[go: up one dir, main page]

CN114556903B - Image generation system, image processing device, program, and recording medium - Google Patents

Image generation system, image processing device, program, and recording medium Download PDF

Info

Publication number
CN114556903B
CN114556903B CN201980101301.4A CN201980101301A CN114556903B CN 114556903 B CN114556903 B CN 114556903B CN 201980101301 A CN201980101301 A CN 201980101301A CN 114556903 B CN114556903 B CN 114556903B
Authority
CN
China
Prior art keywords
image
pixel
detection element
pixels
generation system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201980101301.4A
Other languages
Chinese (zh)
Other versions
CN114556903A (en
Inventor
栗原康平
山下孝一
铃木大祐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Publication of CN114556903A publication Critical patent/CN114556903A/en
Application granted granted Critical
Publication of CN114556903B publication Critical patent/CN114556903B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/40Extracting pixel data from image sensors by controlling scanning circuits, e.g. by modifying the number of pixels sampled or to be sampled

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Studio Devices (AREA)
  • Stereoscopic And Panoramic Photography (AREA)
  • Image Processing (AREA)

Abstract

摄像部(1)能够以旋转轴线为中心进行旋转,具有与旋转轴线平行地延伸且分别由多个检测元件构成的多个检测元件线,通过拍摄而生成包含与检测元件线的各检测元件对应的像素的摄像图像。图像处理装置(3)针对各像素,计算全景坐标系中的对应的像素位置作为投射位置,将各像素投射到投射位置。在被投射了2个以上的像素的像素位置处,对所投射的像素的像素值进行合成并计算合成值,生成包含分别以合成值为像素值的多个像素的全景图像。通过连结使摄像部旋转并拍摄而得到的图像,能够实现全景图像的高分辨率化和高SN比化中的至少一方。

The camera unit (1) is capable of rotating around a rotation axis, and has a plurality of detection element lines extending parallel to the rotation axis and each consisting of a plurality of detection elements. By shooting, a camera image containing pixels corresponding to each detection element of the detection element line is generated. The image processing device (3) calculates the corresponding pixel position in the panoramic coordinate system as a projection position for each pixel, and projects each pixel to the projection position. At the pixel position where more than two pixels are projected, the pixel values of the projected pixels are synthesized and the synthesized value is calculated, and a panoramic image containing a plurality of pixels whose pixel values are each synthesized value is generated. By connecting the images obtained by rotating the camera unit and shooting, at least one of a high resolution and a high SN ratio of the panoramic image can be achieved.

Description

图像生成系统和图像处理装置、以及程序和记录介质Image generation system, image processing device, program, and recording medium

技术领域Technical Field

本发明涉及图像生成系统和图像处理装置。本发明还涉及程序和记录介质。本发明尤其涉及全景图像的生成。The present invention relates to an image generation system and an image processing device. The present invention also relates to a program and a recording medium. In particular, the present invention relates to the generation of a panoramic image.

背景技术Background technique

全景图像是通过将多个摄像图像连结而生成的。在该情况下,空间分辨率和SN比的提高成为问题。A panoramic image is generated by connecting a plurality of captured images. In this case, the improvement of spatial resolution and SN ratio becomes a problem.

在原稿读取等领域中,已知对n条线传感器进行扫描而取得高分辨率的图像。例如,在专利文献1中,记载了将由n条线传感器读取的n列像素列在输出图像的坐标系中排列而生成高分辨率图像。In the field of document reading, it is known to obtain a high-resolution image by scanning with n line sensors. For example, Patent Document 1 describes that n pixel columns read by n line sensors are arranged in a coordinate system of an output image to generate a high-resolution image.

现有技术文献Prior art literature

专利文献Patent Literature

专利文献1:日本特开平11-127319公报(第4页)Patent Document 1: Japanese Patent Application Laid-Open No. 11-127319 (page 4)

发明内容Summary of the invention

发明要解决的问题Problem that the invention aims to solve

在专利文献1的方法中,需要使n条线传感器平移,存在读取装置的尺寸变大这样的问题。此外,存在无法应用于全景图像的生成这样的问题。The method of Patent Document 1 requires translation of n line sensors, which increases the size of the reading device and cannot be applied to the generation of a panoramic image.

本发明的目的在于,能够生成具有高分辨率或高SN比中的至少一方的全景图像。An object of the present invention is to generate a panoramic image having at least one of a high resolution and a high SN ratio.

用于解决问题的手段Means used to solve problems

本发明的图像生成系统具有:The image generation system of the present invention has:

摄像部,其能够以旋转轴线为中心进行旋转,具有与所述旋转轴线平行地延伸且分别由多个检测元件构成的多个检测元件线,所述摄像部通过拍摄而生成包含分别与所述检测元件线的检测元件对应的像素的摄像图像;以及图像处理装置,其针对与所述检测元件分别对应的像素,计算全景坐标系中的对应的像素位置作为投射位置,将所述像素投射到所述投射位置,在所述全景坐标系的像素位置中的被投射了2个以上的像素的像素位置处,对所投射的2个以上的像素的像素值进行合成而计算合成值,生成包含分别以所述合成值为像素值的多个像素的全景图像。A camera unit that can rotate around a rotation axis and has a plurality of detection element lines extending parallel to the rotation axis and each consisting of a plurality of detection elements, the camera unit generates a camera image containing pixels corresponding to the detection elements of the detection element lines by shooting; and an image processing device that calculates corresponding pixel positions in a panoramic coordinate system as projection positions for pixels corresponding to the detection elements, projects the pixels to the projection positions, and synthesizes pixel values of the projected two or more pixels at pixel positions in the panoramic coordinate system where two or more pixels are projected to calculate a synthesized value, thereby generating a panoramic image containing a plurality of pixels each having the synthesized value as a pixel value.

本发明的图像处理装置根据摄像部通过拍摄生成的摄像图像而生成全景图像,该摄像部能够以旋转轴线为中心进行旋转,具有与所述旋转轴线平行地延伸且分别由多个检测元件构成的多个检测元件线,该摄像图像包含分别与所述检测元件线的检测元件对应的像素,其中,所述图像处理装置具有:投射位置计算部,其针对与所述检测元件分别对应的像素,计算全景坐标系中的对应的像素位置作为投射位置;以及像素投射部,其将所述像素投射到所述投射位置,在所述全景坐标系的像素位置中的被投射了2个以上的像素的像素位置处,对所投射的2个以上的像素的像素值进行合成而计算合成值,所述图像处理装置生成包含分别以所述合成值为像素值的多个像素的全景图像。The image processing device of the present invention generates a panoramic image based on a camera image generated by shooting by a camera unit. The camera unit can rotate around a rotation axis and has a plurality of detection element lines extending parallel to the rotation axis and respectively composed of a plurality of detection elements. The camera image includes pixels corresponding to the detection elements of the detection element lines, respectively. The image processing device includes: a projection position calculation unit, which calculates the corresponding pixel position in a panoramic coordinate system as a projection position for the pixels respectively corresponding to the detection elements; and a pixel projection unit, which projects the pixel to the projection position, and at the pixel position of the panoramic coordinate system where more than two pixels are projected, the pixel values of the projected more than two pixels are synthesized to calculate a synthesized value. The image processing device generates a panoramic image including a plurality of pixels each having the synthesized value as a pixel value.

发明的效果Effects of the Invention

根据本发明,通过连结一边使摄像部旋转一边拍摄而得到的图像,能够实现全景图像的高分辨率化和高SN比化中的至少一方。According to the present invention, by connecting images captured while rotating the imaging unit, it is possible to achieve at least one of a higher resolution and a higher SN ratio of the panoramic image.

附图说明BRIEF DESCRIPTION OF THE DRAWINGS

图1是示出本发明的实施方式1的图像生成系统的概要图。FIG. 1 is a schematic diagram showing an image generation system according to Embodiment 1 of the present invention.

图2是示出图1的摄像部的图像传感器的配置的一例的图。FIG. 2 is a diagram showing an example of the arrangement of image sensors in the imaging unit of FIG. 1 .

图3是示出图像传感器中的检测元件的排列以及作为检测元件线利用的部分的一例的图。FIG. 3 is a diagram showing an example of an arrangement of detection elements in an image sensor and a portion used as a detection element line.

图4是仅将图3所示的作为检测元件线利用的部分取出而示出的立体图。FIG. 4 is a perspective view showing only the portion used as the detection element line shown in FIG. 3 .

图5是仅将图3所示的作为检测元件线利用的部分取出而示出的水平剖视图。FIG. 5 is a horizontal cross-sectional view showing only the portion used as the detection element line shown in FIG. 3 .

图6是示出向全景坐标系投射的一例的图。FIG. 6 is a diagram showing an example of projection into a panoramic coordinate system.

图7是示出图像传感器中的作为检测元件线利用的部分的另一例的图。FIG. 7 is a diagram showing another example of a portion used as a detection element line in an image sensor.

图8是示出图1的摄像部的图像传感器的配置的另一例的图。FIG. 8 is a diagram showing another example of the arrangement of image sensors in the imaging unit of FIG. 1 .

图9是示出本发明的实施方式2的图像生成系统的概要图。FIG. 9 is a schematic diagram showing an image generation system according to Embodiment 2 of the present invention.

图10是示出在实施方式2中使用的图像传感器的一例的剖视图。FIG. 10 is a cross-sectional view showing an example of an image sensor used in Embodiment 2. FIG.

图11是示出本发明的实施方式3的图像生成系统的概要图。FIG. 11 is a schematic diagram showing an image generation system according to Embodiment 3 of the present invention.

图12是示出本发明的实施方式4的图像生成系统的概要图。FIG. 12 is a schematic diagram showing an image generation system according to a fourth embodiment of the present invention.

图13示出实现本发明的实施方式1~4中的图像处理装置和动作控制部的全部功能的计算机9的结构例。FIG. 13 shows a configuration example of a computer 9 that realizes all functions of the image processing device and the operation control unit in Embodiments 1 to 4 of the present invention.

图14是示出由图13的计算机实现实施方式4的图像处理装置和动作控制部的功能时的处理器中的处理步骤的流程图。14 is a flowchart showing a processing procedure in a processor when the functions of the image processing device and the motion control unit according to the fourth embodiment are realized by the computer of FIG. 13 .

图15是示出图14的实时图像生成的处理步骤的流程图。FIG. 15 is a flowchart showing a process procedure of generating a real-time image in FIG. 14 .

图16是示出图14的参照图像生成的处理步骤的流程图。FIG. 16 is a flowchart showing a processing procedure for generating the reference image of FIG. 14 .

具体实施方式Detailed ways

实施方式1.Implementation method 1.

以下,参照附图对本发明的实施方式进行说明。Hereinafter, embodiments of the present invention will be described with reference to the drawings.

图1示出表示本发明的实施方式1的图像生成系统。图示的图像生成系统生成全景图像。Fig. 1 shows an image generation system representing Embodiment 1 of the present invention. The image generation system shown in the figure generates a panoramic image.

图1所示的图像生成系统具备摄像部1、旋转驱动系统2、图像处理装置3以及动作控制部4。The image generation system shown in FIG. 1 includes an imaging unit 1 , a rotation driving system 2 , an image processing device 3 , and an operation control unit 4 .

旋转驱动系统2使摄像部1以旋转轴线为中心进行旋转。The rotation drive system 2 rotates the imaging unit 1 around a rotation axis.

摄像部1包括图像传感器6和摄像光学系统7。The imaging unit 1 includes an image sensor 6 and an imaging optical system 7 .

图像传感器6生成表示由摄像光学系统7成像的图像的图像数据。The image sensor 6 generates image data representing an image formed by the imaging optical system 7 .

图像传感器6具有与旋转轴线平行地延伸且分别由多个检测元件构成的多个检测元件线,通过拍摄而生成包含分别与检测元件线的检测元件对应的像素的摄像图像。The image sensor 6 includes a plurality of detection element lines extending in parallel with the rotation axis and each of which is constituted by a plurality of detection elements, and generates a captured image including pixels corresponding to the detection elements of the detection element lines by imaging.

图像处理装置3针对与多个检测元件线的各检测元件对应的像素,计算全景坐标系中的对应的像素位置作为投射位置,将与上述多个检测元件线的各检测元件对应的像素投射到投射位置。图像处理装置3在全景坐标系的像素位置中的被投射了2个以上的像素的像素位置处,对所投射的2个以上的像素的像素值进行合成而计算合成值。图像处理装置3生成包含分别以合成值为像素值的多个像素的全景图像。The image processing device 3 calculates the corresponding pixel position in the panoramic coordinate system as the projection position for the pixels corresponding to each detection element of the plurality of detection element lines, and projects the pixels corresponding to each detection element of the plurality of detection element lines to the projection position. The image processing device 3 synthesizes the pixel values of the projected two or more pixels at the pixel position of the panoramic coordinate system where two or more pixels are projected, and calculates a synthesized value. The image processing device 3 generates a panoramic image including a plurality of pixels each having a synthesized value as a pixel value.

以下,对各个结构要素详细进行说明。Hereinafter, each structural element will be described in detail.

这里,设图像生成系统用于生成热图像。在该情况下,作为图像传感器6而使用热图像传感器。热图像传感器具有对从被摄体辐射的红外线(通常是波长8μm~12μm的电磁波)进行检测的多个红外线检测元件。Here, it is assumed that the image generation system is used to generate a thermal image. In this case, a thermal image sensor is used as the image sensor 6. The thermal image sensor has a plurality of infrared detection elements that detect infrared rays (usually electromagnetic waves with a wavelength of 8 μm to 12 μm) radiated from a subject.

在非冷却型的热型红外线固体摄像装置的情况下,作为检测元件,除了多晶硅、非晶硅、碳化硅、氧化钒等的辐射热测量计之外,使用二极管、晶体管等半导体元件的检测元件是已知的。In the case of an uncooled thermal infrared solid-state imaging device, detection elements using semiconductor elements such as diodes and transistors are known as detection elements in addition to bolometers of polycrystalline silicon, amorphous silicon, silicon carbide, vanadium oxide, and the like.

图像传感器6例如由二维图像传感器构成。The image sensor 6 is constituted by, for example, a two-dimensional image sensor.

在二维图像传感器中,例如,将具有隔热构造的检测元件在行方向和列方向上排列配置,按照每个行,通过驱动线进行连接,按照每个列,通过信号线进行连接。In a two-dimensional image sensor, for example, detection elements having a heat-insulating structure are arranged in row and column directions, connected by drive lines for each row and connected by signal lines for each column.

通过垂直扫描电路和开关依次选择各驱动线,经由所选择的驱动线从电源向检测元件通电。检测元件的输出经由信号线被传递到积分电路,由积分电路进行积分以及放大,通过水平扫描电路和开关依次向输出端子输出。Each drive line is selected in turn by the vertical scanning circuit and the switch, and the power supply is energized to the detection element through the selected drive line. The output of the detection element is transmitted to the integration circuit via the signal line, integrated and amplified by the integration circuit, and output to the output terminal in turn through the horizontal scanning circuit and the switch.

从图像传感器6按照每个摄像周期(帧周期)Tf而输出图像DIN。摄像周期Tf可以是固定的,也可以由动作控制部4进行变更。The image sensor 6 outputs the image DIN at each imaging cycle (frame cycle) Tf. The imaging cycle Tf may be fixed or may be changed by the operation control unit 4.

图3示出图像传感器6中的检测元件的排列的例子。在图示的例子中,图像传感器6由Ma行Na列的检测元件阵列构成。在图3中,由格子状的线划分的各矩形部分表示一个检测元件。在图3所示的例子中,各列沿垂直方向延伸。FIG3 shows an example of the arrangement of detection elements in the image sensor 6. In the example shown in the figure, the image sensor 6 is composed of a detection element array of Ma rows and Na columns. In FIG3, each rectangular portion divided by grid-like lines represents a detection element. In the example shown in FIG3, each column extends in the vertical direction.

选择构成图3所示的检测元件阵列的检测元件中的一部分检测元件,将它们指定为构成多个检测元件线L1~L4的检测元件。例如,选择沿着分别与旋转轴线Ac平行延伸的多个直线而排列的检测元件,将它们指定为构成多个检测元件线L1~L4的检测元件。检测元件线的数量例如为4,但也有时进行一般化而由N表示。A portion of the detection elements constituting the detection element array shown in FIG3 is selected and designated as the detection elements constituting the plurality of detection element lines L1 to L4. For example, detection elements arranged along a plurality of straight lines extending parallel to the rotation axis Ac are selected and designated as the detection elements constituting the plurality of detection element lines L1 to L4. The number of detection element lines is, for example, 4, but is sometimes generalized and represented by N.

例如,由位于检测元件阵列的水平方向的中心附近且相连续的N列(这里N=4)的检测元件构成检测元件线L1~L4。For example, detection element lines L1 to L4 are formed by N consecutive columns (N=4 in this case) of detection elements located near the center in the horizontal direction of the detection element array.

如后所述,提取从图像传感器6输出的摄像图像DIN中的与上述的检测元件线L1~L4对应的多个例如4条像素线S1~S4,用于全景图像的生成。摄像图像DIN中的像素的排列和像素线S1~S4的配置与图3所示的检测元件的排列和检测元件线L1~L4的配置相同。因此,像素线S1~S4分别由摄像图像DIN中的位于相互平行的多个直线上的像素构成。As described later, a plurality of, for example, four, pixel lines S1 to S4 corresponding to the above-mentioned detection element lines L1 to L4 in the video image DIN output from the image sensor 6 are extracted for use in the generation of a panoramic image. The arrangement of pixels in the video image DIN and the configuration of the pixel lines S1 to S4 are the same as the arrangement of the detection elements and the configuration of the detection element lines L1 to L4 shown in FIG. 3 . Therefore, the pixel lines S1 to S4 are respectively composed of pixels located on a plurality of straight lines parallel to each other in the video image DIN.

旋转驱动系统2由动作控制部4控制,使摄像部1例如如图2所示那样以旋转轴线Ac为中心进行旋转。旋转例如以等角速度运动进行。The rotation drive system 2 is controlled by the motion control unit 4 to rotate the imaging unit 1 around the rotation axis Ac as shown in Fig. 2. The rotation is performed at a constant angular velocity, for example.

旋转驱动系统2在将图像传感器6的排列有检测元件的平面(传感器面)6a维持与旋转轴线Ac平行的状态下使摄像部1旋转,由此,使摄像部1的摄像方向即摄像部1的光轴Oa的方向绕旋转轴线Ac旋转。例如,图像传感器6将行或列的方向保持为与旋转轴线Ac平行。以下,说明将列的方向保持为与旋转轴线Ac平行的情况。The rotation drive system 2 rotates the imaging unit 1 while maintaining the plane (sensor surface) 6a on which the detection elements of the image sensor 6 are arranged parallel to the rotation axis Ac, thereby rotating the imaging direction of the imaging unit 1, that is, the direction of the optical axis Oa of the imaging unit 1, around the rotation axis Ac. For example, the image sensor 6 maintains the direction of the row or column parallel to the rotation axis Ac. The following describes the case where the direction of the column is maintained parallel to the rotation axis Ac.

此外,在图2所示的例子中,将摄像部1支承为,使摄像光学系统7的主点Q位于旋转轴线Ac上。In the example shown in FIG. 2 , the imaging unit 1 is supported so that the principal point Q of the imaging optical system 7 is located on the rotation axis Ac.

以下,为了方便,将旋转轴线Ac的方向称为垂直方向,将与旋转轴线正交的方向称为水平方向。此外,在通过由图像传感器6进行拍摄而得到的图像中,将与图像传感器6的垂直方向(旋转轴线Ac的方向)对应的方向称为垂直方向,将与该垂直方向正交的方向称为水平方向。Hereinafter, for convenience, the direction of the rotation axis Ac is referred to as the vertical direction, and the direction perpendicular to the rotation axis is referred to as the horizontal direction. In addition, in the image obtained by photographing by the image sensor 6, the direction corresponding to the vertical direction of the image sensor 6 (the direction of the rotation axis Ac) is referred to as the vertical direction, and the direction perpendicular to the vertical direction is referred to as the horizontal direction.

此外,为了方便,将以旋转轴线Ac为中心的旋转方向的角度称为方位角,为了方便,将垂直方向的角度、即围绕与旋转轴线Ac及光轴Oa垂直的直线的角度称为俯仰角。In addition, for convenience, the angle in the rotation direction centered on the rotation axis Ac is called the azimuth angle, and for convenience, the angle in the vertical direction, that is, the angle around the straight line perpendicular to the rotation axis Ac and the optical axis Oa is called the pitch angle.

在图2中,使摄像部1在从方位角(开始点)Xa到方位角(结束点)Xb的范围内旋转。将这样的旋转称为扫描。此外,将各时间点的摄像部1的摄像方向即该光轴Oa的方向相对于基准方位例如开始点Xa的角度θ称为旋转角。In FIG2 , the imaging unit 1 is rotated within a range from an azimuth (starting point) Xa to an azimuth (ending point) Xb. Such rotation is referred to as scanning. In addition, the angle θ of the imaging direction of the imaging unit 1 at each time point, i.e., the direction of the optical axis Oa, relative to the reference azimuth, such as the starting point Xa, is referred to as the rotation angle.

动作控制部4输出表示检测元件线L1~L4的位置的信息(检测元件线位置信息)Gp、表示像素线S1~S4的位置的信息(像素线位置信息)Gs、表示每个检测元件线的视场角βH的信息、以及表示各时间点的摄像部1的旋转角θ的信息。The action control unit 4 outputs information indicating the positions of the detection element lines L1 to L4 (detection element line position information) Gp, information indicating the positions of the pixel lines S1 to S4 (pixel line position information) Gs, information indicating the field of view angle βH of each detection element line, and information indicating the rotation angle θ of the imaging unit 1 at each time point.

动作控制部4对摄像光学系统7的光学倍率进行控制,基于光学倍率,计算并输出每个检测元件线的视场角βH。每个检测元件线的视场角βH根据每个检测元件的水平视场角αH而求出。The operation control unit 4 controls the optical magnification of the imaging optical system 7, and calculates and outputs the field angle βH of each detection element line based on the optical magnification. The field angle βH of each detection element line is obtained from the horizontal field angle αH of each detection element.

每个检测元件的水平视场角αH是通过将摄像部1的水平视场角除以图像传感器6的水平方向的检测元件的数量即列的数量而得到的。例如,如果摄像部1的水平视场角为80度且图像传感器6的水平方向的检测元件的数量为160,则每个检测元件的水平视场角αH成为The horizontal field angle αH of each detection element is obtained by dividing the horizontal field angle of the imaging unit 1 by the number of detection elements in the horizontal direction of the image sensor 6, that is, the number of columns. For example, if the horizontal field angle of the imaging unit 1 is 80 degrees and the number of detection elements in the horizontal direction of the image sensor 6 is 160, the horizontal field angle αH of each detection element becomes

αH=80÷160=0.5度 式(1)。α H =80÷160=0.5 degrees Formula (1).

本实施方式的系统具有通过在水平方向上连结从摄像图像DIN提取出的像素线而生成全景图像的功能、以及对水平方向的分辨率进行调整的功能。另一方面,没有连结图像的功能以及对垂直方向的分辨率进行调整的功能,关于垂直方向,将摄像图像DIN中的表示位于某个俯仰角的方向的被摄体部分的像素直接投射到全景图像中的相同俯仰角的像素。The system of this embodiment has a function of generating a panoramic image by connecting pixel lines extracted from the camera image DIN in the horizontal direction, and a function of adjusting the resolution in the horizontal direction. On the other hand, there is no function of connecting images and a function of adjusting the resolution in the vertical direction. With respect to the vertical direction, the pixels representing the subject portion in the camera image DIN at a certain pitch angle are directly projected onto the pixels at the same pitch angle in the panoramic image.

于是,以下关于垂直方向简单地进行说明,关于水平方向详细进行说明。Therefore, the vertical direction will be briefly described below, and the horizontal direction will be described in detail.

摄像部1的旋转角θ伴随着扫描的进行、即伴随着摄像部1的旋转而变化。动作控制部4例如从旋转驱动系统2接收旋转角θ的通知,向像素线提取部31输出旋转角θ。在动作控制部4向旋转驱动系统2提供旋转角θ的指令值的情况下,动作控制部4也可以在内部生成并向像素线提取部31输出旋转角θ的指令值。The rotation angle θ of the imaging unit 1 changes as scanning proceeds, that is, as the imaging unit 1 rotates. The motion control unit 4 receives notification of the rotation angle θ from the rotation drive system 2, for example, and outputs the rotation angle θ to the pixel line extraction unit 31. When the motion control unit 4 provides the rotation drive system 2 with a command value of the rotation angle θ, the motion control unit 4 may internally generate and output the command value of the rotation angle θ to the pixel line extraction unit 31.

图像处理装置3基于从动作控制部4输出的检测元件线位置信息Gp、像素线位置信息Gs、每个检测元件线的视场角βH和摄像部1的旋转角θ,根据摄像图像DIN而生成全景图像DOUT。The image processing device 3 generates a panoramic image DOUT from the captured image DIN based on the detection element line position information Gp and pixel line position information Gs output from the operation control unit 4 , the field angle βH of each detection element line, and the rotation angle θ of the imaging unit 1 .

图像处理装置3具备像素线提取部31、投射位置计算部32以及像素投射部33。The image processing device 3 includes a pixel line extraction unit 31 , a projection position calculation unit 32 , and a pixel projection unit 33 .

像素线提取部31基于从动作控制部4供给的像素线位置信息Gs,从按照各摄像周期从图像传感器6输出的摄像图像DIN中提取多个像素线S1~S4。所提取的像素线的数量例如为4,但也有时进行一般化而由N表示。像素线S1~S4分别由摄像图像DIN中的位于在相互不同的水平方向位置处沿垂直方向延伸的直线上的像素、例如属于相同列的像素构成。The pixel line extraction unit 31 extracts a plurality of pixel lines S1 to S4 from the captured image DIN output from the image sensor 6 in each imaging cycle based on the pixel line position information Gs supplied from the motion control unit 4. The number of extracted pixel lines is, for example, 4, but is sometimes generalized and represented by N. The pixel lines S1 to S4 are respectively composed of pixels located on straight lines extending in the vertical direction at different horizontal positions in the captured image DIN, for example, pixels belonging to the same column.

像素线位置信息Gs表示摄像图像DIN内的应被提取的像素线S1~S4的位置。检测元件线位置信息Gp表示图像传感器6内的检测元件线L1~L4、即与像素线S1~S4对应的检测元件线的位置。The pixel line position information Gs indicates the positions of the pixel lines S1 to S4 to be extracted in the captured image DIN. The detection element line position information Gp indicates the positions of the detection element lines L1 to L4 in the image sensor 6 , that is, the detection element lines corresponding to the pixel lines S1 to S4 .

关于将图像传感器6的检测元件阵列中的哪个列用作检测元件线L1~L4,例如被预先决定。在该情况下,检测元件线位置信息Gp被存储在动作控制部4内的参数存储部(未图示)中,动作控制部4将上述的检测元件线位置信息Gp通知给投射位置计算部32,并且基于检测元件线位置信息Gp,生成像素线位置信息Gs,并通知给像素线提取部31。像素线提取部31按照该像素线位置信息Gs,进行像素线S1~S4的提取。Which column in the detection element array of the image sensor 6 is used as the detection element lines L1 to L4 is determined in advance, for example. In this case, the detection element line position information Gp is stored in a parameter storage unit (not shown) in the action control unit 4, and the action control unit 4 notifies the projection position calculation unit 32 of the above-mentioned detection element line position information Gp, and generates pixel line position information Gs based on the detection element line position information Gp, and notifies it to the pixel line extraction unit 31. The pixel line extraction unit 31 extracts pixel lines S1 to S4 according to the pixel line position information Gs.

检测元件线位置信息Gp可以是表示相对于光轴Oa的相对位置的信息,也可以是表示是从包含光轴Oa的垂直平面开始数的第几个检测元件线的信息。The detection element line position information Gp may be information indicating a relative position with respect to the optical axis Oa, or may be information indicating the number of the detection element line counted from a vertical plane including the optical axis Oa.

像素线位置信息Gs可以是表示相对于在摄像图像DIN的水平方向的中心位置处沿垂直方向延伸的中心线的相对位置的信息,也可以是表示是从摄像图像DIN的上述中心线开始数的第几个检测元件线的信息。The pixel line position information Gs may be information indicating the relative position with respect to a center line extending in the vertical direction at the horizontal center position of the captured image DIN, or may be information indicating the number of the detection element line counted from the center line of the captured image DIN.

投射位置计算部32基于检测元件线位置信息Gp、每个检测元件线的视场角βH、以及摄像部1的旋转角θ,针对从摄像图像DIN提取出的多个像素线S1~S4的各像素,计算全景坐标系中的对应的像素位置作为投射位置。The projection position calculation unit 32 calculates the corresponding pixel position in the panoramic coordinate system as the projection position for each pixel of the plurality of pixel lines S1 to S4 extracted from the captured image DIN based on the detection element line position information Gp, the field angle β H of each detection element line, and the rotation angle θ of the imaging unit 1 .

全景坐标系将方位角X和俯仰角Y作为坐标。方位角X例如将开始点Xa作为原点,定义为在开始点Xa处是0。关于全景坐标系,也有时将方位角方向和俯仰角方向分别称为水平方向和垂直方向。The panoramic coordinate system uses the azimuth angle X and the elevation angle Y as coordinates. The azimuth angle X is defined as 0 at the starting point Xa, for example, with the starting point Xa as the origin. Regarding the panoramic coordinate system, the azimuth direction and the elevation direction are sometimes referred to as the horizontal direction and the vertical direction, respectively.

全景图像DOUT具有与其像素数对应的空间分辨率,因此,全景坐标系中的表示像素位置的坐标(像素位置坐标)X、Y分别具有相互分离了像素间距的整数倍的离散值。以下,仅对方位角方向的像素位置坐标(方位角坐标)X进行说明。The panoramic image DOUT has a spatial resolution corresponding to the number of pixels, and therefore the coordinates (pixel position coordinates) X and Y representing the pixel positions in the panoramic coordinate system have discrete values separated from each other by an integer multiple of the pixel pitch. In the following, only the pixel position coordinate (azimuth coordinate) X in the azimuth direction will be described.

投射位置计算部32基于检测元件线位置信息Gp和每个检测元件线的视场角βH,计算针对各个检测元件线L1~L4的、相对于光轴Oa的水平方向的相对角(相对方位角)ε1~ε4,基于计算出的相对角ε1~ε4和摄像部1的旋转角θ,来计算投射位置的方位角X。The projection position calculation unit 32 calculates relative angles (relative azimuths) ε1 to ε4 in the horizontal direction with respect to the optical axis Oa for each detection element line L1 to L4 based on the detection element line position information Gp and the field angle β H of each detection element line, and calculates the azimuth angle X of the projection position based on the calculated relative angles ε1 to ε4 and the rotation angle θ of the imaging unit 1.

上述的针对各检测元件线的、相对于光轴Oa的水平方向的相对角是指,该检测元件线的视线的方向相对于包含光轴Oa的垂直平面即包含光轴Oa和旋转轴线Ac的平面的水平方向的相对角。The above-mentioned relative angle of each detection element line relative to the horizontal direction of the optical axis Oa refers to the relative angle of the line of sight of the detection element line relative to the horizontal direction of the vertical plane containing the optical axis Oa, that is, the plane containing the optical axis Oa and the rotation axis Ac.

以下,参照图4和图5对相对角ε1~ε4进行说明。Hereinafter, relative angles ε1 to ε4 will be described with reference to FIG. 4 and FIG. 5 .

图4和图5将图3的图像传感器6中的上述的4条检测元件线L1~L4取出而示出。图4是立体图,图5是水平剖视图。Fig. 4 and Fig. 5 show the above-mentioned four detection element lines L1 to L4 extracted from the image sensor 6 of Fig. 3. Fig. 4 is a perspective view, and Fig. 5 is a horizontal cross-sectional view.

在图4和图5所示的例子中,摄像部1的光轴Oa通过第2个检测元件线L2与第3个检测元件线L3的边界部分。在图4和图5中还示出摄像光学系统7的主点Q。In the examples shown in Fig. 4 and Fig. 5 , the optical axis Oa of the imaging unit 1 passes through the boundary between the second detection element line L2 and the third detection element line L3. Fig. 4 and Fig. 5 also show the principal point Q of the imaging optical system 7.

图5还示出检测元件线L1~L4的视线的方向E1~E4。各检测元件线的视线的方向是指,属于该检测元件线的检测元件的视线的方向中的水平方向成分。在相邻的检测元件线之间,视线的方向相差每个检测元件线的视场角βH。|ε1|~|ε4|表示视线的方向E1~E4的相对于光轴Oa的角度差。FIG5 also shows the directions E1 to E4 of the sight lines of the detection element lines L1 to L4. The direction of the sight line of each detection element line refers to the horizontal component of the direction of the sight line of the detection element belonging to the detection element line. The directions of the sight lines between adjacent detection element lines differ by the field of view angle β H of each detection element line. |ε1| to |ε4| represent the angular differences of the directions of the sight lines E1 to E4 relative to the optical axis Oa.

如图示的例子那样,在检测元件线L1~L4以相连续的列构成的情况下,每个检测元件线的视场角βH与每个检测元件的水平视场角αH相等。As in the example shown in the figure, when the detection element lines L1 to L4 are formed in a continuous row, the viewing angle βH of each detection element line is equal to the horizontal viewing angle αH of each detection element.

以下,为了简化说明,设每个检测元件线的视场角βH为4度。在该情况下,检测元件线L2的视线的方向E2相对于光轴Oa向左倾斜2度(|ε2|=0.5×βH),检测元件线L1的视线的方向E1相对于光轴Oa向左倾斜6度(|ε1|=1.5×βH),检测元件线L3的视线的方向E3相对于光轴Oa向右倾斜2度(|ε3|=0.5×βH),检测元件线L4的视线的方向E4相对于光轴Oa向右倾斜6度(|ε4|=1.5×βH)。另外,在图5中,将角度|ε1|~|ε4|图示为比实际的角度大。In order to simplify the description, the field angle β H of each detection element line is assumed to be 4 degrees. In this case, the direction E2 of the line of sight of the detection element line L2 is inclined 2 degrees to the left relative to the optical axis Oa (|ε2|=0.5×β H ), the direction E1 of the line of sight of the detection element line L1 is inclined 6 degrees to the left relative to the optical axis Oa (|ε1|=1.5×β H ), the direction E3 of the line of sight of the detection element line L3 is inclined 2 degrees to the right relative to the optical axis Oa (|ε3|=0.5×β H ), and the direction E4 of the line of sight of the detection element line L4 is inclined 6 degrees to the right relative to the optical axis Oa (|ε4|=1.5×β H ). In addition, in FIG. 5 , the angles |ε1| to |ε4| are shown as being larger than the actual angles.

将对上述的角度|ε1|~|ε4|标注了与倾斜方向相应的正负标号而得到的角度称为检测元件线L1~L4相对于光轴Oa的相对角,由标号ε1~ε4表示。例如在向左倾斜的情况下标注“-”。这样,成为The angles |ε1| to |ε4| are labeled with positive and negative signs corresponding to the tilt direction, and are called the relative angles of the detection element lines L1 to L4 with respect to the optical axis Oa, and are represented by the symbols ε1 to ε4. For example, in the case of tilting to the left, "-" is marked. Thus,

ε1=-|ε1|=-6度 式(2a)ε1=-|ε1|=-6 degrees Formula (2a)

ε2=-|ε2|=-2度 式(2b)ε2=-|ε2|=-2 degrees Formula (2b)

ε3=|ε3|=2度 式(2c)ε3=|ε3|=2 degrees Formula (2c)

ε4=|ε4|=6度 式(2d)。ε4=|ε4|=6 degrees Equation (2d).

进行一般化而利用εI表示第I个(I为1、2、3或者4)检测元件线LI的相对角。Generally speaking, εI is used to represent the relative angle of the I-th (I is 1, 2, 3 or 4) detection element line LI.

基于如以上那样求出的相对角εI和旋转角θ,计算投射位置的方位角X。在计算时利用下述的式(3)的关系。Based on the relative angle εI and the rotation angle θ obtained as described above, the azimuth angle X of the projection position is calculated. The following equation (3) is used for the calculation.

X(θ,I)=θ+εI 式(3)X(θ, I) = θ + εI Formula (3)

在式(3)中,X(θ,I)是表示旋转角θ时的第I个检测元件线LI的视线的方向的方位角。In the formula (3), X(θ, I) is the azimuth angle representing the direction of the line of sight of the I-th detection element line LI when the rotation angle θ is reached.

通过使表示各检测元件线的视线的方向的方位角与被投射和该检测元件线对应的像素线的像素的全景坐标系中的像素位置的方位角相同,能够基于利用将某个方位角作为视线的方向的检测元件得到的像素值,来构成全景坐标系中的相同方位角的像素位置的像素,能够适当地生成全景图像。By making the azimuth angle representing the direction of the line of sight of each detection element line the same as the azimuth angle of the pixel position in the panoramic coordinate system of the pixel projected onto the pixel line corresponding to the detection element line, it is possible to construct pixels at the same azimuth angle in the panoramic coordinate system based on the pixel values obtained using the detection element that uses a certain azimuth angle as the direction of the line of sight, thereby appropriately generating a panoramic image.

因此,使用由式(3)计算的X(θ,I)来表示与旋转角θ时的第I个检测元件线LI对应的像素线SI的像素的投射位置的方位角即可。于是,投射位置计算部32使用式(3)进行投射位置的方位角的计算。但是,当式(3)中的计算结果与表示像素位置的方位角坐标不一致时,将由表示像素位置的方位角坐标中的与上述的计算结果最接近的方位角坐标表示的像素位置确定为投射位置。Therefore, the azimuth of the projection position of the pixel of the pixel line SI corresponding to the I-th detection element line LI at the rotation angle θ can be expressed by using X(θ, I) calculated by formula (3). Thus, the projection position calculation unit 32 calculates the azimuth of the projection position using formula (3). However, when the calculation result in formula (3) is inconsistent with the azimuth coordinate representing the pixel position, the pixel position represented by the azimuth coordinate closest to the above calculation result among the azimuth coordinates representing the pixel position is determined as the projection position.

由投射位置计算部32计算出的投射位置被通知给像素投射部33。The projection position calculated by the projection position calculation unit 32 is notified to the pixel projection unit 33 .

像素投射部33针对提取出的像素线S1~S4的各像素,向由投射位置计算部32计算出的投射位置(X,Y)投射该像素。投射像素是指使像素的像素值与投射位置对应起来。The pixel projection unit 33 projects each pixel of the extracted pixel lines S1 to S4 to the projection position (X, Y) calculated by the projection position calculation unit 32. Projecting a pixel means associating the pixel value of the pixel with the projection position.

在向相同的像素位置投射了2个以上的像素的情况下,像素投射部33将所投射的像素的像素值合成而计算合成像素值。合成也可以是平均的计算。平均可以是单纯平均,也可以是加权平均。When two or more pixels are projected to the same pixel position, the pixel projection unit 33 combines the pixel values of the projected pixels to calculate a combined pixel value. The combination may be an average calculation. The average may be a simple average or a weighted average.

图6示出向全景坐标系的像素位置投射的一例。纵向的θ表示进行了拍摄时的摄像部1的旋转角。横向的X表示全景坐标系的方位角。Fig. 6 shows an example of projection to pixel positions in the panoramic coordinate system. The vertical θ represents the rotation angle of the imaging unit 1 when shooting. The horizontal X represents the azimuth angle of the panoramic coordinate system.

在图6所示的例子中,针对从摄像图像DIN提取出的4个像素线S1~S4的位于彼此相同的垂直方向位置的像素P1~P4,示出与旋转角θ的变化相伴的全景坐标系中的投射位置的方位角X的变化。In the example shown in FIG. 6 , for pixels P1 to P4 located at the same vertical position in four pixel lines S1 to S4 extracted from the captured image DIN, changes in the azimuth angle X of the projection position in the panoramic coordinate system accompanying changes in the rotation angle θ are shown.

在图示的例子中,假定旋转角θ每变化Δθ=1度而进行拍摄的情况。将上述的Δθ称为摄像间隔。在摄像间隔Δθ(度)、摄像部1的旋转的角速度Va(度/秒)以及摄像周期Tf(秒)之间,存在下述的式(4)的关系。In the example shown in the figure, it is assumed that the image is captured every time the rotation angle θ changes by Δθ=1 degree. The above Δθ is called the image capturing interval. There is a relationship of the following formula (4) between the image capturing interval Δθ (degrees), the angular velocity Va (degrees/second) of the rotation of the image capturing unit 1, and the image capturing cycle Tf (seconds).

Δθ(度)=Va(度/秒)×Tf(秒) 式(4)Δθ (degree) = Va (degree/second) × Tf (second) Equation (4)

关于任意的θ,由PI(θ)表示像素PI(I是1、2、3或4)的像素值。在图6中省略PI(θ)中的P,仅示出I(θ)。For any θ, the pixel value of a pixel PI (I is 1, 2, 3, or 4) is represented by PI(θ). In FIG6 , P in PI(θ) is omitted, and only I(θ) is shown.

在图6中,将每个检测元件线的视场角βH设为4度,将全景图像DOUT中的每个像素的水平视场角γH设为1度。In FIG. 6 , the field angle β H of each detection element line is set to 4 degrees, and the horizontal field angle γ H of each pixel in the panoramic image DOUT is set to 1 degree.

摄像图像DIN中的每个像素线的视场角与每个检测元件线的视场角βH相等。因此,在检测元件线由彼此相邻的列构成的情况下,全景图像DOUT的水平方向的空间分辨率是摄像图像DIN的水平方向的空间分辨率的4倍。The field angle of each pixel line in the captured image DIN is equal to the field angle β H of each detection element line. Therefore, when the detection element lines are composed of adjacent columns, the horizontal spatial resolution of the panoramic image DOUT is four times the horizontal spatial resolution of the captured image DIN.

在图6的例子中,在开始扫描后进行最开始的拍摄是θ=1度时,此时,检测元件线L1、L2、L3、L4的视线的方向的方位角X分别为-5度、-1度、+3度、+7度,这些方位角被决定为表示与检测元件线L1、L2、L3、L4对应的像素线S1、S2、S3、S4的投射位置的方位角。In the example of Figure 6, when the first shot is taken after the start of scanning, θ=1 degree. At this time, the azimuth angle X of the direction of the line of sight of the detection element lines L1, L2, L3, and L4 are -5 degrees, -1 degree, +3 degrees, and +7 degrees, respectively. These azimuth angles are determined to represent the azimuth angles of the projection positions of the pixel lines S1, S2, S3, and S4 corresponding to the detection element lines L1, L2, L3, and L4.

进行下一个拍摄是θ=2度时,此时,检测元件线L1、L2、L3、L4的视线的方向的方位角X分别成为-4度、0度、+4度、+8度,这些方位角被决定为表示与检测元件线L1、L2、L3、L4对应的像素线S1、S2、S3、S4的投射位置的方位角。When the next shot is taken at θ=2 degrees, the azimuth angle X of the direction of the line of sight of the detection element lines L1, L2, L3, and L4 becomes -4 degrees, 0 degrees, +4 degrees, and +8 degrees, respectively. These azimuth angles are determined to represent the azimuth angles of the projection positions of the pixel lines S1, S2, S3, and S4 corresponding to the detection element lines L1, L2, L3, and L4.

以下同样,检测元件线L1、L2、L3、L4的视线的方向的方位角伴随着摄像部1的旋转而变化,与此相伴,投射位置变化。Similarly, the azimuth angles of the directions of the lines of sight of the detection element lines L1 , L2 , L3 , and L4 change with the rotation of the imaging unit 1 , and the projection position changes accordingly.

当摄像部1的旋转角θ成为5度时,在像素P1中,得到方位角X=-1度的像素值P1(5)。在θ为1度时,方位角X=-1度的像素值在像素线S2的像素中也作为P2(1)而得到。When the rotation angle θ of the imaging unit 1 is 5 degrees, the pixel value P1(5) with the azimuth angle X=-1 degree is obtained in the pixel P1. When θ is 1 degree, the pixel value P2(1) with the azimuth angle X=-1 degree is also obtained in the pixel of the pixel line S2.

于是,通过将θ=5度时的像素P1的像素值P1(5)与θ=1度时的像素P2的像素值P2(1)合成而得到方位角X=-1度的合成值。Therefore, the pixel value P1(5) of the pixel P1 when θ=5 degrees and the pixel value P2(1) of the pixel P2 when θ=1 degree are combined to obtain a combined value of the azimuth angle X=-1 degree.

关于方位角X=0~2度,分别也是同样的。The same also applies to the azimuth angle X=0 to 2 degrees.

关于方位角X=3度,分别在不同的定时得到θ=1度时的像素P3的像素值P3(1)、θ=5度时的像素P2的像素值P2(5)、以及θ=9度时的像素P1的像素值P1(9),因此,通过将它们合成而得到合成值。Regarding the azimuth angle X=3 degrees, the pixel value P3(1) of the pixel P3 when θ=1 degree, the pixel value P2(5) of the pixel P2 when θ=5 degrees, and the pixel value P1(9) of the pixel P1 when θ=9 degrees are obtained at different timings, and therefore a composite value is obtained by synthesizing them.

关于方位角X=4~6度,分别也是同样的。The same also applies to the azimuth angle X=4 to 6 degrees.

关于方位角X=7度,分别在不同的定时得到θ=1度时的像素P4的像素值P4(1)、θ=5度时的像素P3的像素值P3(5)、θ=9度时的像素P2的像素值P2(9)、以及θ=13度时的像素P1的像素值P1(13),因此,通过将它们合成而得到合成值。Regarding the azimuth angle X=7 degrees, the pixel value P4(1) of the pixel P4 when θ=1 degree, the pixel value P3(5) of the pixel P3 when θ=5 degrees, the pixel value P2(9) of the pixel P2 when θ=9 degrees, and the pixel value P1(13) of the pixel P1 when θ=13 degrees are obtained at different timings, and therefore a composite value is obtained by synthesizing them.

关于方位角X=8度以后,也是同样的。The same applies to the azimuth angle X=8 degrees and above.

如以上那样,从扫描开始后到重复4次拍摄为止,投射像素数Np为1,拍摄为5次以上到8次为止,投射像素数Np为2,拍摄为9次以上到12次为止,投射像素数Np为3,当拍摄成为13次以上时,投射像素数Np成为4。当接近扫描结束时,投射像素数Np以3、2、1逐渐变少。As described above, from the start of scanning until the fourth shooting is repeated, the number of projected pixels Np is 1, the number of projected pixels Np is 2 when the shooting is 5 or more to 8 times, the number of projected pixels Np is 3 when the shooting is 9 or more to 12 times, and when the shooting is 13 or more times, the number of projected pixels Np is 4. When the scanning is close to the end, the number of projected pixels Np gradually decreases from 3, 2, and 1.

通过上述方式得到的合成值被写入到像素投射部33内的全景图像存储部(未图示)。像素投射部33内的全景图像存储部具有与全景坐标系的全部的像素位置对应的存储区域。The synthesized value obtained in the above manner is written into a panoramic image storage unit (not shown) in the pixel projection unit 33. The panoramic image storage unit in the pixel projection unit 33 has a storage area corresponding to all pixel positions in the panoramic coordinate system.

针对在像素线S1~S4的垂直方向上排列的像素以及在全景坐标系的垂直方向上排列的像素位置的全部,同样地进行以上的处理。即,来自像素线S1~S4中的各个像素线的投射是针对该像素线的全部像素进行的,全景坐标系的一个水平方向位置(由一个方位角坐标表示的位置)处的合成值的计算是针对在全景坐标系的该水平方向位置处彼此沿垂直方向排列的多个像素位置的全部而进行的。The above processing is similarly performed for all pixels arranged in the vertical direction of the pixel lines S1 to S4 and all pixel positions arranged in the vertical direction of the panoramic coordinate system. That is, the projection from each pixel line in the pixel lines S1 to S4 is performed for all pixels in the pixel line, and the calculation of the composite value at a horizontal position (a position represented by an azimuth coordinate) in the panoramic coordinate system is performed for all pixel positions arranged in the vertical direction at the horizontal position in the panoramic coordinate system.

由在全景坐标系的垂直方向上排列的1列像素形成列图像。A column image is formed by one column of pixels arranged in the vertical direction of the panoramic coordinate system.

按照每个摄像周期来进行来自各像素线的投射,全景坐标系的各像素位置处的合成在向该像素位置的投射全部结束后进行。Projection from each pixel line is performed in each imaging cycle, and synthesis at each pixel position in the panoramic coordinate system is performed after all projections to the pixel position are completed.

当摄像部1的扫描(从开始点Xa到结束点Xb的旋转)结束、且在扫描的期间通过拍摄得到的各像素线的像素向全景坐标系的投射以及所投射的像素的合成结束后,将由写入到像素投射部33内的全景图像存储部的列图像的集合构成的图像、即通过沿水平方向连结列图像得到的图像Db作为全景图像DOUT而输出。When the scanning of the camera unit 1 (rotation from the starting point Xa to the ending point Xb) is completed, and the projection of the pixels of each pixel line obtained by shooting to the panoramic coordinate system during the scanning and the synthesis of the projected pixels are completed, an image composed of a collection of column images written to the panoramic image storage unit in the pixel projection unit 33, that is, an image Db obtained by connecting the column images in the horizontal direction is output as a panoramic image DOUT.

在上述的全景图像DOUT的生成的处理中,在端部区域(开始点Xa的附近和结束点Xb的附近)以外,向各像素位置投射摄像图像DIN的4个像素。关于只投射了小于4个的像素的端部区域,可以直接使用,也可以不进行像素投射,还可以在像素投射后进行裁剪。In the process of generating the panoramic image DOUT described above, 4 pixels of the camera image DIN are projected to each pixel position except the end area (near the start point Xa and near the end point Xb). The end area where only less than 4 pixels are projected may be used directly, or may not be projected, or may be cropped after pixel projection.

以下,对所生成的全景图像DOUT的空间分辨率和SN比进行研究。Next, the spatial resolution and SN ratio of the generated panoramic image DOUT will be examined.

在上述的例子中,图像传感器的每个检测元件的水平视场角αH和每个检测元件线的视场角βH彼此相等,为4度,全景图像DOUT的每个像素的水平视场角γH为1度。即,在上述的例子中,全景图像DOUT的每个像素的水平视场角γH比每个检测元件线的视场角βH小。此外,摄像间隔Δθ为1度,与全景图像DOUT的每个像素的水平视场角γH相等。In the above example, the horizontal field angle αH of each detection element of the image sensor and the field angle βH of each detection element line are equal to each other, which is 4 degrees, and the horizontal field angle γH of each pixel of the panoramic image DOUT is 1 degree. That is, in the above example, the horizontal field angle γH of each pixel of the panoramic image DOUT is smaller than the field angle βH of each detection element line. In addition, the imaging interval Δθ is 1 degree, which is equal to the horizontal field angle γH of each pixel of the panoramic image DOUT.

为了提高全景图像DOUT的空间分辨率,进一步减小全景图像DOUT的每个像素的水平视场角γH并进一步减小摄像间隔Δθ即可。In order to improve the spatial resolution of the panoramic image DOUT, the horizontal field angle γH of each pixel of the panoramic image DOUT may be further reduced and the imaging interval Δθ may be further reduced.

例如,通过将βH与上述的例子相同地设为4度,将γH设为0.5度,将Δθ设为0.5度,能够使全景图像DOUT的空间分辨率成为图6的例子的2倍。For example, by setting βH to 4 degrees, γH to 0.5 degrees, and Δθ to 0.5 degrees as in the above example, the spatial resolution of the panoramic image DOUT can be doubled as in the example of FIG. 6 .

摄像间隔Δθ通过角速度Va与摄像周期Tf之积给出,因此,为了进一步减小Δθ,降低角速度Va或者进一步缩短摄像周期Tf即可。The imaging interval Δθ is given by the product of the angular velocity Va and the imaging cycle Tf. Therefore, in order to further reduce Δθ, the angular velocity Va may be reduced or the imaging cycle Tf may be further shortened.

在该情况下,如图6的例子那样,摄像间隔Δθ也可以比每个检测元件线的视场角βH小。为此,决定角速度Va和摄像周期Tf使得满足这样的条件即可。如果摄像周期Tf被固定,则决定角速度Va使得满足上述的条件即可。In this case, as in the example of Fig. 6, the imaging interval Δθ may be smaller than the field angle β H of each detection element line. To this end, the angular velocity Va and the imaging cycle Tf may be determined so as to satisfy such conditions. If the imaging cycle Tf is fixed, the angular velocity Va may be determined so as to satisfy the above conditions.

为了提高全景图像DOUT的SN比,增多向全景坐标系的相同像素位置投射的摄像图像DIN的像素的数量(投射像素数)Np即可。为此,增加从摄像图像DIN提取的像素线数(提取线数)N即可。在增加提取线数N的情况下,也可以将图像传感器6的全部的列用作检测元件线。In order to improve the SN ratio of the panoramic image DOUT, the number of pixels (projected pixel number) Np of the camera image DIN projected to the same pixel position of the panoramic coordinate system can be increased. To this end, the number of pixel lines (extracted line number) N extracted from the camera image DIN can be increased. When the number of extracted lines N is increased, all columns of the image sensor 6 can also be used as detection element lines.

为了增多提取线数N,也可以将全景图像DOUT的每个像素的水平视场角γH设定为比每个检测元件线的视场角βH大。In order to increase the number of extraction lines N, the horizontal field angle γ H of each pixel of the panoramic image DOUT may be set larger than the field angle β H of each detection element line.

总之,检测元件线的数量N不限于4,为2以上即可。In short, the number N of detection element lines is not limited to 4, and may be 2 or more.

如以上那样,根据实施方式1,使摄像部旋转,对以不同的旋转角拍摄到的像素线进行合成并连结,由此能够生成全景图像,能够实现全景图像的高分辨率化和高SN比化中的一方或双方。As described above, according to the first embodiment, the imaging unit is rotated to synthesize and connect pixel lines captured at different rotation angles, thereby generating a panoramic image, and achieving one or both of a high resolution and a high SN ratio of the panoramic image.

能够对上述的实施方式施加各种变形。Various modifications can be made to the above-described embodiment.

例如,参照图3等,假定检测元件线L1~L4由二维图像传感器的相连续的列构成的情况进行了说明,但检测元件线L1~L4也可以由二维图像传感器的彼此分离的列构成。例如,如图7所示,也可以将每隔一个的列用作检测元件线L1~L4。此外,也可以将彼此更加远离的列用作检测元件线L1~L4。For example, with reference to FIG. 3 and the like, the case where the detection element lines L1 to L4 are constituted by continuous columns of the two-dimensional image sensor is described, but the detection element lines L1 to L4 may be constituted by columns separated from each other of the two-dimensional image sensor. For example, as shown in FIG. 7 , every other column may be used as the detection element lines L1 to L4. In addition, columns further away from each other may be used as the detection element lines L1 to L4.

在上述的例子中,将图像传感器6的哪个列作为检测元件线是被预先决定的,但也可以构成为,在图像生成系统开始动作时或者摄像部1开始扫描时,由动作控制部4指定用作检测元件线的列。在该情况下,动作控制部4也可以基于表示所指定的列的位置的信息,生成并输出检测元件线位置信息Gp和对应的像素线位置信息Gs。此外,在通过检测元件线的指定而使每个检测元件线的视场角βH变化的情况下,也可以输出变更后的βHIn the above example, which column of the image sensor 6 is used as the detection element line is predetermined, but it may be configured so that when the image generation system starts operating or when the imaging unit 1 starts scanning, the operation control unit 4 specifies the column used as the detection element line. In this case, the operation control unit 4 may generate and output the detection element line position information Gp and the corresponding pixel line position information Gs based on the information indicating the position of the specified column. In addition, when the field angle β H of each detection element line is changed by specifying the detection element line, the changed β H may be output.

每个检测元件线的视场角βH是基于构成检测元件线L1~L4的列相互的关系(例如以列间距为1个单位的距离)而计算的。例如如图7所示,在将每隔一个的列用作检测元件线L1~L4的情况下,每个检测元件的水平视场角αH的2倍成为每个检测元件线的视场角βHThe viewing angle βH of each detection element line is calculated based on the relationship between the columns constituting the detection element lines L1 to L4 (for example, the distance with the column pitch as 1 unit). For example, as shown in FIG7 , when every other column is used as the detection element lines L1 to L4, the viewing angle βH of each detection element is twice the horizontal viewing angle αH .

在图3所示的例子中,检测元件线L1~L4以包含摄像部1的光轴Oa和旋转轴线Ac的平面(中心面)为中心而对称地配置。但是,这一点不是必须的。例如,检测元件线L1~L4也可以全部配置在上述的中心面的一侧。In the example shown in FIG3 , the detection element lines L1 to L4 are arranged symmetrically with the plane (center plane) containing the optical axis Oa and the rotation axis Ac of the imaging unit 1 as the center. However, this is not essential. For example, the detection element lines L1 to L4 may all be arranged on one side of the above-mentioned center plane.

期望以如下方式选择检测元件线,即,与该检测元件线的检测元件对应的像素在摄像图像DIN中位于接近透镜畸变小的光轴Oa的区域、即中心区域。在上述的像素(即,与检测元件线的检测元件对应的像素)位于假定透镜畸变的影响的区域的情况下,期望通过预处理进行透镜畸变校正。It is desirable to select a detection element line in such a manner that the pixels corresponding to the detection elements of the detection element line are located in an area close to the optical axis Oa where lens distortion is small, i.e., in the central area, in the captured image DIN. When the above-mentioned pixels (i.e., the pixels corresponding to the detection elements of the detection element line) are located in an area where the influence of lens distortion is assumed, it is desirable to perform lens distortion correction by preprocessing.

在参照图2等说明的结构中,摄像部1被支承为,使摄像光学系统7的主点Q位于旋转轴线Ac上。但是,这一点不是必须的。In the configuration described with reference to FIG. 2 and the like, the imaging unit 1 is supported so that the principal point Q of the imaging optical system 7 is located on the rotation axis Ac. However, this is not essential.

例如如图8所示,也可以将摄像部1支承为,使摄像光学系统7的主点Q位于与旋转轴线Ac分离了距离Rs的位置。For example, as shown in FIG. 8 , the imaging unit 1 may be supported so that the principal point Q of the imaging optical system 7 is located at a position separated from the rotation axis Ac by a distance Rs.

但是,距离Rs越大,从旋转轴线Ac观察被摄体的视线的方向例如方位角与从摄像光学系统7的主点Q观察相同被摄体的视线的方向例如方位角之差越大。为了使上述的方位角之差不变大,距离Rs最好较小。However, the larger the distance Rs is, the larger the difference between the direction, such as the azimuth, of the line of sight of the subject from the rotation axis Ac and the direction, such as the azimuth, of the line of sight of the same subject from the principal point Q of the imaging optical system 7 becomes. In order to prevent the above azimuth difference from increasing, the distance Rs is preferably small.

在上述的例子中,旋转驱动系统2使摄像部1进行等角速度运动。In the above-described example, the rotation drive system 2 causes the imaging unit 1 to move at a constant angular velocity.

在该情况下,摄像部1在进行用于拍摄的曝光的期间也持续进行旋转。由于一边旋转一边进行曝光,因此,图像中有时产生模糊。但是,如果拍摄时的曝光时间充分短,则能够将模糊所引起的图像劣化抑制得较小。此外,也可以对通过拍摄得到的图像施加模糊补偿。In this case, the camera unit 1 continues to rotate during the exposure for shooting. Since the exposure is performed while rotating, blur may occur in the image. However, if the exposure time during shooting is sufficiently short, the image degradation caused by blur can be suppressed to a small extent. In addition, blur compensation may be applied to the image obtained by shooting.

在旋转驱动系统进行等角速度运动的情况下,能够以比较短的时间生成全景图像。When the rotation drive system moves at a constant angular velocity, a panoramic image can be generated in a relatively short time.

取而代之,旋转驱动系统2也可以使摄像部1进行交替地重复进行旋转与停止的步进旋转运动。Alternatively, the rotation drive system 2 may cause the imaging unit 1 to perform a step rotation motion in which rotation and stop are alternately repeated.

步进旋转运动能够通过使用步进电机来实现。在该情况下,期望在停止的期间进行曝光,在未进行曝光时进行旋转。The stepping rotational motion can be realized by using a stepping motor. In this case, it is desirable to perform exposure during the stop period and to perform rotation when not performing exposure.

如果旋转驱动系统2进行步进旋转运动,并在停止的期间进行曝光,则能够生成运动模糊少的全景图像。If the rotation drive system 2 performs step-by-step rotational motion and performs exposure during the stop period, a panoramic image with less motion blur can be generated.

实施方式2.Implementation method 2.

图9示出本发明的实施方式2的图像生成系统。FIG. 9 shows an image generation system according to Embodiment 2 of the present invention.

图9所示的图像生成系统与图1的图像生成系统大致相同,但代替图1的图像处理装置3、动作控制部4以及图像传感器6而具备图像处理装置3b、动作控制部4b以及图像传感器6b。The image generation system shown in FIG. 9 is substantially the same as the image generation system of FIG. 1 , but includes an image processing device 3 b , an operation control unit 4 b , and an image sensor 6 b instead of the image processing device 3 , the operation control unit 4 , and the image sensor 6 of FIG. 1 .

图9的图像传感器6b与图1的图像传感器6大致相同,但在检测元件线L1~L4设置有光学滤波器。例如,如图10所示,以覆盖检测元件线L1~L4的方式设置有光学滤波器F1~F4。光学滤波器F1~F4的透射率相互不同。The image sensor 6b of Fig. 9 is substantially the same as the image sensor 6 of Fig. 1, but optical filters are provided on the detection element lines L1 to L4. For example, as shown in Fig. 10, optical filters F1 to F4 are provided to cover the detection element lines L1 to L4. The transmittances of the optical filters F1 to F4 are different from each other.

设置透射率不同的光学滤波器F1~F4的结果是,在检测元件线L1~L4中,以相互不同的曝光量进行拍摄,得到与不同的曝光量对应的像素值。As a result of providing the optical filters F1 to F4 having different transmittances, images are captured at different exposures in the detection element lines L1 to L4 , and pixel values corresponding to the different exposures are obtained.

图9的动作控制部4b与图1的动作控制部4大致相同,但针对与检测元件线对应的各个像素线,将与设置于该检测元件线的光学滤波器FI(I是1、2、3或4)的透射率相应的权重wI(I是1、2、3或4)存储于内部的参数存储部。The action control unit 4b of Figure 9 is substantially the same as the action control unit 4 of Figure 1 , but for each pixel line corresponding to the detection element line, a weight wI (I is 1, 2, 3 or 4) corresponding to the transmittance of the optical filter FI (I is 1, 2, 3 or 4) provided on the detection element line is stored in an internal parameter storage unit.

与透射率相应的权重wI例如在光学滤波器的透射率为μ的情况下,是伴随(1-μ)的增加而变大的值,例如与(1-μ)成比例的值。取而代之,也可以是伴随透射率μ的倒数的增加而变大的值,例如与μ的倒数成比例的值。The weight wI corresponding to the transmittance is, for example, a value that increases with the increase of (1-μ) when the transmittance of the optical filter is μ, such as a value proportional to (1-μ). Alternatively, it may be a value that increases with the increase of the inverse of the transmittance μ, such as a value proportional to the inverse of μ.

图9的图像处理装置3b与图9的图像处理装置3大致相同,但也可以代替像素投射部33而具备像素投射部33b。The image processing device 3 b in FIG. 9 is substantially the same as the image processing device 3 in FIG. 9 , but may include a pixel projection unit 33 b instead of the pixel projection unit 33 .

像素投射部33b与图1的像素投射部33大致相同,但在对投射到全景坐标系的相同的像素位置的多个像素线的像素进行合成时,使用存储在动作控制部4b的参数存储部中的权重wI来计算加权平均。The pixel projection unit 33b is substantially the same as the pixel projection unit 33 of FIG. 1 , but when synthesizing pixels of a plurality of pixel lines projected to the same pixel position in the panoramic coordinate system, a weighted average is calculated using the weights wI stored in the parameter storage unit of the motion control unit 4b.

根据实施方式2,通过在图像传感器的多个检测元件线中设置透射率不同的光学滤波器,能够得到与相互不同的曝光量对应的像素值。因此,通过对与多个检测元件线的检测元件对应的像素的像素值进行合成,能够生成动态范围更宽的全景图像。According to Embodiment 2, by providing optical filters with different transmittances in a plurality of detection element lines of an image sensor, pixel values corresponding to different exposure amounts can be obtained. Therefore, by synthesizing the pixel values of pixels corresponding to the detection elements of a plurality of detection element lines, a panoramic image with a wider dynamic range can be generated.

实施方式3.Implementation method 3.

图11示出本发明的实施方式3的图像生成系统。FIG. 11 shows an image generation system according to Embodiment 3 of the present invention.

图11所示的图像生成系统与图1的图像生成系统大致相同,但代替图1的图像处理装置3、动作控制部4以及图像传感器6而具备图像处理装置3c、动作控制部4c以及图像传感器6c。The image generation system shown in FIG. 11 is substantially the same as the image generation system of FIG. 1 , but includes an image processing device 3 c , an operation control unit 4 c , and an image sensor 6 c instead of the image processing device 3 , the operation control unit 4 , and the image sensor 6 of FIG. 1 .

图11的图像传感器6c能够按照每个检测元件线而改变曝光时间TeI。The image sensor 6c of FIG. 11 can change the exposure time TeI for each detection element line.

每个检测元件线的曝光时间TeI的控制由动作控制部4c进行。动作控制部4c还生成并输出与曝光时间TeI对应的权重wI(I是1、2、3或4)。The exposure time TeI of each detection element line is controlled by the operation control unit 4c. The operation control unit 4c also generates and outputs a weight wI (I is 1, 2, 3 or 4) corresponding to the exposure time TeI.

曝光时间TeI越短,则将与曝光时间相应的权重wI设为越大的值。例如将与曝光时间TeI的倒数成比例的值设为权重wI。The shorter the exposure time TeI is, the larger the weight wI corresponding to the exposure time is. For example, the weight wI is a value proportional to the inverse of the exposure time TeI.

图像处理装置3c与图1的图像处理装置3大致相同,但代替像素投射部33而具备像素投射部33c。The image processing device 3 c is substantially the same as the image processing device 3 in FIG. 1 , but includes a pixel projecting unit 33 c instead of the pixel projecting unit 33 .

像素投射部33c与图1的像素投射部33大致相同,但在对被投射到全景坐标系的相同的像素位置的多个像素线的像素进行合成时,使用从动作控制部4c供给的权重wI来计算加权平均。The pixel projection unit 33c is substantially the same as the pixel projection unit 33 of FIG. 1 , but when synthesizing pixels of a plurality of pixel lines projected to the same pixel position in the panoramic coordinate system, a weighted average is calculated using the weight wI supplied from the operation control unit 4c.

根据实施方式3,能够从图像传感器的多个检测元件线得到与相互不同的曝光时间对应的像素值。因此,通过对与多个检测元件线的检测元件对应的像素的像素值进行合成,能够生成动态范围更宽的全景图像。According to Embodiment 3, pixel values corresponding to different exposure times can be obtained from a plurality of detection element lines of the image sensor. Therefore, by synthesizing the pixel values of pixels corresponding to the detection elements of the plurality of detection element lines, a panoramic image with a wider dynamic range can be generated.

实施方式4.Implementation method 4.

图12示出本发明的实施方式4的图像生成系统。FIG. 12 shows an image generation system according to Embodiment 4 of the present invention.

图12所示的图像生成系统与图1的图像生成系统大致相同,但代替图1的图像处理装置3和动作控制部4而具备图像处理装置3d和动作控制部4d。The image generation system shown in FIG. 12 is substantially the same as the image generation system of FIG. 1 , but includes an image processing device 3 d and an operation control unit 4 d instead of the image processing device 3 and the operation control unit 4 of FIG. 1 .

图像处理装置3d与图像处理装置3大致相同,但附加有参照图像存储部36和高画质化处理部37。The image processing device 3 d is substantially the same as the image processing device 3 , but is additionally provided with a reference image storage unit 36 and an image quality improvement processing unit 37 .

图12所示的图像生成系统以参照图像生成模式或实时图像生成模式进行动作。在参照图像生成模式中,以高分辨率生成高灵敏度的全景图像,作为参照图像Dr保存于参照图像存储部36,在实时图像生成模式中,对实时取得的通常的全景图像Db进行使用了参照图像Dr的高画质化处理。The image generation system shown in Fig. 12 operates in a reference image generation mode or a real-time image generation mode. In the reference image generation mode, a high-sensitivity panoramic image is generated with high resolution and stored in the reference image storage unit 36 as a reference image Dr. In the real-time image generation mode, a high-quality image is processed using the reference image Dr on a normal panoramic image Db acquired in real time.

参照图像生成模式中的动作例如定期地进行或者根据用户的要求而进行。The operation in the reference image generation mode is performed, for example, periodically or in response to a user's request.

在生成参照图像Dr时,动作控制部4d使摄像部1、旋转驱动系统2、以及图像处理装置3d的像素线提取部31、投射位置计算部32和像素投射部33与通常的全景图像的生成同样地进行动作。但是,摄像部1、旋转驱动系统2、像素线提取部31以及投射位置计算部32的动作的条件如以下那样不同。When generating the reference image Dr, the operation control unit 4d causes the imaging unit 1, the rotation drive system 2, and the pixel line extraction unit 31, the projection position calculation unit 32, and the pixel projection unit 33 of the image processing device 3d to operate in the same manner as in the generation of a normal panoramic image. However, the operating conditions of the imaging unit 1, the rotation drive system 2, the pixel line extraction unit 31, and the projection position calculation unit 32 are different as follows.

首先,动作控制部4d将基于旋转驱动系统2的旋转的角速度设定为更低的值。即,使摄像部1以比生成通常的全景图像时低的角速度Va进行旋转。降低角速度Va的结果是,能够减小摄像间隔Δθ。First, the operation control unit 4d sets the angular velocity of the rotation of the rotation drive system 2 to a lower value. That is, the imaging unit 1 is rotated at a lower angular velocity Va than when generating a normal panoramic image. As a result of reducing the angular velocity Va, the imaging interval Δθ can be reduced.

动作控制部4d也可以如上述那样变更旋转角速度并增多提取线数N。The operation control unit 4 d may change the rotation angular velocity and increase the number of extraction lines N as described above.

为了增多提取线数N,也可以使图像传感器的每个检测元件线的视场角βH小于参照图像Dr的每个像素的水平视场角γHIn order to increase the number of extraction lines N, the field angle β H of each detection element line of the image sensor may be made smaller than the horizontal field angle γ H of each pixel of the reference image Dr.

每个检测元件线的视场角βH的变更是通过动作控制部4d变更摄像光学系统7的光学倍率来实现的。例如,能够通过增大光学倍率而减小βH。取而代之,为了变更视场角βH,动作控制部4d也可以变更所提取的像素线。例如,能够通过从将摄像DIN中的每隔一个的列提取为像素线S1~S4的状态变更为将相连续的列提取为像素线S1~S4的状态,从而减小βHThe change of the field angle βH of each detection element line is achieved by the operation control unit 4d changing the optical magnification of the imaging optical system 7. For example, βH can be reduced by increasing the optical magnification. Alternatively, in order to change the field angle βH , the operation control unit 4d may change the extracted pixel lines. For example, βH can be reduced by changing from a state in which every other column in the imaging DIN is extracted as pixel lines S1 to S4 to a state in which continuous columns are extracted as pixel lines S1 to S4.

在变更了所提取的像素线的情况下,动作控制部4d也可以将表示变更后的像素线的位置的信息Gs传递给像素线提取部31,将表示与变更后的像素线对应的检测元件线的位置的信息Gp以及变更后的视场角βH传达给投射位置计算部32。When the extracted pixel line is changed, the action control unit 4d may also transmit information Gs indicating the position of the changed pixel line to the pixel line extraction unit 31, and convey information Gp indicating the position of the detection element line corresponding to the changed pixel line and the changed field of view angle βH to the projection position calculation unit 32.

由像素投射部33生成的全景图像作为参照图像Dr而存储在参照图像存储部36中。The panoramic image generated by the pixel projection unit 33 is stored in the reference image storage unit 36 as a reference image Dr.

在实时图像生成模式中,摄像部1、旋转驱动系统2、以及图像处理装置3d的像素线提取部31、投射位置计算部32和像素投射部33与在实施方式1中说明的各部分同样地进行动作,由像素投射部33生成的全景图像Db被供给到高画质化处理部37。In the real-time image generation mode, the camera unit 1, the rotation drive system 2, and the pixel line extraction unit 31, the projection position calculation unit 32 and the pixel projection unit 33 of the image processing device 3d operate in the same manner as the respective parts described in Implementation Example 1, and the panoramic image Db generated by the pixel projection unit 33 is supplied to the high image quality processing unit 37.

高画质化处理部37对全景图像Db进行使用了存储在参照图像存储部36中的参照图像Dr的高画质化。将作为高画质化的结果而得到的图像Dc作为实时的全景图像DOUT输出。The image quality enhancement processing unit 37 enhances the image quality of the panoramic image Db using the reference image Dr stored in the reference image storage unit 36. The image Dc obtained as a result of the image quality enhancement is output as a real-time panoramic image DOUT.

作为使用了参照图像Dr的高画质化处理,例如,可以进行使用了联合双边滤波器的边缘保存型平滑化滤波器处理,也可以进行使用了引导滤波器的引导高分辨率化处理。As the image quality enhancement processing using the reference image Dr, for example, edge-preserving smoothing filter processing using a joint bilateral filter may be performed, or guided high-resolution enhancement processing using a guided filter may be performed.

通过如上述那样进行高画质化处理,能够生成与以往相比为高分辨率或高感光度的全景图像。例如在将被摄体中的不变化的部分作为背景图像保存并针对变化的部分实时地取得摄像图像的用途中,能够在整体上实现图像的高画质化。By performing the high-quality image processing as described above, a panoramic image with a higher resolution or higher sensitivity than before can be generated. For example, in the application of storing the unchanged part of the subject as the background image and obtaining the camera image of the changed part in real time, the overall image quality can be improved.

实施方式1~4的图像处理装置和动作控制部的全部或一部分能够由处理电路构成。All or part of the image processing devices and the operation control unit in Embodiments 1 to 4 can be constituted by a processing circuit.

例如,可以分别由单独的处理电路实现图像处理装置3、3b、3c或3d以及动作控制部4、4b、4c或4d的各部分的功能,也可以统一由1个处理电路实现多个部分的功能。For example, the functions of each part of the image processing device 3, 3b, 3c or 3d and the action control unit 4, 4b, 4c or 4d may be implemented by separate processing circuits, or the functions of multiple parts may be implemented by one processing circuit.

处理电路可以由硬件构成,也可以由软件、即程序化的计算机构成。The processing circuit may be constituted by hardware or by software, that is, a programmed computer.

也可以是,由硬件实现图像处理装置3、3b、3c或3d以及动作控制部4、4b、4c或4d的各部分的功能中的一部分,由软件实现其他部分。Some of the functions of the image processing device 3, 3b, 3c or 3d and the operation control unit 4, 4b, 4c or 4d may be implemented by hardware, and the other parts may be implemented by software.

图13示出实现图像处理装置3、3b、3c或3d以及动作控制部4、4b、4c或4d的全部功能的计算机9的结构例。FIG. 13 shows a configuration example of a computer 9 that realizes all functions of the image processing device 3 , 3 b , 3 c , or 3 d and the operation control unit 4 , 4 b , 4 c , or 4 d .

在图示的例子中,计算机9具有处理器91和存储器92。In the example shown in the figure, the computer 9 includes a processor 91 and a memory 92 .

在存储器92中,存储有用于实现图像处理装置3、3b、3c或3d以及动作控制部4、4b、4c或4d的各部的功能的程序。The memory 92 stores a program for realizing the functions of each section of the image processing device 3 , 3 b , 3 c , or 3 d and the operation control section 4 , 4 b , 4 c , or 4 d .

处理器91例如使用CPU(Central Processing Unit:中央处理单元)、GPU(Graphics Processing Unit:图形处理单元)、微处理器、微控制器、DSP(Digital SignalProcessor:数字信号处理器)等。As the processor 91 , for example, a CPU (Central Processing Unit), a GPU (Graphics Processing Unit), a microprocessor, a microcontroller, a DSP (Digital Signal Processor), or the like is used.

存储器92例如使用RAM(Random Access Memory:随机存取存储器)、ROM(ReadOnly Memory:只读存储器)、闪存、EPROM(Erasable Programmable ROM:可擦可编程只读存储器)或者EEPROM(Electrically Erasable Programmable ROM:电可擦可编程只读存储器)等半导体存储器、磁盘、光盘、或者光磁盘等。The memory 92 uses, for example, RAM (Random Access Memory), ROM (Read Only Memory), flash memory, EPROM (Erasable Programmable ROM) or EEPROM (Electrically Erasable Programmable ROM) or other semiconductor memories, magnetic disks, optical disks, or magneto-optical disks.

处理器91通过执行存储器92所存储的程序来实现图像处理装置3、3b、3c或3d以及动作控制部4、4b、4c或4d的功能。The processor 91 implements the functions of the image processing device 3 , 3 b , 3 c , or 3 d and the operation control unit 4 , 4 b , 4 c , or 4 d by executing the program stored in the memory 92 .

在图像处理装置3、3b、3c或3d的功能中包含全景图像的生成。The functions of the image processing device 3, 3b, 3c or 3d include generation of a panoramic image.

在动作控制部4、4b、4c或4d的功能中包含旋转驱动系统的控制以及摄像光学系统的控制。The functions of the operation control unit 4, 4b, 4c, or 4d include control of the rotation drive system and control of the imaging optical system.

图13的计算机包含单一的处理器,但也可以包含2个以上的处理器。The computer in FIG. 13 includes a single processor, but may include two or more processors.

上述的处理电路也可以附随于图像传感器6。即,图像处理装置3、3b、3c或3d以及动作控制部4、4b、4c或4d能够安装在附随于图像传感器6的处理电路中。取而代之,也可以将图像处理装置3、3b、3c或3d以及动作控制部4、4b、4c或4d安装在能够经由通信网而与图像传感器6连接的云服务器上。The above-mentioned processing circuit may also be attached to the image sensor 6. That is, the image processing device 3, 3b, 3c or 3d and the motion control unit 4, 4b, 4c or 4d may be installed in the processing circuit attached to the image sensor 6. Alternatively, the image processing device 3, 3b, 3c or 3d and the motion control unit 4, 4b, 4c or 4d may be installed on a cloud server that can be connected to the image sensor 6 via a communication network.

图像处理装置3、3b、3c或3d以及动作控制部4、4b、4c或4d也可以安装在通信便携终端例如智能手机、遥控器内。The image processing device 3, 3b, 3c or 3d and the action control unit 4, 4b, 4c or 4d may also be installed in a communication portable terminal such as a smart phone or a remote controller.

图像生成系统也可以应用于家电产品。在该情况下,图像处理装置3、3b、3c或3d以及动作控制部4、4b、4c或4d也可以安装在HEMS(Home Energy Management System:家庭能源管理系统)控制器内。The image generation system may also be applied to home appliances. In this case, the image processing device 3, 3b, 3c or 3d and the motion control unit 4, 4b, 4c or 4d may also be installed in a HEMS (Home Energy Management System) controller.

以下,参照图14~图16来说明由图13的计算机实现图12的图像生成系统的图像处理装置3d和动作控制部4d的功能的情况下的处理器中的处理步骤。Hereinafter, a processing procedure in a processor when the functions of the image processing device 3 d and the operation control unit 4 d of the image generation system of FIG. 12 are realized by the computer of FIG. 13 will be described with reference to FIGS. 14 to 16 .

图14示出处理步骤的概要。FIG14 shows an overview of the processing steps.

在图14所示的步骤中,首先在步骤ST1中,进行使图像生成系统以参照图像生成模式进行动作还是以实时图像生成模式进行动作的判定。In the steps shown in FIG. 14 , first in step ST1 , a determination is made as to whether the image generation system is to be operated in the reference image generation mode or the real-time image generation mode.

参照图像生成模式中的动作例如可以定期地进行,也可以根据用户的要求进行。The operation in the reference image generation mode may be performed, for example, periodically or in response to a user's request.

当应该以实时图像生成模式进行动作时,进行实时图像生成(ST2)。When the operation is to be performed in the real-time image generation mode, real-time image generation is performed (ST2).

当应该以参照图像生成模式进行动作时,进行参照图像生成(ST3)。When the operation is to be performed in the reference image generation mode, reference image generation is performed (ST3).

图15示出实时图像生成模式中的动作(ST2)的步骤。FIG. 15 shows the steps of the operation ( ST2 ) in the real-time image generation mode.

以下,假定摄像部1从开始点Xa旋转至结束点Xb而生成全景图像的情况。将图像传感器6的检测元件阵列中的哪个列设为检测元件线是被预先决定的,检测元件线位置信息Gp和像素线位置信息Gs预先存储在动作控制部4d的参数存储部中。此外,全景图像的每个像素的水平视场角γH也是被预先决定的。In the following, it is assumed that the imaging unit 1 rotates from the starting point Xa to the ending point Xb to generate a panoramic image. Which column in the detection element array of the image sensor 6 is set as the detection element line is predetermined, and the detection element line position information Gp and the pixel line position information Gs are stored in advance in the parameter storage unit of the motion control unit 4d. In addition, the horizontal field angle γH of each pixel of the panoramic image is also predetermined.

在步骤ST11中,动作控制部4d决定动作条件。在这里所说的动作条件中包含摄像部1的旋转的角速度Va、摄像周期Tf、以及每个检测元件线的视场角βHIn step ST11, the operation control unit 4d determines the operation conditions. The operation conditions here include the angular velocity Va of the rotation of the imaging unit 1, the imaging cycle Tf, and the field angle βH of each detection element line.

在步骤ST12中,动作控制部4d对摄像光学系统7的光学倍率进行控制。光学倍率被控制为每个检测元件线的视场角βH成为在步骤ST11中决定的值。In step ST12, the operation control unit 4d controls the optical magnification of the imaging optical system 7. The optical magnification is controlled so that the field angle βH of each detection element line becomes the value determined in step ST11.

在步骤ST13中,动作控制部4d将每个检测元件线的视场角βH通知给投射位置计算部32。In step ST13, the operation control unit 4d notifies the projection position calculation unit 32 of the field angle βH of each detection element line.

在步骤ST14中,动作控制部4d将检测元件线位置信息Gp通知给投射位置计算部32,将像素线位置信息Gs通知给像素线提取部31。In step ST14 , the operation control unit 4 d notifies the projection position calculation unit 32 of the detection element line position information Gp, and notifies the pixel line extraction unit 31 of the pixel line position information Gs.

步骤ST13的处理能够与步骤ST12的处理并行地进行,步骤ST14的处理能够与步骤ST11~ST13的处理并行地进行。The process of step ST13 can be performed in parallel with the process of step ST12 , and the process of step ST14 can be performed in parallel with the processes of steps ST11 to ST13 .

在步骤ST15中,动作控制部4d使摄像部1的扫描开始。In step ST15 , the operation control unit 4 d starts scanning by the imaging unit 1 .

在步骤ST16中,图像传感器6进行拍摄(取得1帧图像)。例如按照在步骤ST11中决定的每个摄像周期Tf进行拍摄。摄像图像DIN被输出到像素线提取部31。In step ST16 , the image sensor 6 performs imaging (acquires one frame of image). For example, imaging is performed at each imaging cycle Tf determined in step ST11 . The captured image DIN is output to the pixel line extraction unit 31 .

在步骤ST17中,像素线提取部31基于在步骤ST14中取得的像素线位置信息Gs,从摄像图像DIN中提取多个像素线S1~S4。In step ST17 , the pixel line extraction unit 31 extracts a plurality of pixel lines S1 to S4 from the captured image DIN based on the pixel line position information Gs acquired in step ST14 .

在步骤ST18中,动作控制部4d取得进行步骤ST16中的拍摄时的旋转角θ,并将其通知给投射位置计算部32。In step ST18 , the operation control unit 4 d acquires the rotation angle θ when the imaging in step ST16 is performed, and notifies the projection position calculation unit 32 of the acquisition angle θ.

在步骤ST19中,投射位置计算部32使用在步骤ST13中通知的每个检测元件线的视场角βH、在步骤ST14中通知的检测元件线位置信息Gp、以及在步骤ST18中通知的旋转角θ来计算投射位置。In step ST19 , the projection position calculation unit 32 calculates the projection position using the field angle β H of each detection element line notified in step ST13 , the detection element line position information Gp notified in step ST14 , and the rotation angle θ notified in step ST18 .

步骤ST18和ST19的处理能够与步骤ST17的处理并行地进行。The processing of steps ST18 and ST19 can be performed in parallel with the processing of step ST17.

在步骤ST20中,像素投射部33进行投射和合成、以及向内部的全景图像存储部的写入。在投射中,将在步骤ST17中提取出的像素线的各像素与在步骤ST19中计算出的投射位置对应起来。In step ST20 , the pixel projection unit 33 performs projection and synthesis, and writes the image to the internal panoramic image storage unit. In projection, each pixel of the pixel line extracted in step ST17 is associated with the projection position calculated in step ST19 .

在步骤ST21中,动作控制部4d判定摄像部1的摄像方向是否到达了结束点Xb。In step ST21 , the operation control unit 4 d determines whether the imaging direction of the imaging unit 1 has reached the end point Xb.

如果未到达Xb,则返回步骤ST16。在该情况下,在下一个摄像周期进行拍摄。If it has not reached Xb, the process returns to step ST16. In this case, the image is taken in the next image-taking cycle.

如果到达Xb,则进入步骤ST22和ST23。If it reaches Xb, it proceeds to steps ST22 and ST23.

在步骤ST22中,使摄像部1的扫描结束。In step ST22 , the scanning by the imaging unit 1 is terminated.

在步骤ST23中,高画质化处理部37针对写入到像素投射部33内的全景图像存储部的1帧的全景图像,使用存储于参照图像存储部36的参照图像Dr来进行高画质化。In step ST23 , the image quality improvement processing unit 37 improves the image quality of the panoramic image of one frame written into the panoramic image storage unit in the pixel projection unit 33 using the reference image Dr stored in the reference image storage unit 36 .

在步骤ST22和ST23结束之后,结束处理。After steps ST22 and ST23 are completed, the processing is terminated.

图16示出参照图像生成模式下的动作(ST3)的步骤。FIG. 16 shows the procedure of the operation (ST3) in the reference image generation mode.

图16所示的步骤中的步骤ST11~ST22与图15所示的步骤相同。但是,动作条件不同。Among the steps shown in Fig. 16, steps ST11 to ST22 are the same as the steps shown in Fig. 15. However, the operating conditions are different.

例如,在步骤ST11中,将角速度Va设定为更低。此外,将βH设定为比γH小。For example, in step ST11, the angular velocity Va is set to be lower. Also, βH is set to be smaller than γH .

在图16中,图15的步骤ST23被置换为步骤ST24。In FIG. 16 , step ST23 in FIG. 15 is replaced by step ST24 .

在步骤ST24中,将生成的全景图像作为参照图像Dr写入到参照图像存储部36。In step ST24 , the generated panoramic image is written into the reference image storage unit 36 as the reference image Dr.

另外,在步骤ST11中决定的动作条件中的任意动作条件被预先决定的情况下,也可以使用其值。此外,在没有预先决定将图像传感器6的检测元件阵列中的哪个列设为检测元件线的情况下,也可以决定将哪个列设为检测元件线,并且生成检测元件线位置信息Gp和像素线位置信息Gs。此外,全景图像的每个像素的水平视场角γH也可以在步骤ST11中决定。In addition, when any of the operating conditions determined in step ST11 is predetermined, its value may be used. In addition, when it is not predetermined which column in the detection element array of the image sensor 6 is set as the detection element line, it may be determined which column is set as the detection element line, and the detection element line position information Gp and the pixel line position information Gs are generated. In addition, the horizontal field angle γ H of each pixel of the panoramic image may also be determined in step ST11.

由图13的计算机实现图1、图9或图11的图像生成系统的图像处理装置3、3b或3c或3d以及动作控制部4、4b或4c的功能时的处理器中的处理步骤与图15的步骤ST11~ST22的处理是同样的。When the functions of the image processing device 3, 3b or 3c or 3d and the action control unit 4, 4b or 4c of the image generating system of Figure 1, Figure 9 or Figure 11 are implemented by the computer of Figure 13, the processing steps in the processor are the same as the processing of steps ST11 to ST22 of Figure 15.

以上,对本发明的实施方式进行了说明,但本发明不限于这些实施方式。As mentioned above, although embodiment of this invention was described, this invention is not limited to these embodiment.

例如,虽然将实施方式4作为针对实施方式1的变形而进行了说明,但针对实施方式2和3,也能够施加同样的变形。此外,关于实施方式1而说明的变形也能够应用于实施方式2~4。For example, although Embodiment 4 has been described as a modification of Embodiment 1, similar modifications can be applied to Embodiments 2 and 3. Furthermore, the modifications described with respect to Embodiment 1 can also be applied to Embodiments 2 to 4.

在实施方式1~4中,像素线提取部31从自摄像部1输出的摄像图像DIN中提取像素线,但也可以从摄像部1仅输出应提取的像素线。在该情况下,不需要像素线提取部31。In the first to fourth embodiments, the pixel line extraction unit 31 extracts pixel lines from the captured image DIN output from the imaging unit 1 , but only pixel lines to be extracted may be output from the imaging unit 1 . In this case, the pixel line extraction unit 31 is unnecessary.

在实施方式1~4中,作为图像传感器而使用了二维图像传感器,但取而代之,也可以由相互平行配置的多个一维图像传感器构成图像传感器6。在该情况下,也不需要像素线提取部31。In Embodiments 1 to 4, a two-dimensional image sensor is used as the image sensor, but instead, the image sensor 6 may be composed of a plurality of one-dimensional image sensors arranged in parallel with each other. In this case, the pixel line extraction unit 31 is also unnecessary.

在实施方式1~4中,图像传感器为热图像传感器,但这一点不是必须的,图像传感器也可以是热图像传感器以外的图像传感器。例如也可以是接受可视光而进行拍摄的图像传感器。In the first to fourth embodiments, the image sensor is a thermal image sensor, but this is not essential, and the image sensor may be an image sensor other than a thermal image sensor. For example, it may be an image sensor that receives visible light and performs imaging.

如以上那样,根据本发明,通过连结一边使摄像部旋转一边拍摄而得到的图像,能够实现全景图像的高分辨率化和高SN比化中的至少一方。As described above, according to the present invention, by connecting images captured while rotating the imaging unit, it is possible to achieve at least one of a higher resolution and a higher SN ratio of the panoramic image.

以上,对本发明的图像生成系统进行了说明,但构成图像生成系统的图像处理装置、由图像生成系统实施的图像生成方法、由图像处理装置实施的图像处理方法也构成本发明的一部分。此外,使计算机执行上述装置或方法中的处理的程序、以及能够由记录有该程序的计算机读取的记录介质例如非暂时的记录介质也构成本发明的一部分。The image generation system of the present invention has been described above, but the image processing device constituting the image generation system, the image generation method implemented by the image generation system, and the image processing method implemented by the image processing device also constitute a part of the present invention. In addition, a program that causes a computer to execute the processing in the above-mentioned device or method, and a recording medium such as a non-transitory recording medium that can be read by a computer recording the program also constitute a part of the present invention.

附图标记说明Description of Reference Numerals

1摄像部,2旋转驱动系统,3、3b、3c、3d图像处理装置,4、4b、4c、4d动作控制部,6、6b、6c图像传感器,7摄像光学系统,31像素线提取部,32投射位置计算部,33、33b、33c像素投射部,36参照图像存储部,37高画质化处理部。1 camera unit, 2 rotation drive system, 3, 3b, 3c, 3d image processing device, 4, 4b, 4c, 4d action control unit, 6, 6b, 6c image sensor, 7 camera optical system, 31 pixel line extraction unit, 32 projection position calculation unit, 33, 33b, 33c pixel projection unit, 36 reference image storage unit, 37 high image quality processing unit.

Claims (16)

1.一种图像生成系统,其中,1. An image generation system, wherein: 所述图像生成系统具有:The image generation system comprises: 摄像部,其能够以旋转轴线为中心进行旋转,具有与所述旋转轴线平行地延伸且分别由多个检测元件构成的多个检测元件线,所述摄像部通过拍摄而生成包含分别与所述检测元件线的检测元件对应的像素的摄像图像;以及an imaging unit that is rotatable about a rotation axis and has a plurality of detection element lines extending parallel to the rotation axis and each consisting of a plurality of detection elements, the imaging unit generating a captured image including pixels corresponding to the detection elements of the detection element lines by imaging; and 图像处理装置,其针对与所述检测元件分别对应的像素,计算全景坐标系中的对应的像素位置作为投射位置,将所述像素投射到所述投射位置,在所述全景坐标系的像素位置中的被投射了2个以上的像素的像素位置处,对所投射的2个以上的像素的像素值进行合成而计算合成值,生成包含分别以所述合成值为像素值的多个像素的全景图像。An image processing device calculates corresponding pixel positions in a panoramic coordinate system as projection positions for pixels respectively corresponding to the detection elements, projects the pixels to the projection positions, synthesizes the pixel values of the projected two or more pixels at the pixel positions in the panoramic coordinate system where two or more pixels are projected, calculates a synthesized value, and generates a panoramic image including a plurality of pixels each having the synthesized value as a pixel value. 2.根据权利要求1所述的图像生成系统,其中,2. The image generation system according to claim 1, wherein: 所述图像处理装置基于表示所述多个检测元件线的各个检测元件线的位置的位置信息、每个所述检测元件线的视场角以及表示所述摄像部的摄像方向的信息,计算所述投射位置。The image processing device calculates the projection position based on position information indicating the position of each of the plurality of detection element lines, the field angle of each of the detection element lines, and information indicating the imaging direction of the imaging unit. 3.根据权利要求1所述的图像生成系统,其中,3. The image generation system according to claim 1, wherein: 所述全景坐标系将所述旋转轴线的方向和以所述旋转轴线为中心的旋转的方向作为坐标。The panoramic coordinate system uses the direction of the rotation axis and the direction of rotation around the rotation axis as coordinates. 4.根据权利要求2所述的图像生成系统,其中,4. The image generation system according to claim 2, wherein: 所述全景坐标系将所述旋转轴线的方向和以所述旋转轴线为中心的旋转的方向作为坐标。The panoramic coordinate system uses the direction of the rotation axis and the direction of rotation around the rotation axis as coordinates. 5.根据权利要求3至4中的任意一项所述的图像生成系统,其中,5. The image generation system according to any one of claims 3 to 4, wherein: 所述全景图像的每个像素的所述旋转的方向的视场角被设定为比每个所述检测元件线的视场角小。The angle of view of the rotation direction of each pixel of the panoramic image is set to be smaller than the angle of view of each of the detection element lines. 6.根据权利要求3至4中的任意一项所述的图像生成系统,其中,6. The image generation system according to any one of claims 3 to 4, wherein: 所述全景图像的每个像素的所述旋转的方向的视场角被设定为比每个所述检测元件线的视场角大。The angle of view in the direction of the rotation of each pixel of the panoramic image is set to be larger than the angle of view of each of the detection element lines. 7.根据权利要求1至4中的任意一项所述的图像生成系统,其中,7. The image generation system according to any one of claims 1 to 4, wherein: 以如下方式选择所述多个检测元件线:与所述检测元件线的检测元件对应的像素位于所述摄像图像中的透镜畸变少的部分。The plurality of detection element lines are selected in such a manner that pixels corresponding to the detection elements of the detection element lines are located in a portion of the captured image where lens distortion is small. 8.根据权利要求1至4中的任意一项所述的图像生成系统,其中,8. The image generation system according to any one of claims 1 to 4, wherein: 在所述多个检测元件线设置有透射率相互不同的光学滤波器,The plurality of detection element lines are provided with optical filters having different transmittances. 所述图像处理装置在对2个以上的像素的像素值进行合成时,使用与如下的光学滤波器的透射率对应的权重来进行加权平均,其中,该光学滤波器是设置于包含与该像素对应的检测元件的检测元件线的光学滤波器。When synthesizing pixel values of two or more pixels, the image processing device performs weighted averaging using a weight corresponding to the transmittance of an optical filter provided on a detection element line including a detection element corresponding to the pixel. 9.根据权利要求1至4中的任意一项所述的图像生成系统,其中,9. The image generation system according to any one of claims 1 to 4, wherein: 所述摄像部被控制为,曝光时间按照每个所述检测元件线而不同,The imaging unit is controlled so that the exposure time differs for each of the detection element lines. 所述图像处理装置在对2个以上的像素的像素值进行合成时,将如下的曝光时间的倒数作为权重来进行加权平均,其中,该曝光时间是针对包含与该像素对应的检测元件的检测元件线的曝光时间。When synthesizing pixel values of two or more pixels, the image processing device performs weighted averaging using the reciprocal of the exposure time for a detection element line including the detection element corresponding to the pixel as a weight. 10.根据权利要求1至4中的任意一项所述的图像生成系统,其中,10. The image generation system according to any one of claims 1 to 4, wherein: 所述摄像部包含二维图像传感器,The camera unit includes a two-dimensional image sensor. 所述多个检测元件线分别由所述二维图像传感器的检测元件中的呈直线状排列的检测元件构成。The plurality of detection element lines are respectively formed by detection elements arranged in a straight line among the detection elements of the two-dimensional image sensor. 11.根据权利要求1至4中的任意一项所述的图像生成系统,其中,11. The image generation system according to any one of claims 1 to 4, wherein: 所述摄像部包含多个一维图像传感器,The camera unit includes a plurality of one-dimensional image sensors. 所述多个检测元件线分别由所述多个一维图像传感器构成。The plurality of detection element lines are respectively constituted by the plurality of one-dimensional image sensors. 12.根据权利要求1至4中的任意一项所述的图像生成系统,其中,12. The image generation system according to any one of claims 1 to 4, wherein: 所述图像生成系统还具有旋转驱动系统,该旋转驱动系统使所述摄像部进行等角速度运动。The image generation system further includes a rotation drive system that moves the imaging unit at a constant angular velocity. 13.根据权利要求12所述的图像生成系统,其中,13. The image generation system according to claim 12, wherein: 所述角速度或摄像周期被决定为,所述摄像部的旋转的角速度与所述摄像部的摄像周期之积小于每个所述检测元件线的视场角。The angular velocity or the imaging period is determined so that the product of the angular velocity of the rotation of the imaging unit and the imaging period of the imaging unit is smaller than the field angle of each of the detection element lines. 14.根据权利要求1至4中的任意一项所述的图像生成系统,其中,14. The image generation system according to any one of claims 1 to 4, wherein: 所述图像生成系统还具有旋转驱动系统,该旋转驱动系统使所述摄像部进行步进旋转运动。The image generation system further includes a rotation drive system that causes the imaging unit to perform step rotational motion. 15.一种图像处理装置,其根据摄像部通过拍摄生成的摄像图像而生成全景图像,该摄像部能够以旋转轴线为中心进行旋转,具有与所述旋转轴线平行地延伸且分别由多个检测元件构成的多个检测元件线,该摄像图像包含分别与所述检测元件线的检测元件对应的像素,其中,15. An image processing device, which generates a panoramic image based on a camera image generated by shooting by a camera unit, the camera unit being rotatable around a rotation axis and having a plurality of detection element lines extending parallel to the rotation axis and each consisting of a plurality of detection elements, the camera image including pixels corresponding to the detection elements of the detection element lines, wherein: 所述图像处理装置具有:The image processing device comprises: 投射位置计算部,其针对与所述检测元件分别对应的像素,计算全景坐标系中的对应的像素位置作为投射位置;以及a projection position calculation unit for calculating corresponding pixel positions in a panoramic coordinate system as projection positions for pixels corresponding to the detection elements respectively; and 像素投射部,其将所述像素投射到所述投射位置,在所述全景坐标系的像素位置中的被投射了2个以上的像素的像素位置处,对所投射的2个以上的像素的像素值进行合成而计算合成值,a pixel projection unit that projects the pixel to the projection position, and synthesizes the pixel values of the projected two or more pixels at a pixel position in the panoramic coordinate system where two or more pixels are projected to calculate a synthesized value, 所述图像处理装置生成包含分别以所述合成值为像素值的多个像素的全景图像。The image processing device generates a panoramic image including a plurality of pixels each having the composite value as a pixel value. 16.一种计算机可读取的记录介质,其中,16. A computer-readable recording medium, wherein: 所述记录介质记录有用于使计算机执行权利要求15所述的图像处理装置中的处理的程序。The recording medium records a program for causing a computer to execute the processing in the image processing apparatus according to claim 15 .
CN201980101301.4A 2019-10-24 2019-10-24 Image generation system, image processing device, program, and recording medium Active CN114556903B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/041680 WO2021079455A1 (en) 2019-10-24 2019-10-24 Image generation system, image processing apparatus, program, and recording medium

Publications (2)

Publication Number Publication Date
CN114556903A CN114556903A (en) 2022-05-27
CN114556903B true CN114556903B (en) 2024-07-26

Family

ID=75619938

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201980101301.4A Active CN114556903B (en) 2019-10-24 2019-10-24 Image generation system, image processing device, program, and recording medium

Country Status (3)

Country Link
JP (1) JP7166470B2 (en)
CN (1) CN114556903B (en)
WO (1) WO2021079455A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022259296A1 (en) * 2021-06-07 2022-12-15 三菱電機株式会社 Image generation system and image processing method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110248079A (en) * 2019-02-14 2019-09-17 南京泓众电子科技有限公司 A kind of full view image generating system and panorama image generation method

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07109617B2 (en) * 1985-05-22 1995-11-22 株式会社日立メデイコ X-ray tomography system
JP3319905B2 (en) * 1995-03-24 2002-09-03 株式会社モリタ製作所 Digital X-ray equipment
US5721585A (en) * 1996-08-08 1998-02-24 Keast; Jeffrey D. Digital video panoramic image capture and display system
JPH11146257A (en) * 1997-09-08 1999-05-28 Toshiba Tec Corp Panoramic imaging device
JP4770924B2 (en) * 2008-12-17 2011-09-14 ソニー株式会社 Imaging apparatus, imaging method, and program
JP2010283743A (en) * 2009-06-08 2010-12-16 Fujifilm Corp Omnidirectional imaging device, and method and program for synthesizing panorama image
KR101663321B1 (en) * 2010-07-30 2016-10-17 삼성전자주식회사 Method for photographing panorama picture
WO2014076959A1 (en) * 2012-11-16 2014-05-22 パナソニック株式会社 Camera drive device
AU2015253372B2 (en) * 2014-04-28 2018-07-19 Lynx System Developers, Inc. Systems and methods for processing event timing images
CN104284093B (en) * 2014-10-22 2018-09-18 小米科技有限责任公司 Panorama shooting method and device
JP2016158179A (en) * 2015-02-26 2016-09-01 キヤノン株式会社 Imaging device, control method and program thereof
CN108141511B (en) * 2015-09-30 2019-12-03 富士胶片株式会社 Image processing apparatus, photographic device, image processing method and tangible medium
EP3243429A1 (en) * 2016-05-13 2017-11-15 Erasmus University Medical Center Rotterdam Method for measuring a subject's eye movement and scleral contact lens
JP6685843B2 (en) * 2016-06-06 2020-04-22 オリンパス株式会社 Imaging device
CN108347557A (en) * 2017-01-21 2018-07-31 盯盯拍(东莞)视觉设备有限公司 Panoramic image capturing device, display device, capturing method, and display method
CN109218591A (en) * 2018-11-19 2019-01-15 维沃移动通信(杭州)有限公司 A kind of panorama shooting method and mobile terminal

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110248079A (en) * 2019-02-14 2019-09-17 南京泓众电子科技有限公司 A kind of full view image generating system and panorama image generation method

Also Published As

Publication number Publication date
JP7166470B2 (en) 2022-11-07
JPWO2021079455A1 (en) 2021-04-29
CN114556903A (en) 2022-05-27
WO2021079455A1 (en) 2021-04-29

Similar Documents

Publication Publication Date Title
CN111052176B (en) Seamless image stitching
JP6468307B2 (en) Imaging apparatus, image processing apparatus and method
JP5596972B2 (en) Control device and control method of imaging apparatus
JP4629131B2 (en) Image converter
US9232123B2 (en) Systems and methods for acquiring and processing image data produced by camera arrays
CN102959586B (en) Depth estimation device and depth estimation method
US20110069148A1 (en) Systems and methods for correcting images in a multi-sensor system
JP2019017069A (en) Image processor and image processing method
JP2010239290A (en) Imaging apparatus
US20210176395A1 (en) Gimbal system and image processing method thereof and unmanned aerial vehicle
WO2015081870A1 (en) Image processing method, device and terminal
TW201019715A (en) Fisheye correction with perspective distortion reduction method and related image processor
JP2012089954A (en) Conference system, monitoring system, image processing system, image processing method, and image processing program or the like
JP5704984B2 (en) Imaging device
JP2019080226A (en) Imaging apparatus, method for controlling imaging apparatus, and program
TWI615808B (en) Image processing method for immediately producing panoramic images
CN114556903B (en) Image generation system, image processing device, program, and recording medium
CN114631056B (en) Image pickup support device, image pickup support system, image pickup support method, and storage medium
JP7612725B2 (en) Imaging support device, imaging device, imaging system, imaging support system, imaging support method, and program
JP2012103805A (en) Image processing system and its processing method
JP6790038B2 (en) Image processing device, imaging device, control method and program of image processing device
JP6583486B2 (en) Information processing method, information processing program, and information processing apparatus
JP2012227700A (en) Information processor and program
JP7574004B2 (en) CONTROL DEVICE, IMAGING DEVICE, MONITORING SYSTEM, AND CONTROL METHOD
JP4227249B2 (en) Imaging apparatus, imaging system, and imaging method

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant