CN114552384A - Semiconductor laser device for realizing fundamental mode lasing by changing local lateral refractive index and preparation method thereof - Google Patents
Semiconductor laser device for realizing fundamental mode lasing by changing local lateral refractive index and preparation method thereof Download PDFInfo
- Publication number
- CN114552384A CN114552384A CN202011359705.4A CN202011359705A CN114552384A CN 114552384 A CN114552384 A CN 114552384A CN 202011359705 A CN202011359705 A CN 202011359705A CN 114552384 A CN114552384 A CN 114552384A
- Authority
- CN
- China
- Prior art keywords
- layer
- ridge
- type
- refractive index
- laser
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/20—Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
- H01S5/22—Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/20—Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
- H01S5/2004—Confining in the direction perpendicular to the layer structure
- H01S5/2018—Optical confinement, e.g. absorbing-, reflecting- or waveguide-layers
- H01S5/2031—Optical confinement, e.g. absorbing-, reflecting- or waveguide-layers characterized by special waveguide layers, e.g. asymmetric waveguide layers or defined bandgap discontinuities
Landscapes
- Physics & Mathematics (AREA)
- Geometry (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Optics & Photonics (AREA)
- Semiconductor Lasers (AREA)
Abstract
本发明涉及一种通过改变局部侧向折射率来实现基模激射的半导体激光器,本发明的通过改变局部侧向折射率来实现基模激射的半导体激光器在半导体激光器脊条两侧各设计一凸起结构,通过该凸起结构使得该结构下方波导区域的实际折射率变大,将传播到此处的高阶模导引到两侧波导层并损耗掉,进而使得高阶模的的泄露损耗增大,可实现大的基模光模式体积,可使得大条宽、大电流下实现稳定的基侧模工作。
The invention relates to a semiconductor laser that realizes fundamental mode lasing by changing the local lateral refractive index. A protruding structure, through which the actual refractive index of the waveguide region under the structure is increased, and the high-order modes propagating here are guided to the waveguide layers on both sides and lost, thereby increasing the leakage loss of the high-order modes , which can realize a large fundamental mode optical mode volume, and can realize stable fundamental-side mode operation under large strip width and high current.
Description
技术领域technical field
本发明涉及一种通过改变局部侧向折射率来实现基模激射的半导体激光器及其制备方法The invention relates to a semiconductor laser which realizes fundamental mode lasing by changing the local lateral refractive index and a preparation method thereof
背景技术Background technique
高功率半导体激光器在泵浦、光通信、医疗等领域有着越来越广泛的应用,随着应用领域的拓宽和细分,对半导体激光器性能要求也越来越高,其中作为泵浦和通信用半导体激光器,由于需要将出射光耦合进光纤中,要求光斑具有较高的聚焦能力和高度能量密度,高阶模的存在会导致光斑变大,能量发散且发散角变大,因此要求单模半导体激光器具有良好的基模工作特性和光斑形貌。High-power semiconductor lasers are widely used in pumping, optical communication, medical and other fields. With the expansion and subdivision of application fields, the performance requirements of semiconductor lasers are also getting higher and higher. For semiconductor lasers, due to the need to couple the outgoing light into the optical fiber, the light spot is required to have high focusing ability and high energy density. Good fundamental mode working characteristics and spot shape.
为实现基模工作,半导体激光器通常采用弱折射率导引结构,弱折射率导引结构是在有源区发光处的侧向改变材料结构,使条形区两侧的折射率小于条形区内的折射率,最终达到限制光场的作用。其根本原理是采用光的全反射原理进行导波。采用全反射原理需要将脊型条做的很窄,不方便操作,一般小于3个微米,同时由于载流子的扩散作用,并且载流子浓度会对折射率产生影响,即载流子浓度越高,折射率越高,这样会导致在大电流注入下,脊型电流注入区以及其两侧的折射率差发生变化,进而导致发生高阶模激射。根据单模激射公式:In order to realize the fundamental mode operation, semiconductor lasers usually use a weak refractive index guiding structure. The weak refractive index guiding structure is a lateral change of the material structure at the light-emitting place in the active region, so that the refractive index on both sides of the stripe region is smaller than that of the stripe region. The index of refraction in the interior finally achieves the effect of confining the light field. The fundamental principle is to use the principle of total reflection of light to guide the wave. Using the principle of total reflection, the ridge strips need to be made very narrow, which is inconvenient to operate, generally less than 3 microns. At the same time, due to the diffusion of carriers, and the carrier concentration will affect the refractive index, that is, the carrier concentration The higher the refractive index, the higher the refractive index, which will cause the ridge current injection region and the refractive index difference on both sides to change under high current injection, resulting in high-order mode lasing. According to the single-mode lasing formula:
其中,W为脊型电流注入宽度,脊型区域折射率,为脊型两侧折射率,λ为出射光的波长,因此,为提升功率,一般采用减小条形区域与两侧区域折射率差来增大激光器的条宽进而增大基模的光模式体积,而通过减小折射率差来增大条宽的会导致空间烧孔效应以及热透镜效应,进而导致高阶模激射。where W is the ridge current injection width, ridge region refractive index, is the refractive index on both sides of the ridge type, and λ is the wavelength of the outgoing light. Therefore, in order to increase the power, it is generally used to reduce the refractive index difference between the strip area and the two sides to increase the strip width of the laser and increase the optical mode of the fundamental mode. However, increasing the strip width by reducing the refractive index difference can lead to spatial hole burning and thermal lensing effects, which in turn lead to higher-order mode lasing.
中国专利文献CN102324696A公开了一种低横向发散角布拉格反射波导边发射半导体激光器,该激光器将传统的波导层改变为高、低折射率周期分布的布拉格反射波导,通过布拉格光栅效应将基模与高阶模之间的增益损耗差增大,该激光器只是对横向模式进行了控制,对侧向模式没有作用。同时无对侧向上的电流扩展和发散角进行控制。Chinese patent document CN102324696A discloses a low lateral divergence angle Bragg reflection waveguide edge emitting semiconductor laser. The laser changes the traditional waveguide layer into a Bragg reflection waveguide with periodic distribution of high and low refractive indices, and uses the Bragg grating effect to separate the fundamental mode and the higher order mode. The gain loss difference between them increases, and the laser only controls the transverse mode and has no effect on the lateral mode. At the same time, there is no control of the current spread and divergence angle in the lateral direction.
中国专利文献CN110021877A公开了一种脊型波导半导体激光器及其制备方法,该方法在刻蚀处脊型条后对脊型条两侧进行离子注入,载流子只能在离子注入区以外的地方通过,可有效抑制电流扩展,该方法只是利用了基模与高阶模增益的差别抑制高阶模激射,使激光器在较大的条宽下维持基模工作,并且根据半导体激光器原理,仅仅只是利用基模与高阶模增益差别的话,在大电流注入下,高阶模仍然会激射。Chinese patent document CN110021877A discloses a ridge-type waveguide semiconductor laser and its preparation method. In the method, ion implantation is performed on both sides of the ridge-shaped strip after etching the ridge-shaped strip, and the carriers can only be located outside the ion-implanted area. Passing through, can effectively suppress the current expansion. This method only uses the difference between the gain of the fundamental mode and the high-order mode to suppress the high-order mode lasing, so that the laser can maintain the fundamental mode operation under a larger strip width. According to the principle of semiconductor lasers, only the fundamental mode is used. The higher-order modes will still be lasing under high current injection, if the gain differs from that of the higher-order modes.
发明内容SUMMARY OF THE INVENTION
针对现有技术的不足,尤其是现有激光器无法有效抑制高阶模激射的难点,本发明提供一种通过改变局部侧向折射率来实现基模激射的半导体激光器及其制备方法。Aiming at the deficiencies of the prior art, especially the difficulty that the prior lasers cannot effectively suppress high-order mode lasing, the present invention provides a semiconductor laser capable of realizing fundamental mode lasing by changing the local lateral refractive index and a preparation method thereof.
本发明的技术方案为:The technical scheme of the present invention is:
一种通过改变局部侧向折射率来实现基模激射的半导体激光器,包括从上往下依次叠层设置的P型限制层、P型波导层、发光有源层、N型波导层、N型限制层和N面金属,所述P型限制层包括本体层,所述本体层上中部腐蚀出有凸出于本体层上表面的脊型台,所述脊型台为长条形,且脊型台的两侧均设置有一个用于过滤损耗高阶模的凸起结构,所述脊型台上表面设置有P面电极。A semiconductor laser that realizes fundamental mode lasing by changing the local lateral refractive index, comprising a P-type confinement layer, a P-type waveguide layer, a light-emitting active layer, an N-type waveguide layer, an N-type waveguide layer and a A type confinement layer and an N-face metal, the P-type confinement layer includes a body layer, a ridge-type mesa protruding from the upper surface of the body layer is etched in the upper middle of the body layer, and the ridge-type mesa is elongated, and Both sides of the ridge-shaped stage are provided with a convex structure for filtering loss of high-order modes, and a P-surface electrode is provided on the upper surface of the ridge-shaped stage.
根据本发明优选的,脊型台的腐蚀深度小于P型限制层的高度。Preferably according to the present invention, the etching depth of the ridge-type mesa is less than the height of the P-type confinement layer.
根据本发明优选的,脊型台的宽度小于等于3μm。Preferably according to the present invention, the width of the ridge-shaped mesa is less than or equal to 3 μm.
根据本发明优选的,所述凸起结构为锥形或长条形,当凸起结构为锥形时,靠近脊型台的一侧侧边为凸起结构的底边。According to a preferred embodiment of the present invention, the protruding structure is in the shape of a cone or a strip. When the protruding structure is a cone, a side edge close to the ridge-shaped platform is the bottom edge of the protruding structure.
根据本发明优选的,凸起结构靠近脊型台但相互不接触。Preferably according to the present invention, the protruding structures are close to the ridge table but not in contact with each other.
进一步优选的,凸起结构与脊型台之间的间距为5~10μm。Further preferably, the distance between the protruding structure and the ridge-shaped mesa is 5-10 μm.
根据本发明优选的,凸起结构的高度小于脊型台的高度。Preferably according to the present invention, the height of the raised structure is smaller than the height of the ridge-shaped platform.
根据本发明优选的,凸起结构的位置在脊型条的两侧并靠近发光腔面。According to the preferred embodiment of the present invention, the positions of the protruding structures are located on both sides of the ridge strip and are close to the surface of the light emitting cavity.
上述通过改变局部侧向折射率来实现基模激射的半导体激光器的制备方法,包括步骤如下:The above-mentioned preparation method of a semiconductor laser for realizing fundamental mode lasing by changing the local lateral refractive index includes the following steps:
步骤1,在衬底上依次生长N型限制层、N型波导层、有源层、P型波导层、P型限制层、欧姆接触层;Step 1, growing an N-type confinement layer, an N-type waveguide layer, an active layer, a P-type waveguide layer, a P-type confinement layer, and an ohmic contact layer on the substrate in sequence;
步骤2,在欧姆接触层上通过匀胶工艺均匀覆盖一层正性光刻胶,通过光刻工艺在接触层表面留下与脊型台以及凸起结构图形一致的光刻胶图案;
步骤3,利用湿法腐蚀或者干法刻蚀工艺,将光刻胶所覆盖区域以外的区域腐蚀去除,腐蚀深度为600~800nm;Step 3, using a wet etching or dry etching process to etch and remove the area other than the area covered by the photoresist, and the etching depth is 600-800 nm;
步骤4,腐蚀后将光刻胶去除,之后重新涂覆一层正性光刻胶,通过光刻显影工艺将凸起结构区域的光刻胶去除,漏出凸起结构区域表面的欧姆接触层;Step 4, removing the photoresist after etching, then re-coating a layer of positive photoresist, removing the photoresist in the raised structure area through a photolithography development process, and leaking the ohmic contact layer on the surface of the raised structure area;
步骤5,利用湿法腐蚀或者干法刻蚀工艺,将凸起结构区域腐蚀一定深度,使得该凸起结构的高度小于脊型台的高度。In
上述衬底、N型限制层、N型波导层、有源层、P型波导层、P型限制层、欧姆接触层、绝缘层、N面电极和P面电极与基模半导体激光器一致,本发明不做限定。The substrate, N-type confinement layer, N-type waveguide layer, active layer, P-type waveguide layer, P-type confinement layer, ohmic contact layer, insulating layer, N-surface electrode and P-surface electrode are consistent with the fundamental mode semiconductor laser. Inventions are not limited.
本发明的激光器脊型条靠近出光腔面的两侧存在一个高折射率区域,通过该高折射率区域过滤掉高阶模,其原理如下:首先,脊型条结构实现基模激射根本原理采用光的全反射原理进行导波,高阶模的入射角较大,基模的入射角很小,根据光的全反射原理,折射率差越大,光的全反射角越大,大的全反射角会使得高阶模可以形成全反射,进而形成光的震荡并发生激射,本发明通过在脊型条两侧的局部设计一个凸起结构,根据半导体材料折射率特性,半导体材料越靠近空气,其实际折射率越低,该突起结构相当于使得该区域下方的波导层更加远离空气而使得该区域下方的波导层的实际折射率较高,因此,该突起区域会使得下方的波导层与脊型条下方的波导层的折射率差变小,折射率差变小会使得到达此处的具有较大入射角的高阶模无法形成全反射并被扩展到两侧波导并损耗掉,因此高阶模无法形成震荡,通过控制突起结构的高度,可以调控折射率差的大小,而基模本身的入射角很小,因此可以选择折射率差的大小使得高阶模被损耗而基模形成全反射进而发生光振荡形成激光,因此采用局部折射率差变小使得高阶模相对于基模有很高的损耗,进而使得这种激光器具有很大的基模模式体积以及稳定的基模工作模式。The laser ridge bar of the present invention has a high refractive index region on both sides close to the surface of the light exit cavity, and the high refractive index region is used to filter out high-order modes. According to the principle of total reflection of light, the incident angle of the high-order mode is large, and the incident angle of the fundamental mode is small. According to the principle of total reflection of light, the greater the refractive index difference, the greater the total reflection angle of light, and the larger So that the high-order mode can form total reflection, thereby forming light oscillation and lasing. The present invention designs a convex structure on both sides of the ridge stripe. According to the refractive index characteristics of the semiconductor material, the closer the semiconductor material is to the air, the actual refraction of the semiconductor material. The lower the ratio, the protruding structure is equivalent to making the waveguide layer under the region farther away from the air, so that the actual refractive index of the waveguide layer under the region is higher. The refractive index difference of the waveguide layer becomes smaller, and the smaller the refractive index difference will make the high-order mode with a large incident angle that arrives here unable to form total reflection and be extended to the two sides of the waveguide and lost, so the high-order mode cannot form oscillation. By controlling the height of the protruding structure, the size of the refractive index difference can be adjusted, and the incident angle of the fundamental mode itself is very small. Therefore, the size of the refractive index difference can be selected so that the high-order mode is lost and the fundamental mode forms total reflection and then optical oscillation occurs to form a laser. Therefore, Using the localized refractive index difference to decrease makes the high-order mode have a high loss relative to the fundamental mode, which in turn makes the laser have a large fundamental mode volume and a stable fundamental mode operating mode.
本发明的有益效果为:The beneficial effects of the present invention are:
本发明通过改变局部侧向折射率来实现基模激射的半导体激光器与现有技术相比,具有以下突出优点:Compared with the prior art, the semiconductor laser that realizes fundamental mode lasing by changing the local lateral refractive index of the present invention has the following outstanding advantages:
1、本发明的通过改变局部侧向折射率来实现基模激射的半导体激光器在半导体激光器脊条两侧各设计一凸起结构,通过该凸起结构使得该结构下方波导区域的实际折射率变大,将传播到此处的高阶模导引到两侧波导层并损耗掉,可实现基模与高阶模之间较大的泄露损耗,高阶模无法形成有效震荡,可在大的光模式体积下实现基模激射;1. In the semiconductor laser of the present invention, which realizes fundamental mode lasing by changing the local lateral refractive index, a convex structure is designed on both sides of the semiconductor laser ridge, and the actual refractive index of the waveguide region under the structure is made through the convex structure. When it becomes larger, the high-order mode propagating here is guided to the waveguide layers on both sides and lost, which can achieve a large leakage loss between the fundamental mode and the high-order mode, and the high-order mode cannot form an effective oscillation, which can be realized in a large optical mode volume Fundamental mode lasing;
2、本发明的激光器可以有效抑制高阶模激射。2. The laser of the present invention can effectively suppress high-order mode lasing.
3、本发明激光器的制备方法仅采用常规光刻腐蚀工艺即可实现大的光模式体积下实现基模激射,适合批量生产。3. The laser preparation method of the present invention can realize fundamental mode lasing under a large optical mode volume only by using a conventional photolithography etching process, which is suitable for mass production.
附图说明Description of drawings
图1是本发明的通过改变局部侧向折射率来实现基模激射的半导体激光器的结构示意图;1 is a schematic structural diagram of a semiconductor laser that realizes fundamental mode lasing by changing the local lateral refractive index of the present invention;
图2是本发明的通过改变局部侧向折射率来实现基模激射的半导体激光器的俯视结构示意图;Fig. 2 is the top-view structure schematic diagram of the semiconductor laser that realizes fundamental mode lasing by changing the local lateral refractive index of the present invention;
图3是本发明的的通过改变局部侧向折射率来实现基模激射的半导体激光器的正视结构示意图;Fig. 3 is the front view structure schematic diagram of the semiconductor laser that realizes fundamental mode lasing by changing the local lateral refractive index of the present invention;
1、P面电极;2、脊型台;3本体层;4、凸起结构;5、P型波导层;6、发光有源层;7、N型波导层;8、N型限制层、9、N面金属。1. P-surface electrode; 2. Ridge-type table; 3. Body layer; 4. Protruding structure; 5. P-type waveguide layer; 6. Light-emitting active layer; 7. N-type waveguide layer; 8. N-type confinement layer, 9. N-face metal.
具体实施方式Detailed ways
下面将结合说明书附图对本发明所述的技术方案以及实施过程和原理作进一步的解释说明。The technical solutions, implementation process and principles of the present invention will be further explained below in conjunction with the accompanying drawings.
实施例1Example 1
一种通过改变局部侧向折射率来实现基模激射的半导体激光器,结构如图1-图3所示,包括从上往下依次叠层设置的P型限制层、P型波导层5、发光有源层6、N型波导层7、N型限制层8和N面金属9,所述P型限制层包括本体层3,所述本体层3上中部腐蚀出有凸出于本体层3上表面的脊型台2,脊型台2为长条形,且脊型台2两侧均设置有一个用于过滤损耗高阶模的凸起结构4,脊型台2上表面设置有P面电极1。A semiconductor laser that realizes fundamental mode lasing by changing the local lateral refractive index, the structure is shown in Figures 1-3, including a P-type confinement layer, a P-
脊型台的腐蚀深度小于P型限制层的高度,脊型台的宽度为3μm。The etching depth of the ridge mesa is smaller than the height of the P-type confinement layer, and the width of the ridge mesa is 3 μm.
所述凸起结构为锥形,靠近脊型台的一侧侧边为凸起结构的底边。凸起结构靠近脊型台但相互不接触,凸起结构与脊型台之间的间距为5μm,凸起结构的高度小于脊型台的高度,凸起结构的位置在脊型条的两侧并靠近发光腔面。The protruding structure is tapered, and one side near the ridge-shaped platform is the bottom edge of the protruding structure. The protruding structure is close to the ridge table but not in contact with each other. The distance between the protruding structure and the ridge table is 5 μm. and close to the surface of the light-emitting cavity.
实施例2Example 2
同实施例1所述的通过改变局部侧向折射率来实现基模激射的半导体激光器,不同之处在于:It is different from the semiconductor laser described in Embodiment 1 that realizes fundamental mode lasing by changing the local lateral refractive index:
脊型台的腐蚀深度小于P型限制层的高度,脊型台的宽度为2μm。The etching depth of the ridge mesa is smaller than the height of the P-type confinement layer, and the width of the ridge mesa is 2 μm.
凸起结构靠近脊型台但相互不接触,凸起结构与脊型台之间的间距为6μm。The protruding structures are close to the ridge mesa but not in contact with each other, and the distance between the protruding structures and the ridge mesa is 6 μm.
实施例3Example 3
同实施例1所述的通过改变局部侧向折射率来实现基模激射的半导体激光器,不同之处在于:It is different from the semiconductor laser described in Embodiment 1 that realizes fundamental mode lasing by changing the local lateral refractive index:
脊型台的腐蚀深度小于P型限制层的高度,脊型台的宽度为1μm。The etching depth of the ridge mesa is smaller than the height of the P-type confinement layer, and the width of the ridge mesa is 1 μm.
凸起结构靠近脊型台但相互不接触,凸起结构与脊型台之间的间距为8μm。The protruding structures are close to the ridge-type mesa but not in contact with each other, and the distance between the protruding structure and the ridge-type mesa is 8 μm.
实施例4Example 4
同实施例1所述的通过改变局部侧向折射率来实现基模激射的半导体激光器,不同之处在于:It is different from the semiconductor laser described in Embodiment 1 that realizes fundamental mode lasing by changing the local lateral refractive index:
脊型台的腐蚀深度小于P型限制层的高度,脊型台的宽度为1μm。The etching depth of the ridge mesa is smaller than the height of the P-type confinement layer, and the width of the ridge mesa is 1 μm.
凸起结构靠近脊型台但相互不接触,凸起结构与脊型台之间的间距为10μm。The protruding structures are close to the ridge-type mesa but not in contact with each other, and the distance between the protruding structure and the ridge-type mesa is 10 μm.
实施例5Example 5
一种通过改变局部侧向折射率来实现基模激射的半导体激光器的制备方法,包括以下步骤:A preparation method of a semiconductor laser for realizing fundamental mode lasing by changing the local lateral refractive index, comprising the following steps:
步骤1,在衬底上依次生长N型限制层8、N型波导层7、有源层、P型波导层5、P型限制层、欧姆接触层;Step 1, growing an N-
步骤2,在接触层上通过匀胶工艺均匀覆盖一层正性光刻胶,通过光刻工艺在接触层表面留下与脊型台2以及凸起结构4图形一致的光刻胶图案;
步骤3,利用湿法腐蚀或者干法刻蚀工艺,将光刻胶所覆盖区域以外的区域腐蚀去除,腐蚀深度为600~800nm;Step 3, using a wet etching or dry etching process to etch and remove the area other than the area covered by the photoresist, and the etching depth is 600-800 nm;
步骤4,腐蚀后将光刻胶去除,之后重新涂覆一层正性光刻胶,通过光刻显影工艺将凸起结构4区域的光刻胶去除,漏出凸起结构4区域表面的欧姆接触层;Step 4, remove the photoresist after etching, and then re-coat a layer of positive photoresist, remove the photoresist in the area of the raised structure 4 through a photolithography development process, and leak out the ohmic contact on the surface of the raised structure 4 area Floor;
步骤5,利用湿法腐蚀或者干法刻蚀工艺,将凸起结构4区域腐蚀一定深度,使得该凸起结构4的高度小于脊型台2的高度。
以上所述仅是本专利的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本专利技术原理的前提下,还可以做出若干改进和替换,这些改进和替换也应视为本专利的保护范围。The above are only the preferred embodiments of the present patent. It should be pointed out that for those skilled in the art, without departing from the technical principles of the present patent, several improvements and replacements can be made. These improvements and replacements It should also be regarded as the protection scope of this patent.
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011359705.4A CN114552384A (en) | 2020-11-27 | 2020-11-27 | Semiconductor laser device for realizing fundamental mode lasing by changing local lateral refractive index and preparation method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011359705.4A CN114552384A (en) | 2020-11-27 | 2020-11-27 | Semiconductor laser device for realizing fundamental mode lasing by changing local lateral refractive index and preparation method thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
CN114552384A true CN114552384A (en) | 2022-05-27 |
Family
ID=81667815
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202011359705.4A Pending CN114552384A (en) | 2020-11-27 | 2020-11-27 | Semiconductor laser device for realizing fundamental mode lasing by changing local lateral refractive index and preparation method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114552384A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2023245908A1 (en) * | 2022-06-24 | 2023-12-28 | 度亘激光技术(苏州)有限公司 | Semiconductor laser and preparation method therefor |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20030031222A1 (en) * | 1999-12-27 | 2003-02-13 | Stefano Balsamo | Semiconductor laser element having a diverging region |
CN1681176A (en) * | 2004-04-09 | 2005-10-12 | 中国科学院半导体研究所 | Ridge waveguide high power semiconductor laser structure with tapered gain region |
JP2008160157A (en) * | 2008-03-21 | 2008-07-10 | Mitsubishi Electric Corp | Semiconductor laser device |
CN102130424A (en) * | 2010-01-20 | 2011-07-20 | 松下电器产业株式会社 | Nitride semiconductor laser device |
CN102545036A (en) * | 2010-12-08 | 2012-07-04 | 索尼公司 | Laser diode device |
CN103518298A (en) * | 2011-05-02 | 2014-01-15 | 奥斯兰姆奥普托半导体有限责任公司 | Laser light source |
CN106961071A (en) * | 2017-04-27 | 2017-07-18 | 中国科学院长春光学精密机械与物理研究所 | A kind of semiconductor optical amplifier led based on ridged active area smooth sea |
CN110114945A (en) * | 2016-10-28 | 2019-08-09 | 恩耐公司 | Method, system and the equipment inhibited for higher order mode |
-
2020
- 2020-11-27 CN CN202011359705.4A patent/CN114552384A/en active Pending
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20030031222A1 (en) * | 1999-12-27 | 2003-02-13 | Stefano Balsamo | Semiconductor laser element having a diverging region |
CN1681176A (en) * | 2004-04-09 | 2005-10-12 | 中国科学院半导体研究所 | Ridge waveguide high power semiconductor laser structure with tapered gain region |
JP2008160157A (en) * | 2008-03-21 | 2008-07-10 | Mitsubishi Electric Corp | Semiconductor laser device |
CN102130424A (en) * | 2010-01-20 | 2011-07-20 | 松下电器产业株式会社 | Nitride semiconductor laser device |
CN102545036A (en) * | 2010-12-08 | 2012-07-04 | 索尼公司 | Laser diode device |
CN103518298A (en) * | 2011-05-02 | 2014-01-15 | 奥斯兰姆奥普托半导体有限责任公司 | Laser light source |
CN106099640A (en) * | 2011-05-02 | 2016-11-09 | 奥斯兰姆奥普托半导体有限责任公司 | Laser light source |
CN110114945A (en) * | 2016-10-28 | 2019-08-09 | 恩耐公司 | Method, system and the equipment inhibited for higher order mode |
CN106961071A (en) * | 2017-04-27 | 2017-07-18 | 中国科学院长春光学精密机械与物理研究所 | A kind of semiconductor optical amplifier led based on ridged active area smooth sea |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2023245908A1 (en) * | 2022-06-24 | 2023-12-28 | 度亘激光技术(苏州)有限公司 | Semiconductor laser and preparation method therefor |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN113948968B (en) | Semiconductor laser for realizing base side mode lasing and preparation method thereof | |
US6928097B2 (en) | Edge emitting semiconductor laser and semiconductor laser module | |
JP3849758B2 (en) | Semiconductor laser element | |
KR100243417B1 (en) | High power semiconductor laser with Al double holding structure | |
JP5916414B2 (en) | Optical semiconductor device | |
AU770757B2 (en) | Semiconductor laser element having a diverging region | |
CN114497310B (en) | Lateral light mode control high-power semiconductor device and preparation method thereof | |
US6018539A (en) | Semiconductor laser and method of fabricating semiconductor laser | |
CN103166108B (en) | Circle spot exports low divergence edge emitting photon crystal laser and composite waveguide device | |
CN114552384A (en) | Semiconductor laser device for realizing fundamental mode lasing by changing local lateral refractive index and preparation method thereof | |
JPS6343908B2 (en) | ||
KR100275532B1 (en) | Method for fabricating high power semiconductor lasers with self aligned ion implantation | |
CN119009665A (en) | Edge-emitting laser and preparation method thereof | |
CN116505367A (en) | A kind of semiconductor structure and manufacturing method | |
CN206195152U (en) | Ladder ridge semiconductor laser | |
JP2846668B2 (en) | Broad area laser | |
US5707892A (en) | Method for fabricating a semiconductor laser diode | |
US20250023330A1 (en) | Double Waveguide Structure For Edge-Emitting Semiconductor Laser And Method Of Forming The Same | |
JPH0474876B2 (en) | ||
CN220628484U (en) | Single transverse mode semiconductor laser | |
CN117394137A (en) | A tilted waveguide semiconductor laser with composite microstructure | |
JPS621277B2 (en) | ||
CN119253406A (en) | Elliptical ridge waveguide laser and preparation method thereof | |
KR100265805B1 (en) | Laser Diode and Manufacturing Method | |
JPS59218786A (en) | Single axial mode semiconductor laser |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20220527 |
|
RJ01 | Rejection of invention patent application after publication |