[go: up one dir, main page]

CN114560485B - 一种超细氧化铝的制备方法 - Google Patents

一种超细氧化铝的制备方法 Download PDF

Info

Publication number
CN114560485B
CN114560485B CN202210414639.9A CN202210414639A CN114560485B CN 114560485 B CN114560485 B CN 114560485B CN 202210414639 A CN202210414639 A CN 202210414639A CN 114560485 B CN114560485 B CN 114560485B
Authority
CN
China
Prior art keywords
organic solvent
aluminum
saturated fatty
alumina
ultrafine alumina
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210414639.9A
Other languages
English (en)
Other versions
CN114560485A (zh
Inventor
田利亚
谢子铖
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wang Liangbing
Original Assignee
Changsha Ningxi New Material Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Changsha Ningxi New Material Co ltd filed Critical Changsha Ningxi New Material Co ltd
Publication of CN114560485A publication Critical patent/CN114560485A/zh
Application granted granted Critical
Publication of CN114560485B publication Critical patent/CN114560485B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F7/00Compounds of aluminium
    • C01F7/02Aluminium oxide; Aluminium hydroxide; Aluminates
    • C01F7/34Preparation of aluminium hydroxide by precipitation from solutions containing aluminium salts
    • C01F7/36Preparation of aluminium hydroxide by precipitation from solutions containing aluminium salts from organic aluminium salts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F7/00Compounds of aluminium
    • C01F7/02Aluminium oxide; Aluminium hydroxide; Aluminates
    • C01F7/30Preparation of aluminium oxide or hydroxide by thermal decomposition or by hydrolysis or oxidation of aluminium compounds
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F7/00Compounds of aluminium
    • C01F7/02Aluminium oxide; Aluminium hydroxide; Aluminates
    • C01F7/30Preparation of aluminium oxide or hydroxide by thermal decomposition or by hydrolysis or oxidation of aluminium compounds
    • C01F7/308Thermal decomposition of nitrates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/04Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/20Particle morphology extending in two dimensions, e.g. plate-like
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Geology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)

Abstract

本发明公开了一种超细氧化铝的制备方法,将铝源和有机溶剂混合,于180~300℃下反应即得超细氧化铝;所述有机溶剂为沸点不低于反应温度的饱和脂肪族化合物。本发明以纯的沸点不低于反应温度的饱和脂肪族化合物作为调控反应的有机溶剂,能够充分发挥有机溶剂对氧化铝尺寸和分散度的调控作用,制得粒径范围为1~10nm的粒度均匀的超细氧化铝纳米颗粒或厚度范围为1~10nm的尺寸均匀的超细氧化铝纳米片。

Description

一种超细氧化铝的制备方法
技术领域
本发明涉及一种超细氧化铝的制备方法,属于氧化铝制备技术领域。
背景技术
氧化铝(Al2O3)具有耐高温、耐磨、耐腐蚀、高硬度、高稳定性等优异性能,其中超细氧化铝表面的晶体结构与电子结构产生变化,具有块体氧化铝不具备的超高比表面积、尺寸效应等特点,被广泛应用于冶金、航天航空、电子器件、化工、生物等领域,具有广阔的市场前景。
在有机溶剂中分解铝元素前驱体盐得到氧化铝,是一种全新的超细氧化铝制备方法。在上述过程中,有机溶剂的一端吸附在生成的氧化铝晶核表面,形成有机保护层,有效防止氧化铝颗粒或纳米片进一步长大。
如CN 106348324A公开了一种超细氧化铝抛光粉的生产工艺,生产步骤主要包括:将聚乙二醇加乙二胺、乙二胺、正庚胺、十二胺或者十六胺中的一种组成的分散剂,与铝盐水溶液混合均匀,调节pH后得到氢氧化铝沉淀,随后煅烧、粉碎,得到中心粒径0.5μm以下的氧化铝抛光粉。
如CN 100443409A公开了一种分散性好的、高纯超细的α-Al2O3的制备方法,生产步骤主要包括:将硬脂酸、月桂酸、冰醋酸、柠檬酸、草酸、聚乙二醇、二异丙胺、吐温-80的一种或几种组成添加剂,在铝醇盐的水解过程中加入,得到氧化铝前驱体,加入α-Al2O3晶种后球磨、烘干、煅烧得到平均粒径100~170nm的α-Al2O3粉体。
再如CN 113830809 A发明了一种超细氧化铝粉体的制备方法及其产品,生产步骤主要包括:将不同平均分子量的聚乙烯吡咯烷酮和十二烷基硫酸钠组成分散剂,加入乙二醇,再加入硝酸铝,反应后得到沉淀物,煅烧得到粒径50~150nm的超细氧化铝粉体。
上述公开的专利现有技术在制备超细氧化铝的过程中利用有机物调控氧化铝尺寸,但主要反应仍均在水溶液中进行,对有机溶剂的应用仍不充分,难以有效细化氧化铝的粒径、控制尺寸分散水平,得到高质量的超细氧化铝。
发明内容
为了解决现有技术中存在的问题,本发明的目的在于提供一种超细氧化铝的制备方法,通过将铝源置于特定的纯有机溶剂中,经加热反应,即可得到粒径范围为1~10nm的超细氧化铝纳米颗粒或厚度范围为1~10nm的超细氧化铝纳米片。
为了实现上述技术目的,本发明采用如下技术方案:
一种超细氧化铝的制备方法,将铝源和有机溶剂混合,于180~300℃下反应即得超细氧化铝;所述有机溶剂为沸点不低于反应温度的饱和脂肪族化合物。
优选的,所述铝源选自乙酰丙酮铝、异丙醇铝、硬脂酸铝、氯化铝、硝酸铝、醋酸铝中的一种或几种。
优选的,所述有机溶剂选自沸点不低于反应温度的饱和脂肪胺、饱和脂肪醇和饱和脂肪酸中的至少一种;进一步优选的,所述有机溶剂选自碳原子数为8~36的饱和脂肪胺、碳原子数为7~30的饱和脂肪醇和碳原子数为5~40的饱和脂肪酸中的至少一种;更进一步优选的,所述有机溶剂选自碳原子数为10~20的饱和脂肪胺、饱和脂肪醇和饱和脂肪酸中的至少一种。例如十二胺、十六胺、十八胺、十二醇、十六醇、十八醇、十二酸、十六酸、十八酸等。
优选的,所述铝源和有机溶剂的质量比为0.1~10。
现有超细氧化铝的制备过程中,虽然利用有机物调控氧化铝尺寸,但主要反应仍均在水溶液中进行,不能充分发挥有机物的调控作用。而本发明采用纯的沸点不低于反应温度的饱和脂肪族化合物作为调控反应的有机溶剂,铝源在纯有机溶剂和反应温度下分解得到氧化铝晶核,同时有机溶剂的一端吸附在生成的氧化铝晶核表面,防止氧化铝颗粒或纳米片进一步长大,进而得到超细氧化铝。本发明的关键在于:其一,本发明采用的有机溶剂不低于反应温度,不会在反应温度下沸腾;其二,本发明采用的有机溶剂为饱和脂肪族化合物,不会在反应过程中聚合失效,基于此两点,从而能够充分发挥有机溶剂对氧化铝尺寸和分散度的调控作用,得到粒径范围为1~10nm的超细氧化铝纳米颗粒或厚度范围为1~10nm的超细氧化铝纳米片。
本发明的优势在于:
本发明以纯的沸点不低于反应温度的饱和脂肪族化合物作为调控反应的有机溶剂,能够充分发挥有机溶剂对氧化铝尺寸和分散度的调控作用,制得粒径范围为1~10nm的粒度均匀的超细氧化铝纳米颗粒或厚度范围为1~10nm的尺寸均匀的超细氧化铝纳米片。
附图说明
图1为实施例1中得到的超细氧化铝纳米颗粒的TEM图;
图2为实施例2中得到的超细氧化铝纳米片的TEM图。
具体实施方式
下文结合具体实施例,对本发明进行进一步的详细说明。以下具体实施例仅用于说明本发明,不作为对本发明的限定。
实施例1
(1)将十八胺作为有机溶剂,将乙酰丙酮铝与有机溶剂按照0.25:1的质量比称取,在90℃下熔化并搅拌均匀;
(2)将溶液以5℃/min加热至200℃,反应10min;
(3)待(2)中制备的反应溶液自然冷却至80℃时,洗涤离心3次;
(4)将(3)中收集的样品在80℃下真空干燥4h,得到超细氧化铝纳米颗粒。
如图1所示,本实施例制得的超细氧化铝纳米颗粒粒径范围为1~10nm。
实施例2
(1)将十八胺与十八酸质量比为7:1的混合溶液作为有机溶剂,将乙酰丙酮铝与有机溶剂按照1:1的质量比称取,在90℃下熔化并搅拌均匀;
(2)将溶液以5℃/min加热至200℃,反应10min;
(3)待(2)中制备的反应溶液自然冷却至80℃时,洗涤离心3次;
(4)将(3)中收集的样品在80℃下真空干燥4h,得到超细氧化铝纳米片。
如图2所示,本实施例制得的超细氧化铝纳米片厚度范围为1~10nm。
对比例1
(1)将油胺作为有机溶剂,将乙酰丙酮铝与有机溶剂按照0.1:1的质量比称取,在90℃下熔化并搅拌均匀;
(2)将溶液以5℃/min加热至200℃,反应10min;
(3)待(2)中制备的反应溶液自然冷却至80℃时,洗涤离心3次,得到粘稠的深棕色有机物团块,无法分离得到氧化铝。
由对比例1可知,以高沸点的纯的油胺作为有机溶剂,因含有碳碳双键等不饱和键,极易在铝前驱体分解的同时聚合,无法用于超细氧化铝的生产。
对比例2
(1)将十八胺作为有机溶剂,将乙酰丙酮铝与有机溶剂按照0.25:1的质量比称取,在90℃下熔化并搅拌均匀;
(2)将溶液以5℃/min加热至100℃,反应10min;
(3)待(2)中制备的反应溶液自然冷却至80℃时,洗涤离心,未见沉淀生成。

Claims (6)

1.一种超细氧化铝的制备方法,其特征在于:将铝源和有机溶剂混合,于180~300℃下反应即得超细氧化铝;所述有机溶剂选自沸点不低于反应温度的饱和脂肪胺、饱和脂肪醇和饱和脂肪酸中的至少一种。
2.根据权利要求1所述的超细氧化铝的制备方法,其特征在于:所述铝源为乙酰丙酮铝、异丙醇铝、硬脂酸铝、氯化铝、硝酸铝、醋酸铝中的一种或几种。
3.根据权利要求1所述的超细氧化铝的制备方法,其特征在于:所述有机溶剂选自碳原子数为8~36的饱和脂肪胺、碳原子数为7~30的饱和脂肪醇和碳原子数为5~40的饱和脂肪酸中的至少一种。
4.根据权利要求3所述的超细氧化铝的制备方法,其特征在于:所述有机溶剂选自碳原子数为10~20的饱和脂肪胺、饱和脂肪醇和饱和脂肪酸中的至少一种。
5.根据权利要求4所述的超细氧化铝的制备方法,其特征在于:所述有机溶剂选自十二胺、十六胺、十八胺、十二醇、十六醇、十八醇、十二酸、十六酸、十八酸中的至少一种。
6.根据权利要求1所述的超细氧化铝的制备方法,其特征在于:所述铝源与有机溶剂的质量比为0.1~10。
CN202210414639.9A 2022-03-19 2022-04-20 一种超细氧化铝的制备方法 Active CN114560485B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210277417 2022-03-19
CN2022102774177 2022-03-19

Publications (2)

Publication Number Publication Date
CN114560485A CN114560485A (zh) 2022-05-31
CN114560485B true CN114560485B (zh) 2024-03-22

Family

ID=81721397

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210414639.9A Active CN114560485B (zh) 2022-03-19 2022-04-20 一种超细氧化铝的制备方法

Country Status (1)

Country Link
CN (1) CN114560485B (zh)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080078101A (ko) * 2007-02-22 2008-08-27 (주)분자와 사람들 솔보써멀법에 의한 고 기능성을 지닌 초 미립 금속산화물박막용 콜로이드 용액의 합성
WO2009028887A2 (en) * 2007-08-31 2009-03-05 Jps Micro-Tech Co., Ltd. Method of manufacturing flake aluminum oxide
JP2009233845A (ja) * 2008-03-03 2009-10-15 Tohoku Univ ソルボサーマル法を用いたナノ粒子合成法
CN102180497A (zh) * 2011-03-15 2011-09-14 宣城晶瑞新材料有限公司 高分散性纳米氧化铝的非水溶胶凝胶制备方法
CN103172096A (zh) * 2013-03-22 2013-06-26 哈尔滨工程大学 纳米氧化铝薄片的制备方法
CN103553103A (zh) * 2013-11-02 2014-02-05 兰州大学 一种麦捆状结构的γ氧化铝纳米材料制备方法
CN106348324A (zh) * 2016-08-18 2017-01-25 泰安麦丰新材料科技有限公司 一种超细氧化铝抛光粉的生产工艺
CN107225254A (zh) * 2017-04-01 2017-10-03 北京化工大学 一种铝纳米颗粒及其制备方法
WO2018032564A1 (zh) * 2016-08-17 2018-02-22 苏州星烁纳米科技有限公司 高压制备量子点的方法以及量子点
KR101859173B1 (ko) * 2018-02-27 2018-05-17 주식회사 앰트 알루미늄이 도핑된 인듐 포스파이드 기반의 코어-다중껍질 구조의 양자점 및 이의 제조 방법
CN109836618A (zh) * 2017-11-28 2019-06-04 中国石油天然气股份有限公司 一种氧化铝的改性方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100467811B1 (ko) * 2002-01-04 2005-01-24 주식회사 엘지화학 α-알루미나 나노입자의 제조방법

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080078101A (ko) * 2007-02-22 2008-08-27 (주)분자와 사람들 솔보써멀법에 의한 고 기능성을 지닌 초 미립 금속산화물박막용 콜로이드 용액의 합성
WO2009028887A2 (en) * 2007-08-31 2009-03-05 Jps Micro-Tech Co., Ltd. Method of manufacturing flake aluminum oxide
JP2009233845A (ja) * 2008-03-03 2009-10-15 Tohoku Univ ソルボサーマル法を用いたナノ粒子合成法
CN102180497A (zh) * 2011-03-15 2011-09-14 宣城晶瑞新材料有限公司 高分散性纳米氧化铝的非水溶胶凝胶制备方法
CN103172096A (zh) * 2013-03-22 2013-06-26 哈尔滨工程大学 纳米氧化铝薄片的制备方法
CN103553103A (zh) * 2013-11-02 2014-02-05 兰州大学 一种麦捆状结构的γ氧化铝纳米材料制备方法
WO2018032564A1 (zh) * 2016-08-17 2018-02-22 苏州星烁纳米科技有限公司 高压制备量子点的方法以及量子点
CN106348324A (zh) * 2016-08-18 2017-01-25 泰安麦丰新材料科技有限公司 一种超细氧化铝抛光粉的生产工艺
CN107225254A (zh) * 2017-04-01 2017-10-03 北京化工大学 一种铝纳米颗粒及其制备方法
CN109836618A (zh) * 2017-11-28 2019-06-04 中国石油天然气股份有限公司 一种氧化铝的改性方法
KR101859173B1 (ko) * 2018-02-27 2018-05-17 주식회사 앰트 알루미늄이 도핑된 인듐 포스파이드 기반의 코어-다중껍질 구조의 양자점 및 이의 제조 방법

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Costa, et al.Acetyl transfer reactions on AlPO4-AL2O3.CAN. J. CHEM. VOL.1987,第65卷(第10期),1-2. *
高温油相热分解法制备麦捆状γ-Al2O3纳米结构;白力诚;兰州大学硕士研究生学位论文;20130401;全文 *

Also Published As

Publication number Publication date
CN114560485A (zh) 2022-05-31

Similar Documents

Publication Publication Date Title
JPH11504311A (ja) 弱く凝集したナノスカラー粒子の製造方法
CN112222421B (zh) 一种纳米三氧化钨和纳米钨粉的制备方法及应用
CN106431418A (zh) 水热法制备纳米AlN粉体的方法和其中间体及产品
Li et al. Production of nanosized YAG powders with spherical morphology and nonaggregation via a solvothermal method
He et al. Synthesis of WC composite powder with nano-cobalt coatings and its application in WC-4Co cemented carbide
CN103570049B (zh) 完全分散的α氧化铝纳米颗粒的制备方法
CN109336143B (zh) 一步热解法制备纳米氧化镁的方法
DE3786246T2 (de) Verfahren zur herstellung von schleifpartikeln aus aluminiumoxid, aluminiumoxinitrid, metallnitrid der gruppe - iv-b nach einem sol - gel - verfahren.
CN113479918A (zh) 一种纳米球形α-氧化铝粉体制备方法
KR20180039516A (ko) 구상 알파-알루미나 입자 분말의 제조 방법
CN1810419A (zh) 以氧化铝包裹金属铝的铝/氧化铝复合材料的制备方法
CN108975362A (zh) 一种完全分散的氧化铝纳米颗粒的制备方法
CN114560485B (zh) 一种超细氧化铝的制备方法
Hu et al. Preparation and characterisation of ball-like MoS2 nanoparticles
CN100378002C (zh) 板状氧化铝颗粒的制备方法
CN106044809B (zh) 一种完全分散α氧化铝纳米颗粒的制备方法
CN117566797A (zh) 一种超细铯钨青铜粉体的制备方法
CN105384969A (zh) 一种高分散氧化锌及其制备方法
CN1273384C (zh) 一种无硬团聚的纳米氧化铝的制备方法
CN112846213B (zh) 一种低氧含量高分散纳米球形钴粉的制备方法
CN109573964B (zh) 一种氧化石墨烯作为模板制备纳米六方氮化硼颗粒的方法
JPS6116809A (ja) セラミック原料の粒度調整法
Xing et al. Comparison of preparation and formation mechanism of LuAG nanopowders using two different methods
CN113353984A (zh) 一种高比表面长针状紫钨粉末及其制备方法
Sahoo et al. X-ray diffraction and microstructural studies on hydrothermally synthesized cubic barium titanate from TiO2–Ba (OH) 2–H2O system

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20250102

Address after: 410083 Hunan province Changsha Lushan Road No. 932

Patentee after: Wang Liangbing

Country or region after: China

Address before: 410119 No. 203362, building 8, phase I, Changsha future Zhihui Park, No. 90, south section, East 6th Road, Changsha area, China (Hunan) pilot Free Trade Zone, Changsha, Hunan

Patentee before: Changsha Ningxi New Material Co.,Ltd.

Country or region before: China

TR01 Transfer of patent right