一种可选的实施方式,在本发明实施例第一方面中,所述的根据影像的先验精度信息分别确定各个像方补偿参数的中误差,包括:As an optional implementation, in the first aspect of the embodiment of the present invention, the method of determining the mean square error of each image compensation parameter according to the priori accuracy information of the image includes:

像方补偿参数的常数项a0和b0分别表示卫星沿行、列方向的平移量信息,其由影像行方向、列方向的先验绝对定位精度确定。对于光学影像,根据影像行方向、列方向的先验定位精度和影像行方向、列方向的已知分辨率计算其像方补偿参数的常数项的中误差;The constant terms a0 and b0 of the image compensation parameters represent the translation information of the satellite in the row and column directions, respectively, which are determined by the a priori absolute positioning accuracy of the image row and column directions. For optical images, the mean error of the constant term of the image compensation parameters is calculated based on the a priori positioning accuracy of the image row and column directions and the known resolution of the image row and column directions;

对于SAR影像,像方补偿参数的第一常数项表示卫星沿行方向的平移量信息,根据影像行方向的先验定位精度和影像行方向的已知分辨率计算其像方补偿参数的第一常数项的中误差,像方补偿参数的第二常数项反映距离向斜距R的测量误差,因此通过将影像列方向的先验定位精度σY乘以影像入射角αinc的正弦值,计算得到确定其像方补偿参数的第二常数项的中误差。For SAR images, the first constant term of the image compensation parameter represents the translation information of the satellite along the row direction. The mean error of the first constant term of the image compensation parameter is calculated according to the prior positioning accuracy in the image row direction and the known resolution in the image row direction. The second constant term of the image compensation parameter reflects the measurement error of the range slant range R. Therefore, the mean error of the second constant term of the image compensation parameter is calculated by multiplying the prior positioning accuracy σ Y in the image column direction by the sine value of the image incident angle α inc .

像方补偿参数的一次项表示影像的缩放和旋转误差,由卫星平台的误差标称值确定影像的先验相对定位精度,根据此项精度对影像的最大影响量和影像尺寸确定像方补偿参数的一次项的中误差。The linear term of the image compensation parameter represents the scaling and rotation errors of the image. The prior relative positioning accuracy of the image is determined by the nominal error value of the satellite platform. The mean error of the linear term of the image compensation parameter is determined based on the maximum influence of this accuracy on the image and the image size.

作为一种可选的实施方式,在本发明实施例第一方面中,在根据SAR影像和光学影像的先验定位精度求解像方补偿参数的误差方程组的权矩阵后,利用与地面点目标相关的像点所在行的像素值向量,计算其互相关矩阵,按照像方补偿参数的权值的数目,提取相应维度的特征矩阵,将特征矩阵作为加权矩阵,依次对像方补偿参数的权值进行加权更新,得到更新后的像方补偿参数的权值。As an optional implementation, in the first aspect of the embodiments of the present invention, after solving the weight matrix of the error equation group of the image compensation parameters according to the prior positioning accuracy of the SAR image and the optical image, the pixel value vector of the row where the image point related to the ground point target is located is used to calculate its cross-correlation matrix, and according to the number of weights of the image compensation parameters, the feature matrix of the corresponding dimension is extracted, and the feature matrix is used as the weighting matrix to perform weighted update on the weights of the image compensation parameters in turn to obtain the updated weights of the image compensation parameters.

作为一种可选的实施方式,在本发明实施例第一方面中,对于与地面点目标相关的像点在影像中相应行的像素值向量ai,i=1,2,…,N,N为与地面点目标相关的像点的数目,将所有像素值向量表示为采集数据矩阵A:As an optional implementation, in the first aspect of the embodiment of the present invention, for the pixel value vectors a i of the corresponding rows of the image points related to the ground point target in the image, i=1, 2, ..., N, N is the number of the image points related to the ground point target, all pixel value vectors are represented as the acquisition data matrix A:

A=[a1,a2,…,aN],A=[a 1 ,a 2 ,…,a N ],

计算采集数据矩阵A的互相关矩阵R,即得到:Calculate the cross-correlation matrix R of the collected data matrix A, and you will get:

R=ATA,R= ATA

其中,互相关矩阵R的第i行、第j列的元素rij=aiaj T,列向量aj表示第j个与地面点目标相关的像点在影像中相应行的像素值向量,采用主成分分析方法对采集数据矩阵进行降维处理,提取其特征矩阵,该过程具体为:Among them, the element r ij = a i a j T in the i-th row and j-th column of the cross-correlation matrix R, and the column vector a j represents the pixel value vector of the j-th image point related to the ground point target in the corresponding row in the image. The principal component analysis method is used to reduce the dimension of the collected data matrix and extract its feature matrix. The specific process is:

对互相关矩阵R进行特征分解,得到N个特征向量和特征值,根据特征值大小对特征向量进行筛选,筛选出大于某阈值的M个特征向量所构成的特征矩阵E记为:Perform eigendecomposition on the cross-correlation matrix R to obtain N eigenvectors and eigenvalues. Select the eigenvectors according to the eigenvalues, and select the eigenmatrix E composed of M eigenvectors greater than a certain threshold, which is recorded as:

E=[v1,v2,…,vM],E=[v 1 ,v 2 ,…,v M ],

其中,vk表示第k个特征向量,k=1,2,…,M,特征向量均为列向量,M为像方补偿参数的权值的数目;将特征矩阵E作为加权矩阵,对像方补偿参数的权值所构成的向量a进行加权更新,即:Wherein, vk represents the kth eigenvector, k = 1, 2, ..., M, the eigenvectors are all column vectors, and M is the number of weights of the image compensation parameters; the eigenmatrix E is used as the weighting matrix, and the vector a composed of the weights of the image compensation parameters is weighted updated, that is:

b=ETa,b= ETa

得到更新后的像方补偿参数的权值向量b。The updated weight vector b of the image-side compensation parameters is obtained.

本发明实施例第二方面公开了一种光学和SAR异源卫星影像联合平差的定权装置,所述装置包括:SAR影像和光学影像异源区域网平差模型构建模块,像方补偿参数的误差方程组的权矩阵求解模块和像方补偿参数的权值更新模块。像方补偿参数的误差方程组的权矩阵求解模块用于根据SAR影像和光学影像的先验定位精度求解像方补偿参数的误差方程组的权矩阵。The second aspect of the embodiment of the present invention discloses a weight determination device for joint adjustment of optical and SAR heterogeneous satellite images, the device comprising: a SAR image and optical image heterogeneous regional network adjustment model construction module, a weight matrix solving module for the error equation group of image compensation parameters, and a weight value updating module for the image compensation parameters. The weight matrix solving module for the error equation group of image compensation parameters is used to solve the weight matrix of the error equation group of image compensation parameters according to the prior positioning accuracy of the SAR image and the optical image.

作为一种可选的实施方式,在本发明实施例第二方面中,所述的SAR影像和光学影像异源区域网平差模型构建模块,用于构建SAR影像和光学影像异源区域网平差模型,其实现过程包括:As an optional implementation, in the second aspect of the embodiment of the present invention, the SAR image and optical image heterogeneous regional block adjustment model construction module is used to construct the SAR image and optical image heterogeneous regional block adjustment model, and its implementation process includes:

求解SAR影像(Synthetic Aperture Radar,合成孔径雷达)和光学影像的RPC(Rational Polynomial Coefficients,有理多项式系数)模型参数。分别基于SAR影像和光学影像的严密成像几何模型生成相应的影像坐标和对应地面坐标的虚拟控制点对集合,利用点对集合,采用拟合方法求解RPC模型函数的系数,得到相应影像的RPC模型函数s(B,L,H)和l(B,L,H)。(s,l)是卫星影像中像点的二维图像坐标,(B,L,H)为影像中像点对应的地面点在经纬度坐标系下的地面坐标。RPC模型函数用于将经纬度坐标系下的地面坐标转换为二维图像坐标。Solve the RPC (Rational Polynomial Coefficients) model parameters of SAR images (Synthetic Aperture Radar) and optical images. Generate the corresponding image coordinates and the corresponding ground coordinates of the virtual control point pair set based on the rigorous imaging geometry model of SAR images and optical images respectively. Use the point pair set and the fitting method to solve the coefficients of the RPC model function to obtain the RPC model functions s(B,L,H) and l(B,L,H) of the corresponding image. (s,l) is the two-dimensional image coordinates of the image point in the satellite image, and (B,L,H) is the ground coordinates of the ground point corresponding to the image point in the image in the longitude and latitude coordinate system. The RPC model function is used to convert the ground coordinates in the longitude and latitude coordinate system into two-dimensional image coordinates.

为量测得到的位于第j张影像上的第i个像点的二维图像坐标,该影像点对应地面点的地面坐标为(Bk,Lk,Hk),k为地面点的序号,利用仿射变换模型构建光学影像和SAR卫星影像的像方补偿函数模型,构建第i个像点的量测误差方程为: is the measured two-dimensional image coordinate of the i-th image point on the j-th image. The ground coordinates of the image point corresponding to the ground point are (B k , L k , H k ), k is the serial number of the ground point. The image compensation function model of optical image and SAR satellite image is constructed using the affine transformation model, and the measurement error equation of the i-th image point is constructed as follows:

其中,s(j)(Bk,Lk,Hk)和l(j)(Bk,Lk,Hk)为将地面点坐标(Bk,Lk,Hk)代入第j张影像的RPC模型函数后的结果,为位于第j张影像上的第i个像点的量测坐标误差,为第j张影像的像方补偿参数。Where s (j) ( Bk , Lk , Hk ) and l (j) ( Bk , Lk , Hk ) are the results of substituting the ground point coordinates ( Bk , Lk , Hk ) into the RPC model function of the jth image. is the measured coordinate error of the i-th image point on the j-th image, is the image compensation parameter of the jth image.

对第i个像点的量测误差方程进行求导和线性化处理,得到误差方程:The error equation of the measurement error of the i-th image point is derived and linearized to obtain the error equation:

式中,为第j张影像的RPC模型函数对地面点坐标(Bk,Lk,Hk)的偏导数,为未知数改正量,为根据第k个地面点的地面坐标初值和第j张影像的像方补偿参数初值计算得到的第j张影像上的第i个像点的二维图像坐标的初值,该计算过程表示为:In the formula, is the partial derivative of the RPC model function of the jth image with respect to the ground point coordinates (B k , L k , H k ), is the correction value for the unknown number, is the initial value of the ground coordinates of the kth ground point and the initial value of the image compensation parameter of the jth image The initial value of the two-dimensional image coordinates of the i-th image point on the j-th image is calculated. The calculation process is expressed as:

其中,为第j张影像的像方补偿参数初值。in, is the initial value of the image compensation parameter of the jth image.

构建存在重叠区域的光学影像和SAR影像的像点坐标量测误差方程组。The error equations for measuring the coordinates of image points in overlapping areas of optical and SAR images are constructed.

对于影像中的n个像点,构建相应的像点坐标量测误差方程组,其表达式为:For n image points in the image, the corresponding image point coordinate measurement error equation group is constructed, and its expression is:

其中,AG和AA为误差方程组的系数矩阵,ΔxG为地面点坐标改正量,ΔxA为像方补偿参数改正量,对于该像点坐标量测误差方程组,其对应的权矩阵为PI,LI表示像点坐标量测值,表示像点坐标量测值的初值。Among them, AG and AA are the coefficient matrices of the error equation group, ΔxG is the ground point coordinate correction, ΔxA is the image compensation parameter correction, for the image point coordinate measurement error equation group, the corresponding weight matrix is P I , L I represents the image point coordinate measurement value, Represents the initial value of the image point coordinate measurement value.

将量测误差方程中的像方补偿参数视为像方仿射变换参数的虚拟观测值,构建像方补偿参数的误差方程组,其表达式为,The image-space compensation parameters in the measurement error equation are regarded as virtual observation values of the image-space affine transformation parameters, and the error equation group of the image-space compensation parameters is constructed, and its expression is:

其中,I为单位矩阵,VA为像方仿射变换参数的虚拟观测值的观测误差,其表达式为:Among them, I is the unit matrix, VA is the observation error of the virtual observation value of the image-side affine transformation parameter, and its expression is:

LA为像方仿射变换参数的虚拟观测值,其表达式为: LA is the virtual observation value of the image-side affine transformation parameter, and its expression is:

为虚拟观测值的初值,其取值在迭代中不断修正,其表达式为: is the initial value of the virtual observation value, and its value is constantly revised during iteration. Its expression is:

该像方补偿参数的误差方程组的权矩阵为PAThe weight matrix of the error equation group of the image compensation parameters is PA ;

根据像点坐标量测误差方程组和像方补偿参数的误差方程组,构建不含控制点的异源影像带权区域网平差方程组,其表达式为:According to the error equations of image point coordinate measurement and image square compensation parameters, the weighted regional block adjustment equations of heterogeneous images without control points are constructed, and the expression is:

该异源影像带权区域网平差方程组的权矩阵PI和PA分别为像点坐标量测误差方程组和像方补偿参数的误差方程组的权矩阵,通过迭代方法解算异源影像带权区域网平差方程组中的ΔxG和ΔxAThe weight matrix of the weighted regional network adjustment equations of the heterogeneous image PI and PA are the weight matrices of the image point coordinate measurement error equation group and the image square compensation parameter error equation group, respectively. The ΔxG and ΔxA in the weighted regional network adjustment equation group of heterogeneous images are solved by an iterative method.

作为一种可选的实施方式,在本发明实施例第二方面中,所述的像方补偿参数的误差方程组的权矩阵求解模块,其用于根据SAR影像和光学影像的先验定位精度求解像方补偿参数的误差方程组的权矩阵,具体包括:As an optional implementation manner, in the second aspect of the embodiment of the present invention, the weight matrix solving module of the error equation group of the image compensation parameters is used to solve the weight matrix of the error equation group of the image compensation parameters according to the prior positioning accuracy of the SAR image and the optical image, and specifically includes:

影像的像点坐标量测权值为其对应的像点坐标量测值的中误差的倒数。权矩阵PI对角线上的元素为对应像点坐标量测值的权值,权矩阵PI的其他元素为0。对于权矩阵PA,根据影像的先验精度信息分别确定各个像方补偿参数的中误差,权矩阵PA中的各个像方补偿参数的权值为其中误差的倒数,权矩阵PA对角线上的元素为对应像方补偿参数的权值,权矩阵PA的其他元素为0。The image point coordinate measurement weight of the image is the inverse of the mean error of the corresponding image point coordinate measurement value. The elements on the diagonal of the weight matrix P I are the weights of the corresponding image point coordinate measurement values, and the other elements of the weight matrix P I are 0. For the weight matrix PA , the mean error of each image compensation parameter is determined according to the prior accuracy information of the image, the weight of each image compensation parameter in the weight matrix PA is the inverse of the error, the elements on the diagonal of the weight matrix PA are the weights of the corresponding image compensation parameters, and the other elements of the weight matrix PA are 0.

作为一种可选的实施方式,在本发明实施例第二方面中,所述的根据影像的先验精度信息分别确定各个像方补偿参数的中误差,包括:As an optional implementation, in the second aspect of the embodiment of the present invention, the method of determining the mean square error of each image compensation parameter according to the priori accuracy information of the image includes:

像方补偿参数的常数项a0和b0分别表示卫星沿行、列方向的平移量信息,其由影像行方向、列方向的先验绝对定位精度确定。对于光学影像,根据影像行方向、列方向的先验定位精度和影像行方向、列方向的已知分辨率计算其像方补偿参数的常数项的中误差;The constant terms a0 and b0 of the image compensation parameters represent the translation information of the satellite in the row and column directions, respectively, which are determined by the a priori absolute positioning accuracy of the image row and column directions. For optical images, the mean error of the constant term of the image compensation parameters is calculated based on the a priori positioning accuracy of the image row and column directions and the known resolution of the image row and column directions;

对于SAR影像,像方补偿参数的第一常数项表示卫星沿行方向的平移量信息,根据影像行方向的先验定位精度和影像行方向的已知分辨率计算其像方补偿参数的第一常数项的中误差,像方补偿参数的第二常数项反映距离向斜距R的测量误差,因此通过将影像列方向的先验定位精度σY乘以影像入射角αinc的正弦值,计算得到确定其像方补偿参数的第二常数项的中误差。For SAR images, the first constant term of the image compensation parameter represents the translation information of the satellite along the row direction. The mean error of the first constant term of the image compensation parameter is calculated according to the prior positioning accuracy in the image row direction and the known resolution in the image row direction. The second constant term of the image compensation parameter reflects the measurement error of the range slant range R. Therefore, the mean error of the second constant term of the image compensation parameter is calculated by multiplying the prior positioning accuracy σ Y in the image column direction by the sine value of the image incident angle α inc .

像方补偿参数的一次项表示影像的缩放和旋转误差,由卫星平台的误差标称值确定影像的先验相对定位精度,根据此项精度对影像的最大影响量和影像尺寸确定像方补偿参数的一次项的中误差。The linear term of the image compensation parameter represents the scaling and rotation errors of the image. The prior relative positioning accuracy of the image is determined by the nominal error value of the satellite platform. The mean error of the linear term of the image compensation parameter is determined based on the maximum influence of this accuracy on the image and the image size.

作为一种可选的实施方式,在本发明实施例第二方面中,所述的像方补偿参数的权值更新模块,在根据SAR影像和光学影像的先验定位精度求解像方补偿参数的误差方程组的权矩阵后,利用与地面点目标相关的像点所在行的像素值向量,计算其互相关矩阵,按照像方补偿参数的权值的数目,提取相应维度的特征矩阵,将特征矩阵作为加权矩阵,依次对像方补偿参数的权值进行加权更新,得到更新后的像方补偿参数的权值。As an optional implementation, in the second aspect of the embodiment of the present invention, the weight update module of the image compensation parameters, after solving the weight matrix of the error equation group of the image compensation parameters according to the prior positioning accuracy of the SAR image and the optical image, uses the pixel value vector of the row where the image point related to the ground point target is located to calculate its cross-correlation matrix, extracts the feature matrix of the corresponding dimension according to the number of weights of the image compensation parameters, uses the feature matrix as the weighting matrix, and performs weighted update on the weights of the image compensation parameters in turn to obtain the updated weights of the image compensation parameters.

作为一种可选的实施方式,在本发明实施例第二方面中,所述的像方补偿参数的权值更新模块,对于与地面点目标相关的像点在影像中相应行的像素值向量ai,i=1,2,…,N,N为与地面点目标相关的像点的数目,将所有像素值向量表示为采集数据矩阵A:As an optional implementation, in the second aspect of the embodiment of the present invention, the weight update module of the image space compensation parameter, for the pixel value vectors a i , i=1, 2, ..., N, where N is the number of the image points related to the ground point target in the corresponding row in the image, represents all pixel value vectors as the acquisition data matrix A:

A=[a1,a2,…,aN],A=[a 1 ,a 2 ,…,a N ],

计算采集数据矩阵A的互相关矩阵R,即得到:Calculate the cross-correlation matrix R of the collected data matrix A, and you will get:

R=ATA,R= ATA

其中,互相关矩阵R的第i行、第j列的元素rij=aiaj T,列向量aj表示第j个与地面点目标相关的像点在影像中相应行的像素值向量,采用主成分分析方法对采集数据矩阵进行降维处理,提取其特征矩阵,该过程具体为:Among them, the element r ij = a i a j T in the i-th row and j-th column of the cross-correlation matrix R, and the column vector a j represents the pixel value vector of the j-th image point related to the ground point target in the corresponding row in the image. The principal component analysis method is used to reduce the dimension of the collected data matrix and extract its feature matrix. The specific process is:

对互相关矩阵R进行特征分解,得到N个特征向量和特征值,根据特征值大小对特征向量进行筛选,筛选出大于某阈值的M个特征向量所构成的特征矩阵E记为:Perform eigendecomposition on the cross-correlation matrix R to obtain N eigenvectors and eigenvalues. Select the eigenvectors according to the eigenvalues, and select the eigenmatrix E composed of M eigenvectors greater than a certain threshold, which is recorded as:

E=[v1,v2,…,vM],E=[v 1 ,v 2 ,…,v M ],

其中,vk表示第k个特征向量,k=1,2,…,M,特征向量均为列向量,M为像方补偿参数的权值的数目;将特征矩阵E作为加权矩阵,对像方补偿参数的权值所构成的向量a进行加权更新,即:Wherein, vk represents the kth eigenvector, k = 1, 2, ..., M, the eigenvectors are all column vectors, and M is the number of weights of the image compensation parameters; the eigenmatrix E is used as the weighting matrix, and the vector a composed of the weights of the image compensation parameters is weighted updated, that is:

b=ETa,b= ETa

得到更新后的像方补偿参数的权值向量b。The updated weight vector b of the image-side compensation parameters is obtained.

本发明第三方面公开了另一种光学和SAR异源卫星影像联合平差的定权装置,所述装置包括:The third aspect of the present invention discloses another weight determination device for joint adjustment of optical and SAR heterogeneous satellite images, the device comprising:

存储有可执行程序代码的存储器;A memory storing executable program code;

与所述存储器耦合的处理器;a processor coupled to the memory;

所述处理器调用所述存储器中存储的所述可执行程序代码,执行本发明实施例第一方面公开的光学和SAR异源卫星影像联合平差的定权方法中的部分或全部步骤。The processor calls the executable program code stored in the memory to execute part or all of the steps in the weighting method for joint adjustment of optical and SAR heterogeneous satellite images disclosed in the first aspect of the embodiment of the present invention.

本发明第四方面公开了一种计算机存储介质,所述计算机存储介质存储有计算机指令,所述计算机指令被调用时,用于执行本发明实施例第一方面公开的光学和SAR异源卫星影像联合平差的定权方法中的部分或全部步骤。The fourth aspect of the present invention discloses a computer storage medium, which stores computer instructions. When the computer instructions are called, they are used to execute some or all of the steps in the weighting method for joint adjustment of optical and SAR heterogeneous satellite images disclosed in the first aspect of an embodiment of the present invention.

与现有技术相比,本发明实施例具有以下有益效果:Compared with the prior art, the embodiments of the present invention have the following beneficial effects:

本发明实施例为基于光学和SAR异源多视影像的平差模型构建提供支撑。本发明实施例通过在平差模型中区别设置光学和SAR影像观测值权值,控制不同几何质量的光学和SAR影像源对定位解算的贡献程度,从而构建更稳健的平差模型,提升异源影像联合平差的定位精度。The embodiment of the present invention provides support for the construction of an adjustment model based on optical and SAR heterogeneous multi-view images. The embodiment of the present invention controls the contribution of optical and SAR image sources of different geometric qualities to the positioning solution by setting the weights of optical and SAR image observation values in the adjustment model, thereby building a more robust adjustment model and improving the positioning accuracy of the joint adjustment of heterogeneous images.

附图说明BRIEF DESCRIPTION OF THE DRAWINGS

为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。In order to more clearly illustrate the technical solutions in the embodiments of the present invention, the accompanying drawings required for use in the description of the embodiments will be briefly introduced below. Obviously, the accompanying drawings in the following description are only some embodiments of the present invention. For ordinary technicians in this field, other accompanying drawings can be obtained based on these accompanying drawings without paying creative work.

图1是本发明实施例公开的一种光学和SAR异源卫星影像联合平差的定权方法的流程示意图;1 is a schematic flow diagram of a weighting method for joint adjustment of optical and SAR heterogeneous satellite images disclosed in an embodiment of the present invention;

图2是本发明实施例公开的一种光学和SAR异源卫星影像联合平差的定权装置的组成示意图。FIG. 2 is a schematic diagram of the composition of a weight determination device for joint adjustment of optical and SAR heterogeneous satellite images disclosed in an embodiment of the present invention.

具体实施方式DETAILED DESCRIPTION

为了使本技术领域的人员更好地理解本发明方案,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。In order to enable those skilled in the art to better understand the scheme of the present invention, the technical scheme in the embodiments of the present invention will be clearly and completely described below in conjunction with the drawings in the embodiments of the present invention. Obviously, the described embodiments are only part of the embodiments of the present invention, not all of the embodiments. Based on the embodiments of the present invention, all other embodiments obtained by ordinary technicians in this field without creative work are within the scope of protection of the present invention.

本发明的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别不同对象,而不是用于描述特定顺序。此外,术语“包括”和“具有”以及它们任何变形,意图在于覆盖不排他的包含。例如包含了一系列步骤或单元的过程、方法、装置、产品或设备没有限定于已列出的步骤或单元,而是可选地还包括没有列出的步骤或单元,或可选地还包括对于这些过程、方法、产品或设备固有的其他步骤或单元。The terms "first", "second", etc. in the specification and claims of the present invention and the above-mentioned drawings are used to distinguish different objects, rather than to describe a specific order. In addition, the terms "including" and "having" and any variations thereof are intended to cover non-exclusive inclusions. For example, a process, method, device, product or equipment that includes a series of steps or units is not limited to the listed steps or units, but may optionally include steps or units that are not listed, or may optionally include other steps or units that are inherent to these processes, methods, products or equipment.

在本文中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本发明的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员显式地和隐式地理解的是,本文所描述的实施例可以与其它实施例相结合。以下分别进行详细说明。Reference to "embodiments" herein means that a particular feature, structure, or characteristic described in conjunction with the embodiments may be included in at least one embodiment of the present invention. The appearance of the phrase in various locations in the specification does not necessarily refer to the same embodiment, nor is it an independent or alternative embodiment that is mutually exclusive with other embodiments. It is explicitly and implicitly understood by those skilled in the art that the embodiments described herein may be combined with other embodiments. Each is described in detail below.

图1是本发明实施例公开的一种光学和SAR异源卫星影像联合平差的定权方法的流程示意图;图2是本发明实施例公开的一种光学和SAR异源卫星影像联合平差的定权装置的组成示意图。FIG1 is a flow chart of a method for determining weights for joint adjustment of optical and SAR heterogeneous satellite images disclosed in an embodiment of the present invention; FIG2 is a composition chart of a device for determining weights for joint adjustment of optical and SAR heterogeneous satellite images disclosed in an embodiment of the present invention.

实施例一Embodiment 1

本实施例公开了一种光学和SAR异源卫星影像联合平差的定权方法,所述方法包括:This embodiment discloses a weight determination method for joint adjustment of optical and SAR heterogeneous satellite images, the method comprising:

S1,构建SAR影像和光学影像异源区域网平差模型,其包括:S1, constructing a heterogeneous regional block adjustment model for SAR images and optical images, which includes:

S11,求解SAR影像(Synthetic Aperture Radar,合成孔径雷达)和光学影像的RPC(Rational Polynomial Coefficients,有理多项式系数)模型参数。分别基于SAR影像和光学影像的严密成像几何模型生成相应的影像坐标和对应地面坐标的虚拟控制点对集合,利用点对集合,采用拟合方法求解RPC模型函数的系数,得到相应影像的RPC模型函数s(B,L,H)和l(B,L,H)。(s,l)是卫星影像中像点的二维图像坐标,(B,L,H)为影像中像点对应的地面点在经纬度坐标系下的地面坐标。RPC模型函数用于将经纬度坐标系下的地面坐标转换为二维图像坐标,RPC模型将目标影像点(s,l)和其地面坐标(B,L,H),以地面坐标的三次多项式的比值的形式关联起来。S11, solve the RPC (Rational Polynomial Coefficients) model parameters of SAR images (Synthetic Aperture Radar) and optical images. Generate a set of virtual control point pairs of corresponding image coordinates and corresponding ground coordinates based on the rigorous imaging geometry models of SAR images and optical images respectively. Use the point pair set and the fitting method to solve the coefficients of the RPC model function to obtain the RPC model functions s(B,L,H) and l(B,L,H) of the corresponding images. (s,l) are the two-dimensional image coordinates of the image point in the satellite image, and (B,L,H) are the ground coordinates of the ground point corresponding to the image point in the image in the longitude and latitude coordinate system. The RPC model function is used to convert the ground coordinates in the longitude and latitude coordinate system into two-dimensional image coordinates. The RPC model associates the target image point (s,l) and its ground coordinates (B,L,H) in the form of the ratio of the cubic polynomial of the ground coordinates.

S12,为量测得到的位于第j张影像上的第i个像点的二维图像坐标,该影像点对应地面点的地面坐标为(Bk,Lk,Hk),k为地面点的序号,利用仿射变换模型构建光学影像和SAR卫星影像的像方补偿函数模型,构建第i个像点的量测误差方程为:S12, is the measured two-dimensional image coordinate of the i-th image point on the j-th image. The ground coordinates of the image point corresponding to the ground point are (B k , L k , H k ), k is the serial number of the ground point. The image compensation function model of optical image and SAR satellite image is constructed using the affine transformation model, and the measurement error equation of the i-th image point is constructed as follows:

其中,s(j)(Bk,Lk,Hk)和l(j)(Bk,Lk,Hk)为将地面点坐标(Bk,Lk,Hk)代入第j张影像的RPC模型函数后的结果,为位于第j张影像上的第i个像点的量测坐标误差,此项误差在区域网平差过程中予以最小化,为第j张影像的像方补偿参数,其和第i个像点对应的地面点坐标(Bk,Lk,Hk)是利用后续的区域网平差方法求解得到。Where s (j) ( Bk , Lk , Hk ) and l (j) ( Bk , Lk , Hk ) are the results of substituting the ground point coordinates ( Bk , Lk , Hk ) into the RPC model function of the jth image. is the measured coordinate error of the i-th image point on the j-th image. This error is minimized during the block adjustment process. is the image square compensation parameter of the jth image, and the ground point coordinates (B k , L k , H k ) corresponding to the ith image point are obtained by using the subsequent regional block adjustment method.

Δsj(s,l)和Δlj(s,l)是第j张影像的像方补偿函数,其利用仿射变换模型得到,其表达式为:Δs j (s, l) and Δl j (s, l) are the image-space compensation functions of the jth image, which are obtained using the affine transformation model and are expressed as follows:

对第i个像点的量测误差方程进行求导和线性化处理,得到误差方程:The error equation of the measurement error of the i-th image point is derived and linearized to obtain the error equation:

式中,为第j张影像的RPC模型函数对地面点坐标(Bk,Lk,Hk)的偏导数,为未知数改正量,为根据第k个地面点的地面坐标初值和第j张影像的像方补偿参数初值计算得到的第j张影像上的第i个像点的二维图像坐标的初值,该计算过程表示为:In the formula, is the partial derivative of the RPC model function of the jth image with respect to the ground point coordinates (B k , L k , H k ), is the correction value for the unknown number, is the initial value of the ground coordinates of the kth ground point and the initial value of the image compensation parameter of the jth image The initial value of the two-dimensional image coordinates of the i-th image point on the j-th image is calculated. The calculation process is expressed as:

其中,为第j张影像的像方补偿参数初值。in, is the initial value of the image compensation parameter of the jth image.

S13,构建存在重叠区域的光学影像和SAR影像的像点坐标量测误差方程组。光学影像和SAR影像通过影像上量测的连接点而彼此关联。连接点为重叠区域中匹配的同名地物点。对于m张影像,在影像上的所有n个像点共对应了s个地面点,ΔxG为该s个地面点坐标改正量,其表达式为:S13, constructing a set of error equations for the coordinate measurement of image points of the optical image and the SAR image in the overlapping area. The optical image and the SAR image are related to each other through the connection points measured on the image. The connection points are the matching ground object points with the same name in the overlapping area. For m images, all n image points on the image correspond to s ground points in total, and Δx G is the correction amount of the coordinates of the s ground points, and its expression is:

ΔxG=[ΔB1,ΔL1,ΔH1,…,ΔBs,ΔLs,ΔHs]TΔx G =[ΔB 1 ,ΔL 1 ,ΔH 1 ,…,ΔB s ,ΔL s ,ΔH s ] T ,

ΔxA为该m张影像的像方补偿参数改正量,其表达式为:Δx A is the image compensation parameter correction of the m images, and its expression is:

set up and

为第i个像点的误差方程的系数矩阵。 is the coefficient matrix of the error equation for the i-th pixel.

为第i个像点的像点坐标的量测误差, is the measurement error of the image point coordinates of the i-th image point,

则将第i个像点的误差方程表达为对于n个影像点分别构建上述误差方程并整合,则得到n个像点相应的像点坐标量测误差方程组。Then the error equation of the i-th pixel is expressed as The above error equations are constructed for n image points respectively and integrated to obtain the image point coordinate measurement error equation group corresponding to the n image points.

对于影像中的n个像点,构建相应的像点坐标量测误差方程组,其表达式为:For n image points in the image, the corresponding image point coordinate measurement error equation group is constructed, and its expression is:

其中,AG和AA为误差方程组的系数矩阵,ΔxG为地面点坐标改正量,ΔxA为像方补偿参数改正量,对于该像点坐标量测误差方程组,其对应的权矩阵为PI,LI表示像点坐标量测值,表示像点坐标量测值的初值。Among them, AG and AA are the coefficient matrices of the error equation group, ΔxG is the ground point coordinate correction, ΔxA is the image compensation parameter correction, for the image point coordinate measurement error equation group, the corresponding weight matrix is P I , L I represents the image point coordinate measurement value, Represents the initial value of the image point coordinate measurement value.

S14,将量测误差方程中的像方补偿参数视为像方仿射变换参数的虚拟观测值,构建像方补偿参数的误差方程组,其表达式为,S14, the image-space compensation parameters in the measurement error equation are regarded as virtual observation values of the image-space affine transformation parameters, and the error equation group of the image-space compensation parameters is constructed, and its expression is:

其中,I为单位矩阵,VA为像方仿射变换参数的虚拟观测值的观测误差,其表达式为:Among them, I is the unit matrix, VA is the observation error of the virtual observation value of the image-side affine transformation parameter, and its expression is:

LA为像方仿射变换参数的虚拟观测值,其表达式为: LA is the virtual observation value of the image-side affine transformation parameter, and its expression is:

为虚拟观测值的初值,开始设为0,其取值在迭代中不断修正,其表达式为: is the initial value of the virtual observation value, which is set to 0 at the beginning. Its value is constantly modified during iteration. Its expression is:

该像方补偿参数的误差方程组的权矩阵为PAThe weight matrix of the error equation group of the image compensation parameters is PA ;

S15,根据像点坐标量测误差方程组和像方补偿参数的误差方程组,构建不含控制点的异源影像带权区域网平差方程组,其表达式为:S15, based on the image point coordinate measurement error equation group and the image square compensation parameter error equation group, a weighted regional block adjustment equation group of heterogeneous images without control points is constructed, and its expression is:

该异源影像带权区域网平差方程组的权矩阵PI和PA分别为像点坐标量测误差方程组和像方补偿参数的误差方程组的权矩阵,通过迭代方法解算异源影像带权区域网平差方程组中的ΔxG和ΔxA。所述的迭代方法,可采用最小二乘等方法。The weight matrix of the weighted regional network adjustment equations of the heterogeneous image PI and PA are weight matrices of the image point coordinate measurement error equation group and the image square compensation parameter error equation group, respectively, and the ΔxG and ΔxA in the weighted regional network adjustment equation group of heterogeneous images are solved by an iterative method. The iterative method can adopt the least square method.

S2,根据SAR影像和光学影像的先验定位精度求解像方补偿参数的误差方程组的权矩阵。S2, the weight matrix of the error equation group of image compensation parameters is solved according to the prior positioning accuracy of SAR images and optical images.

对于像点坐标量测值的中误差与手工量测或自动匹配的准确度有关,通常小于1个像素,基本上由光学/SAR影像来源和分辨率决定,因此对于同一类型影像源可以确定其像点量测中误差为一个常值。影像的像点坐标量测权值为其对应的像点坐标量测值的中误差的倒数。权矩阵PI对角线上的元素为对应像点坐标量测值的权值,权矩阵PI的其他元素为0。对于权矩阵PA,根据影像的先验精度信息分别确定各个像方补偿参数的中误差,权矩阵PA中的各个像方补偿参数的权值为其中误差的倒数,权矩阵PA对角线上的元素为对应像方补偿参数的权值,权矩阵PA的其他元素为0。The mean error of the image point coordinate measurement value is related to the accuracy of manual measurement or automatic matching, usually less than 1 pixel, and is basically determined by the optical/SAR image source and resolution. Therefore, for the same type of image source, the mean error of the image point measurement can be determined to be a constant. The image point coordinate measurement weight of the image is the reciprocal of the mean error of its corresponding image point coordinate measurement value. The elements on the diagonal of the weight matrix P I are the weights of the corresponding image point coordinate measurement values, and the other elements of the weight matrix P I are 0. For the weight matrix PA , the mean error of each image compensation parameter is determined according to the prior accuracy information of the image. The weight of each image compensation parameter in the weight matrix PA is the reciprocal of the error, the elements on the diagonal of the weight matrix PA are the weights of the corresponding image compensation parameters, and the other elements of the weight matrix PA are 0.

作为一种可选的实施方式,在本实施例中,所述的根据影像的先验精度信息分别确定各个像方补偿参数的中误差,包括:As an optional implementation manner, in this embodiment, the method of determining the mean square error of each image compensation parameter according to the priori accuracy information of the image includes:

像方补偿参数的常数项a0和b0分别表示卫星沿行、列方向的平移量信息,其由影像行方向、列方向的先验绝对定位精度确定。对于光学影像,根据影像行方向、列方向的先验定位精度σX、σY和影像行方向、列方向的已知分辨率RX、RY计算a0和b0的中误差,其计算过程为The constant terms a0 and b0 of the image compensation parameters represent the translation information of the satellite in the row and column directions, respectively, which are determined by the a priori absolute positioning accuracy of the image row and column directions. For optical images, the mean error of a0 and b0 is calculated based on the a priori positioning accuracy σX , σY of the image row and column directions and the known resolutions RX , RY of the image row and column directions. The calculation process is:

其中,表示a0的中误差,表示b0的中误差;in, represents the mean error of a 0 , represents the mean error of b 0 ;

对于SAR影像,像方补偿参数的常数项a0表示卫星沿行方向的平移量信息,根据影像行方向的先验定位精度σX和影像行方向的已知分辨率RX计算a0的中误差。像方补偿参数的常数项b0反映距离向斜距R的测量误差,因此通过将影像列方向的先验定位精度σY乘以影像入射角αinc的正弦值,计算得到确定中误差,其计算公式为,For SAR images, the constant term a0 of the image compensation parameter represents the information of the satellite translation along the row direction. The mean error of a0 is calculated based on the prior positioning accuracy σX in the image row direction and the known resolution RX in the image row direction. The constant term b0 of the image compensation parameter reflects the measurement error of the range slant range R. Therefore, the mean error is calculated by multiplying the prior positioning accuracy σY in the image column direction by the sine value of the image incident angle αinc . The calculation formula is:

其中,表示a0的中误差,表示b0的中误差;所述的斜距是指地面点到卫星的距离。in, represents the mean error of a 0 , represents the mean error of b0 ; the slant range refers to the distance from the ground point to the satellite.

像方补偿参数的一次项a1、a2、b1和b2表示影像的缩放和旋转误差,对于光学卫星影像来说,此项误差取决于焦距误差、镜头畸变、卫星径向位置误差和陀螺漂移。对SAR影像来说,此项误差取决于脉冲重复频率误差、距离向采样频率误差、卫星径向位置误差和卫星沿轨方向速度误差。由卫星平台的误差标称值确定影像的先验相对定位精度,根据此项精度对影像的最大影响量和影像尺寸确定像方补偿参数的一次项的中误差;设此项精度对影像的最大影响量为M个像素,则根据M和影像尺寸确定a1、a2、b1、b2的中误差,有The linear terms a1 , a2 , b1 and b2 of the image compensation parameters represent the scaling and rotation errors of the image. For optical satellite images, this error depends on focal length error, lens distortion, satellite radial position error and gyro drift. For SAR images, this error depends on pulse repetition frequency error, range sampling frequency error, satellite radial position error and satellite along-track velocity error. The a priori relative positioning accuracy of the image is determined by the nominal error value of the satellite platform. The mean square error of the linear terms of the image compensation parameters is determined based on the maximum impact of this accuracy on the image and the image size. Assuming that the maximum impact of this accuracy on the image is M pixels, the mean square errors of a1 , a2 , b1 and b2 are determined based on M and the image size, as follows:

式中,Height和Width为影像的高和宽。Where Height and Width are the height and width of the image.

作为一种可选的实施方式,在本实施例中,为提高提升异源影像联合平差的定位精度,利用与地面点目标相关的像点所在行的像素值向量,计算其互相关矩阵,按照像方补偿参数的权值的数目,提取相应维度的特征矩阵,将特征矩阵作为加权矩阵,依次对像方补偿参数的权值进行加权更新,得到更新后的像方补偿参数的权值。As an optional implementation, in this embodiment, in order to improve the positioning accuracy of the joint adjustment of heterogeneous images, the pixel value vectors of the rows of image points related to the ground point targets are used to calculate their cross-correlation matrix, and the characteristic matrix of the corresponding dimension is extracted according to the number of weights of the image compensation parameters. The characteristic matrix is used as a weighted matrix, and the weights of the image compensation parameters are weighted updated in turn to obtain the updated weights of the image compensation parameters.

作为一种可选的实施方式,在本实施例中,对于与地面点目标相关的像点在影像中相应行的像素值向量ai,i=1,2,…,N,N为与地面点目标相关的像点的数目,将所有像素值向量表示为采集数据矩阵a:As an optional implementation, in this embodiment, for the pixel value vectors a i of the corresponding rows of the image points related to the ground point targets in the image, i=1, 2, ..., N, N is the number of the image points related to the ground point targets, all pixel value vectors are represented as the acquisition data matrix a:

a=[a1,a2,…,aN],a=[a 1 ,a 2 ,…,a N ],

计算采集数据矩阵a的互相关矩阵R,即得到:Calculate the cross-correlation matrix R of the collected data matrix a, and you will get:

R=aTa,R=a T a,

其中,互相关矩阵R的第i行、第j列的元素rij=aiaj T,列向量aj表示第j个与地面点目标相关的像点在影像中相应行的像素值向量,采用主成分分析方法对采集数据矩阵进行降维处理,提取其特征矩阵,该过程具体为:Among them, the element r ij = a i a j T in the i-th row and j-th column of the cross-correlation matrix R, and the column vector a j represents the pixel value vector of the j-th image point related to the ground point target in the corresponding row in the image. The principal component analysis method is used to reduce the dimension of the collected data matrix and extract its feature matrix. The specific process is:

对互相关矩阵R进行特征分解,得到N个特征向量和特征值,根据特征值大小对特征向量进行筛选,筛选出大于某阈值的M个特征向量所构成的特征矩阵E记为:Perform eigendecomposition on the cross-correlation matrix R to obtain N eigenvectors and eigenvalues. Select the eigenvectors according to the eigenvalues, and select the eigenmatrix E composed of M eigenvectors greater than a certain threshold, which is recorded as:

E=[v1,v2,…,vM],E=[v 1 ,v 2 ,…,v M ],

其中,vk表示第k个特征向量,k=1,2,…,M,特征向量均为列向量,M为像方补偿参数的权值的数目;将特征矩阵E作为加权矩阵,对像方补偿参数的权值所构成的向量a进行加权更新,即:Wherein, vk represents the kth eigenvector, k = 1, 2, ..., M, the eigenvectors are all column vectors, and M is the number of weights of the image compensation parameters; the eigenmatrix E is used as the weighting matrix, and the vector a composed of the weights of the image compensation parameters is weighted updated, that is:

b=ETa,b= ETa

得到更新后的像方补偿参数的权值向量b。The updated weight vector b of the image-side compensation parameters is obtained.

下面给出利用本方法进行光学和SAR影像联合平差定位的实验结果。参与先验信息联合定位试验的光学/SAR影像经过在轨几何定标后,几何信息如下表所示,包括某地区1景SAR影像、1景光学影像。像方补偿参数虚拟观测值的常数项权根据其先验平面定位精度确定,一次项权根据影像最大像素偏移量即相对中误差确定。SAR-262影像与CCD-513影像组合,调整组合中SAR/光学像方补偿参数虚拟观测值的权,观察影像先验精度信息对联合定位精度的影响。将一次项最大像素偏移量固定设置为2像素,使SAR/光学影像先验平面定位精度分别由0.5米变化至200米,按本方法定权并进行区域网平差,统计不同常数项权配置下平面和高程定位中误差,获得最高精度时设置的最优权值范围与影像先验定位精度基本一致。表1为SAR-262/CCD-513不同常数项精度配置下定位精度(米)。The experimental results of the joint adjustment and positioning of optical and SAR images using this method are given below. After the optical/SAR images participating in the prior information joint positioning experiment were geometrically calibrated on-orbit, the geometric information is shown in the following table, including one SAR image and one optical image of a certain area. The constant term weight of the virtual observation value of the image compensation parameter is determined according to its prior plane positioning accuracy, and the first-order term weight is determined according to the maximum pixel offset of the image, that is, the relative mean error. The SAR-262 image is combined with the CCD-513 image, and the weight of the virtual observation value of the SAR/optical image compensation parameter in the combination is adjusted to observe the influence of the image prior accuracy information on the joint positioning accuracy. The maximum pixel offset of the first-order term is fixed to 2 pixels, so that the prior plane positioning accuracy of the SAR/optical image changes from 0.5 meters to 200 meters respectively. The weight is determined according to this method and the regional network adjustment is performed. The mean error of plane and elevation positioning under different constant term weight configurations is counted. The optimal weight range set when the highest accuracy is obtained is basically consistent with the image prior positioning accuracy. Table 1 shows the positioning accuracy (meter) under different constant term accuracy configurations of SAR-262/CCD-513.

表1 SAR-262/CCD-513不同常数项精度配置下定位精度(米)Table 1 Positioning accuracy of SAR-262/CCD-513 under different constant item accuracy configurations (meters)

将常数项权固定设置为CCD和SAR影像先验平面定位精度,将像方补偿参数一次项引起的最大像素偏移量从0.5像素变化至200像素,按本方法定权并进行区域网平差,统计不同一次项权配置下平面/高程中误差。可以发现,当一次项引起的最大偏移量设置为0.5-2像素时,联合定位得到较好较稳定的结果,平面精度最好为2米,高程精度最好为1.7米。此结果也表明,本试验所使用的影像景内畸变较小,影像变形基本为一平移。表2为SAR-262/CCD-513不同一次项精度配置下定位精度(米)。The constant term weight is fixed to the prior plane positioning accuracy of CCD and SAR images, and the maximum pixel offset caused by the first-order term of the image compensation parameter is changed from 0.5 pixels to 200 pixels. The weight is determined according to this method and regional network adjustment is performed to count the plane/elevation errors under different first-order term weight configurations. It can be found that when the maximum offset caused by the first-order term is set to 0.5-2 pixels, the joint positioning obtains better and more stable results, with the best plane accuracy of 2 meters and the best elevation accuracy of 1.7 meters. This result also shows that the image used in this experiment has small distortion in the scene, and the image deformation is basically a translation. Table 2 shows the positioning accuracy (meters) under different first-order term accuracy configurations of SAR-262/CCD-513.

表2 SAR-262/CCD-513不同一次项精度配置下定位精度(米)Table 2 Positioning accuracy of SAR-262/CCD-513 under different first-order accuracy configurations (meters)

可见,本发明实施例为基于光学和SAR异源多视影像的平差模型构建提供支撑。本发明实施例通过在平差模型中区别设置光学和SAR影像观测值权值,控制不同几何质量的光学和SAR影像源对定位解算的贡献程度,从而构建更稳健的平差模型,提升异源影像联合平差的定位精度。It can be seen that the embodiment of the present invention provides support for the construction of an adjustment model based on optical and SAR heterogeneous multi-view images. The embodiment of the present invention controls the contribution of optical and SAR image sources of different geometric qualities to the positioning solution by setting the weights of optical and SAR image observation values in the adjustment model, thereby building a more robust adjustment model and improving the positioning accuracy of the joint adjustment of heterogeneous images.

实施例二Embodiment 2

本发明实施例第二方面公开了一种光学和SAR异源卫星影像联合平差的定权装置,所述装置包括:SAR影像和光学影像异源区域网平差模型构建模块,像方补偿参数的误差方程组的权矩阵求解模块和像方补偿参数的权值更新模块。像方补偿参数的误差方程组的权矩阵求解模块用于根据SAR影像和光学影像的先验定位精度求解像方补偿参数的误差方程组的权矩阵。The second aspect of the embodiment of the present invention discloses a weight determination device for joint adjustment of optical and SAR heterogeneous satellite images, the device comprising: a SAR image and optical image heterogeneous regional network adjustment model construction module, a weight matrix solving module for the error equation group of image compensation parameters, and a weight value updating module for the image compensation parameters. The weight matrix solving module for the error equation group of image compensation parameters is used to solve the weight matrix of the error equation group of image compensation parameters according to the prior positioning accuracy of the SAR image and the optical image.

作为一种可选的实施方式,在本实施例中,所述的SAR影像和光学影像异源区域网平差模型构建模块,用于构建SAR影像和光学影像异源区域网平差模型,其实现过程包括:As an optional implementation, in this embodiment, the SAR image and optical image heterogeneous regional block adjustment model construction module is used to construct the SAR image and optical image heterogeneous regional block adjustment model, and its implementation process includes:

求解SAR影像(Synthetic Aperture Radar,合成孔径雷达)和光学影像的RPC(Rational Polynomial Coefficients,有理多项式系数)模型参数。分别基于SAR影像和光学影像的严密成像几何模型生成相应的影像坐标和对应地面坐标的虚拟控制点对集合,利用点对集合,采用拟合方法求解RPC模型函数的系数,得到相应影像的RPC模型函数s(B,L,H)和l(B,L,H)。(s,l)是卫星影像中像点的二维图像坐标,(B,L,H)为影像中像点对应的地面点在经纬度坐标系下的地面坐标。RPC模型函数用于将经纬度坐标系下的地面坐标转换为二维图像坐标。Solve the RPC (Rational Polynomial Coefficients) model parameters of SAR images (Synthetic Aperture Radar) and optical images. Generate the corresponding image coordinates and the corresponding ground coordinates of the virtual control point pair set based on the rigorous imaging geometry model of SAR images and optical images respectively. Use the point pair set and the fitting method to solve the coefficients of the RPC model function to obtain the RPC model functions s(B,L,H) and l(B,L,H) of the corresponding image. (s,l) is the two-dimensional image coordinates of the image point in the satellite image, and (B,L,H) is the ground coordinates of the ground point corresponding to the image point in the image in the longitude and latitude coordinate system. The RPC model function is used to convert the ground coordinates in the longitude and latitude coordinate system into two-dimensional image coordinates.

为量测得到的位于第j张影像上的第i个像点的二维图像坐标,该影像点对应地面点的地面坐标为(Bk,Lk,Hk),k为地面点的序号,利用仿射变换模型构建光学影像和SAR卫星影像的像方补偿函数模型,构建第i个像点的量测误差方程为: is the measured two-dimensional image coordinate of the i-th image point on the j-th image. The ground coordinates of the image point corresponding to the ground point are (B k , L k , H k ), k is the serial number of the ground point. The image compensation function model of optical image and SAR satellite image is constructed using the affine transformation model, and the measurement error equation of the i-th image point is constructed as follows:

其中,s(j)(Bk,Lk,Hk)和l(j)(Bk,Lk,Hk)为将地面点坐标(Bk,Lk,Hk)代入第j张影像的RPC模型函数后的结果,为位于第j张影像上的第i个像点的量测坐标误差,为第j张影像的像方补偿参数。Where s (j) ( Bk , Lk , Hk ) and l (j) ( Bk , Lk , Hk ) are the results of substituting the ground point coordinates ( Bk , Lk , Hk ) into the RPC model function of the jth image. is the measured coordinate error of the i-th image point on the j-th image, is the image compensation parameter of the jth image.

对第i个像点的量测误差方程进行求导和线性化处理,得到误差方程:The error equation of the measurement error of the i-th image point is derived and linearized to obtain the error equation:

式中,为第j张影像的RPC模型函数对地面点坐标(Bk,Lk,Hk)的偏导数,为未知数改正量,为根据第k个地面点的地面坐标初值和第j张影像的像方补偿参数初值计算得到的第j张影像上的第i个像点的二维图像坐标的初值,该计算过程表示为:In the formula, is the partial derivative of the RPC model function of the jth image with respect to the ground point coordinates (B k , L k , H k ), is the correction value for the unknown number, is the initial value of the ground coordinates of the kth ground point and the initial value of the image compensation parameter of the jth image The initial value of the two-dimensional image coordinates of the i-th image point on the j-th image is calculated. The calculation process is expressed as:

其中,为第j张影像的像方补偿参数初值。in, is the initial value of the image compensation parameter of the jth image.

构建存在重叠区域的光学影像和SAR影像的像点坐标量测误差方程组。The error equations for measuring the coordinates of image points in overlapping areas of optical and SAR images are constructed.

对于影像中的n个像点,构建相应的像点坐标量测误差方程组,其表达式为:For n image points in the image, the corresponding image point coordinate measurement error equation group is constructed, and its expression is:

其中,AG和AA为误差方程组的系数矩阵,ΔxG为地面点坐标改正量,ΔxA为像方补偿参数改正量,对于该像点坐标量测误差方程组,其对应的权矩阵为PI,LI表示像点坐标量测值,表示像点坐标量测值的初值。Among them, AG and AA are the coefficient matrices of the error equation group, ΔxG is the ground point coordinate correction, ΔxA is the image compensation parameter correction, for the image point coordinate measurement error equation group, the corresponding weight matrix is P I , L I represents the image point coordinate measurement value, Represents the initial value of the image point coordinate measurement value.

将量测误差方程中的像方补偿参数视为像方仿射变换参数的虚拟观测值,构建像方补偿参数的误差方程组,其表达式为,The image-space compensation parameters in the measurement error equation are regarded as virtual observation values of the image-space affine transformation parameters, and the error equation group of the image-space compensation parameters is constructed, and its expression is:

其中,I为单位矩阵,VA为像方仿射变换参数的虚拟观测值的观测误差,其表达式为:Among them, I is the unit matrix, VA is the observation error of the virtual observation value of the image-side affine transformation parameter, and its expression is:

LA为像方仿射变换参数的虚拟观测值,其表达式为: LA is the virtual observation value of the image-side affine transformation parameter, and its expression is:

为虚拟观测值的初值,其取值在迭代中不断修正,其表达式为: is the initial value of the virtual observation value, and its value is constantly revised during iteration. Its expression is:

该像方补偿参数的误差方程组的权矩阵为PAThe weight matrix of the error equation group of the image compensation parameters is PA ;

根据像点坐标量测误差方程组和像方补偿参数的误差方程组,构建不含控制点的异源影像带权区域网平差方程组,其表达式为:According to the error equations of image point coordinate measurement and image square compensation parameters, the weighted regional block adjustment equations of heterogeneous images without control points are constructed, and the expression is:

该异源影像带权区域网平差方程组的权矩阵PI和PA分别为像点坐标量测误差方程组和像方补偿参数的误差方程组的权矩阵,通过迭代方法解算异源影像带权区域网平差方程组中的ΔxG和ΔxAThe weight matrix of the weighted regional network adjustment equations of the heterogeneous image PI and PA are the weight matrices of the image point coordinate measurement error equation group and the image square compensation parameter error equation group, respectively. The ΔxG and ΔxA in the weighted regional network adjustment equation group of heterogeneous images are solved by an iterative method.

作为一种可选的实施方式,在本实施例中,所述的像方补偿参数的误差方程组的权矩阵求解模块,其用于根据SAR影像和光学影像的先验定位精度求解像方补偿参数的误差方程组的权矩阵,具体包括:As an optional implementation manner, in this embodiment, the weight matrix solving module of the error equation group of the image compensation parameters is used to solve the weight matrix of the error equation group of the image compensation parameters according to the prior positioning accuracy of the SAR image and the optical image, and specifically includes:

影像的像点坐标量测权值为其对应的像点坐标量测值的中误差的倒数。权矩阵PI对角线上的元素为对应像点坐标量测值的权值,权矩阵PI的其他元素为0。对于权矩阵PA,根据影像的先验精度信息分别确定各个像方补偿参数的中误差,权矩阵PA中的各个像方补偿参数的权值为其中误差的倒数,权矩阵PA对角线上的元素为对应像方补偿参数的权值,权矩阵PA的其他元素为0。The image point coordinate measurement weight of the image is the inverse of the mean error of the corresponding image point coordinate measurement value. The elements on the diagonal of the weight matrix P I are the weights of the corresponding image point coordinate measurement values, and the other elements of the weight matrix P I are 0. For the weight matrix PA , the mean error of each image compensation parameter is determined according to the prior accuracy information of the image, the weight of each image compensation parameter in the weight matrix PA is the inverse of the error, the elements on the diagonal of the weight matrix PA are the weights of the corresponding image compensation parameters, and the other elements of the weight matrix PA are 0.

作为一种可选的实施方式,在本实施例中,所述的根据影像的先验精度信息分别确定各个像方补偿参数的中误差,包括:As an optional implementation manner, in this embodiment, the method of determining the mean square error of each image compensation parameter according to the priori accuracy information of the image includes:

像方补偿参数的常数项a0和b0分别表示卫星沿行、列方向的平移量信息,其由影像行方向、列方向的先验绝对定位精度确定。对于光学影像,根据影像行方向、列方向的先验定位精度和影像行方向、列方向的已知分辨率计算其像方补偿参数的常数项的中误差;The constant terms a0 and b0 of the image compensation parameters represent the translation information of the satellite in the row and column directions, respectively, which are determined by the a priori absolute positioning accuracy of the image row and column directions. For optical images, the mean error of the constant term of the image compensation parameters is calculated based on the a priori positioning accuracy of the image row and column directions and the known resolution of the image row and column directions;

对于SAR影像,像方补偿参数的第一常数项表示卫星沿行方向的平移量信息,根据影像行方向的先验定位精度和影像行方向的已知分辨率计算其像方补偿参数的第一常数项的中误差,像方补偿参数的第二常数项反映距离向斜距R的测量误差,因此通过将影像列方向的先验定位精度σY乘以影像入射角αinc的正弦值,计算得到确定其像方补偿参数的第二常数项的中误差。For SAR images, the first constant term of the image compensation parameter represents the translation information of the satellite along the row direction. The mean error of the first constant term of the image compensation parameter is calculated according to the prior positioning accuracy in the image row direction and the known resolution in the image row direction. The second constant term of the image compensation parameter reflects the measurement error of the range slant range R. Therefore, the mean error of the second constant term of the image compensation parameter is calculated by multiplying the prior positioning accuracy σ Y in the image column direction by the sine value of the image incident angle α inc .

像方补偿参数的一次项表示影像的缩放和旋转误差,由卫星平台的误差标称值确定影像的先验相对定位精度,根据此项精度对影像的最大影响量和影像尺寸确定像方补偿参数的一次项的中误差。The linear term of the image compensation parameter represents the scaling and rotation errors of the image. The prior relative positioning accuracy of the image is determined by the nominal error value of the satellite platform. The mean error of the linear term of the image compensation parameter is determined based on the maximum influence of this accuracy on the image and the image size.

作为一种可选的实施方式,在本实施例中,所述的像方补偿参数的权值更新模块,在根据SAR影像和光学影像的先验定位精度求解像方补偿参数的误差方程组的权矩阵后,利用与地面点目标相关的像点所在行的像素值向量,计算其互相关矩阵,按照像方补偿参数的权值的数目,提取相应维度的特征矩阵,将特征矩阵作为加权矩阵,依次对像方补偿参数的权值进行加权更新,得到更新后的像方补偿参数的权值。As an optional implementation, in this embodiment, the weight update module of the image compensation parameters, after solving the weight matrix of the error equation group of the image compensation parameters according to the prior positioning accuracy of the SAR image and the optical image, uses the pixel value vector of the row where the image point related to the ground point target is located to calculate its cross-correlation matrix, extracts the feature matrix of the corresponding dimension according to the number of weights of the image compensation parameters, uses the feature matrix as the weighting matrix, and performs weighted update on the weights of the image compensation parameters in turn to obtain the updated weights of the image compensation parameters.

作为一种可选的实施方式,在本实施例中,所述的像方补偿参数的权值更新模块,对于与地面点目标相关的像点在影像中相应行的像素值向量ai,i=1,2,…,N,N为与地面点目标相关的像点的数目,将所有像素值向量表示为采集数据矩阵A:As an optional implementation, in this embodiment, the weight update module of the image space compensation parameter, for the pixel value vectors a i of the corresponding rows of the image points related to the ground point target in the image, i=1, 2, ..., N, N is the number of the image points related to the ground point target, all pixel value vectors are expressed as the acquisition data matrix A:

A=[a1,a2,…,aN],A=[a 1 ,a 2 ,…,a N ],

计算采集数据矩阵A的互相关矩阵R,即得到:Calculate the cross-correlation matrix R of the collected data matrix A, and you will get:

R=ATA,R= ATA

其中,互相关矩阵R的第i行、第j列的元素rij=aiaj T,列向量aj表示第j个与地面点目标相关的像点在影像中相应行的像素值向量,采用主成分分析方法对采集数据矩阵进行降维处理,提取其特征矩阵,该过程具体为:Among them, the element r ij = a i a j T in the i-th row and j-th column of the cross-correlation matrix R, and the column vector a j represents the pixel value vector of the j-th image point related to the ground point target in the corresponding row in the image. The principal component analysis method is used to reduce the dimension of the collected data matrix and extract its feature matrix. The specific process is:

对互相关矩阵R进行特征分解,得到N个特征向量和特征值,根据特征值大小对特征向量进行筛选,筛选出大于某阈值的M个特征向量所构成的特征矩阵E记为:Perform eigendecomposition on the cross-correlation matrix R to obtain N eigenvectors and eigenvalues. Select the eigenvectors according to the eigenvalues, and select the eigenmatrix E composed of M eigenvectors greater than a certain threshold, which is recorded as:

E=[v1,v2,…,vM],E=[v 1 ,v 2 ,…,v M ],

其中,vk表示第k个特征向量,k=1,2,…,M,特征向量均为列向量,M为像方补偿参数的权值的数目;将特征矩阵E作为加权矩阵,对像方补偿参数的权值所构成的向量a进行加权更新,即:Wherein, vk represents the kth eigenvector, k = 1, 2, ..., M, the eigenvectors are all column vectors, and M is the number of weights of the image compensation parameters; the eigenmatrix E is used as the weighting matrix, and the vector a composed of the weights of the image compensation parameters is weighted updated, that is:

b=ETa,b= ETa

得到更新后的像方补偿参数的权值向量b。The updated weight vector b of the image-side compensation parameters is obtained.

可见,本发明实施例为基于光学和SAR异源多视影像的平差模型构建提供支撑。本发明实施例通过在平差模型中区别设置光学和SAR影像观测值权值,控制不同几何质量的光学和SAR影像源对定位解算的贡献程度,从而构建更稳健的平差模型,提升异源影像联合平差的定位精度。It can be seen that the embodiment of the present invention provides support for the construction of an adjustment model based on optical and SAR heterogeneous multi-view images. The embodiment of the present invention controls the contribution of optical and SAR image sources of different geometric qualities to the positioning solution by setting the weights of optical and SAR image observation values in the adjustment model, thereby building a more robust adjustment model and improving the positioning accuracy of the joint adjustment of heterogeneous images.

实施例三Embodiment 3

本实施例公开了另一种光学和SAR异源卫星影像联合平差的定权装置,所述装置包括:This embodiment discloses another weight determination device for joint adjustment of optical and SAR heterogeneous satellite images, the device comprising:

存储有可执行程序代码的存储器;A memory storing executable program code;

与所述存储器耦合的处理器;a processor coupled to the memory;

所述处理器调用所述存储器中存储的所述可执行程序代码,执行本发明实施例第一方面公开的光学和SAR异源卫星影像联合平差的定权方法中的部分或全部步骤。The processor calls the executable program code stored in the memory to execute part or all of the steps in the weighting method for joint adjustment of optical and SAR heterogeneous satellite images disclosed in the first aspect of the embodiment of the present invention.

可见,本发明实施例为基于光学和SAR异源多视影像的平差模型构建提供支撑。本发明实施例通过在平差模型中区别设置光学和SAR影像观测值权值,控制不同几何质量的光学和SAR影像源对定位解算的贡献程度,从而构建更稳健的平差模型,提升异源影像联合平差的定位精度。It can be seen that the embodiment of the present invention provides support for the construction of an adjustment model based on optical and SAR heterogeneous multi-view images. The embodiment of the present invention controls the contribution of optical and SAR image sources of different geometric qualities to the positioning solution by setting the weights of optical and SAR image observation values in the adjustment model, thereby building a more robust adjustment model and improving the positioning accuracy of the joint adjustment of heterogeneous images.

实施例四Embodiment 4

本实施例公开了一种计算机存储介质,所述计算机存储介质存储有计算机指令,所述计算机指令被调用时,用于执行本发明实施例第一方面公开的光学和SAR异源卫星影像联合平差的定权方法中的部分或全部步骤。The present embodiment discloses a computer storage medium, which stores computer instructions. When the computer instructions are called, they are used to execute some or all of the steps in the weighting method for joint adjustment of optical and SAR heterogeneous satellite images disclosed in the first aspect of the embodiment of the present invention.

本发明实施例为基于光学和SAR异源多视影像的平差模型构建提供支撑。本发明实施例通过在平差模型中区别设置光学和SAR影像观测值权值,控制不同几何质量的光学和SAR影像源对定位解算的贡献程度,从而构建更稳健的平差模型,提升异源影像联合平差的定位精度。The embodiment of the present invention provides support for the construction of an adjustment model based on optical and SAR heterogeneous multi-view images. The embodiment of the present invention controls the contribution of optical and SAR image sources of different geometric qualities to the positioning solution by setting the weights of optical and SAR image observation values in the adjustment model, thereby building a more robust adjustment model and improving the positioning accuracy of the joint adjustment of heterogeneous images.

以上所描述的装置实施例仅是示意性的,其中作为分离部件说明的模块可以是或者也可以不是物理上分开的,作为模块显示的部件可以是或者也可以不是物理模块,即可以位于一个地方,或者也可以分布到多个网络模块上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。本领域普通技术人员在不付出创造性的劳动的情况下,即可以理解并实施。The device embodiments described above are only illustrative, wherein the modules described as separate components may or may not be physically separated, and the components displayed as modules may or may not be physical modules, i.e., they may be located in one place, or they may be distributed on multiple network modules. Some or all of the modules may be selected according to actual needs to achieve the purpose of the scheme of this embodiment. Those of ordinary skill in the art may understand and implement it without paying creative labor.

通过以上的实施例的具体描述,本领域的技术人员可以清楚地了解到各实施方式可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件。基于这样的理解,上述技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品可以存储在计算机可读存储介质中,存储介质包括只读存储器(Read-Only Memory,ROM)、随机存储器(Random Access Memory,RAM)、可编程只读存储器(Programmable Read-only Memory,PROM)、可擦除可编程只读存储器(ErasableProgrammable Read Only Memory,EPROM)、一次可编程只读存储器(One-timeProgrammable Read-Only Memory,OTPROM)、电子抹除式可复写只读存储器(Electrically-Erasable Programmable Read-Only Memory,EEPROM)、只读光盘(CompactDisc Read-Only Memory,CD-ROM)或其他光盘存储器、磁盘存储器、磁带存储器、或者能够用于携带或存储数据的计算机可读的任何其他介质。Through the specific description of the above embodiments, those skilled in the art can clearly understand that each implementation method can be implemented by means of software plus a necessary general hardware platform, and of course, it can also be implemented by hardware. Based on such an understanding, the above technical solution can be essentially or partly contributed to the prior art in the form of a software product, and the computer software product can be stored in a computer-readable storage medium, and the storage medium includes a read-only memory (ROM), a random access memory (RAM), a programmable read-only memory (PROM), an erasable programmable read-only memory (EPROM), a one-time programmable read-only memory (OTPROM), an electronically erasable rewritable read-only memory (EEPROM), a compact disc (CD-ROM) or other optical disc storage, magnetic disk storage, magnetic tape storage, or any other computer-readable medium that can be used to carry or store data.

最后应说明的是:本发明实施例公开的一种光学和SAR异源卫星影像联合平差的定权装置方法及装置所揭露的仅为本发明较佳实施例而已,仅用于说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解;其依然可以对前述各项实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或替换,并不使相应的技术方案的本质脱离本发明各项实施例技术方案的精神和范围。Finally, it should be noted that the method and device for determining the weights of the optical and SAR heterogeneous satellite images jointly adjusted disclosed in the embodiment of the present invention disclose only the preferred embodiments of the present invention, which are only used to illustrate the technical scheme of the present invention, rather than to limit it. Although the present invention has been described in detail with reference to the aforementioned embodiments, it should be understood by those skilled in the art that the technical schemes described in the aforementioned embodiments can still be modified, or some of the technical features therein can be replaced by equivalents. However, these modifications or replacements do not deviate the essence of the corresponding technical schemes from the spirit and scope of the technical schemes of the various embodiments of the present invention.

Claims (5)

1.一种光学和SAR异源卫星影像联合平差的定权方法,其特征在于,所述方法包括:1. A weighting method for optical and SAR heterogeneous satellite image joint adjustment, characterized in that the method comprises: S1,构建SAR影像和光学影像异源区域网平差模型;S1, constructing heterogeneous regional network adjustment model of SAR images and optical images; S2,根据SAR影像和光学影像的先验定位精度求解像方补偿参数的误差方程组的权矩阵;S2, the weight matrix of the error equation group for solving the image compensation parameters according to the prior positioning accuracy of the SAR image and the optical image; 所述的步骤S1,包括:The step S1 comprises: S11,求解SAR影像和光学影像的有理多项式模型,即RPC,模型参数;分别基于SAR影像和光学影像的严密成像几何模型生成相应的影像坐标和对应地面坐标的虚拟控制点对集合,利用点对集合,采用拟合方法求解RPC模型函数的系数,得到相应影像的RPC模型函数s(B,L,H)和l(B,L,H);(s,l)是卫星影像中像点的二维图像坐标,(B,L,H)为影像中像点对应的地面点在经纬度坐标系下的地面坐标;RPC模型函数用于将经纬度坐标系下的地面坐标转换为二维图像坐标;S11, solve the rational polynomial model of SAR image and optical image, i.e. RPC, model parameters; generate corresponding image coordinates and corresponding ground coordinates of virtual control point pairs based on the rigorous imaging geometry model of SAR image and optical image respectively, use the point pair set and adopt the fitting method to solve the coefficients of RPC model function, and obtain the RPC model function s(B, L, H) and l(B, L, H) of the corresponding image; (s, l) is the two-dimensional image coordinate of the image point in the satellite image, (B, L, H) is the ground coordinate of the ground point corresponding to the image point in the image in the longitude and latitude coordinate system; RPC model function is used to convert the ground coordinates in the longitude and latitude coordinate system into two-dimensional image coordinates; S12,为量测得到的位于第j张影像上的第i个像点的二维图像坐标,该影像点对应地面点的地面坐标为(Bk,Lk,Hk),k为地面点的序号,利用仿射变换模型构建光学影像和SAR卫星影像的像方补偿函数模型,构建第i个像点的量测误差方程为:S12, is the measured two-dimensional image coordinate of the i-th image point on the j-th image. The ground coordinates of the image point corresponding to the ground point are (B k , L k , H k ), k is the serial number of the ground point. The image compensation function model of optical image and SAR satellite image is constructed using the affine transformation model, and the measurement error equation of the i-th image point is constructed as follows: 其中,s(j)(Bk,Lk,Hk)和l(j)(Bk,Lk,Hk)为将地面点坐标(Bk,Lk,Hk)代入第j张影像的RPC模型函数后的结果,为位于第j张影像上的第i个像点的量测坐标误差,为第j张影像的像方补偿参数;Where s (j) ( Bk , Lk , Hk ) and l (j) ( Bk , Lk , Hk ) are the results of substituting the ground point coordinates ( Bk , Lk , Hk ) into the RPC model function of the jth image. is the measured coordinate error of the i-th image point on the j-th image, is the image compensation parameter of the jth image; 对第i个像点的量测误差方程进行求导和线性化处理,得到误差方程:The error equation of the measurement error of the i-th image point is derived and linearized to obtain the error equation: 式中,为第j张影像的RPC模型函数对地面点坐标(Bk,Lk,Hk)的偏导数,为未知数改正量,为根据第k个地面点的地面坐标初值和第j张影像的像方补偿参数初值计算得到的第j张影像上的第i个像点的二维图像坐标的初值,该计算过程表示为:In the formula, is the partial derivative of the RPC model function of the jth image with respect to the ground point coordinates (B k , L k , H k ), is the correction value for the unknown number, is the initial value of the ground coordinates of the kth ground point and the initial value of the image compensation parameter of the jth image The initial value of the two-dimensional image coordinates of the i-th image point on the j-th image is calculated. The calculation process is expressed as: 其中,为第j张影像的像方补偿参数初值;in, is the initial value of the image compensation parameter of the jth image; S13,构建存在重叠区域的光学影像和SAR影像的像点坐标量测误差方程组;S13, constructing a set of image point coordinate measurement error equations for the optical image and the SAR image in the overlapping area; 对于影像中的n个像点,构建相应的像点坐标量测误差方程组,其表达式为:For n image points in the image, the corresponding image point coordinate measurement error equation group is constructed, and its expression is: 其中,AG和AA为误差方程组的系数矩阵,ΔxG为地面点坐标改正量,ΔxA为像方补偿参数改正量,对于该像点坐标量测误差方程组,其对应的权矩阵为PI,LI表示像点坐标量测值,表示像点坐标量测值的初值;Among them, AG and AA are the coefficient matrices of the error equation group, ΔxG is the ground point coordinate correction, ΔxA is the image compensation parameter correction, for the image point coordinate measurement error equation group, the corresponding weight matrix is P I , L I represents the image point coordinate measurement value, Represents the initial value of the image point coordinate measurement value; S14,将量测误差方程中的像方补偿参数视为像方仿射变换参数的虚拟观测值,构建像方补偿参数的误差方程组,其表达式为,S14, the image-space compensation parameters in the measurement error equation are regarded as virtual observation values of the image-space affine transformation parameters, and the error equation group of the image-space compensation parameters is constructed, and its expression is: 其中,I为单位矩阵,VA为像方仿射变换参数的虚拟观测值的观测误差,其表达式为:Among them, I is the unit matrix, VA is the observation error of the virtual observation value of the image-side affine transformation parameter, and its expression is: LA为像方仿射变换参数的虚拟观测值,其表达式为: LA is the virtual observation value of the image-side affine transformation parameter, and its expression is: 为虚拟观测值的初值,其表达式为: is the initial value of the virtual observation value, and its expression is: 该像方补偿参数的误差方程组的权矩阵为PAThe weight matrix of the error equation group of the image compensation parameters is PA ; S15,根据像点坐标量测误差方程组和像方补偿参数的误差方程组,构建不含控制点的异源影像带权区域网平差方程组,其表达式为:S15, based on the image point coordinate measurement error equation group and the image square compensation parameter error equation group, a weighted regional block adjustment equation group of heterogeneous images without control points is constructed, and its expression is: 该异源影像带权区域网平差方程组的权矩阵PI和PA分别为像点坐标量测误差方程组和像方补偿参数的误差方程组的权矩阵,通过迭代方法解算异源影像带权区域网平差方程组中的ΔxG和ΔxAThe weight matrix of the weighted regional network adjustment equations of the heterogeneous image PI and PA are the weight matrices of the image point coordinate measurement error equation group and the image square compensation parameter error equation group, respectively. The ΔxG and ΔxA in the weighted regional network adjustment equation group of heterogeneous images are solved by an iterative method. 所述的步骤S2,包括:The step S2 comprises: 影像的像点坐标量测权值为其对应的像点坐标量测值的中误差的倒数;权矩阵PI对角线上的元素为对应像点坐标量测值的权值,权矩阵PI的其他元素为0;对于权矩阵PA,根据影像的先验精度信息分别确定各个像方补偿参数的中误差,权矩阵PA中的各个像方补偿参数的权值为其中误差的倒数,权矩阵PA对角线上的元素为对应像方补偿参数的权值,权矩阵PA的其他元素为0;The image point coordinate measurement weight of the image is the inverse of the mean error of its corresponding image point coordinate measurement value; the elements on the diagonal of the weight matrix P I are the weights of the corresponding image point coordinate measurement values, and the other elements of the weight matrix P I are 0; for the weight matrix PA , the mean error of each image compensation parameter is determined according to the prior accuracy information of the image, the weight of each image compensation parameter in the weight matrix PA is the inverse of the error, the elements on the diagonal of the weight matrix PA are the weights of the corresponding image compensation parameters, and the other elements of the weight matrix PA are 0; 在根据SAR影像和光学影像的先验定位精度求解像方补偿参数的误差方程组的权矩阵后,利用与地面点目标相关的像点所在行的像素值向量,计算其互相关矩阵,按照像方补偿参数的权值的数目,提取相应维度的特征矩阵,将特征矩阵作为加权矩阵,依次对像方补偿参数的权值进行加权更新,得到更新后的像方补偿参数的权值。After solving the weight matrix of the error equation group of the image compensation parameters according to the prior positioning accuracy of the SAR image and the optical image, the pixel value vector of the row where the image point related to the ground point target is located is used to calculate its cross-correlation matrix. According to the number of weights of the image compensation parameters, the feature matrix of the corresponding dimension is extracted. The feature matrix is used as the weighting matrix, and the weights of the image compensation parameters are weighted updated in turn to obtain the updated weights of the image compensation parameters. 2.如权利要求1所述的光学和SAR异源卫星影像联合平差的定权方法,其特征在于,所述的根据影像的先验精度信息分别确定各个像方补偿参数的中误差,包括:2. The weighting method of the optical and SAR heterogeneous satellite image joint adjustment as claimed in claim 1 is characterized in that the described priori accuracy information according to the image respectively determines the mean error of each image compensation parameter, comprising: 像方补偿参数的常数项a0和b0分别表示卫星沿行、列方向的平移量信息,其由影像行方向、列方向的先验绝对定位精度确定;对于光学影像,根据影像行方向、列方向的先验定位精度和影像行方向、列方向的已知分辨率计算其像方补偿参数的常数项的中误差,其计算过程为The constant terms a0 and b0 of the image compensation parameters represent the translation information of the satellite in the row and column directions, respectively, which are determined by the a priori absolute positioning accuracy of the image row and column directions. For optical images, the mean error of the constant term of the image compensation parameters is calculated based on the a priori positioning accuracy of the image row and column directions and the known resolution of the image row and column directions. The calculation process is: 其中,表示a0的中误差,表示b0的中误差;in, represents the mean error of a 0 , represents the mean error of b 0 ; 对于SAR影像,像方补偿参数的第一常数项表示卫星沿行方向的平移量信息,根据影像行方向的先验定位精度和影像行方向的已知分辨率计算其像方补偿参数的第一常数项的中误差,像方补偿参数的第二常数项反映距离向斜距R的测量误差,因此通过将影像列方向的先验定位精度σY乘以影像入射角αinc的正弦值,计算得到确定其像方补偿参数的第二常数项的中误差;For SAR images, the first constant term of the image compensation parameter represents the translation information of the satellite along the row direction. The mean error of the first constant term of the image compensation parameter is calculated according to the prior positioning accuracy in the image row direction and the known resolution in the image row direction. The second constant term of the image compensation parameter reflects the measurement error of the range slant range R. Therefore, the mean error of the second constant term of the image compensation parameter is calculated by multiplying the prior positioning accuracy σ Y in the image column direction by the sine value of the image incident angle α inc . 像方补偿参数的一次项表示影像的缩放和旋转误差,由卫星平台的误差标称值确定影像的先验相对定位精度,根据此项精度对影像的最大影响量和影像尺寸确定像方补偿参数的一次项的中误差。The linear term of the image compensation parameter represents the scaling and rotation errors of the image. The prior relative positioning accuracy of the image is determined by the nominal error value of the satellite platform. The mean error of the linear term of the image compensation parameter is determined based on the maximum influence of this accuracy on the image and the image size. 3.如权利要求2所述的光学和SAR异源卫星影像联合平差的定权方法,其特征在于,对于与地面点目标相关的像点在影像中相应行的像素值向量ai,i=1,2,…,N,N为与地面点目标相关的像点的数目,将所有像素值向量表示为采集数据矩阵A:3. The weighting method of the combined adjustment of optical and SAR heterogeneous satellite images as claimed in claim 2 is characterized in that, for the pixel value vector a i of the corresponding row in the image of the image point relevant to the ground point target, i=1,2, ..., N, where N is the number of the image points relevant to the ground point target, all pixel value vectors are represented as a collection data matrix A: A=[a1,a2,…,aN],A=[a 1 ,a 2 ,…,a N ], 计算采集数据矩阵A的互相关矩阵R,即得到:Calculate the cross-correlation matrix R of the collected data matrix A, and you will get: R=ATA,R= ATA 其中,互相关矩阵R的第i行、第j列的元素rij=aiaj T,列向量aj表示第j个与地面点目标相关的像点在影像中相应行的像素值向量,采用主成分分析方法对采集数据矩阵进行降维处理,提取其特征矩阵,该过程具体为:Among them, the element r ij = a i a j T in the i-th row and j-th column of the cross-correlation matrix R, and the column vector a j represents the pixel value vector of the j-th image point related to the ground point target in the corresponding row in the image. The principal component analysis method is used to reduce the dimension of the collected data matrix and extract its feature matrix. The specific process is: 对互相关矩阵R进行特征分解,得到N个特征向量和特征值,根据特征值大小对特征向量进行筛选,筛选出大于某阈值的M个特征向量所构成的特征矩阵E记为:Perform eigendecomposition on the cross-correlation matrix R to obtain N eigenvectors and eigenvalues. Select the eigenvectors according to the eigenvalues, and select the eigenmatrix E composed of M eigenvectors greater than a certain threshold, which is recorded as: E=[v1,v2,…,vM],E=[v 1 ,v 2 ,…,v M ], 其中,vk表示第k个特征向量,k=1,2,…,M,特征向量均为列向量,M为像方补偿参数的权值的数目;将特征矩阵E作为加权矩阵,对像方补偿参数的权值所构成的向量a进行加权更新,即:Wherein, vk represents the kth eigenvector, k = 1, 2, ..., M, the eigenvectors are all column vectors, and M is the number of weights of the image compensation parameters; the eigenmatrix E is used as the weighting matrix, and the vector a composed of the weights of the image compensation parameters is weighted updated, that is: b=ETa,b= ETa 得到更新后的像方补偿参数的权值向量b。The updated weight vector b of the image-side compensation parameters is obtained. 4.一种光学和SAR异源卫星影像联合平差的定权装置,所述装置包括:4. A weighting device for joint adjustment of optical and SAR heterogeneous satellite images, the device comprising: 存储有可执行程序代码的存储器;A memory storing executable program code; 与所述存储器耦合的处理器;a processor coupled to the memory; 所述处理器调用所述存储器中存储的所述可执行程序代码,执行权利要求1至3中任一项所公开的光学和SAR异源卫星影像联合平差的定权方法中的部分或全部步骤。The processor calls the executable program code stored in the memory to execute part or all of the steps in the weighting method for joint adjustment of optical and SAR heterogeneous satellite images disclosed in any one of claims 1 to 3. 5.一种计算机存储介质,所述计算机存储介质存储有计算机指令,所述计算机指令被调用时,用于执行权利要求1至3中任一项所公开的光学和SAR异源卫星影像联合平差的定权方法中的部分或全部步骤。5. A computer storage medium storing computer instructions, which, when called, are used to execute some or all of the steps in the weighting method for joint adjustment of optical and SAR heterogeneous satellite images disclosed in any one of claims 1 to 3.
CN202210226596.1A 2022-03-09 2022-03-09 A weighting method and device for joint adjustment of optical and SAR heterosource satellite images Active CN114562982B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210226596.1A CN114562982B (en) 2022-03-09 2022-03-09 A weighting method and device for joint adjustment of optical and SAR heterosource satellite images

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210226596.1A CN114562982B (en) 2022-03-09 2022-03-09 A weighting method and device for joint adjustment of optical and SAR heterosource satellite images

Publications (2)

Publication Number Publication Date
CN114562982A CN114562982A (en) 2022-05-31
CN114562982B true CN114562982B (en) 2023-09-26

Family

ID=81718344

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210226596.1A Active CN114562982B (en) 2022-03-09 2022-03-09 A weighting method and device for joint adjustment of optical and SAR heterosource satellite images

Country Status (1)

Country Link
CN (1) CN114562982B (en)

Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5444451A (en) * 1992-06-29 1995-08-22 Southwest Research Institute Passive means for single site radio location
US5736963A (en) * 1995-03-20 1998-04-07 Agence Spatiale Europeenne Feed device for a multisource and multibeam antenna
CN101750619A (en) * 2010-01-18 2010-06-23 武汉大学 Method for directly positioning ground target by self-checking POS
CN101907705A (en) * 2010-08-03 2010-12-08 中国科学院对地观测与数字地球科学中心 Universal combined adjustment method for geometric correction model of multi-source remote sensing images
CN102213762A (en) * 2011-04-12 2011-10-12 中交第二公路勘察设计研究院有限公司 Method for automatically matching multisource space-borne SAR (Synthetic Aperture Radar) images based on RFM (Rational Function Model)
CN102914771A (en) * 2012-10-12 2013-02-06 中国测绘科学研究院 Side-looking radar image precise-localization method on basis of R-D (rang-doppler) model
CN105510913A (en) * 2015-11-11 2016-04-20 湖北工业大学 Heterogeneous optical and SAR remote sensing image combined positioning method based in similar optical image space correction
CN106501786A (en) * 2016-10-12 2017-03-15 中国人民解放军国防科学技术大学 A kind of micro- moving target parameter estimation method based on matrix correlation
CN107314763A (en) * 2017-07-18 2017-11-03 上海海洋大学 A kind of satellite image block adjustment method based on restriction function non-linear estimations
CN107481290A (en) * 2017-07-31 2017-12-15 天津大学 Camera high-precision calibrating and distortion compensation method based on three coordinate measuring machine
CN109190506A (en) * 2018-08-13 2019-01-11 北京市遥感信息研究所 It is a kind of based on core is sparse and the EO-1 hyperion object detection method of space constraint
CN111354040A (en) * 2020-01-16 2020-06-30 井冈山大学 An adjustment method for optical satellite image block network based on Partial EIV model
CN112017224A (en) * 2020-10-19 2020-12-01 航天宏图信息技术股份有限公司 SAR data area network adjustment processing method and system
CN113255740A (en) * 2021-05-07 2021-08-13 北京市遥感信息研究所 Multisource remote sensing image adjustment positioning precision analysis method
CN113325153A (en) * 2021-06-18 2021-08-31 军事科学院军事医学研究院环境医学与作业医学研究所 Water quality multi-parameter monitoring comprehensive information management system
CN113570536A (en) * 2021-07-31 2021-10-29 中国人民解放军61646部队 Panchromatic and multispectral image real-time fusion method based on CPU and GPU cooperative processing
CN113899387A (en) * 2021-09-27 2022-01-07 武汉大学 A method and system for regional network adjustment of optical satellite remote sensing images based on posterior compensation
WO2022032591A1 (en) * 2020-08-13 2022-02-17 Shanghai United Imaging Healthcare Co., Ltd. Systems and methods for modeling radiation source

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE521024C2 (en) * 1999-03-08 2003-09-23 Ericsson Telefon Ab L M Method and apparatus for separating a mixture of source signals
AU2001221481A1 (en) * 2000-10-16 2002-04-29 Rudolf Schwarte Method and device for detecting and processing signal waves
US6829568B2 (en) * 2002-04-26 2004-12-07 Simon Justin Julier Method and apparatus for fusing signals with partially known independent error components
JP5677830B2 (en) * 2010-12-22 2015-02-25 日本電産エレシス株式会社 Electronic scanning radar apparatus, received wave direction estimation method, and received wave direction estimation program
EP3009860B1 (en) * 2014-10-16 2019-12-18 GMV Aerospace and Defence S.A. Method for computing an error bound of a Kalman filter based GNSS position solution
US20180172824A1 (en) * 2015-06-16 2018-06-21 Urthecast Corp Systems and methods for enhancing synthetic aperture radar imagery
CA3012049A1 (en) * 2016-01-20 2017-07-27 Ez3D, Llc System and method for structural inspection and construction estimation using an unmanned aerial vehicle
US10546385B2 (en) * 2016-02-25 2020-01-28 Technion Research & Development Foundation Limited System and method for image capture device pose estimation
DE102018131370A1 (en) * 2018-12-07 2020-06-10 INOEX GmbH Innovationen und Ausrüstungen für die Extrusionstechnik Measuring system and method for measuring a measurement object, in particular a plastic profile

Patent Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5444451A (en) * 1992-06-29 1995-08-22 Southwest Research Institute Passive means for single site radio location
US5736963A (en) * 1995-03-20 1998-04-07 Agence Spatiale Europeenne Feed device for a multisource and multibeam antenna
CN101750619A (en) * 2010-01-18 2010-06-23 武汉大学 Method for directly positioning ground target by self-checking POS
CN101907705A (en) * 2010-08-03 2010-12-08 中国科学院对地观测与数字地球科学中心 Universal combined adjustment method for geometric correction model of multi-source remote sensing images
CN102213762A (en) * 2011-04-12 2011-10-12 中交第二公路勘察设计研究院有限公司 Method for automatically matching multisource space-borne SAR (Synthetic Aperture Radar) images based on RFM (Rational Function Model)
CN102914771A (en) * 2012-10-12 2013-02-06 中国测绘科学研究院 Side-looking radar image precise-localization method on basis of R-D (rang-doppler) model
CN105510913A (en) * 2015-11-11 2016-04-20 湖北工业大学 Heterogeneous optical and SAR remote sensing image combined positioning method based in similar optical image space correction
CN106501786A (en) * 2016-10-12 2017-03-15 中国人民解放军国防科学技术大学 A kind of micro- moving target parameter estimation method based on matrix correlation
CN107314763A (en) * 2017-07-18 2017-11-03 上海海洋大学 A kind of satellite image block adjustment method based on restriction function non-linear estimations
CN107481290A (en) * 2017-07-31 2017-12-15 天津大学 Camera high-precision calibrating and distortion compensation method based on three coordinate measuring machine
CN109190506A (en) * 2018-08-13 2019-01-11 北京市遥感信息研究所 It is a kind of based on core is sparse and the EO-1 hyperion object detection method of space constraint
CN111354040A (en) * 2020-01-16 2020-06-30 井冈山大学 An adjustment method for optical satellite image block network based on Partial EIV model
WO2022032591A1 (en) * 2020-08-13 2022-02-17 Shanghai United Imaging Healthcare Co., Ltd. Systems and methods for modeling radiation source
CN112017224A (en) * 2020-10-19 2020-12-01 航天宏图信息技术股份有限公司 SAR data area network adjustment processing method and system
CN113255740A (en) * 2021-05-07 2021-08-13 北京市遥感信息研究所 Multisource remote sensing image adjustment positioning precision analysis method
CN113325153A (en) * 2021-06-18 2021-08-31 军事科学院军事医学研究院环境医学与作业医学研究所 Water quality multi-parameter monitoring comprehensive information management system
CN113570536A (en) * 2021-07-31 2021-10-29 中国人民解放军61646部队 Panchromatic and multispectral image real-time fusion method based on CPU and GPU cooperative processing
CN113899387A (en) * 2021-09-27 2022-01-07 武汉大学 A method and system for regional network adjustment of optical satellite remote sensing images based on posterior compensation

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
A New Combined Adjustment Model for Geolocation Accuracy Improvement of Multiple Sources Optical and SAR Imagery;Niangang Jiao et,al;《Remote Sensing》;第13卷(第3期);第1-15页 *
Joint Stereo Positioning Based on SAR/CCD Satellite Images Introducing Virtual Observation Weights;Li Yingying et,al;《2019 IEEE International Conference on Signal,Information and Data Processing》;第1-6页 *
一种异源多视影像的立体定位方法;李莹莹 等;《测绘科学》;第41卷(第11期);第137-141页 *
星载SAR遥感影像的精确几何定位;吴颖丹;《中国博士学位论文全文数据库(电子期刊)基础科学辑》(第5期);第1-104页 *

Also Published As

Publication number Publication date
CN114562982A (en) 2022-05-31

Similar Documents

Publication Publication Date Title
CN103557841B (en) A kind of method improving polyphaser resultant image photogrammetric accuracy
KR101965965B1 (en) A method of automatic geometric correction of digital elevation model made from satellite images and provided rpc
CN107014399B (en) Combined calibration method for satellite-borne optical camera-laser range finder combined system
EP3364212A1 (en) A method and an apparatus for computer-assisted processing of sar raw data
US8891066B2 (en) Method for geo-referencing of optical remote sensing images
CN105510913B (en) Heterologous optics and SAR remote sensing image joint positioning method based on the correction of class optics image space
CN102901519B (en) optical push-broom satellite in-orbit stepwise geometric calibration method based on probe element direction angle
CN108759788B (en) Unmanned aerial vehicle image positioning and attitude determining method and unmanned aerial vehicle
CN110646016B (en) Distributed POS calibration method and device based on theodolite and visual aided flexible baseline
CN101750619A (en) Method for directly positioning ground target by self-checking POS
CN105698766B (en) A regional network adjustment method for satellite imagery RFM model considering accuracy information of orientation parameters
CN108051831A (en) Method, apparatus, Seeds of First Post-flight equipment and the storage medium that target based on object coordinates information quickly positions
CN110030968B (en) Ground shelter elevation angle measuring method based on satellite-borne three-dimensional optical image
CN110793542A (en) An in-orbit geometric calibration method for surface array optical remote sensing satellites based on generalized probe pointing angle
CN113947638A (en) Image orthorectification method for fisheye camera
CN108447100A (en) A kind of eccentric vector sum Collimation axis eccentricity angle scaling method of airborne TLS CCD camera
CN114562982B (en) A weighting method and device for joint adjustment of optical and SAR heterosource satellite images
CN105510901B (en) Optical satellite image time-varying error calibrating method and system based on more calibration fields
CN113255740B (en) Multi-source remote sensing image adjustment positioning accuracy analysis method
CN116091546B (en) Observation construction method in push-scan mode of optical camera
KR100520275B1 (en) Method for correcting geometry of pushbroom image using solidbody rotation model
CN107705267B (en) Optical satellite image geometric correction method based on control vector
CN114255457B (en) Direct geographic positioning method and system based on airborne LiDAR point cloud assistance
CN109143295B (en) Internal orientation element calibration method combining digitized geometric calibration field and GCP
CN112162262A (en) Satellite-borne linear array laser radar on-orbit calibration method based on linear array camera assistance

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant