CN114554227B - Compressed video source detection method based on multi-scale transform domain self-adaptive wiener filtering - Google Patents
Compressed video source detection method based on multi-scale transform domain self-adaptive wiener filtering Download PDFInfo
- Publication number
- CN114554227B CN114554227B CN202210048894.6A CN202210048894A CN114554227B CN 114554227 B CN114554227 B CN 114554227B CN 202210048894 A CN202210048894 A CN 202210048894A CN 114554227 B CN114554227 B CN 114554227B
- Authority
- CN
- China
- Prior art keywords
- noise
- compressed video
- video
- wiener filtering
- frequency
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000001914 filtration Methods 0.000 title claims abstract description 50
- 238000001514 detection method Methods 0.000 title claims abstract description 16
- 238000000034 method Methods 0.000 claims abstract description 40
- 230000008569 process Effects 0.000 claims abstract description 15
- 238000007476 Maximum Likelihood Methods 0.000 claims abstract description 10
- 230000009977 dual effect Effects 0.000 claims abstract description 10
- 239000011159 matrix material Substances 0.000 claims abstract description 10
- 238000013139 quantization Methods 0.000 claims abstract description 9
- 230000009466 transformation Effects 0.000 claims abstract description 5
- 238000000354 decomposition reaction Methods 0.000 claims description 26
- 230000003044 adaptive effect Effects 0.000 claims description 23
- 238000012360 testing method Methods 0.000 claims description 15
- 238000012935 Averaging Methods 0.000 claims description 7
- 125000004122 cyclic group Chemical group 0.000 claims description 3
- 230000000694 effects Effects 0.000 abstract description 11
- 239000000284 extract Substances 0.000 abstract description 4
- 239000000428 dust Substances 0.000 description 8
- 230000006835 compression Effects 0.000 description 5
- 238000007906 compression Methods 0.000 description 5
- 238000000605 extraction Methods 0.000 description 4
- 230000004075 alteration Effects 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 238000003384 imaging method Methods 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 230000011514 reflex Effects 0.000 description 3
- 238000001228 spectrum Methods 0.000 description 3
- 101001121408 Homo sapiens L-amino-acid oxidase Proteins 0.000 description 2
- 102100026388 L-amino-acid oxidase Human genes 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000007781 pre-processing Methods 0.000 description 2
- 238000012795 verification Methods 0.000 description 2
- 230000000007 visual effect Effects 0.000 description 2
- 238000009825 accumulation Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 230000002085 persistent effect Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/80—Details of filtering operations specially adapted for video compression, e.g. for pixel interpolation
- H04N19/82—Details of filtering operations specially adapted for video compression, e.g. for pixel interpolation involving filtering within a prediction loop
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/60—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using transform coding
- H04N19/63—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using transform coding using sub-band based transform, e.g. wavelets
Landscapes
- Engineering & Computer Science (AREA)
- Multimedia (AREA)
- Signal Processing (AREA)
- Image Processing (AREA)
Abstract
Description
技术领域Technical Field
本发明涉及视频取证的技术领域,尤其涉及到基于多尺度变换域自适应维纳滤波的压缩视频来源检测方法。The present invention relates to the technical field of video evidence collection, and in particular to a compressed video source detection method based on multi-scale transform domain adaptive Wiener filtering.
背景技术Background Art
随着5G信息时代的到来以及社交网络中交流人数的大量增长,越来越多的人通过互联网进行交流,图片和视频作为一种重要的信息交流载体,被人们在互联网中广泛使用。与此同时,一些严重扰乱社会治安公共安全、盗版、恶意篡改等违法犯罪的视频也不可避免地出现在网络中,而在互联网上传的视频会经过多次传输,在传输过程中就必然经历不同程度的压缩,因此确认压缩视频的来源是近年来多媒体信息安全取证的一个十分重要的研究课题。With the advent of the 5G information age and the massive growth in the number of people communicating on social networks, more and more people are communicating through the Internet. As an important carrier of information exchange, pictures and videos are widely used by people on the Internet. At the same time, some videos that seriously disrupt public security, piracy, malicious tampering and other crimes inevitably appear on the Internet. Videos uploaded on the Internet will be transmitted multiple times, and they will inevitably experience different degrees of compression during the transmission process. Therefore, confirming the source of compressed videos has become a very important research topic in multimedia information security forensics in recent years.
需要确认图像和视频的来源时,最直接的方法是查看图像视频的自带的水印信息,但是随着现在图像视频编辑软件水印的不断发展,更改水印已变得非常简单,因此这种方法对视频进行来源检测是很不可靠的。研究者们开始把注意力放到数字图像视频中的内在特征上面。如:Swaminathan A,Wu M,Liu K J R.Nonintrusive component forensicsof visual sensors using output images[J].IEEE Transactions on InformationForensics and Security,2007,2(1):91-106.(Swaminathan A,Wu M,Liu KJ R.使用输出图像的视觉传感器的非侵入式组件取证[J].IEEE信息取证与安全汇刊,2007年,2(1):91-106),先后使用利用由CFA插值算法引起的噪声伪影进行提取,来对数字图像的来源进行认证。又如:Choi K S,Lam E Y,Wong K Y.Source camera identification usingfootprints from lens aberration[C]//Proceedings of SPIE.2006,6069:172-179.(Choi KS、Lam EY、Wong KK Y.使用镜头像差留下的足迹进行源相机识别[C]//SPIE论文集。2006年,6069:172-179),利用镜头镜像失真产生的像差噪声对图片统计特性产生影响的特点,对图像的来源进行判定。再如:Dirik A E,Sencar H T,Memon N.Digital singlelens reflex camera identification from traces of sensor dust[J].IEEETransactions on Information Forensics and Security,2008,3(3):539-552.(DirikAE,Sencar HT,Memon N.从传感器灰尘痕迹中识别数字单镜头反光相机[J].IEEE信息取证与安全汇刊,2008年,3(3):539-552),数字单镜头反光相机由于部署的可互换镜头会产生传感器灰尘,这些灰尘沉积在成像传感器前面的灰尘颗粒会在所有捕获的图像中形成持久的图案,利用这种传感器尘埃图案进行提取来对图像进行来源检测。When it is necessary to confirm the source of images and videos, the most direct method is to check the watermark information of the image or video. However, with the continuous development of watermarks in image and video editing software, it has become very simple to change watermarks. Therefore, this method is very unreliable for video source detection. Researchers have begun to focus on the intrinsic features in digital images and videos. For example: Swaminathan A, Wu M, Liu K J R. Nonintrusive component forensics of visual sensors using output images [J]. IEEE Transactions on Information Forensics and Security, 2007, 2 (1): 91-106. (Swaminathan A, Wu M, Liu KJ R. Nonintrusive component forensics of visual sensors using output images [J]. IEEE Transactions on Information Forensics and Security, 2007, 2 (1): 91-106), successively used the noise artifacts caused by the CFA interpolation algorithm to extract and authenticate the source of the digital image. For example: Choi K S, Lam E Y, Wong K Y. Source camera identification using footprints from lens aberration [C] // Proceedings of SPIE. 2006, 6069: 172-179. (Choi KS, Lam EY, Wong KK Y. Source camera identification using footprints from lens aberration [C] // SPIE Proceedings. 2006, 6069: 172-179), the source of the image is determined by taking advantage of the fact that the aberration noise generated by lens mirror distortion affects the statistical characteristics of the image. For example: Dirik AE, Sencar HT, Memon N. Digital single lens reflex camera identification from traces of sensor dust [J]. IEEE Transactions on Information Forensics and Security, 2008, 3 (3): 539-552. (DirikAE, Sencar HT, Memon N. Identification of digital single lens reflex camera from traces of sensor dust [J]. IEEE Transactions on Information Forensics and Security, 2008, 3 (3): 539-552). Digital single lens reflex cameras generate sensor dust due to the interchangeable lenses deployed. The dust particles deposited in front of the imaging sensor will form a persistent pattern in all captured images. This sensor dust pattern is used to extract and detect the source of the image.
一个好的数字图像视频来源检测算法必须具有强鲁棒性和高检测率。上述方法虽然在一定程度上对图像进行来源检测,但是都存在计算复杂度高,识别效果不佳的问题。比如CFA插值识别,当遇到同一型号的相机识别时,同种型号的相机会产生相同的CFA插值操作,此时CFA插值识别就会失去效果。又如传感器尘埃识别,新的相机堆积的传感器尘埃较少,此时利用传感器尘埃识别十分困难。随着研究者们的深入了解研究,提出了一个效果显著的多媒体来源检测的方法——基于传感器模式噪声的数字图像视频来源检测方法。A good digital image and video source detection algorithm must have strong robustness and high detection rate. Although the above methods can detect the source of images to a certain extent, they all have the problem of high computational complexity and poor recognition effect. For example, when encountering the same model of camera recognition, the same model of camera will produce the same CFA interpolation operation, and the CFA interpolation recognition will lose its effect. Another example is sensor dust recognition. New cameras have less sensor dust accumulation, so it is very difficult to use sensor dust recognition. With the in-depth understanding of the researchers, a method of multimedia source detection with significant effect is proposed - a digital image and video source detection method based on sensor pattern noise.
传感器作为相机成像的重要部件之一,由于其制作材质和生产工艺的缺陷问题,在成像时会产生一些具有独特性的噪声伪影,即使同一型号的相机产生的的这种噪声伪影也不相同,该独特噪声伪影被研究者们称为传感器模式噪声。而传感器模式噪声的主要成分是由光响应非均匀性(photo response non-uniformity,PRNU)噪声构成的,因此PRNU也被认为是传感器模式噪声,可以作为相机的指纹对未知图像和视频进行来源检测。As one of the important components of camera imaging, the sensor will produce some unique noise artifacts during imaging due to defects in its manufacturing materials and production processes. Even cameras of the same model will produce different noise artifacts. This unique noise artifact is called sensor pattern noise by researchers. The main component of sensor pattern noise is photo response non-uniformity (PRNU) noise, so PRNU is also considered sensor pattern noise, which can be used as a fingerprint of the camera to detect the source of unknown images and videos.
随着国内外的研究学者对传感器模式噪声提取的深入探索,发现传感器模式噪声是一个相对于图像原始内容而言是一个很弱的信号,研究者们提出使用滤波算法把传感器模式噪声提取出来,如:Lukas J,Fridrich J,Goljan M.Digital camera identificationfrom sensor pattern noise[J].IEEE Transactions on Information Forensics andSecurity,2006,1(2):205-214.(Lukas J,Fridrich J,Goljan M.从传感器模式噪声识别数码相机[J].IEEE信息取证与安全汇刊,2006年,1(2):205-214.),提出了使用小波变换结合维纳滤波的方法提取图像中的噪声残差。Conotter V,Boato G.Analysis of sensorfingerprint for source camera identification[J].Electronics letters,2011,47(25):1366-1367.(Conotter V,Boato G.用于源相机识别的传感器指纹分析[J].电子快报,2011,47(25):1366-1367.),引入复杂的BM3D(block matching and 3D filtering)滤波器从图像中提取噪声残差。BM3D通过识别图像中的相似块并将它们组合在一起,该方法已被证明在提取图像的噪声方面是有效的。Kang X,Chen J,Lin K,et al.A context-adaptive SPN predictor for trustworthy source camera identification[J].EURASIP Journal on Image and video Processing,2014,2014(1):1-11.(Kang X,ChenJ,Lin K,等。一种用于可信源相机识别的上下文自适应SPN预测器[J].EURASIP图像和视频处理杂志,2014年,2014年(1):1-11.)和Zeng H,Kang X.Fast source cameraidentification using content adaptive guided image filter[J].Journal offorensic sciences,2016,61(2):520-526.(Zeng H,Kang X.基于内容自适应引导图像滤波器的快速源相机识别[J].法医学杂志,2016,61(2):520-526.)年先后提出了基于上下文自适应插值算法和自适应引导图像滤波算法,这些算法能进一步提取噪声残差。随后在Lawgaly A,Khelifi F.Sensor pattern noise estimation based on improved locallyadaptive DCT filtering and weighted averaging for source cameraidentification and verification[J].IEEE Transactions on Information Forensicsand Security,2016,12(2):392-404.(Lawgaly A,Khelifi F.基于改进的局部自适应DCT滤波和加权平均的传感器模式噪声估计用于源相机识别和验证[J].IEEE Transactionson Information Forensics and Security,2016,12(2):392-404.)和Zeng H,Wan Y,DengK,et al.Source camera identification with Dual-Tree complex wavelet transform[J].IEEE Access,2020,8:18874-18883.(Zeng H,Wan Y,Deng K等。基于双树复小波变换的源相机识别[J].IEEE访问,2020,8:18874-18883.)中,又提出了改进局部自适应离散余弦变换滤波和双数复小波变换结合局部自适应窗口维纳滤波方法,这些方法比前者取得更好的滤波效果。使用滤波方法获得噪声残差以后,一些研究人员发现噪声残差不但包含传感器模式噪声,还会包含其他非唯一成分进行滤除,比如CFA插值噪声,散斑噪声,图像纹理细节内容等等,这些非唯一成分在压缩视频中会更多且更复杂。在Chen M,Fridrich J,Goljan M,et al.Determining image origin and integrity using sensor noise[J].IEEE信息取证和安全汇刊,2008,3(1):74-90.(Chen M、Fridrich J、Goljan M等。利用传感器噪声确定图像来源和完整性[J].IEEE信息取证和安全汇刊,2008年,3(1):74-90.),提出了使用最大似然估计算法对50张噪声残差图像估计出一个传感器模式噪声,并使用零均值结合频域维纳滤波的方法对估计得到的传感器模式噪声进一步滤除其他噪声。Kang X,Li Y,Qu Z,et al.Enhancing source camera identification performance with acamera reference phase sensor pattern noise[J].IEEE Transactions onInformation Forensics and Security,2011,7(2):393-402.(Kang X,Li Y,Qu Z,等。利用相机参考相位传感器模式噪声提高源相机识别性能[J].IEEE信息取证和安全汇刊,2011,7(2):393-402.)提出了仅使用噪声残差在傅里叶域的相位信息进行识别。在最后用这个提纯的传感器模式噪声来进行匹配识别。出现了很多不同方面提取传感器模式噪声的方法。Lin X,Li C T.Preprocessing reference sensor pattern noise via spectrumequalization[J].IEEE Transactions on Information Forensics and Security,2015,11(1):126-140.(Lin X,Li C T.通过频谱均衡预处理参考传感器模式噪声[J].IEEE信息取证和安全汇刊,2015,11(1):126-140.)提出了一种频谱均衡方法,对局部峰值进行抑制,以达到较平滑的效果。上述大多数算法都能改善图像的传感器模式噪声的质量,但是由于视频在互联网传播中经历多次压缩,其噪声更加复杂,传感器模式噪声也被压制很多,致使传统的图像提取算法很难从压缩视频中提取传感器模式噪声,因此这些算法应用在压缩视频的识别效果极其有限。As domestic and foreign researchers have conducted in-depth exploration of sensor pattern noise extraction, they have found that sensor pattern noise is a very weak signal relative to the original content of the image. Researchers have proposed using filtering algorithms to extract sensor pattern noise, such as: Lukas J, Fridrich J, Goljan M. Digital camera identification from sensor pattern noise [J]. IEEE Transactions on Information Forensics and Security, 2006, 1 (2): 205-214. (Lukas J, Fridrich J, Goljan M. Identifying digital cameras from sensor pattern noise [J]. IEEE Transactions on Information Forensics and Security, 2006, 1 (2): 205-214.), and proposed using wavelet transform combined with Wiener filtering to extract noise residuals from images. Conotter V, Boato G. Analysis of sensor fingerprint for source camera identification [J]. Electronics letters, 2011, 47 (25): 1366-1367. (Conotter V, Boato G. Analysis of sensor fingerprint for source camera identification [J]. Electronics letters, 2011, 47 (25): 1366-1367.), introduced a complex BM3D (block matching and 3D filtering) filter to extract noise residuals from the image. BM3D works by identifying similar blocks in the image and combining them together. This method has been shown to be effective in extracting noise from images. Kang X, Chen J, Lin K, et al. A context-adaptive SPN predictor for trustworthy source camera identification [J]. EURASIP Journal on Image and Video Processing, 2014, 2014 (1): 1-11. (Kang X, Chen J, Lin K, et al. A context-adaptive SPN predictor for trustworthy source camera identification [J]. EURASIP Journal on Image and Video Processing, 2014, 2014 (1): 1-11.) and Zeng H, Kang X. Fast source camera identification using content adaptive guided image filter [J]. Journal of forensic sciences, 2016, 61 (2): 520-526. (Zeng H, Kang X. Fast source camera identification based on content adaptive guided image filter [J]. Journal of Forensic Sciences, 2016, 61 (2): 520-526.) proposed context-adaptive interpolation algorithm and adaptive guided image filtering algorithm respectively, which can further extract noise residuals. Subsequently, Lawgaly A, Khelifi F. Sensor pattern noise estimation based on improved locally adaptive DCT filtering and weighted averaging for source camera identification and verification[J]. IEEE Transactions on Information Forensics and Security, 2016, 12(2): 392-404. (Lawgaly A, Khelifi F. Sensor pattern noise estimation based on improved locally adaptive DCT filtering and weighted averaging for source camera identification and verification[J]. IEEE Transactions on Information Forensics and Security, 2016, 12(2): 392-404.) and Zeng H, Wan Y, Deng K, et al. Source camera identification with Dual-Tree complex wavelet transform[J]. IEEE Access, 2020, 8: 18874-18883. (Zeng H, Wan Y, Deng K et al. Source camera identification based on dual-tree complex wavelet transform [J]. IEEE Access, 2020, 8: 18874-18883.) proposed improved local adaptive discrete cosine transform filtering and dual complex wavelet transform combined with local adaptive window Wiener filtering methods, which achieved better filtering effects than the former. After using the filtering method to obtain the noise residual, some researchers found that the noise residual not only contains sensor pattern noise, but also contains other non-unique components to be filtered out, such as CFA interpolation noise, speckle noise, image texture details, etc. These non-unique components will be more numerous and more complex in compressed video. In Chen M, Fridrich J, Goljan M, et al. Determining image origin and integrity using sensor noise[J]. IEEE Transactions on Information Forensics and Security, 2008, 3(1): 74-90. (Chen M, Fridrich J, Goljan M, et al. Determining image origin and integrity using sensor noise[J]. IEEE Transactions on Information Forensics and Security, 2008, 3(1): 74-90.), it is proposed to use the maximum likelihood estimation algorithm to estimate a sensor pattern noise from 50 noisy residual images, and use the zero mean combined with frequency domain Wiener filtering method to further filter out other noises from the estimated sensor pattern noise. Kang X, Li Y, Qu Z, et al. Enhancing source camera identification performance with a camera reference phase sensor pattern noise [J]. IEEE Transactions on Information Forensics and Security, 2011, 7 (2): 393-402. (Kang X, Li Y, Qu Z, et al. Using camera reference phase sensor pattern noise to improve source camera identification performance [J]. IEEE Information Forensics and Security Transactions, 2011, 7 (2): 393-402.) proposed to use only the phase information of the noise residual in the Fourier domain for identification. Finally, this purified sensor pattern noise is used for matching and identification. There are many different methods for extracting sensor pattern noise. Lin X, Li C T. Preprocessing reference sensor pattern noise via spectrum equalization[J]. IEEE Transactions on Information Forensics and Security, 2015, 11(1): 126-140. (Lin X, Li C T. Preprocessing reference sensor pattern noise via spectrum equalization[J]. IEEE Transactions on Information Forensics and Security, 2015, 11(1): 126-140.) A spectrum equalization method is proposed to suppress local peaks to achieve a smoother effect. Most of the above algorithms can improve the quality of the sensor pattern noise of the image, but because the video undergoes multiple compressions during Internet transmission, its noise is more complex and the sensor pattern noise is also suppressed a lot, making it difficult for traditional image extraction algorithms to extract sensor pattern noise from compressed videos. Therefore, the recognition effect of these algorithms applied to compressed videos is extremely limited.
基于以上原因,为了能从压缩视频中提取更多传感器模式噪声,提高压缩视频的识别效果,有必要针对压缩视频来研究一种压缩视频来源检测算法。Based on the above reasons, in order to extract more sensor pattern noise from compressed videos and improve the recognition effect of compressed videos, it is necessary to study a compressed video source detection algorithm for compressed videos.
发明内容Summary of the invention
本发明的目的在于克服现有技术的不足,提供一种基于多尺度变换域自适应维纳滤波的压缩视频来源检测方法,其能够从压缩视频中提取更充分的传感器模式噪声,有效改善压缩视频的识别效果,并且在使用较短时长的压缩视频识别中也具有较强的鲁棒性。The purpose of the present invention is to overcome the shortcomings of the prior art and provide a compressed video source detection method based on multi-scale transform domain adaptive Wiener filtering, which can extract more sufficient sensor pattern noise from the compressed video, effectively improve the recognition effect of the compressed video, and also has strong robustness in the recognition of compressed videos of shorter duration.
为实现上述目的,本发明所提供的技术方案为:To achieve the above purpose, the technical solution provided by the present invention is:
基于多尺度变换域自适应维纳滤波的压缩视频来源检测方法,包括以下步骤:The method for detecting the source of compressed video based on multi-scale transform domain adaptive Wiener filtering comprises the following steps:
S1、求取多个参考压缩视频的传感器模式噪声,并将该些传感器模式噪声存入传感器模式噪声数据库中;S1, obtaining sensor pattern noises of multiple reference compressed videos, and storing the sensor pattern noises in a sensor pattern noise database;
S2、求取测试压缩视频的传感器模式噪声;S2, obtaining the sensor pattern noise of the test compressed video;
S3、使用符号峰值相关能量求测试压缩视频的传感器模式噪声和传感器模式噪声数据库中参考压缩视频的传感器模式噪声的相关性,若符号峰值相关能量大于或者等于设定阈值时,则判定测试压缩视频来自录制该参考视频的相机,反之,测试压缩视频不是来自录制该参考压缩视频的相机。S3. Use the symbol peak correlation energy to calculate the correlation between the sensor pattern noise of the test compressed video and the sensor pattern noise of the reference compressed video in the sensor pattern noise database. If the symbol peak correlation energy is greater than or equal to the set threshold, it is determined that the test compressed video comes from the camera that recorded the reference video. Otherwise, the test compressed video is not from the camera that recorded the reference compressed video.
进一步地,所述步骤S1和S2中,求取传感器模式噪声的具体步骤如下:Furthermore, in the steps S1 and S2, the specific steps of obtaining the sensor pattern noise are as follows:
A1、将视频重新变成比特流数据,干预解码过程,在编解码器的环路滤波器前将所有视频帧输出,同时获取对应帧的宏块量化参数QP值构成QP矩阵;A1. Convert the video back into bitstream data, intervene in the decoding process, output all video frames before the loop filter of the codec, and obtain the macroblock quantization parameter QP value of the corresponding frame to form a QP matrix;
A2、获取G张视频帧,令视频帧编号为I1,I2,...,IG;对每个视频帧分别进行多层的双密度双树复小波分解变换;A2. Obtain G video frames, and number the video frames as I 1 , I 2 , ..., I G ; perform multi-layer double-density double-tree complex wavelet decomposition transform on each video frame;
A3、应用局部自适应阈值窗口维纳滤波方法对所有的高频子带进行滤波估计,得到滤波后的小波子带;进行双密度双树复小波分解逆变换,得到去噪的视频帧;用输入视频帧与去噪的视频帧相减,得到每个视频帧的噪声残差;A3. Apply the local adaptive threshold window Wiener filtering method to filter and estimate all high-frequency subbands to obtain filtered wavelet subbands; perform inverse transform of double-density double-tree complex wavelet decomposition to obtain denoised video frames; subtract the input video frame from the denoised video frame to obtain the noise residual of each video frame;
A4、使用QP矩阵加权的极大似然估计算法对I1,I2,...,IG的这组噪声残差进行估计,得到该视频的初步传感器模式噪声的乘法因子K;A4. Use the maximum likelihood estimation algorithm weighted by the QP matrix to estimate the set of noise residuals of I 1 , I 2 , ..., I G to obtain the multiplication factor K of the preliminary sensor pattern noise of the video;
A5、使用零均值化操作去除乘法因子K的CFA插值伪影,得到无CFA插值伪影的乘法因子K,再使用频域维纳滤波算法对无CFA插值伪影的乘法因子K进行滤波,以进一步去除其他非唯一噪声成分,乘法因子与每个输入视频帧进行相乘再求平均,得到传感器模式噪声。A5. Use zero averaging to remove the CFA interpolation artifacts of the multiplication factor K to obtain the multiplication factor K without CFA interpolation artifacts. Then use the frequency domain Wiener filtering algorithm to filter the multiplication factor K without CFA interpolation artifacts to further remove other non-unique noise components. The multiplication factor is multiplied with each input video frame and then averaged to obtain the sensor pattern noise.
进一步地,所述步骤A2中,双密度双树复小波分解变换的具体过程为:Furthermore, in step A2, the specific process of the dual-density dual-tree complex wavelet decomposition transformation is as follows:
先对每个视频帧进行对偶树分解,分到对偶的两个树,每个树的每一行构成的一维数据进行两次一维小波分解,得到高频、次高频和低频部分;First, each video frame is decomposed into two dual trees by dual tree decomposition. The one-dimensional data of each row of each tree is decomposed twice by one-dimensional wavelet decomposition to obtain high-frequency, sub-high-frequency and low-frequency parts.
再对分解形成的高频、次高频和低频信息中的每一列构成的一维数据进行两次一维小波分解,最终得到九个子带图像,分别为八个高频子带L0H1、L0H2、H1L0、H1H1、H1H2、H2L0、H2H1、H2H2和一个低频子带L0L0;每个高频子带又分成实部和虚部两个部分,每一层得到32个高频分量。Then, the one-dimensional data composed of each column of the high-frequency, sub-high-frequency and low-frequency information formed by the decomposition is decomposed twice by one-dimensional wavelet decomposition, and finally nine sub-band images are obtained, namely eight high-frequency sub-bands L 0 H 1 , L 0 H 2 , H 1 L 0 , H 1 H 1 , H 1 H 2 , H 2 L 0 , H 2 H 1 , H 2 H 2 and one low-frequency sub-band L 0 L 0 ; each high-frequency sub-band is divided into two parts, the real part and the imaginary part, and 32 high-frequency components are obtained in each layer.
进一步地,所述步骤A3中,局部自适应阈值窗口维纳滤波方法如式(1)所示:Furthermore, in step A3, the local adaptive threshold window Wiener filtering method is as shown in formula (1):
式(1)中,Win表示为滤波前的小波系数,Wout表示为滤波后的小波系数,噪声方差估计和子带方差由式子(2)和(3)得到:In formula (1), Win represents the wavelet coefficient before filtering, Wout represents the wavelet coefficient after filtering, and the noise variance estimation and subband variance From equations (2) and (3), we can get:
式(2)中,median()表示中值估计器,Wtemp表示第一层分解的第一个高频子带;In formula (2), median() represents the median estimator, W temp represents the first high-frequency subband of the first layer decomposition;
式(3)中,Nh为以(u,v)为中心点,大小为hxh的局部窗口;max()表示取0和方差估计中的最大值,min()函数表示取所有窗口估计结果的最小值。In formula (3), Nh is a local window with a size of hxh and centered at (u, v); max() means taking the maximum value between 0 and the variance estimate, and min() function means taking the minimum value of all window estimation results.
进一步地,所述步骤A4中,量化参数值加权的极大似然估计算法表示为式子(4):Furthermore, in step A4, the weighted maximum likelihood estimation algorithm of the quantization parameter value is expressed as formula (4):
式(4)中,G为单个视频中用于估计传感器模式噪声因子K的视频帧数量,Nz表示第z个视频帧的噪声残差,Iz表示视频的第z个视频帧,WQP表示根据不同量化参数QP计算相关性,绘制得到QP-SPCE曲线,用该曲线关系制定该权重矩阵进行加权;δ为设定值,用于防止分母为0。In formula (4), G is the number of video frames in a single video used to estimate the sensor pattern noise factor K, Nz represents the noise residual of the z-th video frame, Iz represents the z-th video frame of the video, WQP represents the correlation calculated according to different quantization parameters QP, and the QP-SPCE curve is drawn. The weight matrix is formulated using the curve relationship for weighting; δ is a set value used to prevent the denominator from being 0.
进一步地,所述步骤A5中,Furthermore, in step A5,
零均值化过程是从列中的每个像素中减去列平均值,然后从行中的每个像素中减去行平均值;The zero-meaning process is to subtract the column mean from each pixel in the column, and then subtract the row mean from each pixel in the row;
频域维纳滤波过程是将无CFA插值伪影的传感器模式噪声变换的频域,在使用维纳滤波操作进行估计。The frequency domain Wiener filtering process transforms the sensor pattern noise without CFA interpolation artifacts into the frequency domain and estimates it using the Wiener filtering operation.
进一步地,所述步骤S3中,符号峰值相关能量表示为式子(5):Furthermore, in step S3, the symbol peak correlation energy is expressed as formula (5):
其中,sign()为符号函数,CRQ(a,b)为参考压缩视频的传感器模式噪声R和测试压缩视频的传感器模式噪声Q之间的二维循环互相关,β为(0,0)周围的一个小面积,|β|为该面积的维度乘积,MN为匹配传感器模式噪声的维度乘积。Where sign() is the sign function, CRQ (a,b) is the two-dimensional cyclic cross-correlation between the sensor pattern noise R of the reference compressed video and the sensor pattern noise Q of the test compressed video, β is a small area around (0, 0), |β| is the dimensional product of the area, and MN is the dimensional product of the matching sensor pattern noise.
与现有技术相比,本方案原理及优点如下:Compared with the existing technology, the principles and advantages of this solution are as follows:
1)编解码器的环路滤波模块会滤除视频帧中的部分传感器模式噪声,本方案更改编解码过程,在到达环路滤波模块前提取视频帧能够保存视频帧中更多的传感器模式噪声。1) The loop filter module of the codec will filter out some sensor pattern noise in the video frame. This solution changes the codec process and extracts the video frame before reaching the loop filter module, which can preserve more sensor pattern noise in the video frame.
2)传感器模式噪声属于中高频噪声,小波分解的方法能较好的分离图像信号的高低频信息。而双密度双树复小波变换具有双密度小波变换和双树复小波变换的优点,能提供16个主方向的信号,而且每个主方向又有两个小波(实数小波和虚数小波)表示。相比小波变换,双树复小波变换以及双密度小波变换,双密度双树复小波变换可以进一步提高视频帧的分解与重构精度。2) Sensor pattern noise belongs to medium and high frequency noise, and the wavelet decomposition method can better separate the high and low frequency information of the image signal. The double-density dual-tree complex wavelet transform has the advantages of double-density wavelet transform and double-tree complex wavelet transform, and can provide signals in 16 main directions, and each main direction has two wavelets (real wavelet and imaginary wavelet) to represent. Compared with wavelet transform, dual-tree complex wavelet transform and double-density wavelet transform, double-density dual-tree complex wavelet transform can further improve the decomposition and reconstruction accuracy of video frames.
3)维纳滤波的噪声方差是固定值,对不同的压缩程度的视频帧很难进行准确有效的估计。使用中值估计器估计小波子带的噪声方差,并且图像去噪领域中的小波子一般选择最高频率的小波子带进行噪声方差估计,由于本方案是提取中高频的传感器模式噪声,选择中高频率子带(LH1)进行噪声方差估计会获得更好的提取效果。3) The noise variance of Wiener filtering is a fixed value, and it is difficult to accurately and effectively estimate video frames with different compression levels. The median estimator is used to estimate the noise variance of the wavelet subband, and the wavelet in the field of image denoising generally selects the highest frequency wavelet subband for noise variance estimation. Since this scheme is to extract medium and high frequency sensor pattern noise, selecting the medium and high frequency subband (LH 1 ) for noise variance estimation will obtain better extraction effect.
4)基于QP值加权的最大似然估计相比于原本的最大似然估计能够根据不同压缩程度给予每个像素值不同的权重,能更好地抑制压缩程度较复杂产生的伪影,有效改善传感器模式噪声的质量。4) Compared with the original maximum likelihood estimation, the maximum likelihood estimation based on QP value weighting can give different weights to each pixel value according to different compression levels, which can better suppress artifacts caused by more complex compression levels and effectively improve the quality of sensor pattern noise.
5)本方案与现有的传感器噪声提取算法相比,由于本方案能够针对输入视频帧保留更多的传感器模式噪声,特别地,在滤波处理中能够提取更多的传感器模式噪声,在后续处理中又能够有效抑制传感器模式噪声包含的其他噪声成分,因而本方案拥有较高的识别效果以及鲁棒性。5) Compared with the existing sensor noise extraction algorithm, this scheme can retain more sensor pattern noise for the input video frame. In particular, more sensor pattern noise can be extracted in the filtering process, and other noise components contained in the sensor pattern noise can be effectively suppressed in the subsequent processing. Therefore, this scheme has higher recognition effect and robustness.
附图说明BRIEF DESCRIPTION OF THE DRAWINGS
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的服务作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。In order to more clearly illustrate the embodiments of the present invention or the technical solutions in the prior art, the services required for use in the embodiments or the prior art descriptions are briefly introduced below. Obviously, the drawings described below are only some embodiments of the present invention. For ordinary technicians in this field, other drawings can be obtained based on these drawings without paying creative work.
图1为本发明基于多尺度变换域自适应维纳滤波的压缩视频来源检测方法的原理流程图(省略了步骤S1);FIG1 is a principle flow chart of a method for detecting a source of a compressed video based on multi-scale transform domain adaptive Wiener filtering according to the present invention (step S1 is omitted);
图2为本发明基于多尺度变换域自适应维纳滤波的压缩视频来源检测方法中求取传感器模式噪声的原理流程图。FIG. 2 is a flow chart showing the principle of obtaining sensor pattern noise in the compressed video source detection method based on multi-scale transform domain adaptive Wiener filtering according to the present invention.
具体实施方式DETAILED DESCRIPTION
下面结合具体实施例对本发明作进一步说明:The present invention will be further described below in conjunction with specific embodiments:
如图1所示,本实施例所述的基于多尺度变换域自适应维纳滤波的压缩视频来源检测方法,包括以下步骤:As shown in FIG1 , the compressed video source detection method based on multi-scale transform domain adaptive Wiener filtering described in this embodiment includes the following steps:
S1、求取多个参考压缩视频的传感器模式噪声,并将该些传感器模式噪声存入传感器模式噪声数据库中;S1, obtaining sensor pattern noises of multiple reference compressed videos, and storing the sensor pattern noises in a sensor pattern noise database;
S2、求取测试压缩视频的传感器模式噪声;S2, obtaining the sensor pattern noise of the test compressed video;
如图2所示,步骤S1和S2中,求取传感器模式噪声的具体步骤如下:As shown in FIG. 2 , in steps S1 and S2 , the specific steps for obtaining the sensor pattern noise are as follows:
A1、将视频重新变成比特流数据,干预解码过程,在编解码器的环路滤波器前将所有视频帧输出;A1. Convert the video back into bitstream data, intervene in the decoding process, and output all video frames before the loop filter of the codec;
A2、获取G张视频帧,令视频帧编号为I1,I2,...,IG;对每个视频帧分别进行4层的双密度双树复小波分解变换;A2. Obtain G video frames, and number the video frames as I 1 , I 2 , ..., I G ; perform a 4-layer double-density double-tree complex wavelet decomposition transform on each video frame;
双密度双树复小波分解变换的具体过程为:The specific process of double-density double-tree complex wavelet decomposition transform is:
先对每个视频帧进行对偶树分解,分到对偶的两个树,每个树的每一行构成的一维数据进行两次一维小波分解,得到高频、次高频和低频部分;First, each video frame is decomposed into two dual trees by dual tree decomposition. The one-dimensional data of each row of each tree is decomposed twice by one-dimensional wavelet decomposition to obtain high-frequency, sub-high-frequency and low-frequency parts.
再对分解形成的高频、次高频和低频信息中的每一列构成的一维数据进行两次一维小波分解,最终得到九个子带图像,分别为八个高频子带L0H1、L0H2、H1L0、H1H1、H1H2、H2L0、H2H1、H2H2和一个低频子带L0L0;每个高频子带又分成实部和虚部两个部分,每一层得到32个高频分量。Then, the one-dimensional data composed of each column of the high-frequency, sub-high-frequency and low-frequency information formed by the decomposition is decomposed twice by one-dimensional wavelet decomposition, and finally nine sub-band images are obtained, namely eight high-frequency sub-bands L 0 H 1 , L 0 H 2 , H 1 L 0 , H 1 H 1 , H 1 H 2 , H 2 L 0 , H 2 H 1 , H 2 H 2 and one low-frequency sub-band L 0 L 0 ; each high-frequency sub-band is divided into two parts, the real part and the imaginary part, and 32 high-frequency components are obtained in each layer.
A3、应用局部自适应阈值窗口维纳滤波方法对所有的高频子带进行滤波估计,得到滤波后的小波子带;进行双密度双树复小波分解逆变换,得到去噪的视频帧;用输入视频帧与去噪的视频帧相减,得到每个视频帧的噪声残差;A3. Apply the local adaptive threshold window Wiener filtering method to filter and estimate all high-frequency subbands to obtain filtered wavelet subbands; perform inverse transform of double-density double-tree complex wavelet decomposition to obtain denoised video frames; subtract the input video frame from the denoised video frame to obtain the noise residual of each video frame;
局部自适应阈值窗口维纳滤波方法如式(1)所示:The local adaptive threshold window Wiener filtering method is shown in formula (1):
式(1)中,Win表示为滤波前的小波系数,Wout表示为滤波后的小波系数,噪声方差估计和子带方差由式子(2)和(3)得到:In formula (1), Win represents the wavelet coefficient before filtering, Wout represents the wavelet coefficient after filtering, and the noise variance estimation and subband variance From equations (2) and (3), we can get:
式(2)中,median()表示中值估计器,Wtemp表示第一层分解的第一个高频子带;In formula (2), median() represents the median estimator, W temp represents the first high-frequency subband of the first layer decomposition;
式(3)中,Nh为以(u,v)为中心点,大小为hxh的局部窗口;max()表示取0和方差估计中的最大值,min()函数表示取所有窗口估计结果的最小值。In formula (3), Nh is a local window with a size of hxh and centered at (u, v); max() means taking the maximum value between 0 and the variance estimate, and min() function means taking the minimum value of all window estimation results.
A4、使用QP矩阵加权的极大似然估计算法对I1,I2,...,IG的这组噪声残差进行估计,得到该视频的初步传感器模式噪声的乘法因子K;A4. Use the maximum likelihood estimation algorithm weighted by the QP matrix to estimate the set of noise residuals of I 1 , I 2 , ..., I G to obtain the multiplication factor K of the preliminary sensor pattern noise of the video;
量化参数值加权的极大似然估计算法表示为式子(4):The maximum likelihood estimation algorithm for weighted quantization parameter values is expressed as formula (4):
式(4)中,G为单个视频中用于估计传感器模式噪声因子K的视频帧数量,Nz表示第z个视频帧的噪声残差,Iz表示视频的第z个视频帧,WQP表示根据不同量化参数QP计算相关性,绘制得到QP-SPCE曲线,用该曲线关系制定该权重矩阵进行加权;δ为设定值,用于防止分母为0。In formula (4), G is the number of video frames in a single video used to estimate the sensor pattern noise factor K, Nz represents the noise residual of the z-th video frame, Iz represents the z-th video frame of the video, WQP represents the correlation calculated according to different quantization parameters QP, and the QP-SPCE curve is drawn. The weight matrix is formulated using the curve relationship for weighting; δ is a set value used to prevent the denominator from being 0.
A5、使用零均值化操作去除乘法因子K的CFA插值伪影,得到无CFA插值伪影的乘法因子K,再使用频域维纳滤波算法对无CFA插值伪影的乘法因子K进行滤波,以进一步去除其他非唯一噪声成分,乘法因子与每个输入视频帧进行相乘再求平均,得到传感器模式噪声;A5. Use zero averaging to remove CFA interpolation artifacts of the multiplication factor K to obtain a multiplication factor K without CFA interpolation artifacts. Then use the frequency domain Wiener filter algorithm to filter the multiplication factor K without CFA interpolation artifacts to further remove other non-unique noise components. The multiplication factor is multiplied with each input video frame and then averaged to obtain the sensor pattern noise.
其中,零均值化过程是从列中的每个像素中减去列平均值,然后从行中的每个像素中减去行平均值;The zero-meaning process is to subtract the column mean from each pixel in the column, and then subtract the row mean from each pixel in the row;
频域维纳滤波过程是将无CFA插值伪影的传感器模式噪声变换的频域,在使用维纳滤波操作进行估计。The frequency domain Wiener filtering process transforms the sensor pattern noise without CFA interpolation artifacts into the frequency domain and estimates it using the Wiener filtering operation.
S3、使用符号峰值相关能量求测试压缩视频的传感器模式噪声和传感器模式噪声数据库中参考压缩视频的传感器模式噪声的相关性,若符号峰值相关能量大于或者等于设定阈值时,则判定测试压缩视频来自录制该参考视频的相机,反之,测试压缩视频不是来自录制该参考压缩视频的相机。S3. Use the symbol peak correlation energy to calculate the correlation between the sensor pattern noise of the test compressed video and the sensor pattern noise of the reference compressed video in the sensor pattern noise database. If the symbol peak correlation energy is greater than or equal to the set threshold, it is determined that the test compressed video comes from the camera that recorded the reference video. Otherwise, the test compressed video is not from the camera that recorded the reference compressed video.
本步骤中,符号峰值相关能量表示为式子(5):In this step, the symbol peak correlation energy is expressed as formula (5):
式(5)中,sign()为符号函数,CRQ(a,b)为参考压缩视频的传感器模式噪声R和测试压缩视频的传感器模式噪声Q之间的二维循环互相关,β为(0,0)周围的一个小面积,|β|为该面积的维度乘积,MN为匹配传感器模式噪声的维度乘积。In formula (5), sign() is the sign function, CRQ (a,b) is the two-dimensional cyclic cross-correlation between the sensor pattern noise R of the reference compressed video and the sensor pattern noise Q of the test compressed video, β is a small area around (0, 0), |β| is the dimensional product of the area, and MN is the dimensional product of the matching sensor pattern noise.
以上所述之实施例子只为本发明之较佳实施例,并非以此限制本发明的实施范围,故凡依本发明之形状、原理所作的变化,均应涵盖在本发明的保护范围内。The embodiments described above are only preferred embodiments of the present invention and are not intended to limit the scope of implementation of the present invention. Therefore, all changes made according to the shape and principle of the present invention should be included in the protection scope of the present invention.
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210048894.6A CN114554227B (en) | 2022-01-17 | 2022-01-17 | Compressed video source detection method based on multi-scale transform domain self-adaptive wiener filtering |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210048894.6A CN114554227B (en) | 2022-01-17 | 2022-01-17 | Compressed video source detection method based on multi-scale transform domain self-adaptive wiener filtering |
Publications (2)
Publication Number | Publication Date |
---|---|
CN114554227A CN114554227A (en) | 2022-05-27 |
CN114554227B true CN114554227B (en) | 2023-05-23 |
Family
ID=81671282
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210048894.6A Active CN114554227B (en) | 2022-01-17 | 2022-01-17 | Compressed video source detection method based on multi-scale transform domain self-adaptive wiener filtering |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114554227B (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114881897A (en) * | 2022-05-31 | 2022-08-09 | 齐鲁工业大学 | Image segmentation based PRNU anonymization method and device |
CN114757242B (en) * | 2022-06-16 | 2022-09-23 | 中国空气动力研究与发展中心低速空气动力研究所 | Helicopter noise enhancement method and detection method based on cyclic wiener filtering |
CN115550686A (en) * | 2022-09-21 | 2022-12-30 | 广东工业大学 | A Short Compressed Video Source Identification Method |
CN116385316B (en) * | 2023-06-01 | 2023-08-08 | 深圳市嘉润原新显科技有限公司 | Multi-target image dynamic capturing method and related device |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7787030B2 (en) * | 2005-12-16 | 2010-08-31 | The Research Foundation Of State University Of New York | Method and apparatus for identifying an imaging device |
CN102395041A (en) * | 2011-08-05 | 2012-03-28 | 中山大学 | Imaging equipment source detection method based on pattern noise phase |
CN105120294B (en) * | 2015-06-26 | 2018-01-02 | 中国电子科技集团公司第二十八研究所 | A kind of jpeg format image sources discrimination method |
CN108259791B (en) * | 2018-01-05 | 2020-05-15 | 南京信息工程大学 | A method for extracting PRNU noise from video files |
CN112367457B (en) * | 2020-04-08 | 2022-03-22 | 齐鲁工业大学 | Video PRNU noise extraction method and camera source detection method |
CN111860337B (en) * | 2020-07-22 | 2022-05-24 | 齐鲁工业大学 | Method and system for right-handedness judgment based on PRNU pattern noise |
-
2022
- 2022-01-17 CN CN202210048894.6A patent/CN114554227B/en active Active
Also Published As
Publication number | Publication date |
---|---|
CN114554227A (en) | 2022-05-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN114554227B (en) | Compressed video source detection method based on multi-scale transform domain self-adaptive wiener filtering | |
Lawgaly et al. | Sensor pattern noise estimation based on improved locally adaptive DCT filtering and weighted averaging for source camera identification and verification | |
Wu et al. | A context adaptive predictor of sensor pattern noise for camera source identification | |
Al-Ani et al. | On the SPN estimation in image forensics: A systematic empirical evaluation | |
Kang et al. | A context-adaptive SPN predictor for trustworthy source camera identification | |
Gupta et al. | Improving source camera identification performance using DCT based image frequency components dependent sensor pattern noise extraction method | |
CN104616249B (en) | A kind of Wavelet Transformation of Image Denoising method based on curvature variation | |
Yang et al. | Estimation of signal-dependent noise level function in transform domain via a sparse recovery model | |
CN106851140B (en) | A method of digital photo image source identification using spatial smoothing filter | |
CN111861976A (en) | A method for identifying digital image source shooting equipment based on hardware fingerprint correlation | |
Dixit et al. | Image de-noising by non-local means algorithm | |
CN101742089B (en) | Apparatus and method for processing images | |
Su et al. | Multimedia source identification using an improved weight photo response non-uniformity noise extraction model in short compressed videos | |
CN105260992A (en) | Traffic image denoising algorithm based on robust principal component decomposition and feature space reconstruction | |
Balamurugan et al. | Source camera identification using SPN with PRNU estimation and enhancement | |
CN116612290A (en) | A Source Camera Recognition Method Based on Small Size Image | |
Lawgaly et al. | Three dimensional denoising filter for effective source smartphone video identification and verification | |
CN116385312A (en) | Low-illumination image denoising method based on phase correlation | |
EP1561348A1 (en) | Method and system for measuring video image degradations introduced by an encoding system with throughput reduction | |
CN117544819A (en) | Video source identification method based on self-adaptive Bayesian threshold estimation and bivariate shrinkage | |
Sari et al. | Development of denoising method for digital image in low-light condition | |
CN115550686A (en) | A Short Compressed Video Source Identification Method | |
CN117061772A (en) | Compressed image source camera identification method | |
Awad et al. | Efficient storage and classification of color patterns based on integrating interpolation with ANN/SVM | |
Lee et al. | Iterative blind image motion deblurring via learning a no-reference image quality measure |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |