CN114540396A - Construction method of glucose metabolic pathway in Shewanella strain - Google Patents
Construction method of glucose metabolic pathway in Shewanella strain Download PDFInfo
- Publication number
- CN114540396A CN114540396A CN202210175954.0A CN202210175954A CN114540396A CN 114540396 A CN114540396 A CN 114540396A CN 202210175954 A CN202210175954 A CN 202210175954A CN 114540396 A CN114540396 A CN 114540396A
- Authority
- CN
- China
- Prior art keywords
- pyydt
- glk
- ompc
- glf
- glucose
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/74—Vectors or expression systems specially adapted for prokaryotic hosts other than E. coli, e.g. Lactobacillus, Micromonospora
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/195—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria
- C07K14/24—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria from Enterobacteriaceae (F), e.g. Citrobacter, Serratia, Proteus, Providencia, Morganella, Yersinia
- C07K14/245—Escherichia (G)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/0004—Oxidoreductases (1.)
- C12N9/0006—Oxidoreductases (1.) acting on CH-OH groups as donors (1.1)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/10—Transferases (2.)
- C12N9/12—Transferases (2.) transferring phosphorus containing groups, e.g. kinases (2.7)
- C12N9/1205—Phosphotransferases with an alcohol group as acceptor (2.7.1), e.g. protein kinases
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/14—Hydrolases (3)
- C12N9/16—Hydrolases (3) acting on ester bonds (3.1)
- C12N9/18—Carboxylic ester hydrolases (3.1.1)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/88—Lyases (4.)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/90—Isomerases (5.)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Y—ENZYMES
- C12Y101/00—Oxidoreductases acting on the CH-OH group of donors (1.1)
- C12Y101/01—Oxidoreductases acting on the CH-OH group of donors (1.1) with NAD+ or NADP+ as acceptor (1.1.1)
- C12Y101/01049—Glucose-6-phosphate dehydrogenase (1.1.1.49)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Y—ENZYMES
- C12Y207/00—Transferases transferring phosphorus-containing groups (2.7)
- C12Y207/01—Phosphotransferases with an alcohol group as acceptor (2.7.1)
- C12Y207/01002—Glucokinase (2.7.1.2)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Y—ENZYMES
- C12Y207/00—Transferases transferring phosphorus-containing groups (2.7)
- C12Y207/01—Phosphotransferases with an alcohol group as acceptor (2.7.1)
- C12Y207/01011—6-Phosphofructokinase (2.7.1.11)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Y—ENZYMES
- C12Y207/00—Transferases transferring phosphorus-containing groups (2.7)
- C12Y207/01—Phosphotransferases with an alcohol group as acceptor (2.7.1)
- C12Y207/0104—Pyruvate kinase (2.7.1.40)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Y—ENZYMES
- C12Y301/00—Hydrolases acting on ester bonds (3.1)
- C12Y301/01—Carboxylic ester hydrolases (3.1.1)
- C12Y301/01031—6-Phosphogluconolactonase (3.1.1.31)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Y—ENZYMES
- C12Y401/00—Carbon-carbon lyases (4.1)
- C12Y401/02—Aldehyde-lyases (4.1.2)
- C12Y401/02014—2-Dehydro-3-deoxy-phosphogluconate aldolase (4.1.2.14)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Y—ENZYMES
- C12Y402/00—Carbon-oxygen lyases (4.2)
- C12Y402/01—Hydro-lyases (4.2.1)
- C12Y402/01012—Phosphogluconate dehydratase (4.2.1.12)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Y—ENZYMES
- C12Y504/00—Intramolecular transferases (5.4)
- C12Y504/99—Intramolecular transferases (5.4) transferring other groups (5.4.99)
- C12Y504/99009—UDP-galactopyranose mutase (5.4.99.9)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2800/00—Nucleic acids vectors
- C12N2800/22—Vectors comprising a coding region that has been codon optimised for expression in a respective host
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Organic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Genetics & Genomics (AREA)
- Engineering & Computer Science (AREA)
- Wood Science & Technology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Zoology (AREA)
- General Health & Medical Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Biochemistry (AREA)
- Molecular Biology (AREA)
- Biotechnology (AREA)
- Biomedical Technology (AREA)
- Microbiology (AREA)
- Medicinal Chemistry (AREA)
- Biophysics (AREA)
- Physics & Mathematics (AREA)
- Plant Pathology (AREA)
- Gastroenterology & Hepatology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
Abstract
Description
技术领域technical field
本发明属于基因工程和生物代谢技术领域,更具体的说是一种可以使希瓦氏菌以葡萄糖为唯一碳源进行生长代谢的菌株构建方法。The invention belongs to the technical field of genetic engineering and biological metabolism, in particular to a method for constructing a strain that enables Shewanella to use glucose as the sole carbon source for growth and metabolism.
背景技术Background technique
基因工程(genetic engineering)又称基因拼接技术和DNA重组技术,是以分子遗传学为理论基础,以分子生物学和微生物学的现代方法为手段,将不同来源的基因按预先设计的蓝图,在体外构建杂种DNA分子,然后导入活细胞,使外源基因能在受体细胞内复制、转录、翻译表达的操作,以改变生物原有的遗传特性、获得新品种、生产新产品。Genetic engineering, also known as gene splicing technology and DNA recombination technology, is based on molecular genetics and uses modern methods of molecular biology and microbiology as means to combine genes from different sources according to pre-designed blueprints. The operation of constructing hybrid DNA molecules in vitro, and then introducing them into living cells, so that foreign genes can be replicated, transcribed, translated and expressed in recipient cells, so as to change the original genetic characteristics of organisms, obtain new varieties, and produce new products.
葡萄糖(Glucose)(化学式C6H12O6),简称为葡糖。化学名称:2,3,4,5,6-五羟基己醛,是自然界分布最广且最为重要的一种单糖,它是一种多羟基醛。纯净的葡萄糖为无色晶体,易溶于水,微溶于乙醇,不溶于乙醚。葡萄糖在生物学领域具有重要地位,植物可通过光合作用产生葡萄糖,是活细胞的能量来源和新陈代谢中间产物,即生物的主要供能物质。葡萄糖进入红细胞是协助扩散进入细胞内的,进入其他细胞的过程则是主动运输,均需要载体蛋白的参与。进入细胞内的葡萄糖经过EMP途径→三羧酸循环→呼吸链完全氧化为二氧化碳和水,并从中产生能量。Glucose (chemical formula C 6 H 12 O 6 ), abbreviated as glucose. Chemical name: 2,3,4,5,6-pentahydroxyhexanal, it is the most widely distributed and most important monosaccharide in nature, and it is a polyhydroxyaldehyde. Pure glucose is colorless crystal, easily soluble in water, slightly soluble in ethanol, insoluble in ether. Glucose plays an important role in the field of biology. Plants can produce glucose through photosynthesis, which is the energy source and metabolic intermediate product of living cells, that is, the main energy supply material for organisms. Glucose enters red blood cells to assist in the diffusion into cells, and the process of entering other cells is active transport, which requires the participation of carrier proteins. Glucose entering the cell is completely oxidized to carbon dioxide and water through the EMP pathway → tricarboxylic acid cycle → respiratory chain, and energy is generated from it.
希瓦氏菌(Shewanella oneidensis)属是一种兼性厌氧菌,遗传背景清楚,且易于操作。模式产电微生物-奥奈达希瓦氏菌(Shewanella oneidensis MR-1简称MR-1)是希瓦氏菌属中在基因组序列注释和遗传特性方面研究最广泛的菌株。该菌株能够在不添加外源媒介的情况下,将电子转移到微生物燃料电池中的阳极,成为研究微生物如何在MFC中产生电流的模型生物之一。野生型希瓦氏菌一般以乳酸为底物进行生长代谢,不能利用葡萄糖、木糖等糖类,使得菌种可利用底物谱过窄,胞外电子传递效率较低。Shewanella oneidensis is a facultative anaerobe with a clear genetic background and easy manipulation. The model electrogenic microorganism, Shewanella oneidensis MR-1 (MR-1 for short), is the most extensively studied strain of Shewanella in terms of genome sequence annotation and genetic characterization. The strain is able to transfer electrons to the anode in a microbial fuel cell without the addition of an exogenous medium, making it one of the model organisms to study how microorganisms generate electrical current in MFCs. Wild-type Shewanella generally uses lactic acid as a substrate for growth and metabolism, and cannot use sugars such as glucose and xylose, which makes the spectrum of available substrates too narrow and the extracellular electron transfer efficiency is low.
EMP途径(Embden-Meyerhofpathway)是指在无氧条件下,葡萄糖被分解成丙酮酸,同时释放出少量ATP的过程。大致可分为两个阶段:第一阶段只是生成两分子的主要中间代谢产物3-磷酸-甘油醛。第二阶段发生氧化还原反应,释放能量合成的ATP,同时形成两分子的丙酮酸。通过EMP途径,每氧化一个分子的葡萄糖净得两分子ATP,为生物的生命活动提供能量和物质准备。ED途径又称2-酮-3-脱氧-6-磷酸葡糖酸(KDPG)途径。这是存在于某些缺乏完整EMP途径的严格需氧细菌中的一种降解葡萄糖的替代途径,为微生物所特有。特点是葡萄糖只经过4步反应即可快速获得由EMP途径须经10步反应才能形成的丙酮酸。这条途径的关键是2-酮-3-脱氧-6-磷酸葡萄糖酸的裂解,即分解为3-磷酸甘油醛和丙酮酸。3-磷酸甘油醛可进入EMP途径转变成丙酮酸。(特征性酶:KDPG醛缩酶)The EMP pathway (Embden-Meyerhof pathway) refers to the process in which glucose is decomposed into pyruvate and a small amount of ATP is released under anaerobic conditions. It can be roughly divided into two stages: the first stage only generates two molecules of the main intermediate metabolite 3-phosphate-glyceraldehyde. In the second stage, a redox reaction occurs, releasing ATP for energy synthesis and simultaneously forming two molecules of pyruvate. Through the EMP pathway, two molecules of ATP are obtained for each molecule of glucose oxidized, which provides energy and material preparation for biological life activities. The ED pathway is also known as the 2-keto-3-deoxy-6-phosphogluconate (KDPG) pathway. This is an alternative glucose-degrading pathway that exists in some strictly aerobic bacteria that lack an intact EMP pathway and is unique to microorganisms. The characteristic is that glucose can quickly obtain pyruvate which can only be formed by 10 steps of EMP pathway after only 4 steps of reaction. The key to this pathway is the cleavage of 2-keto-3-deoxy-6-phosphogluconate, i.e., into glyceraldehyde-3-phosphate and pyruvate. Glyceraldehyde 3-phosphate can be converted into pyruvate by entering the EMP pathway. (Characteristic enzyme: KDPG aldolase)
本发明公开了一种可以使希瓦氏菌以葡萄糖为唯一碳源进行生长代谢的菌株构建方法,旨在通过异源表达技术,结合基因工程等手段,构建13种可用重组质粒,将葡萄糖利用代谢的关键基因引入MR-1中,从“葡萄糖跨膜转运模块合成生物学改造及优化”和“葡萄糖转运模块结合ED模块增强葡萄糖代谢”两个模块来重构希瓦氏菌株的代谢通路,使工程希瓦氏菌能够在以葡萄糖为唯一碳源的改良M9液体培养基中进行生长代谢,从而拓宽希瓦氏菌的可用底物谱。The invention discloses a method for constructing a strain that enables Shewanella to use glucose as the sole carbon source for growth and metabolism, aiming to construct 13 available recombinant plasmids through heterologous expression technology combined with genetic engineering and other means, and utilize glucose The key genes of metabolism were introduced into MR-1, and the metabolic pathway of Shewanella strains was reconstructed from two modules: "synthetic biology modification and optimization of glucose transmembrane transport module" and "glucose transport module combined with ED module to enhance glucose metabolism". The engineered Shewanella can grow and metabolize in a modified M9 liquid medium with glucose as the sole carbon source, thereby broadening the available substrate spectrum of Shewanella.
发明内容:Invention content:
本发明旨在通过异源表达技术,结合基因工程等手段,将“葡萄糖跨膜转运模块合成生物学改造及优化”(Ompc,galp,glf,glk)和“葡萄糖转运模块结合ED模块增强葡萄糖代谢”(zwf,pgl, edd,eda,pfkA,pykA)两个模块的关键基因,通过Biobrick的构建策略进行整合,构建重组质粒,并导入野生型Shewanella oneidensis MR-1中,重构希瓦氏菌的代谢通路,使其能够以葡萄糖为唯一碳源进行生长代谢,从而拓宽希瓦氏菌的可用底物谱。The present invention aims to combine "synthetic biology modification and optimization of glucose transmembrane transport module" (Ompc, galp, glf, glk) and "glucose transport module combined with ED module to enhance glucose metabolism through heterologous expression technology combined with genetic engineering and other means. "(zwf, pgl, edd, eda, pfkA, pykA) The key genes of the two modules were integrated through Biobrick's construction strategy, the recombinant plasmid was constructed, and imported into wild-type Shewanella oneidensis MR-1 to reconstruct Shewanella The metabolic pathway enables it to use glucose as the sole carbon source for growth metabolism, thereby broadening the available substrate spectrum of Shewanella.
本发明的技术方案概述如下:The technical scheme of the present invention is summarized as follows:
希瓦氏菌株中葡萄糖代谢通路的构建方法;将葡萄糖跨膜转运模块合成生物学改造及优化的基因Ompc、galp、glf或/和glk;葡萄糖转运模块结合ED模块增强葡萄糖代谢基因zwf、pgl、 edd、eda、pfkA或/和pykA;将两个模块的关键基因,通过Biobrick的构建策略进行整合,构建重组质粒,并导入野生型Shewanella oneidensis MR-1中,重构希瓦氏菌的代谢通路,以葡萄糖为唯一碳源进行生长代谢。A method for constructing a glucose metabolism pathway in Shewanella strains; the transmembrane transmembrane transport module is synthesized into biologically modified and optimized genes Ompc, galp, glf or/and glk; the glucose transport module combined with the ED module enhances the glucose metabolism genes zwf, pgl, edd, eda, pfkA or/and pykA; the key genes of the two modules were integrated through Biobrick 's construction strategy to construct a recombinant plasmid and imported into wild-type Shewanella oneidensis MR-1 to reconstruct the metabolic pathway of Shewanella , using glucose as the sole carbon source for growth metabolism.
所述的构建方法;两个模块的关键基因连接到载体质粒pYYDT上形成重组质粒,再引入 S.oneidensis MR-1中,得到13种含有重组质粒并能进行葡萄糖代谢和利用的工程希瓦氏菌株。The construction method described; the key genes of the two modules are connected to the vector plasmid pYYDT to form a recombinant plasmid, and then introduced into S. oneidensis MR-1 to obtain 13 kinds of engineering Sheva's containing the recombinant plasmid and capable of glucose metabolism and utilization. strains.
所述的构建方法;基因ompC优化后的核苷酸序列如SEQ ID NO.1所示;基因galp优化后的核苷酸序列如SEQ ID NO.2所示;基因glf优化后的核苷酸序列如SEQ ID NO.3所示;基因glk优化后的核苷酸序列如SEQ ID NO.4所示;基因zwf优化后的核苷酸序列如SEQ IDNO.5 所示;基因pgl优化后的核苷酸序列如SEQ ID NO.6所示;基因edd优化后的核苷酸序列如 SEQ ID NO.7所示;基因eda优化后的核苷酸序列如SEQ ID NO.8所示;基因pfkA优化后的核苷酸序列如SEQ ID NO.9所示;基因pykA优化后的核苷酸序列如SEQ ID NO.10所示。The construction method; the optimized nucleotide sequence of the gene ompC is shown in SEQ ID NO.1; the optimized nucleotide sequence of the gene galp is shown in SEQ ID NO.2; the optimized nucleotide sequence of the gene glf The sequence is shown in SEQ ID NO.3; the optimized nucleotide sequence of gene glk is shown in SEQ ID NO.4; the optimized nucleotide sequence of gene zwf is shown in SEQ ID NO.5; the optimized nucleotide sequence of gene pgl is shown in SEQ ID NO.5; The nucleotide sequence is shown in SEQ ID NO.6; the optimized nucleotide sequence of gene edd is shown in SEQ ID NO.7; the optimized nucleotide sequence of gene eda is shown in SEQ ID NO.8; The optimized nucleotide sequence of pfkA is shown in SEQ ID NO.9; the optimized nucleotide sequence of gene pykA is shown in SEQ ID NO.10.
所述的构建方法;载体质粒pYYDT核苷酸序列如SEQ ID NO.11所示。The construction method; the nucleotide sequence of the vector plasmid pYYDT is shown in SEQ ID NO.11.
所述的构建方法;将经过密码子优化后的基因通过Ptac启动子和T1终止子完成表达,采用Biobrick的构建策略,利用SpeI与XbaI酶是同尾酶,经过处理后留下相同的粘性末端,在T4连接酶的作用下将所需要的外源基因逐个连接到基础质粒上。The described construction method; the codon-optimized gene is expressed through the Ptac promoter and T1 terminator, and the construction strategy of Biobrick is adopted, using SpeI and XbaI enzymes to be homozygous enzymes, and leaving the same sticky ends after processing. , under the action of T4 ligase, the required foreign genes are connected to the base plasmid one by one.
本发明构建13种含有重组质粒并能进行葡萄糖代谢和利用的工程希瓦氏菌株如下:模块一:葡萄糖跨膜转运模块合成生物学改造及优化The present invention constructs 13 engineered Shewanella strains containing recombinant plasmids and capable of glucose metabolism and utilization as follows: Module 1: Synthetic biology transformation and optimization of glucose transmembrane transport module
①pSH1(pYYDT-glf-glk);①pSH1(pYYDT-glf-glk);
②pSH2(pYYDT-galp-glk);②pSH2(pYYDT-galp-glk);
③pSH3(pYYDT-ompC-galp-glk);③pSH3(pYYDT-ompC-galp-glk);
④pSH4(pYYDT-ompC-glf-glk);④pSH4(pYYDT-ompC-glf-glk);
模块二:葡萄糖转运模块结合ED模块增强葡萄糖代谢Module 2: Glucose transport module combined with ED module to enhance glucose metabolism
⑤pSH5(pYYDT-ompC-glf-glk-zwf);⑤pSH5(pYYDT-ompC-glf-glk-zwf);
⑥pSH6(pYYDT-ompC-glf-glk-pgl);⑥pSH6(pYYDT-ompC-glf-glk-pgl);
⑦pSH7(pYYDT-ompC-glf-glk-edd);⑦pSH7(pYYDT-ompC-glf-glk-edd);
⑧pSH8(pYYDT-ompC-glf-glk-eda);⑧pSH8(pYYDT-ompC-glf-glk-eda);
⑨pSH9(pYYDT-ompC-glf-glk-pfkA);⑨pSH9(pYYDT-ompC-glf-glk-pfkA);
⑩pSH10(pYYDT-ompC-glf-glk-zwf-pgl);⑩pSH10(pYYDT-ompC-glf-glk-zwf-pgl);
pSH11(pYYDT-ompC-glf-glk-zwf-pgl-edd); pSH11(pYYDT-ompC-glf-glk-zwf-pgl-edd);
pSH12(pYYDT-ompC-glf-glk-zwf-pgl-edd-eda); pSH12(pYYDT-ompC-glf-glk-zwf-pgl-edd-eda);
pSH13(pYYDT-ompC-glf-glk-zwf-pgl-edd-eda-pykA)。 pSH13 (pYYDT-ompC-glf-glk-zwf-pgl-edd-eda-pykA).
具体构建方法说明如下:The specific construction method is described as follows:
利用Biobrick方法,构建重组质粒:Using the Biobrick method, construct the recombinant plasmid:
得到优化后的序列,分别在目的基因片段的5’端添加XbaI酶(公知)切位点,3’端依次添加SpeI,SbfI酶(公知)切位点;用SpeI和SbfI酶对自带该酶切位点的pYYDT质粒(质粒图谱如图1(1)所示,核苷酸序列如SEQ ID NO.11所示,参考文献EnhancingBidirectional Electron Transfer ofShewanella oneidensis by a Synthetic FlavinPathway)进行酶切;由于XbaI 和SpeI酶是同尾酶,酶切后会产生相同的粘性末端,再通过T4连接酶进行连接,构建以pYYDT 为载体并含有目的基因的重组质粒。To obtain the optimized sequence, add XbaI enzyme (known) cutting site at the 5' end of the target gene fragment respectively, and add SpeI and SbfI enzyme (known) cutting site successively at the 3' end; The pYYDT plasmid of the restriction site (the plasmid map is shown in Figure 1(1), the nucleotide sequence is shown in SEQ ID NO.11, and the reference EnhancingBidirectional Electron Transfer of Shewanella oneidensis by a Synthetic FlavinPathway) was digested; because XbaI It is a homozygous enzyme with SpeI enzyme, and the same sticky end will be generated after enzyme digestion, and then ligated by T4 ligase to construct a recombinant plasmid containing pYYDT as a vector and containing the target gene.
模块一:葡萄糖跨膜转运模块合成生物学改造及优化Module 1: Synthetic biology modification and optimization of glucose transmembrane transport module
①pSH1(pYYDT-glf-glk)质粒的构建。①Construction of pSH1 (pYYDT-glf-glk) plasmid.
用XbaI和SbfI酶对目的基因glf进行酶切(核苷酸序列为SEQ ID NO.3);用SpeI和SbfI酶对pYYDT质粒进行酶切;再通过T4连接酶进行连接,构建含有基因glf的重组质粒pYYDT-glf。Use XbaI and SbfI enzymes to digest the target gene glf (nucleotide sequence is SEQ ID NO.3); use SpeI and SbfI enzymes to digest the pYYDT plasmid; then connect by T4 ligase to construct a gene glf containing Recombinant plasmid pYYDT-glf.
用XbaI和SbfI酶对基因glk进行酶切(核苷酸序列为SEQ ID NO.4),用SpeI和SbfI酶对刚构建的含有基因glf的重组质粒pYYDT-glf进行酶切,经过T4连接酶后,最终获得含有glf,glk两个目的基因的重组质粒:pSH1(pYYDT-glf-glk)。The gene glk was digested with XbaI and SbfI enzymes (nucleotide sequence is SEQ ID NO.4), and the newly constructed recombinant plasmid pYYDT-glf containing gene glf was digested with SpeI and SbfI enzymes, and passed through T4 ligase. Finally, a recombinant plasmid containing two target genes of glf and glk was obtained: pSH1 (pYYDT-glf-glk).
②pSH2(pYYDT-galp-glk)质粒的构建。②Construction of pSH2 (pYYDT-galp-glk) plasmid.
用XbaI和SbfI酶对目的基因galp进行酶切(核苷酸序列为SEQ ID NO.2);用SpeI和SbfI酶对pYYDT质粒进行酶切;再通过T4连接酶进行连接,构建含有基因galp的重组质粒pYYDT-galp。Use XbaI and SbfI enzymes to digest the target gene galp (nucleotide sequence is SEQ ID NO. 2); use SpeI and SbfI enzymes to digest the pYYDT plasmid; then connect by T4 ligase to construct a gene containing galp. Recombinant plasmid pYYDT-galp.
用XbaI和SbfI酶对基因glk进行酶切(核苷酸序列为SEQ ID NO.4),用SpeI和SbfI酶对刚构建的含有基因galp的重组质粒pYYDT-galp进行酶切,经过T4连接酶后,最终获得含有galp,glk两个目的基因的重组质粒:pSH2(pYYDT-galp-glk)。The gene glk was digested with XbaI and SbfI enzymes (the nucleotide sequence is SEQ ID NO. 4), and the newly constructed recombinant plasmid pYYDT-galp containing gene galp was digested with SpeI and SbfI enzymes, and passed through T4 ligase. Finally, a recombinant plasmid containing two target genes of galp and glk was finally obtained: pSH2 (pYYDT-galp-glk).
③pSH3(pYYDT-ompC-galp-glk),③pSH3(pYYDT-ompC-galp-glk),
用XbaI和SbfI酶对目的基因ompC进行酶切(核苷酸序列为SEQ ID NO.1);用SpeI和SbfI酶对pYYDT质粒进行酶切;再通过T4连接酶进行连接,构建含有基因ompC的重组质粒pYYDT-ompC。The target gene ompC was digested with XbaI and SbfI enzymes (nucleotide sequence is SEQ ID NO.1); the pYYDT plasmid was digested with SpeI and SbfI enzymes; Recombinant plasmid pYYDT-ompC.
用XbaI和SbfI酶对基因galp进行酶切(核苷酸序列为SEQ ID NO.2),用SpeI和SbfI 酶对刚构建的含有基因ompC的重组质粒pYYDT-ompC进行酶切,经过T4连接酶后,构建含有基因ompC,galp的重组质粒pYYDT-ompC-galp。The gene galp was digested with XbaI and SbfI enzymes (the nucleotide sequence is SEQ ID NO. 2), and the newly constructed recombinant plasmid pYYDT-ompC containing the gene ompC was digested with SpeI and SbfI enzymes. T4 ligase Afterwards, a recombinant plasmid pYYDT-ompC-galp containing the genes ompC and galp was constructed.
用XbaI和SbfI酶对基因glk进行酶切(核苷酸序列为SEQ ID NO.4),用SpeI和SbfI酶对刚构建的含有基因ompC,galp的重组质粒pYYDT-ompC-galp进行酶切,经过T4连接酶后,最终获得含有ompC,galp,glk三个目的基因的重组质粒:pSH3(pYYDT-ompC-galp-glk)。The gene glk is digested with XbaI and SbfI enzymes (nucleotide sequence is SEQ ID NO.4), and the recombinant plasmid pYYDT-ompC-galp containing the gene ompC and galp just constructed is digested with SpeI and SbfI enzymes, After T4 ligase, a recombinant plasmid containing three target genes of ompC, galp and glk was finally obtained: pSH3 (pYYDT-ompC-galp-glk).
④pSH4(pYYDT-ompC-glf-glk);④pSH4(pYYDT-ompC-glf-glk);
用XbaI和SbfI酶对目的基因ompC进行酶切(核苷酸序列为SEQ ID NO.1);用SpeI和SbfI酶对pYYDT质粒进行酶切;再通过T4连接酶进行连接,构建含有基因ompC的重组质粒pYYDT-ompC。The target gene ompC was digested with XbaI and SbfI enzymes (nucleotide sequence is SEQ ID NO.1); the pYYDT plasmid was digested with SpeI and SbfI enzymes; Recombinant plasmid pYYDT-ompC.
用XbaI和SbfI酶对基因glf进行酶切(核苷酸序列为SEQ ID NO.3),用SpeI和SbfI酶对刚构建的含有基因ompC的重组质粒pYYDT-ompC进行酶切,经过T4连接酶后,构建含有基因ompC,glf的重组质粒pYYDT-ompC-glf。The gene glf was digested with XbaI and SbfI enzymes (nucleotide sequence is SEQ ID NO. 3), and the newly constructed recombinant plasmid pYYDT-ompC containing gene ompC was digested with SpeI and SbfI enzymes, and passed through T4 ligase. Then, the recombinant plasmid pYYDT-ompC-glf containing the gene ompC,glf was constructed.
用XbaI和SbfI酶对基因glk进行酶切(核苷酸序列为SEQ ID NO.4),用SpeI和SbfI酶对刚构建的含有基因ompC,glf的重组质粒pYYDT-ompC-glf进行酶切,经过T4连接酶后,最终获得含有ompC,glf,glk三个目的基因的重组质粒:pSH4(pYYDT-ompC-glf-glk),The gene glk was digested with XbaI and SbfI enzymes (nucleotide sequence is SEQ ID NO.4), and the recombinant plasmid pYYDT-ompC-glf containing gene ompC, glf was just constructed with SpeI and SbfI enzymes. After T4 ligase, a recombinant plasmid containing three target genes of ompC, glf and glk was finally obtained: pSH4 (pYYDT-ompC-glf-glk),
同样按照上述模块一重组质粒的构建方法,完成对模块二:葡萄糖转运模块结合ED 模块增强葡萄糖代谢的重组质粒构建:Similarly, according to the construction method of the recombinant plasmid in the above-mentioned
⑤pSH5(pYYDT-ompC-glf-glk-zwf);⑤pSH5(pYYDT-ompC-glf-glk-zwf);
用XbaI和SbfI酶对模块一已经构建的重组质粒pYYDT-ompC-glf-glk用SpeI和SbfI酶对进行酶切;用XbaI和SbfI酶对目的基因zwf进行酶切(核苷酸序列为SEQ IDNO.5),再通过T4连接酶进行连接,最终获得含有ompC,glf,glk,zwf四个目的基因的重组质粒:pSH5 (pYYDT-ompC-glf-glk-zwf)。The recombinant plasmid pYYDT-ompC-glf-glk constructed in module one was digested with SpeI and SbfI enzymes with XbaI and SbfI enzymes; the target gene zwf was digested with XbaI and SbfI enzymes (nucleotide sequence is SEQ ID NO. .5), and then ligated by T4 ligase to finally obtain a recombinant plasmid containing four target genes of ompC, glf, glk and zwf: pSH5 (pYYDT-ompC-glf-glk-zwf).
⑥pSH6(pYYDT-ompC-glf-glk-pgl)⑥pSH6 (pYYDT-ompC-glf-glk-pgl)
用XbaI和SbfI酶对模块一已经构建的重组质粒pYYDT-ompC-glf-glk用SpeI和SbfI酶对进行酶切;用XbaI和SbfI酶对目的基因pgl进行酶切(核苷酸序列为SEQ IDNO.6),再通过T4连接酶进行连接,最终获得含有ompC,glf,glk,pgl四个目的基因的重组质粒:pSH6 (pYYDT-ompC-glf-glk-pgl)。The recombinant plasmid pYYDT-ompC-glf-glk constructed in module one was digested with SpeI and SbfI enzymes with XbaI and SbfI enzymes; the target gene pgl was digested with XbaI and SbfI enzymes (the nucleotide sequence is SEQ ID NO. .6), and then ligated by T4 ligase to finally obtain a recombinant plasmid containing four target genes of ompC, glf, glk and pgl: pSH6 (pYYDT-ompC-glf-glk-pgl).
⑦pSH7(pYYDT-ompC-glf-glk-edd)⑦pSH7(pYYDT-ompC-glf-glk-edd)
用XbaI和SbfI酶对模块一已经构建的重组质粒pYYDT-ompC-glf-glk用SpeI和SbfI酶对进行酶切;用XbaI和SbfI酶对目的基因edd进行酶切(核苷酸序列为SEQ IDNO.7),再通过T4连接酶进行连接,最终获得含有ompC,glf,glk,edd四个目的基因的重组质粒:pSH7 (pYYDT-ompC-glf-glk-edd)。The recombinant plasmid pYYDT-ompC-glf-glk constructed in module one was digested with SpeI and SbfI enzymes with XbaI and SbfI enzymes; the target gene edd was digested with XbaI and SbfI enzymes (the nucleotide sequence is SEQ ID NO. .7), and then ligated by T4 ligase to finally obtain a recombinant plasmid containing four target genes of ompC, glf, glk and edd: pSH7 (pYYDT-ompC-glf-glk-edd).
⑧pSH8(pYYDT-ompC-glf-glk-eda)⑧pSH8(pYYDT-ompC-glf-glk-eda)
用XbaI和SbfI酶对模块一已经构建的重组质粒pYYDT-ompC-glf-glk用SpeI和SbfI酶对进行酶切;用XbaI和SbfI酶对目的基因eda进行酶切(核苷酸序列为SEQ IDNO.8),再通过T4连接酶进行连接,最终获得含有ompC,glf,glk,eda四个目的基因的重组质粒:pSH8 (pYYDT-ompC-glf-glk-eda)。The recombinant plasmid pYYDT-ompC-glf-glk constructed in module one was digested with SpeI and SbfI enzymes with XbaI and SbfI enzymes; the target gene eda was digested with XbaI and SbfI enzymes (the nucleotide sequence is SEQ ID NO. .8), and then ligated by T4 ligase to finally obtain a recombinant plasmid containing four target genes of ompC, glf, glk and eda: pSH8 (pYYDT-ompC-glf-glk-eda).
⑨pSH9(pYYDT-ompC-glf-glk-pfkA)⑨pSH9(pYYDT-ompC-glf-glk-pfkA)
用XbaI和SbfI酶对模块一已经构建的重组质粒pYYDT-ompC-glf-glk用SpeI和SbfI酶对进行酶切;用XbaI和SbfI酶对目的基因pfkA进行酶切(核苷酸序列为SEQ IDNO.9),再通过T4连接酶进行连接,最终获得含有ompC,glf,glk,pfkA四个目的基因的重组质粒:pSH9 (pYYDT-ompC-glf-glk-pfkA)。The recombinant plasmid pYYDT-ompC-glf-glk constructed in
⑩pSH10(pYYDT-ompC-glf-glk-zwf-pgl)⑩pSH10(pYYDT-ompC-glf-glk-zwf-pgl)
用XbaI和SbfI酶对模块二已经构建的重组质粒pYYDT-ompC-glf-glk-zwf用SpeI和SbfI 酶对进行酶切;用XbaI和SbfI酶对目的基因pgl进行酶切(核苷酸序列为SEQ IDNO.6),再通过T4连接酶进行连接,最终获得含有ompC,glf,glk,zwf,pgl五个目的基因的重组质粒:pSH10(pYYDT-ompC-glf-glk-zwf-pgl)。Use XbaI and SbfI enzymes to digest the recombinant plasmid pYYDT-ompC-glf-glk-zwf constructed in module two with SpeI and SbfI enzymes; use XbaI and SbfI enzymes to digest the target gene pgl (the nucleotide sequence is SEQ ID NO.6), and then ligated by T4 ligase to finally obtain a recombinant plasmid containing five target genes of ompC, glf, glk, zwf and pgl: pSH10 (pYYDT-ompC-glf-glk-zwf-pgl).
pSH11(pYYDT-ompC-glf-glk-zwf-pgl-edd) pSH11(pYYDT-ompC-glf-glk-zwf-pgl-edd)
用XbaI和SbfI酶对模块二已经构建的重组质粒pYYDT-ompC-glf-glk-zwf-pgl用SpeI和 SbfI酶对进行酶切;用XbaI和SbfI酶对目的基因edd进行酶切(核苷酸序列为SEQID NO.7),再通过T4连接酶进行连接,最终获得含有ompC,glf,glk,zwf,pgl,edd六个目的基因的重组质粒:pSH11(pYYDT-ompC-glf-glk-zwf-pgl-edd)。Use XbaI and SbfI enzymes to digest the recombinant plasmid pYYDT-ompC-glf-glk-zwf-pgl constructed in module two with SpeI and SbfI enzymes; use XbaI and SbfI enzymes to digest the target gene edd (nucleotides) The sequence is SEQID NO.7), and then connected by T4 ligase to finally obtain a recombinant plasmid containing six target genes of ompC, glf, glk, zwf, pgl, edd: pSH11 (pYYDT-ompC-glf-glk-zwf- pgl-edd).
pSH12(pYYDT-ompC-glf-glk-zwf-pgl-edd-eda) pSH12 (pYYDT-ompC-glf-glk-zwf-pgl-edd-eda)
用XbaI和SbfI酶对模块二已经构建的重组质粒pYYDT-ompC-glf-glk-zwf-pgl-edd用SpeI 和SbfI酶对进行酶切;用XbaI和SbfI酶对目的基因eda进行酶切(核苷酸序列为SEQ ID NO.8),再通过T4连接酶进行连接,最终获得含有ompC,glf,glk,zwf,pgl,edd,eda七个目的基因的重组质粒:pSH12(pYYDT-ompC-glf-glk-zwf-pgl-edd-eda)。The recombinant plasmid pYYDT-ompC-glf-glk-zwf-pgl-edd constructed in module two was digested with SpeI and SbfI enzymes with XbaI and SbfI enzymes; the target gene eda was digested with XbaI and SbfI enzymes (nucleolysis) The nucleotide sequence is SEQ ID NO.8), and then ligated by T4 ligase to finally obtain a recombinant plasmid containing seven target genes of ompC, glf, glk, zwf, pgl, edd, eda: pSH12 (pYYDT-ompC-glf -glk-zwf-pgl-edd-eda).
pSH13(pYYDT-ompC-glf-glk-zwf-pgl-edd-eda-pykA) pSH13 (pYYDT-ompC-glf-glk-zwf-pgl-edd-eda-pykA)
用XbaI和SbfI酶对模块二已经构建的重组质粒pYYDT-ompC-glf-glk-zwf-pgl-edd-eda用 SpeI和SbfI酶对进行酶切;用XbaI和SbfI酶对目的基因pykA进行酶切(核苷酸序列为SEQ ID NO.10),再通过T4连接酶进行连接,最终获得含有ompC,glf,glk,zwf,pgl,edd,eda, pykA八个目的基因的重组质粒:pSH13(pYYDT-ompC-glf-glk-zwf-pgl-edd-eda-pykA)。The recombinant plasmid pYYDT-ompC-glf-glk-zwf-pgl-edd-eda constructed in module two was digested with XbaI and SbfI enzymes with SpeI and SbfI enzymes; the target gene pykA was digested with XbaI and SbfI enzymes (the nucleotide sequence is SEQ ID NO.10), and then ligated by T4 ligase to finally obtain a recombinant plasmid containing eight target genes of ompC, glf, glk, zwf, pgl, edd, eda, pykA: pSH13 (pYYDT -ompC-glf-glk-zwf-pgl-edd-eda-pykA).
对应的质粒图谱分别如图1(2)-(14)所示。按照上述步骤方法,完成质粒的构建连接,最终得到了13种重组质粒。The corresponding plasmid maps are shown in Figures 1(2)-(14). According to the above steps and methods, the construction and connection of plasmids were completed, and 13 recombinant plasmids were finally obtained.
本发明方法得到的代谢重组希瓦氏菌株用于在以葡萄糖为唯一碳源的改良后M9液体培养基中进行有氧发酵,并测定发酵液中的生物量和糖代谢量。The metabolically recombinant Shewanella strain obtained by the method of the present invention is used for aerobic fermentation in the improved M9 liquid medium with glucose as the sole carbon source, and the biomass and sugar metabolism in the fermentation broth are determined.
本发明方法得到的代谢重组希瓦氏菌株用于在以葡萄糖为唯一碳源的改良后M9液体培养基中进行厌氧发酵,并测定发酵液中的生物量和糖代谢量。The metabolically recombinant Shewanella strain obtained by the method of the present invention is used for anaerobic fermentation in the improved M9 liquid medium with glucose as the sole carbon source, and the biomass and sugar metabolism in the fermentation broth are determined.
克服现有技术的不足,提供了一种可以使希瓦氏菌以葡萄糖为唯一碳源进行生长代谢的菌株构建方法。主要技术方案是利用异源表达技术,结合基因工程等手段,构建重组质粒,将促进葡萄糖摄取进入细胞(葡萄糖跨膜转运模块:ompC,galp,glf,glk)到促进胞内代谢(优化 ED途径:zwf,pgl,edd,eda,pfkA,pykA)两个模块的关键基因引入Shewanellaoneidensis MR-1 菌中,重构S.oneidensis MR-1的代谢通路,使工程希瓦氏菌能够在以葡萄糖为唯一碳源的改良后M9液体培养基中进行生长代谢,从而拓宽希瓦氏菌的可用底物谱。将改造菌株进行有氧和厌氧发酵,并测定其在3g/L葡萄糖为唯一碳源的改良M9液体培养基中的生长曲线及残糖量。Overcoming the deficiencies of the prior art, a method for constructing a strain that enables Shewanella to use glucose as the sole carbon source for growth and metabolism is provided. The main technical scheme is to use heterologous expression technology, combined with genetic engineering and other means to construct recombinant plasmids, which will promote glucose uptake into cells (glucose transmembrane transport module: ompC, galp, glf, glk) to promote intracellular metabolism (optimized ED pathway). : zwf, pgl, edd, eda, pfkA, pykA) the key genes of the two modules were introduced into Shewanella oneidensis MR-1 to reconstruct the metabolic pathway of S. oneidensis MR-1, so that the engineered Shewanella could use glucose as the Growth metabolism in modified M9 liquid medium with a sole carbon source, thereby broadening the available substrate spectrum for Shewanella. The transformed strain was fermented aerobic and anaerobic, and its growth curve and residual sugar content in the modified M9 liquid medium with 3 g/L glucose as the sole carbon source were determined.
在模块一中,数据显示,无论是有氧还是厌氧发酵,导入空质粒的对照菌株WT几乎不摄取代谢葡萄糖;构建的工程菌株能摄取一定量的葡萄糖,菌株PSH3:pYYDT-ompC-glf-glk的有氧和厌氧发酵生物量较对照菌株WT均相对较高,且摄取利用的葡萄糖量更多。PSH3有氧发酵12h后到达生长平台期,生物量(OD600=0.51333)是WT(OD600=0.21467)的2.4倍,培养基中的葡萄糖在8h后几乎耗尽;PSH3的厌氧发酵8h后到达生长平台期,生物量 (OD600=0.19967)是WT(OD600=0.12833)的约1.6倍,培养基中最终消耗了约45%的葡萄糖。因此我们得到“葡萄糖跨膜转运模块合成生物学改造”优化后工程菌株PSH3:pYYDT-ompC-glf-glk。In module one, the data showed that the control strain WT, which was introduced with an empty plasmid, hardly took up metabolic glucose, whether it was aerobic or anaerobic fermentation; the constructed engineered strain could take up a certain amount of glucose, strain PSH3: pYYDT-ompC-glf- The aerobic and anaerobic fermentation biomass of glk was relatively higher than that of the control strain WT, and more glucose was ingested and utilized. After 12h aerobic fermentation of PSH3, the growth plateau was reached, the biomass (OD 600 =0.51333) was 2.4 times that of WT (OD 600 =0.21467), and the glucose in the medium was almost exhausted after 8h; after 8h of anaerobic fermentation of PSH3 The growth plateau was reached, the biomass ( OD600 =0.19967) was about 1.6 times that of WT ( OD600 =0.12833), and about 45% of the glucose was finally consumed in the medium. Therefore, we obtained the optimized engineered strain PSH3: pYYDT-ompC-glf-glk after "synthetic biology modification of glucose transmembrane transport module".
在模块二中,数据显示,在模块一优化后工程菌株PSH3:pYYDT-ompC-glf-glk的基础上继续进行改造的菌株,无论是有氧还是厌氧发酵,导入空质粒的对照菌株WT和工程菌PSH9 几乎不摄取代谢葡萄糖;构建的其他8株工程菌株PSH5,PSH6,PSH7,PSH8,PSH10,PSH11, PSH12,PSH13均能摄取一定量的葡萄糖,其中菌株PSH11:pYYDT-ompC-glf-glk-zwf-pgl-edd 在3g/L葡萄糖为唯一碳源的改良M9液体培养基中的有氧和厌氧发酵生物量均相对较高,且摄取利用的葡萄糖量最多。PSH11有氧发酵24h后到达生长平台期,生物量(OD600=0.58267) 是WT(OD600=0.19133)的3倍,培养基中的葡萄糖在16h后几乎耗尽;PSH11的厌氧发酵 48h后到达生长平台期,生物量(OD600=0.22467)是WT(OD600=0.13300)的约1.7倍,培养基中消耗了约59%的葡萄糖。In
本发明的效果如下:The effect of the present invention is as follows:
1、本发明提供了一种可以使希瓦氏菌以葡萄糖为唯一碳源进行生长代谢的菌株构建方法。利用异源表达技术,结合基因工程等手段,从构建重组质粒,将“葡萄糖跨膜转运模块合成生物学改造及优化”和“葡萄糖转运模块结合ED模块增强葡萄糖代谢”两个模块的关键基因引入MR-1中,得到能13株能够进行葡萄糖生长代谢的工程菌株。1. The present invention provides a strain construction method that enables Shewanella to use glucose as the sole carbon source for growth and metabolism. Using heterologous expression technology, combined with genetic engineering and other means, from the construction of recombinant plasmids, the key genes of the two modules of "synthetic biology modification and optimization of glucose transmembrane transport module" and "glucose transport module combined with ED module to enhance glucose metabolism" were introduced into In MR-1, 13 engineered strains capable of glucose growth and metabolism were obtained.
2、在构建的工程菌株中,PSH11有氧发酵24h后到达生长平台期,生物量(OD600=0.58267) 是WT(OD600=0.19133)的3倍,培养基中的葡萄糖在16h后几乎耗尽;PSH11的厌氧发酵 48h后到达生长平台期,生物量(OD600=0.22467)是WT(OD600=0.13300)的约1.7倍,培养基中消耗了约59%的葡萄糖。2. In the constructed engineering strain, PSH11 reached the growth plateau after 24 hours of aerobic fermentation, the biomass (OD 600 =0.58267) was 3 times that of WT (OD 600 =0.19133), and the glucose in the medium was almost consumed after 16 hours After 48 h of anaerobic fermentation of PSH11, the growth plateau was reached, the biomass (OD 600 =0.22467) was about 1.7 times that of WT (OD 600 =0.13300), and about 59% of the glucose was consumed in the medium.
3、本发明拓宽了模式产电菌MR-1的可用底物谱,为微生物燃料电池底物共利用的设计提供了现实依据,有利于提高菌株的胞外电子传递效率。3. The present invention broadens the available substrate spectrum of the model electrogenic bacteria MR-1, provides a realistic basis for the design of the co-utilization of microbial fuel cell substrates, and is beneficial to improve the extracellular electron transfer efficiency of the strain.
附图说明Description of drawings
图1:为构建的pYYDT和重组质粒图谱及核苷酸序列Figure 1: Maps and nucleotide sequences of pYYDT and recombinant plasmids constructed for
图2:为本发明基因片段生物砖设计示意图Fig. 2: Schematic diagram for the design of the gene fragment bio-brick of the present invention
图3:为本发明构建的工程希瓦氏菌葡萄糖代谢设计原理图Fig. 3: the engineering Shewanella glucose metabolism design schematic diagram constructed for the present invention
图4:为本发明工程菌株在有氧条件下,以葡萄糖为唯一碳源的改良后M9培养基中生长及糖耗情况Fig. 4: for the engineering strain of the present invention under aerobic conditions, the growth and sugar consumption situation in the improved M9 medium with glucose as the sole carbon source
图5:为本发明工程菌株在无氧条件下,以葡萄糖为唯一碳源的改良后M9培养基中生长及糖耗情况Fig. 5: for the engineering strain of the present invention under anaerobic conditions, the growth and sugar consumption situation in the improved M9 medium with glucose as the sole carbon source
具体实施方式Detailed ways
本发明中构建的质粒是本实验室设计,在全合成过程中,需要将发明所需要的各外源基因连接到质粒载体上并保存。下面结合实施例,进一步阐述本发明。The plasmid constructed in the present invention is designed in this laboratory. In the process of total synthesis, each exogenous gene required by the present invention needs to be connected to the plasmid vector and stored. Below in conjunction with embodiment, the present invention is further elaborated.
首先在KEGG上查询所需目的基因序列信息,目的基因包括促进葡萄糖摄取进入细胞 (葡萄糖跨膜转运模块)到促进胞内代谢(优化ED途径)两个模块的关键基因:Ompc,galp, glf,glk,zwf,pgl,edd,eda,pfkA,pykA(如SEQ ID NO.1-10所示);连接到载体质粒pYYDT(质粒图谱见图1(1)所示,序列信息如SEQ ID NO.11所示),最终得到13个pYYDT上连有目的基因的重组质粒,分别命名为:First, query the required target gene sequence information on KEGG. The target genes include key genes from two modules: Ompc, galp, glf, glk, zwf, pgl, edd, eda, pfkA, pykA (as shown in SEQ ID NO. 1-10); connected to the vector plasmid pYYDT (the plasmid map is shown in Figure 1(1), and the sequence information is as shown in SEQ ID NO. 11), and finally obtained 13 recombinant plasmids connected with the target gene on pYYDT, named respectively:
模块一:葡萄糖跨膜转运模块合成生物学改造及优化Module 1: Synthetic biology modification and optimization of glucose transmembrane transport module
①pSH1(pYYDT-glf-glk);重组质粒pSH1图谱如图1(2)所示;①pSH1 (pYYDT-glf-glk); the map of the recombinant plasmid pSH1 is shown in Figure 1(2);
②pSH2(pYYDT-galp-glk);重组质粒pSH2图谱如图1(3)所示;②pSH2 (pYYDT-galp-glk); the map of the recombinant plasmid pSH2 is shown in Figure 1(3);
③pSH3(pYYDT-ompC-galp-glk);重组质粒pSH3图谱如图1(4)所示;③pSH3 (pYYDT-ompC-galp-glk); the map of the recombinant plasmid pSH3 is shown in Figure 1(4);
④pSH4(pYYDT-ompC-glf-glk);重组质粒pSH3图谱如图1(5)所示。④pSH4 (pYYDT-ompC-glf-glk); the map of the recombinant plasmid pSH3 is shown in Figure 1(5).
模块二:葡萄糖转运模块结合ED模块增强葡萄糖代谢Module 2: Glucose transport module combined with ED module to enhance glucose metabolism
⑤pSH5(pYYDT-ompC-glf-glk-zwf);重组质粒pSH3图谱如图1(6)所示;⑤pSH5 (pYYDT-ompC-glf-glk-zwf); the map of the recombinant plasmid pSH3 is shown in Figure 1(6);
⑥pSH6(pYYDT-ompC-glf-glk-pgl);重组质粒pSH3图谱如图1(7)所示;⑥pSH6 (pYYDT-ompC-glf-glk-pgl); the map of the recombinant plasmid pSH3 is shown in Figure 1(7);
⑦pSH7(pYYDT-ompC-glf-glk-edd);重组质粒pSH3图谱如图1(8)所示;⑦ pSH7 (pYYDT-ompC-glf-glk-edd); the map of the recombinant plasmid pSH3 is shown in Figure 1(8);
⑧pSH8(pYYDT-ompC-glf-glk-eda);重组质粒pSH3图谱如图1(9)所示;⑧pSH8 (pYYDT-ompC-glf-glk-eda); the map of the recombinant plasmid pSH3 is shown in Figure 1(9);
⑨pSH9(pYYDT-ompC-glf-glk-pfkA);重组质粒pSH3图谱如图1(10)所示;⑨pSH9 (pYYDT-ompC-glf-glk-pfkA); the map of the recombinant plasmid pSH3 is shown in Figure 1(10);
⑩pSH10(pYYDT-ompC-glf-glk-zwf-pgl);重组质粒pSH3图谱如图1(11)所示;⑩pSH10 (pYYDT-ompC-glf-glk-zwf-pgl); the map of the recombinant plasmid pSH3 is shown in Figure 1(11);
pSH11(pYYDT-ompC-glf-glk-zwf-pgl-edd);重组质粒pSH3图谱如图1(12)所示; pSH11 (pYYDT-ompC-glf-glk-zwf-pgl-edd); the map of the recombinant plasmid pSH3 is shown in Figure 1 (12);
pSH12(pYYDT-ompC-glf-glk-zwf-pgl-edd-eda);重组质粒pSH3图谱如图1(13)所示; pSH12 (pYYDT-ompC-glf-glk-zwf-pgl-edd-eda); the map of the recombinant plasmid pSH3 is shown in Figure 1 (13);
pSH13(pYYDT-ompC-glf-glk-zwf-pgl-edd-eda-pykA);重组质粒pSH3图谱如图1(14) 所示。 pSH13 (pYYDT-ompC-glf-glk-zwf-pgl-edd-eda-pykA); the map of the recombinant plasmid pSH3 is shown in Figure 1 (14).
glk:来自大肠杆菌K-12中的葡萄糖激酶基因glk: the glucokinase gene from Escherichia coli K-12
galp:来自大肠杆菌K-12中的半乳糖转运蛋白基因galp: from the galactose transporter gene in Escherichia coli K-12
glf:来自大肠杆菌K-12中的UDP-吡喃半乳糖变位酶基因glf: from the UDP-galactopyranosyl mutase gene in Escherichia coli K-12
ompC:来自大肠杆菌K-12中的能够提高细胞膜透过性的外膜孔蛋白基因ompC: an outer membrane porin gene from Escherichia coli K-12 that enhances cell membrane permeability
zwf:来自大肠杆菌K-12中的葡萄糖-6-磷酸脱氢酶基因zwf: from the glucose-6-phosphate dehydrogenase gene in Escherichia coli K-12
pgl:来自大肠杆菌K-12中的6-磷酸葡萄糖酸内酯酶基因pgl: from the 6-phosphogluconolactonase gene in Escherichia coli K-12
pfkA:来自大肠杆菌K-12中的6-磷酸果糖激酶基因pfkA: from the 6-phosphofructokinase gene in Escherichia coli K-12
edd:来自希瓦氏MR-1中的磷酸葡萄糖酸脱水酶基因edd: from the phosphogluconate dehydratase gene in Sheva's MR-1
eda:来自希瓦氏MR-1中的2-脱氢-3-脱氧磷酸葡萄糖醛酸醛缩酶基因eda: from the 2-dehydro-3-deoxyphosphoglucuronide aldolase gene in Sheva's MR-1
pykA:来自希瓦氏MR-1中的丙酮酸激酶基因pykA: from the pyruvate kinase gene in Sheva's MR-1
本发明将上述经过密码子优化后的基因通过Ptac启动子和T1终止子完成表达,采用 Biobrick的构建策略,利用SpeI与XbaI酶是同尾酶,经过处理后留下相同的粘性末端,在T4 连接酶的作用下将所需要的外源基因逐个连接到基础质粒上,并且保证已连接的外源基因不受后续内切酶的影响,由此构建重组质粒,从而发挥不同的功能。In the present invention, the above-mentioned codon-optimized gene is expressed through the Ptac promoter and T1 terminator, adopts the construction strategy of Biobrick, utilizes the SpeI and XbaI enzymes to be homologous enzymes, and leaves the same sticky end after processing. Under the action of ligase, the required foreign genes are connected to the basic plasmid one by one, and the connected foreign genes are not affected by subsequent endonucleases, so as to construct a recombinant plasmid to exert different functions.
所选重组质粒扩增的工程菌为营养缺陷型菌株E.coil WM3064,最终宿主工程菌为S. oneidensis MR-1,WM3064的转化方法可采用本领域常规的方法,例如物理转化法。然后接合转移到MR-1菌中,得到构建的工程菌。导入pYYDT空质粒的野生型菌株命名为WT,导入其他重组质粒的工程菌株命名为:The engineering bacteria amplified by the selected recombinant plasmids is the auxotrophic strain E.coil WM3064, and the final host engineering bacteria is S. oneidensis MR-1. The transformation method of WM3064 can adopt conventional methods in the art, such as physical transformation method. Then the conjugation was transferred to MR-1 bacteria to obtain the constructed engineering bacteria. The wild-type strain introduced with the pYYDT empty plasmid was named WT, and the engineered strains introduced with other recombinant plasmids were named:
在上述构建方法中,本发明通过该重组质粒表达所实现的技术效果提出了希瓦氏菌株能够以葡萄糖为唯一碳源进行有氧和厌氧的生长代谢,从而拓宽希瓦氏菌的可用底物谱。In the above construction method, the technical effect achieved by the expression of the recombinant plasmid in the present invention proposes that the Shewanella strain can use glucose as the sole carbon source to carry out aerobic and anaerobic growth and metabolism, thereby broadening the available base of Shewanella Spectrum.
实施例1:重组质粒的构建Example 1: Construction of recombinant plasmids
⑴目的基因的获取和序列优化:(1) Acquisition and sequence optimization of the target gene:
首先在KEGG上查询所需目的基因序列信息(http://www.kegg.jp/kegg/genes.html),目的基因包括促进葡萄糖摄取进入细胞(葡萄糖跨膜转运模块:ompC,galp,glf,glk)到促进胞内代谢(优化ED途径:zwf,pgl,edd,eda,pfkA,pykA)两个模块的关键基因;利用Jcat (http://www.jcat.de/)对coding sequence进行密码子优化以及定点突变掉序列中所存在的生物砖酶切位点,选择在Shewanella oneidensis MR-1中进行优化,并避免以后实验所需要用到的酶切位点EcoRI,XbaI,SpeI和PstI。First, query the required target gene sequence information on KEGG (http://www.kegg.jp/kegg/genes.html), the target gene includes the promotion of glucose uptake into cells (glucose transmembrane transport module: ompC, galp, glf, glk) to promote intracellular metabolism (optimized ED pathway: zwf, pgl, edd, eda, pfkA, pykA) key genes of two modules; use Jcat (http://www.jcat.de/) to code the coding sequence Sub-optimization and site-directed mutagenesis of the bio-brick restriction sites in the sequence were selected for optimization in Shewanella oneidensis MR-1, and the restriction sites EcoRI, XbaI, SpeI and PstI needed for future experiments were avoided.
⑵利用Biobrick方法,构建重组质粒:(2) Using the Biobrick method, construct the recombinant plasmid:
得到优化后的序列,在各目的基因片段的5’端添加XbaI酶切位点,3’端依次添加SpeI, SbfI酶切位点,并合成。利用Biobrick方法,将上述基因通过酶切连接的方式,构建重组质粒①pSH1(pYYDT-glf-glk)。To obtain the optimized sequence, add an XbaI restriction site at the 5' end of each target gene fragment, and add SpeI and SbfI restriction sites in sequence at the 3' end, and synthesize them. Using the Biobrick method, the above genes were connected by enzyme digestion to construct a recombinant plasmid ①pSH1 (pYYDT-glf-glk).
首先利用XbaI和SbfI酶(公知)对基因glf进行酶切(核苷酸序列为SEQ ID NO.3),利用SpeI和SbfI酶(公知)对自带该酶切位点的pYYDT质粒(质粒图谱如图1(1)所示,核苷酸序列如SEQ ID NO.11所示,参考文献Enhancing Bidirectional Electron Transfer ofShewanella oneidensis by a Synthetic Flavin Pathway)进行酶切。由于XbaI和SpeI酶是同尾酶,酶切后会产生相同的粘性末端,再通过T4连接酶进行连接,构建含有基因glf的重组质粒。First, use XbaI and SbfI enzymes (well known) to digest the gene glf (nucleotide sequence is SEQ ID NO. 3), and use SpeI and SbfI enzymes (well known) to digest the pYYDT plasmid with the restriction site (plasmid map As shown in Figure 1(1), the nucleotide sequence is shown in SEQ ID NO. 11, and the reference is Enhancing Bidirectional Electron Transfer of Shewanella oneidensis by a Synthetic Flavin Pathway) for enzyme digestion. Since XbaI and SpeI enzymes are homologous enzymes, the same sticky ends will be generated after enzyme digestion, and then ligated by T4 ligase to construct a recombinant plasmid containing the gene glf.
利用XbaI和SbfI酶对基因glk进行酶切(核苷酸序列为SEQ ID NO.4),利用SpeI和SbfI酶对刚构建的含有基因glf的重组质粒进行酶切,经过T4连接酶后,最终获得含有glf,glk两个目的基因的重组质粒:①pSH1(pYYDT-glf-glk),质粒图谱如图1(2)所示。The gene glk was digested with XbaI and SbfI enzymes (nucleotide sequence is SEQ ID NO. 4), and the newly constructed recombinant plasmid containing gene glf was digested with SpeI and SbfI enzymes. After T4 ligase, the final A recombinant plasmid containing two target genes of glf and glk was obtained: ① pSH1 (pYYDT-glf-glk), the plasmid map is shown in Figure 1(2).
同样按照上述步骤⑵中的方法,完成其它质粒的构建连接,最终得到了13种重组质粒模块一:葡萄糖跨膜转运模块合成生物学改造及优化Also according to the method in the above step (2), the construction and connection of other plasmids were completed, and finally 13 kinds of recombinant plasmid modules were obtained. One: synthetic biology transformation and optimization of glucose transmembrane transport module
①pSH1(pYYDT-glf-glk),②pSH2(pYYDT-galp-glk),③pSH3(pYYDT-ompC-galp-glk),④pSH4(pYYDT-ompC-glf-glk);①pSH1(pYYDT-glf-glk), ②pSH2(pYYDT-galp-glk), ③pSH3(pYYDT-ompC-galp-glk), ④pSH4(pYYDT-ompC-glf-glk);
模块二:葡萄糖转运模块结合ED模块增强葡萄糖代谢Module 2: Glucose transport module combined with ED module to enhance glucose metabolism
⑤pSH5(pYYDT-ompC-glf-glk-zwf),⑥pSH6(pYYDT-ompC-glf-glk-pgl),⑦pSH7(pYYDT-ompC-glf-glk-edd),⑧pSH8(pYYDT-ompC-glf-glk-eda),⑨pSH9 (pYYDT-ompC-glf-glk-pfkA),⑩pSH10(pYYDT-ompC-glf-glk-zwf-pgl),pSH11 (pYYDT-ompC-glf-glk-zwf-pgl-edd),pSH12(pYYDT-ompC-glf-glk-zwf-pgl-edd-eda),pSH13(pYYDT-ompC-glf-glk-zwf-pgl-edd-eda-pykA)。⑤pSH5(pYYDT-ompC-glf-glk-zwf), ⑥pSH6(pYYDT-ompC-glf-glk-pgl), ⑦pSH7(pYYDT-ompC-glf-glk-edd), ⑧pSH8(pYYDT-ompC-glf-glk-eda) ), ⑨pSH9 (pYYDT-ompC-glf-glk-pfkA), ⑩pSH10 (pYYDT-ompC-glf-glk-zwf-pgl), pSH11 (pYYDT-ompC-glf-glk-zwf-pgl-edd), pSH12(pYYDT-ompC-glf-glk-zwf-pgl-edd-eda), pSH13 (pYYDT-ompC-glf-glk-zwf-pgl-edd-eda-pykA).
质粒图谱分别如图1(2)-(14)所示。The plasmid maps are shown in Figures 1(2)-(14), respectively.
按照上述步骤依次完成重组质粒的构建,构建质粒的生物砖设计原理如图2所示,由于 pYYDT作为基础质粒载体含有卡那霉素抗性基因序列,可用于后期工程菌株的定向筛选。The construction of the recombinant plasmid was completed in turn according to the above steps. The design principle of the bio-brick for constructing the plasmid is shown in Figure 2. Since pYYDT as the basic plasmid vector contains the kanamycin resistance gene sequence, it can be used for the directional screening of later engineering strains.
实施例2:重组希瓦氏菌株的构建Example 2: Construction of recombinant Shewanella strains
①转化:将上述得到的重组质粒通过物理转化法导入E.coliWM3064中,用于后续工程希瓦氏菌的构建。①Transformation: The recombinant plasmid obtained above was introduced into E.coliWM3064 by physical transformation method for the construction of the subsequent engineering Shewanella.
从-80℃冰箱取出E.coliWM3064感受态细胞50μL,置于冰盒内自然解冻后加入重组质粒pSH33μL,冰上静置30min,42℃热击90s,再冰上静置2-3min,向EP管中加入1mL LB+DAP 液体培养基(5g/L酵母提取物、10g/L胰蛋白胨、10g/LNaCl、0.059g/L 2,6-二氨基庚二酸),置于37℃、220rpm的摇床中复苏1h。离心后涂布至LB+DAP+kana固体平板上(5g/L酵母提取物、10g/L胰蛋白胨、10g/LNaCl、0.059g/L DAP、50mg/mL卡那霉素(kana,1:1000)、15g/L琼脂粉)最后倒置放到37℃的恒温培养箱过夜培养,挑取阳性克隆,并保藏菌种,取过夜培养的阳性克隆菌500μL,50%的甘油500μL,加入到保菌管中,置于-80℃保存。Remove 50 μL of E.coliWM3064 competent cells from the -80°C refrigerator, thaw naturally in an ice box, add 33 μL of recombinant plasmid pSH, let stand on ice for 30 min, heat shock at 42°C for 90 s, and let stand on ice for 2-3 min. Add 1mL LB+DAP liquid medium (5g/L yeast extract, 10g/L tryptone, 10g/LNaCl, 0.059g/
②接合转移:将上述得到的阳性克隆菌中的重组质粒通过接合转移到模式产电菌S.oneidensis MR-1中,得到能够进行葡萄糖摄取利用的工程菌株。②Conjugation transfer: The recombinant plasmid in the above-obtained positive cloned bacteria was transferred to the model electrogenic bacteria S.oneidensis MR-1 by conjugation to obtain an engineered strain capable of glucose uptake and utilization.
将转化后的大肠杆菌接种到3mL LB+DPA+kana液体培养基(5g/L酵母提取物、10g/L 胰蛋白胨、10g/LNaCl、0.059g/L DAP、50mg/mL卡那霉素(kana,1:1000))中培养,37℃,200rpm 10-12h;将野生型菌株MR-1接种到3mL LB液体培养基(5g/L酵母提取物、10g/L胰蛋白胨、10g/L NaCl)中培养,30℃,200rpm 10-12h。将得到的大肠杆菌种子液和MR-1种子液各取500μL混合到一个1.5mL无菌EP管中,混合均匀,5000rpm下离心10min,倒掉上清液。用1mL LB+DAP液体培养基重悬,在30℃下静置2h。静置完成后混合均匀并取50μL菌液接种于LB+kana的固体平板上(5g/L酵母提取物、10g/L胰蛋白胨、10g/LNaCl、15g/L琼脂粉、50mg/mL卡那霉素(kana,1:1000))置于30℃培养箱中培养12小时以上,得到希瓦氏工程菌。The transformed E. coli was inoculated into 3mL LB+DPA+kana liquid medium (5g/L yeast extract, 10g/L tryptone, 10g/LNaCl, 0.059g/L DAP, 50mg/mL kanamycin (kanamycin). , 1:1000)), 37°C, 200rpm for 10-12h; wild-type strain MR-1 was inoculated into 3mL LB liquid medium (5g/L yeast extract, 10g/L tryptone, 10g/L NaCl) Medium culture, 30°C, 200rpm for 10-12h. 500 μL of the obtained E. coli seed solution and MR-1 seed solution were mixed into a 1.5 mL sterile EP tube, mixed evenly, centrifuged at 5000 rpm for 10 min, and the supernatant was discarded. Resuspend with 1 mL of LB+DAP liquid medium and let stand at 30 °C for 2 h. After standing, mix well and inoculate 50 μL of bacterial liquid on the solid plate of LB+kana (5g/L yeast extract, 10g/L tryptone, 10g/L NaCl, 15g/L agar powder, 50mg/mL kanamycin (kana, 1:1000)) was placed in a 30° C. incubator for more than 12 hours to obtain Shewanella engineered bacteria.
菌落PCR进行验证:接合转移涂板的菌长出明显单菌落(直径大约0.5-1mm)后,准备菌 P验证质粒是否结转成功。需要准备LB+kana平板,并画好格子做好标记。配制PCR体系,分装入96孔板,可以比实际需要的多配2-5个体系,防止因枪头沾有溶液造成损失。准备足量的灭菌牙签。在超净台,一根牙签挑取一个单菌落,放入一个体系的孔中;挑完后,每根牙签在新平板对应的格中划线接种,丢弃牙签。全部划完后,96孔板用封板垫严密封口,放入 PCR仪,设定参数,开始运行。平板放入30℃恒温培养箱(生长不少于10h,具体看菌落长势,长到一定程度可以用保鲜膜包好放4℃)。单个PCR反应体系配置(trans fast Taq):ddH20 11.55μL;上、下游引物各0.3μL;10x buffer1.5μL;dNTPS,1.2μL;Taq酶0.15μL;一个反应体系共15μL。PCR反应条件为:94℃预变性5min,94℃变性30s,53℃退火30s,72℃延伸Xs(1kb/30s,只能时间富裕不能不足),30cycles,最后72℃再延伸7min,4℃保温。Colony PCR for verification: After the bacteria conjugated to the transfer coating plate grows an obvious single colony (about 0.5-1 mm in diameter), prepare bacteria P to verify whether the plasmid is successfully transferred. You need to prepare the LB+kana plate and draw a grid to make a mark. The PCR system is prepared and divided into 96-well plates, and 2-5 more systems can be prepared than the actual need to prevent the loss caused by the solution of the pipette tip. Prepare enough sterilized toothpicks. In the ultra-clean bench, a toothpick picks a single colony and puts it into a well of a system; after picking, each toothpick is streaked in the corresponding grid of the new plate, and the toothpick is discarded. After all the scratches are completed, the 96-well plate is sealed tightly with a sealing pad, placed in the PCR machine, the parameters are set, and the operation is started. Put the plate into a 30°C constant temperature incubator (growth not less than 10h, depending on the growth of the colony, when it grows to a certain extent, it can be wrapped in plastic wrap and placed at 4°C). Single PCR reaction system configuration (trans fast Taq):
琼脂糖凝胶电泳:先制胶,1XTAE缓冲液100mL,琼脂糖1.0g,加热溶解,待适当冷却后加核酸染料5μL,摇匀倒入放好透明垫和梳子的胶槽中,等待凝固。Agarose gel electrophoresis: make gel first, 100mL of 1XTAE buffer, 1.0g of agarose, heat to dissolve, add 5μL of nucleic acid dye after proper cooling, shake well and pour into the glue tank where the transparent pad and comb are placed, and wait for solidification.
跑胶:PCR结束后,加DNALoading buffer,点样,每孔各10μL,电泳8-12min。观察有无目的条带并记录对应编号。Gel running: After PCR, add DNA Loading buffer, spot samples, 10 μL per well, and electrophoresis for 8-12 min. Observe whether there is a target band and record the corresponding number.
保菌:将验证成功的工程希瓦氏菌保菌备用。取过夜培养的希瓦氏工程菌500μL,50%的甘油500μL,加入到保菌管中,置于-80℃保存。Bacteria preservation: The engineering Shewanella bacteria that have been verified successfully will be preserved for future use. Take 500 μL of Shewanella engineering bacteria cultured overnight and 500 μL of 50% glycerol, add them to a bacterial preservation tube, and store at -80°C.
导入空质粒(pYYDT)的野生型希瓦氏菌株命名为WT,导入其它重组质粒的工程菌株分别命名为:The wild-type Shewanella strain introduced with the empty plasmid (pYYDT) was named WT, and the engineered strains introduced with other recombinant plasmids were named:
模块一:葡萄糖跨膜转运模块合成生物学改造及优化Module 1: Synthetic biology modification and optimization of glucose transmembrane transport module
①PSH1(pYYDT-glf-glk);②PSH2(pYYDT-galp-glk);③PSH3(pYYDT-ompC-galp-glk);④PSH4(pYYDT-ompC-glf-glk);①PSH1(pYYDT-glf-glk);②PSH2(pYYDT-galp-glk);③PSH3(pYYDT-ompC-galp-glk);④PSH4(pYYDT-ompC-glf-glk);
模块二:葡萄糖转运模块结合ED模块增强葡萄糖代谢Module 2: Glucose transport module combined with ED module to enhance glucose metabolism
⑤PSH5(pYYDT-ompC-glf-glk-zwf);⑥PSH6(pYYDT-ompC-glf-glk-pgl);⑦PSH7(pYYDT-ompC-glf-glk-edd);⑧PSH8(pYYDT-ompC-glf-glk-eda);⑨PSH9 (pYYDT-ompC-glf-glk-pfkA);⑩PSH10(pYYDT-ompC-glf-glk-zwf-pgl);PSH11 (pYYDT-ompC-glf-glk-zwf-pgl-edd);PSH12(pYYDT-ompC-glf-glk-zwf-pgl-edd-eda);PSH13(pYYDT-ompC-glf-glk-zwf-pgl-edd-eda-pykA)。⑤PSH5(pYYDT-ompC-glf-glk-zwf);⑥PSH6(pYYDT-ompC-glf-glk-pgl);⑦PSH7(pYYDT-ompC-glf-glk-edd);⑧PSH8(pYYDT-ompC-glf-glk-eda) ); ⑨PSH9(pYYDT-ompC-glf-glk-pfkA);⑩PSH10(pYYDT-ompC-glf-glk-zwf-pgl); PSH11 (pYYDT-ompC-glf-glk-zwf-pgl-edd); PSH12(pYYDT-ompC-glf-glk-zwf-pgl-edd-eda); PSH13 (pYYDT-ompC-glf-glk-zwf-pgl-edd-eda-pykA).
如图3所示,为本发明构建的工程希瓦氏菌葡萄糖代谢设计的原理图,从源头开始设计,包括促进葡萄糖摄取进入细胞的葡萄糖跨膜转运模块的合成生物学改造及优化(ompC,galp,glf, glk)到促进胞内代谢(优化ED途径:zwf,pgl,edd,eda,pfkA,pykA)的全过程,得到能进行葡萄糖代谢的工程希瓦氏菌。As shown in Figure 3, it is the schematic diagram of the engineering Shewanella glucose metabolism design constructed by the present invention, which is designed from the source, including the synthetic biology transformation and optimization of the glucose transmembrane transport module that promotes glucose uptake into cells (ompC, galp, glf, glk) to the promotion of intracellular metabolism (optimized ED pathway: zwf, pgl, edd, eda, pfkA, pykA) to obtain an engineered Shewanella that can metabolize glucose.
实施例3:希瓦氏工程菌WT,PSH1-13在含有浓度为3g/L葡萄糖溶液的改良后M9培养液中发酵培养(包含有氧和厌氧)Example 3: Shewanella engineering bacteria WT, PSH1-13 were fermented and cultured in a modified M9 medium containing a concentration of 3 g/L glucose solution (including aerobic and anaerobic)
先将各工程菌株接种(1:100)到LB+Kana的液体培养基(5g/L酵母提取物、10g/L胰蛋白胨、10g/LNaCl,50mg/mL卡那霉素(kana,1:1000))中活化培养,然后在发酵瓶中进一步进行有氧和厌氧发酵,并加入适量IPTG(1M,1:2000)诱导外源基因的表达。每隔2h在超净工作台中取发酵液适量用于检测各菌株的OD600值并记录;用液相色谱仪检测每次取样发酵液中的残糖含量。选取导入空质粒(pYYDT)的野生型菌株WT作为空白对照组,且每株菌做三组平行实验。First inoculate (1:100) each engineering strain into the liquid medium of LB+Kana (5g/L yeast extract, 10g/L tryptone, 10g/LNaCl, 50mg/mL kanamycin (kana, 1:1000) )), and then further aerobic and anaerobic fermentation was carried out in the fermentation flask, and an appropriate amount of IPTG (1M, 1:2000) was added to induce the expression of exogenous genes. Every 2h, take an appropriate amount of fermentation broth in the ultra-clean workbench to detect the OD 600 value of each strain and record it; use a liquid chromatograph to detect the residual sugar content in each sampled fermentation broth. The wild-type strain WT introduced with the empty plasmid (pYYDT) was selected as the blank control group, and three groups of parallel experiments were performed for each strain.
工程希瓦氏菌葡萄糖代谢生长曲线及残糖测定:Glucose metabolism growth curve of engineering Shewanella and determination of residual sugar:
1.菌种活化:早上取经过高压蒸汽灭菌的10mL EP管若干,在超净工作台中分别加入3mL LB+kana的液体培养基,接菌,30℃,200rpm/min,培养12h。1. Bacterial activation: In the morning, take several 10mL EP tubes sterilized by high pressure steam, add 3mL LB+kana liquid medium to the ultra-clean workbench, inoculate the bacteria, and cultivate at 30°C, 200rpm/min for 12h.
2.一级种子:将活化的各菌液按1%接种至含有100mL LB+kana液体培养基的250mL三角瓶中,30℃,200rpm/min,培养12h。2. First-class seeds: inoculate each activated bacterial solution at 1% into a 250-mL conical flask containing 100 mL of LB+kana liquid medium, and cultivate at 30° C., 200 rpm/min for 12 hours.
3.二级种子,发酵:测定一级种子液OD600,并将各菌株调至同一生长状态,按2%接种至含有90mL M9+10mL Glucose+100μL kana+50μL IPTG液体培养基的250mL三角瓶中,30℃,200rpm/min进行有氧发酵培养并定时取样4℃保存待用。3. Secondary seeds, fermentation: measure the OD 600 of the primary seed liquid, adjust each strain to the same growth state, and inoculate it into a 250 mL conical flask containing 90 mL M9+10 mL Glucose+100 μL kana+50 μL IPTG liquid medium at 2% medium, 30°C, 200rpm/min for aerobic fermentation culture, and samples were periodically sampled and stored at 4°C for later use.
同时准备一批厌氧环境下菌株的吃糖实验组:取经过高压蒸汽灭菌的10mL EP管若干(白管的溶氧效果差),10mL管内分别加入7885μLM9+1mL Glucose+10μLkana+5μL IPTG+100 μL菌液+1mL反丁烯二酸(电子受体),放入30℃培养箱中静置,进行厌氧发酵培养并定时取样4℃保存待用。At the same time, prepare a batch of sugar-eating experimental groups of strains in anaerobic environment: take several 10mL EP tubes sterilized by high pressure steam (white tubes have poor dissolved oxygen effect), add 7885μL M9+1mL Glucose+10μLkana+5μL IPTG+ 100 μL of bacterial liquid + 1 mL of fumaric acid (electron acceptor), put it in a 30°C incubator and let it stand for anaerobic fermentation culture, and periodically sample and store at 4°C for later use.
4.测定0-24h发酵液的OD600,记录数据,并每组预留1mL发酵样液离心取上清液过液相测残糖含量。4. Measure the OD 600 of the fermentation broth for 0-24 h, record the data, and
该实验中,配制30g/L葡萄糖溶液足量,在超净工作台中过0.25μm滤膜,4℃保存待用;配制5×M9溶液足量,加dH2O稀释至1×M9溶液,经过高压蒸汽灭菌,冷却后4℃保存待用。In this experiment, a sufficient amount of 30g/L glucose solution was prepared, passed through a 0.25 μm filter membrane in an ultra-clean workbench, and stored at 4°C for later use; a sufficient amount of 5×M9 solution was prepared, and dH 2 O was added to dilute to 1×M9 solution. Sterilized by high pressure steam, and stored at 4°C after cooling.
其中,in,
5×M9母液(1L):2.5gNaCl、5g NH4Cl、15g KH2PO4、30gNa2HPO4,灭菌。5×M9 mother liquor (1 L): 2.5 g NaCl, 5 g NH 4 Cl, 15 g KH 2 PO 4 , 30 g Na 2 HPO 4 , sterilized.
卡那霉素母液(50mg/mL):0.5g kana粉末,ddH2O定容至10mL,用0.22μm滤膜除菌,分装为1mL/管,-20℃保存。Kanamycin stock solution (50mg/mL): 0.5g kana powder, dilute to 10mL with ddH 2 O, sterilize with 0.22μm filter, divide into 1mL/tube, and store at -20°C.
IPTG母液(1M):1.9064g IPTG、ddH2O定容至8mL,用0.22μm滤膜除菌,分装为1mL/管,-20℃保存。IPTG stock solution (1M): 1.9064g IPTG, ddH 2 O, dilute the volume to 8mL, sterilize with 0.22μm filter membrane, aliquot into 1mL/tube, and store at -20°C.
工程菌株在有氧(无氧)条件下,以葡萄糖为唯一碳源的改良后M9培养基中生长及糖耗情况如图4(图5)所示:数据显示,在模块一中,无论是有氧还是厌氧发酵,导入空质粒的对照菌株WT几乎不摄取代谢葡萄糖;构建的工程菌株能摄取一定量的葡萄糖,菌株PSH3:pYYDT-ompC-glf-glk的有氧和厌氧发酵生物量较对照菌株WT均相对较高,且摄取利用的葡萄糖量更多。PSH3有氧发酵12h后到达生长平台期,生物量(OD600=0.51333)是WT (OD600=0.21467)的2.4倍,培养基中的葡萄糖在8h后几乎耗尽;PSH3的厌氧发酵8h后到达生长平台期,生物量(OD600=0.19967)是WT(OD600=0.12833)的约1.6倍,培养基中最终消耗了约45%的葡萄糖。因此我们得到“葡萄糖跨膜转运模块合成生物学改造”优化后的工程菌株PSH3:pYYDT-ompC-glf-glk。模块二中,在模块一优化后工程菌株PSH3: pYYDT-ompC-glf-glk的基础上继续进行改造的菌株。无论是有氧还是厌氧发酵,导入空质粒的对照菌株WT和工程菌PSH9几乎不摄取代谢葡萄糖;构建的其他8株工程菌株PSH5,PSH6, PSH7,PSH8,PSH10,PSH11,PSH12,PSH13均能摄取一定量的葡萄糖,其中菌株PSH11: pYYDT-ompC-glf-glk-zwf-pgl-edd在3g/L葡萄糖为唯一碳源的改良M9液体培养基中的有氧和厌氧发酵生物量均相对较高,且摄取利用的葡萄糖量最多。PSH11有氧发酵24h后到达生长平台期,生物量(OD600=0.58267)是WT(OD600=0.19133)的3倍,培养基中的葡萄糖在16h 后几乎耗尽;PSH11的厌氧发酵48h后到达生长平台期,生物量(OD600=0.22467)是WT (OD600=0.13300)的约1.7倍,培养基中消耗了约59%的葡萄糖。The growth and sugar consumption of the engineered strains in the modified M9 medium with glucose as the sole carbon source under aerobic (anaerobic) conditions are shown in Figure 4 (Figure 5): The data show that in module one, whether it is Aerobic or anaerobic fermentation, the control strain WT into which the empty plasmid was introduced hardly took up metabolic glucose; the constructed engineering strain could take up a certain amount of glucose, the aerobic and anaerobic fermentation biomass of strain PSH3: pYYDT-ompC-glf-glk Compared with the control strain WT were relatively higher, and the amount of glucose uptake and utilization was more. After 12h aerobic fermentation of PSH3, the growth plateau was reached, the biomass (OD 600 =0.51333) was 2.4 times that of WT (OD 600 =0.21467), and the glucose in the medium was almost exhausted after 8h; after 8h of anaerobic fermentation of PSH3 The growth plateau was reached, the biomass ( OD600 =0.19967) was about 1.6 times that of WT ( OD600 =0.12833), and about 45% of the glucose was finally consumed in the medium. Therefore, we obtained the optimized engineered strain PSH3: pYYDT-ompC-glf-glk after "synthetic biology modification of glucose transmembrane transport module". In
所选重组质粒扩增的工程菌为营养缺陷型菌株E.coilWM3064(市售可得,ColiGenetic Stock Center http://cgsc.biology.yale.edu/),最终宿主工程菌为S.oneidensis MR-1(市售可得, ATCC 700550);以上所用限制性内切酶、DNA连接酶和分子生物学试剂从thermo公司购买(http://www.thermoscientificbio.com/fermentas);所用其他生化试剂从生工生物工程(上海) 股份有限公司购买(http://www.sangon.com/)。The engineering bacteria amplified by the selected recombinant plasmids is auxotrophic strain E.coilWM3064 (commercially available, ColiGenetic Stock Center http://cgsc.biology.yale.edu/), and the final host engineering bacteria is S.oneidensis MR- 1 (commercially available, ATCC 700550); the restriction enzymes, DNA ligases and molecular biology reagents used above were purchased from Thermo (http://www.thermoscientificbio.com/fermentas); other biochemical reagents used were from Purchased from Sangon Bioengineering (Shanghai) Co., Ltd. (http://www.sangon.com/).
本发明公开和提出的技术方案,本领域技术人员可通过借鉴本文内容,适当改变条件路线等环节实现,尽管本发明的方法和制备技术已通过较佳实施例子进行了描述,相关技术人员明显能在不脱离本发明内容、精神和范围内对本文所述的方法和技术路线进行改动或重新组合,来实现最终的制备技术。特别需要指出的是,所有相类似的替换和改动对本领域技术人员来说是显而易见的,他们都被视为包括在本发明精神、范围和内容中。本发明未尽事宜属于公知技术。The technical solutions disclosed and proposed in the present invention can be realized by those skilled in the art by referring to the content of this article and appropriately changing the conditions, routes and other links. The methods and technical routes described herein can be modified or recombined without departing from the content, spirit and scope of the present invention to achieve the final preparation technology. It should be particularly pointed out that all similar substitutions and modifications apparent to those skilled in the art are deemed to be included in the spirit, scope and content of the present invention. Matters not covered by the present invention belong to the known technology.
序列表 sequence listing
<110> 天津大学<110> Tianjin University
<120> 希瓦氏菌株中葡萄糖代谢通路的构建方法<120> Construction method of glucose metabolism pathway in Shewanella strains
<160> 11<160> 11
<170> SIPOSequenceListing 1.0<170> SIPOSequenceListing 1.0
<210> 1<210> 1
<211> 1144<211> 1144
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 1<400> 1
gctctagata ctagagaaag aggagaaaat gatgaaacgt aacatcttag ctgttatcgt 60gctctagata ctagagaaag aggagaaaat gatgaaacgt aacatcttag ctgttatcgt 60
tccagcgtta ttagttgctg gcactgctaa cgctgctgaa atctacaaca aagatggtaa 120tccagcgtta ttagttgctg gcactgctaa cgctgctgaa atctacaaca aagatggtaa 120
caaagttgat ttatacggta aagctgttgg tttacactac ttctctaaag gtaacggtga 180caaagttgat ttatacggta aagctgttgg tttacactac ttctctaaag gtaacggtga 180
aaactcttac ggtggtaacg gtgatatgac ttacgctcgt ttaggtttca aaggtgaaac 240aaactcttac ggtggtaacg gtgatatgac ttacgctcgt ttaggtttca aaggtgaaac 240
tcaaatcaac tctgatttaa ctggttacgg tcaatgggaa tacaacttcc aaggtaacaa 300tcaaatcaac tctgatttaa ctggttacgg tcaatgggaa tacaacttcc aaggtaacaa 300
ctctgaaggt gctgatgctc aaactggtaa caaaactcgt ttagctttcg ctggtttaaa 360ctctgaaggt gctgatgctc aaactggtaa caaaactcgt ttagctttcg ctggtttaaa 360
atacgctgat gttggttctt tcgattacgg tcgtaactac ggtgttgttt acgatgcttt 420atacgctgat gttggttctt tcgattacgg tcgtaactac ggtgttgttt acgatgcttt 420
aggttacact gatatgttac cagaattcgg tggtgatact gcttactctg atgatttctt 480aggttacact gatatgttac cagaattcgg tggtgatact gcttactctg atgatttctt 480
cgttggtcgt gttggtggtg ttgctactta ccgtaactct aacttcttcg gtttagttga 540cgttggtcgt gttggtggtg ttgctactta ccgtaactct aacttcttcg gtttagttga 540
tggtttaaac ttcgctgttc aatacttagg taaaaacgaa cgtgatactg ctcgtcgttc 600tggtttaaac ttcgctgttc aatacttagg taaaaacgaa cgtgatactg ctcgtcgttc 600
taacggtgat ggtgttggtg gttctatctc ttacgaatac gaaggtttcg gtatcgttgg 660taacggtgat ggtgttggtg gttctatctc ttacgaatac gaaggtttcg gtatcgttgg 660
tgcttacggt gctgctgatc gtactaactt acaagaagct caaccattag gtaacggtaa 720tgcttacggt gctgctgatc gtactaactt acaagaagct caaccattag gtaacggtaa 720
aaaagctgaa caatgggcta ctggtttaaa atacgatgct aacaacatct acttagctgc 780aaaagctgaa caatgggcta ctggtttaaa atacgatgct aacaacatct acttagctgc 780
taactacggt gaaactcgta acgctactcc aatcactaac aaattcacta acacttctgg 840taactacggt gaaactcgta acgctactcc aatcactaac aaattcacta acacttctgg 840
tttcgctaac aaaactcaag atgttttatt agttgctcaa taccaattcg atttcggttt 900tttcgctaac aaaactcaag atgttttatt agttgctcaa taccaattcg atttcggttt 900
acgtccatct atcgcttaca ctaaatctaa agctaaagat gttgaaggta tcggtgatgt 960acgtccatct atcgcttaca ctaaatctaa agctaaagat gttgaaggta tcggtgatgt 960
tgatttagtt aactacttcg aagttggtgc tacttactac ttcaacaaaa acatgtctac 1020tgatttagtt aactacttcg aagttggtgc tacttactac ttcaacaaaa acatgtctac 1020
ttacgttgat tacatcatca accaaatcga ttctgataac aaattaggtg ttggttctga 1080ttacgttgat tacatcatca accaaatcga ttctgataac aaattaggtg ttggttctga 1080
tgatactgtt gctgttggta tcgtttacca attctaatct ccccaaacta gtccctgcag 1140tgatactgtt gctgttggta tcgtttacca attctaatct ccccaaacta gtccctgcag 1140
ggct 1144ggct 1144
<210> 2<210> 2
<211> 1458<211> 1458
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 2<400> 2
gctctagata ctagagaaag aggagaaata ctagagatgc cagatgctaa aaaacaaggt 60gctctagata ctagagaaag aggagaaata ctagagatgc cagatgctaa aaaacaaggt 60
cgttctaaca aagctatgac tttcttcgtt tgtttcttag ctgctctcgc gggcttactc 120cgttctaaca aagctatgac tttcttcgtt tgtttcttag ctgctctcgc gggcttactc 120
ttcggtttag atatcggtgt tatcgctggt gctttaccat tcatcgctga tgaattccaa 180ttcggtttag atatcggtgt tatcgctggt gctttaccat tcatcgctga tgaattccaa 180
atcacttctc acactcaaga atgggttgtt tcttctatga tgttcggtgc tgctgttggt 240atcacttctc acactcaaga atgggttgtt tcttctatga tgttcggtgc tgctgttggt 240
gctgttggtt ctggttggtt atctttcaaa ttaggtcgta aaaaatcttt aatgatcggt 300gctgttggtt ctggttggtt atctttcaaa ttaggtcgta aaaaatcttt aatgatcggt 300
gctatcttat tcgttgctgg ttctttattc tctgctgctg ctcccaacgt tgaagtacta 360gctatcttat tcgttgctgg ttctttattc tctgctgctg ctcccaacgt tgaagtacta 360
atcttatctc gtgttttatt aggtttagct gttggtgttg cttcttacac tgctccatta 420atcttatctc gtgttttatt aggtttagct gttggtgttg cttcttacac tgctccatta 420
tacttatctg aaatcgctcc agaaaaaatc cgtggttcta tgatctctat gtaccaatta 480tacttatctg aaatcgctcc agaaaaaatc cgtggttcta tgatctctat gtaccaatta 480
atgatcacta tcggtatctt aggtgcttac ttatctgata ctgctttctc ttacactggt 540atgatcacta tcggtatctt aggtgcttac ttatctgata ctgctttctc ttacactggt 540
gcttggcgtt ggatgttagg tgttatcatc atcccagcta tcttattatt aatcggtgtt 600gcttggcgtt ggatgttagg tgttatcatc atcccagcta tcttattatt aatcggtgtt 600
ttcttcttac cagattctcc acgttggttc gctgctaaac gtcgtttcgt tgatgctgag 660ttcttcttac cagattctcc acgttggttc gctgctaaac gtcgtttcgt tgatgctgag 660
cgtgtcctct tacgtttacg tgatacttct gctgaagcta aacgtgaatt agatgaaatc 720cgtgtcctct tacgtttacg tgatacttct gctgaagcta aacgtgaatt agatgaaatc 720
cgtgaatctt tacaagttaa acaatctggt tgggctttat tcaaagaaaa ctctaacttc 780cgtgaatctt tacaagttaa acaatctggt tgggctttat tcaaagaaaa ctctaacttc 780
cgtcgtgctg ttttcttagg tgttttatta caagttatgc aacaattcac tggtatgaac 840cgtcgtgctg ttttcttagg tgttttatta caagttatgc aacaattcac tggtatgaac 840
gttatcatgt actacgctcc aaaaatcttc gaattagctg gttacactaa cactactgaa 900gttatcatgt actacgctcc aaaaatcttc gaattagctg gttacactaa cactactgaa 900
caaatgtggg gtactgttat agttggttta actaacgtgc tggctacttt catcgctatc 960caaatgtggg gtactgttat agttggttta actaacgtgc tggctacttt catcgctatc 960
ggtttagttg atcgttgggg tcgtaaacca actttaactt taggtttctt agttatggct 1020ggtttagttg atcgttgggg tcgtaaacca actttaactt taggtttctt agttatggct 1020
gctggtatgg gtgttttagg tactatgatg cacatcggta tccactctcc atctgctcaa 1080gctggtatgg gtgttttagg tactatgatg cacatcggta tccactctcc atctgctcaa 1080
tacttcgcta tcgctatgtt attaatgttc atcgttggtt tcgctatgtc tgctggtcca 1140tacttcgcta tcgctatgtt attaatgttc atcgttggtt tcgctatgtc tgctggtcca 1140
ttaatctggg ttttatgttc tgaaatccaa ccattaaaag gtcgtgattt cggtatcact 1200ttaatctggg ttttatgttc tgaaatccaa ccattaaaag gtcgtgattt cggtatcact 1200
tgttctactg ctactaactg gatcgctaac atgatcgttg gtgctacttt cttaactatg 1260tgttctactg ctactaactg gatcgctaac atgatcgttg gtgctacttt cttaactatg 1260
ttaaacactt taggtaacgc taacactttc tgggtttacg ctgctttaaa cgttttattc 1320ttaaacactt taggtaacgc taacactttc tgggtttacg ctgctttaaa cgttttattc 1320
atcttattaa ctttatggtt agttccagaa acaaagcacg taagcttaga acacatcgaa 1380atcttattaa ctttatggtt agttccagaa acaaagcacg taagcttaga acacatcgaa 1380
cgtaacttaa tgaaaggtcg taaattacgt gaaatcggtg ctcacgatta atctccccaa 1440cgtaacttaa tgaaaggtcg taaattacgt gaaatcggtg ctcacgatta atctccccaa 1440
actagtccct gcagggct 1458actagtccct gcagggct 1458
<210> 3<210> 3
<211> 1485<211> 1485
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 3<400> 3
gctctagata ctagagaaag aggagaaata ctagagatgt cttctgaatc ttctcaaggt 60gctctagata ctagagaaag aggagaaata ctagagatgt cttctgaatc ttctcaaggt 60
ttagttactc gtttagcttt aatcgctgct atcggtggtt tattattcgg ttacgattct 120ttagttactc gtttagcttt aatcgctgct atcggtggtt tattattcgg ttacgattct 120
gctgttatcg ctgctatcgg tactccagtt gatatccact tcatcgctcc acgtcactta 180gctgttatcg ctgctatcgg tactccagtt gatatccact tcatcgctcc acgtcactta 180
tctgctactg ctgctgcttc tttatctggt atggttgttg ttgctgtttt agttggttgt 240tctgctactg ctgctgcttc tttatctggt atggttgttg ttgctgtttt agttggttgt 240
gttactggtt ctttattatc tggttggata ggcatcaggt tcggtcgtcg tggcggttta 300gttactggtt ctttattatc tggttggata ggcatcaggt tcggtcgtcg tggcggttta 300
ttaatgtctt ctatctgttt cgttgctgct ggtttcggtg ctgctttaac tgaaaaatta 360ttaatgtctt ctatctgttt cgttgctgct ggtttcggtg ctgctttaac tgaaaaatta 360
ttcggtactg gtggttctgc tttacaaatc ttctgtttct tccgtttctt agctggttta 420ttcggtactg gtggttctgc tttacaaatc ttctgtttct tccgtttctt agctggttta 420
ggtatcggtg ttgtttctac tttaactcca acttacatcg ctgaaatcgc tccaccagat 480ggtatcggtg ttgtttctac tttaactcca acttacatcg ctgaaatcgc tccaccagat 480
aaacgtggtc aaatggtttc tggtcaacaa atggctatcg ttactggtgc tttaactggt 540aaacgtggtc aaatggtttc tggtcaacaa atggctatcg ttactggtgc tttaactggt 540
tacatcttca cttggttatt agctcacttc ggttctatcg attgggttaa cgcttctggt 600tacatcttca cttggttatt agctcacttc ggttctatcg attgggttaa cgcttctggt 600
tggtgttggt ctccagcgtc ggaaggtctc atcggtatcg cgttcttatt attattatta 660tggtgttggt ctccagcgtc ggaaggtctc atcggtatcg cgttcttatt attattatta 660
actgctccag atactccaca ctggttagtt atgaaaggtc gtcactctga agcttctaaa 720actgctccag atactccaca ctggttagtt atgaaaggtc gtcactctga agcttctaaa 720
atactcgctc gtctcgaacc acaagcggat ccaaacttaa ctatccaaaa aatcaaagct 780atactcgctc gtctcgaacc acaagcggat ccaaacttaa ctatccaaaa aatcaaagct 780
ggtttcgata aagctatgga taaatcttct gctggtttat tcgctttcgg catcactgtt 840ggtttcgata aagctatgga taaatcttct gctggtttat tcgctttcgg catcactgtt 840
gtgttcgcgg gtgtttctgt tgctgctttc caacaattag ttggcataaa cgctgtgctc 900gtgttcgcgg gtgtttctgt tgctgctttc caacaattag ttggcataaa cgctgtgctc 900
tactacgctc cacaaatgtt ccaaaactta ggtttcggtg ccgatacagc gttattacaa 960tactacgctc cacaaatgtt ccaaaactta ggtttcggtg ccgatacagc gttattacaa 960
actatatcta tcggtgttgt taacttcatc ttcactatga tcgcttctcg tgttgttgat 1020actatatcta tcggtgttgt taacttcatc ttcactatga tcgcttctcg tgttgttgat 1020
cgtttcggtc gtaaaccatt attaatctgg ggtgctttag gtatggctgc gatgatggct 1080cgtttcggtc gtaaaccatt attaatctgg ggtgctttag gtatggctgc gatgatggct 1080
gtgctcggtt gttgtttctg gttcaaagtt ggtggtgttt taccactcgc gtctgtacta 1140gtgctcggtt gttgtttctg gttcaaagtt ggtggtgttt taccactcgc gtctgtacta 1140
ttatacatcg ctgttttcgg tatgtcttgg ggtccagttt gttgggttgt tttatctgaa 1200ttatacatcg ctgttttcgg tatgtcttgg ggtccagttt gttgggttgt tttatctgaa 1200
atgttcccat cttctatcaa aggtgctgct atgccaatcg ctgttactgg tcaatggtta 1260atgttcccat cttctatcaa aggtgctgct atgccaatcg ctgttactgg tcaatggtta 1260
gctaacatct tagttaactt cttattcaaa gttgctgatg gttcgcccgc tctcaaccaa 1320gctaacatct tagttaactt cttattcaaa gttgctgatg gttcgcccgc tctcaaccaa 1320
acttttaacc acggtttctc ttacttagtt ttcgctgctt tatctatctt aggtggttta 1380acttttaacc acggtttctc ttacttagtt ttcgctgctt tatctatctt aggtggttta 1380
atcgttgctc gtttcgttcc agaaactaaa ggtcgttctt tagatgaaat cgaagaaatg 1440atcgttgctc gtttcgttcc agaaactaaa ggtcgttctt tagatgaaat cgaagaaatg 1440
tggcgttctc aaaaataatc tccccaaact agtccctgca gggct 1485tggcgttctc aaaaataatc tccccaaact agtccctgca gggct 1485
<210> 4<210> 4
<211> 1038<211> 1038
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 4<400> 4
gctctagata ctagagaaag aggagaaata ctagagatgg aaatcgttgc tatcgatatc 60gctctagata ctagagaaag aggagaaata ctagagatgg aaatcgttgc tatcgatatc 60
ggtggtactc acgctcgttt ctctatcgct gaagtttcta acggtcgtgt tttatcttta 120ggtggtactc acgctcgttt ctctatcgct gaagtttcta acggtcgtgt tttatcttta 120
ggtgaagaaa ctactttcaa aactgctgaa cacgcttctt tacaattagc ttgggaacgt 180ggtgaagaaa ctactttcaa aactgctgaa cacgcttctt tacaattagc ttgggaacgt 180
ttcggtgaaa aattaggtcg tccattacca cgtgctgctg ctatcgcttg ggctggtcca 240ttcggtgaaa aattaggtcg tccattacca cgtgctgctg ctatcgcttg ggctggtcca 240
gttcacggtg aagttttaaa attaactaac aacccatggg ttttacgtcc agctacttta 300gttcacggtg aagttttaaa attaactaac aacccatggg ttttacgtcc agctacttta 300
aacgaaaaat tagatatcga tactcacgta ttaataaacg acttcggtgc tgttgcgcac 360aacgaaaaat tagatatcga tactcacgta ttaataaacg acttcggtgc tgttgcgcac 360
gctgttgctc acatggattc ttcttactta gatcacatct gtggtccaga cgaagctctc 420gctgttgctc acatggattc ttcttactta gatcacatct gtggtccaga cgaagctctc 420
ccatctgatg gcgttatcac tatcttaggt ccgggtacag gtctcggtgt tgctcattta 480ccatctgatg gcgttatcac tatcttaggt ccgggtacag gtctcggtgt tgctcattta 480
ttacgtactg aaggtcgtta cttcgttatc gaaactgaag gtggtcacat cgatttcgct 540ttacgtactg aaggtcgtta cttcgttatc gaaactgaag gtggtcacat cgatttcgct 540
ccattagatc gtttagaaga taaaatctta gctcgtttac gtgagaggtt ccgtcgtgtt 600ccattagatc gtttagaaga taaaatctta gctcgtttac gtgagaggtt ccgtcgtgtt 600
tcgatcgaac gtatcatctc tggtccaggt ttaggtaaca tctacgaagc tttagctgct 660tcgatcgaac gtatcatctc tggtccaggt ttaggtaaca tctacgaagc tttagctgct 660
atcgaaggtg ttccattctc tttattagat gatatcaaat tatggcaaat ggctttagaa 720atcgaaggtg ttccattctc tttattagat gatatcaaat tatggcaaat ggctttagaa 720
ggtaaagata acttagctga agctgcgctc gataggttct gtttaagttt aggtgctatc 780ggtaaagata acttagctga agctgcgctc gataggttct gtttaagttt aggtgctatc 780
gctggtgatt tagctttagc tcaaggtgct acttctgttg ttatcggtgg tggtgttggt 840gctggtgatt tagctttagc tcaaggtgct acttctgttg ttatcggtgg tggtgttggt 840
ttacgtatcg cttctcactt accagagagt ggcttccgtc aacgttttgt ttctaaaggt 900ttacgtatcg cttctcactt accagagagt ggcttccgtc aacgttttgt ttctaaaggt 900
cgtttcgaac gtgttatgtc taaaatccca gttaaattaa tcacttaccc acaaccaggt 960cgtttcgaac gtgttatgtc taaaatccca gttaaattaa tcacttaccc acaaccaggt 960
ttattaggtg ctgctgctgc ttacgctaac aaatactctg aagttgaata atctccccaa 1020ttattaggtg ctgctgctgc ttacgctaac aaatactctg aagttgaata atctccccaa 1020
actagtccct gcagggct 1038actagtccct gcagggct 1038
<210> 5<210> 5
<211> 1574<211> 1574
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 5<400> 5
gctctagatt gacaattaat catcggctcg tataatgtgt ggaattgtga gcggataaca 60gctctagatt gacaattaat catcggctcg tataatgtgt ggaattgtga gcggataaca 60
atactagaga aagaggagaa atactagaga tgactaacac tgtttctact atgatcttat 120atactagaga aagaggagaa atactagaga tgactaacac tgtttctact atgatcttat 120
tcggctctac tggtgactta tctcaacgta tgttattacc atctttatac ggtttagatg 180tcggctctac tggtgactta tctcaacgta tgttattacc atctttatac ggtttagatg 180
ctgatggttt attagctgat gatttacgta tcgtttgtac ttctcgttct gaatacgata 240ctgatggttt attagctgat gatttacgta tcgtttgtac ttctcgttct gaatacgata 240
ctgatggttt ccgtgatttc gctgaaaaag ctttagatcg tttcgttgct tctgatcgtt 300ctgatggttt ccgtgatttc gctgaaaaag ctttagatcg tttcgttgct tctgatcgtt 300
taaacgatga tgctaaagct aaattcttaa acaaattatt ctacgctact gttgatatca 360taaacgatga tgctaaagct aaattcttaa acaaattatt ctacgctact gttgatatca 360
ctgatccaac tcaattcggt aaattagctg atttatgtgg tccagttgaa aaaggtatcg 420ctgatccaac tcaattcggt aaattagctg atttatgtgg tccagttgaa aaaggtatcg 420
ctatctactt atctactgct ccatctttat tcgaaggtgc tatcgctggt ttaaagcagg 480ctatctactt atctactgct ccatctttat tcgaaggtgc tatcgctggt ttaaagcagg 480
ctggtctcgc tggtccaact tctcgtttag ctttagaaaa accattaggt caagatttag 540ctggtctcgc tggtccaact tctcgtttag ctttagaaaa accattaggt caagatttag 540
cttcttctga tcacatcaat gacgctgtac tcaaagtttt ctctgaaaaa caagtttacc 600cttcttctga tcacatcaat gacgctgtac tcaaagtttt ctctgaaaaa caagtttacc 600
gtatcgatca ctacttaggt aaagaaactg ttcaaaactt attaacttta aggttcggca 660gtatcgatca ctacttaggt aaagaaactg ttcaaaactt attaacttta aggttcggca 660
acgcgttatt cgaaccactc tggaactcta aaggtatcga tcacgttcaa atctctgttg 720acgcgttatt cgaaccactc tggaactcta aaggtatcga tcacgttcaa atctctgttg 720
ctgaaactgt tggtttagaa ggtcgtatcg gttacttcga tggttctggt tctttacgtg 780ctgaaactgt tggtttagaa ggtcgtatcg gttacttcga tggttctggt tctttacgtg 780
atatggttca atctcacatc ttacaattag ttgctttagt tgctatggaa ccaccagctc 840atatggttca atctcacatc ttacaattag ttgctttagt tgctatggaa ccaccagctc 840
acatggaagc taacgctgtt cgtgatgaaa aagttaaagt tttccgtgct ttacgtccaa 900acatggaagc taacgctgtt cgtgatgaaa aagttaaagt tttccgtgct ttacgtccaa 900
tcaacaacga tactgttttc actcacactg ttactggtca atacggtgct ggtgtttctg 960tcaacaacga tactgttttc actcacactg ttactggtca atacggtgct ggtgtttctg 960
gtggtaaaga agttgctggt tacatcgatg aattaggtca accatctgat actgaaactt 1020gtggtaaaga agttgctggt tacatcgatg aattaggtca accatctgat actgaaactt 1020
tcgttgctat caaagctcac gttgataact ggcgttggca aggtgttcca ttctacatcc 1080tcgttgctat caaagctcac gttgataact ggcgttggca aggtgttcca ttctacatcc 1080
gtactggtaa acgtttacca gctcgtcgtt ctgaaatcgt tgttcaattc aaaccagttc 1140gtactggtaa acgtttacca gctcgtcgtt ctgaaatcgt tgttcaattc aaaccagttc 1140
cacactctat cttctcttct tctggtggta tcttacaacc aaacaaatta cgtatcgttt 1200cacactctat cttctcttct tctggtggta tcttacaacc aaacaaatta cgtatcgttt 1200
tacaaccaga tgaaactatc caaatctcta tgatggttaa agagccaggt ctcgatcgta 1260tacaaccaga tgaaactatc caaatctcta tgatggttaa agagccaggt ctcgatcgta 1260
acggcgctca catgcgtgaa gtttggttag atttatcttt aactgatgtt ttcaaagatc 1320acggcgctca catgcgtgaa gtttggttag atttatcttt aactgatgtt ttcaaagatc 1320
gtaaacgtcg tatcgcgtac gaaaggttaa tgttagatct catcgaaggg gacgctacat 1380gtaaacgtcg tatcgcgtac gaaaggttaa tgttagatct catcgaaggg gacgctacat 1380
tattcgttcg tcgtgatgaa gttgaagctc aatgggtttg gatcgatggt atccgtgaag 1440tattcgttcg tcgtgatgaa gttgaagctc aatgggtttg gatcgatggt atccgtgaag 1440
gttggaaagc taactctatg aaaccaaaaa cttacgtttc tggtacttgg ggtccatcta 1500gttggaaagc taactctatg aaaccaaaaa cttacgtttc tggtacttgg ggtccatcta 1500
ctgctatcgc tttagctgaa cgtgatggtg ttacttggta cgattaatct ccccaaacta 1560ctgctatcgc tttagctgaa cgtgatggtg ttacttggta cgattaatct ccccaaacta 1560
gtccctgcag ggct 1574gtccctgcag ggct 1574
<210> 6<210> 6
<211> 771<211> 771
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 6<400> 6
gctctagata ctagagaaag aggagaaata ctagagatga ctgaagctga atggtgggaa 60gctctagata ctagagaaag aggagaaata ctagagatga ctgaagctga atggtgggaa 60
ttcgaaaacg ttgaagctat ggctaaacaa atcgctgatg atatcgaatt catcatcaaa 120ttcgaaaacg ttgaagctat ggctaaacaa atcgctgatg atatcgaatt catcatcaaa 120
caagctatcg aaaaaaaagg tcgtgcttta atcatcgttc caggtggttc tactccaaaa 180caagctatcg aaaaaaaagg tcgtgcttta atcatcgttc caggtggttc tactccaaaa 180
ttagttttcc caactttagc tgctcgtgat ttagattggt ctaaagttac tttaatgtta 240ttagttttcc caactttagc tgctcgtgat ttagattggt ctaaagttac tttaatgtta 240
actgatgatc gtttagttgc taaagataac ccattatcta acttcggttt attaactaaa 300actgatgatc gtttagttgc taaagataac ccattatcta acttcggttt attaactaaa 300
cacttcggtt cttctggtgc tgaattagtt tctttaatcg atgaaaacta cttagatgat 360cacttcggtt cttctggtgc tgaattagtt tctttaatcg atgaaaacta cttagatgat 360
cgtgctgctg ctggtcgtgc tgctgatcaa aaattagctt cttacaaatg gccagctgat 420cgtgctgctg ctggtcgtgc tgctgatcaa aaattagctt cttacaaatg gccagctgat 420
ttagtttggt taggtatggg taacgatggt cacactgctt ctatcttccc aggtccaaac 480ttagtttggt taggtatggg taacgatggt cacactgctt ctatcttccc aggtccaaac 480
ttcgatgaag ctgttaacgg tccaagggaa cgtcgtgcgt taggtttatt accagttcca 540ttcgatgaag ctgttaacgg tccaagggaa cgtcgtgcgt taggtttatt accagttcca 540
ttaccaccag aagctccagt tgctcgtgtt actttatctt tatctacttt agcttctgct 600ttaccaccag aagctccagt tgctcgtgtt actttatctt tatctacttt agcttctgct 600
cacactgtta tggttgttat cactggtgat cacaaacgta ctgttttaac tgatgcttta 660cacactgtta tggttgttat cactggtgat cacaaacgta ctgttttaac tgatgcttta 660
aaagaaggtg cttcgtcgcg tctcccagtt ggtcgtgttt taggtgaaac tgaagcttct 720aaagaaggtg cttcgtcgcg tctcccagtt ggtcgtgttt taggtgaaac tgaagcttct 720
atcgatgttt actggtctaa ataatctccc caaactagtc cctgcagggc t 771atcgatgttt actggtctaa ataatctccc caaactagtc cctgcagggc t 771
<210> 7<210> 7
<211> 1887<211> 1887
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 7<400> 7
gctctagata ctagagaaag aggagaaata ctagagatga ctgatttaca ctctactgtt 60gctctagata ctagagaaag aggagaaata ctagagatga ctgatttaca ctctactgtt 60
gaaaaagtta ctgctcgtgt tatcgaacgt tctcgtgaaa ctcgtaaagc ttacttagat 120gaaaaagtta ctgctcgtgt tatcgaacgt tctcgtgaaa ctcgtaaagc ttacttagat 120
ttaatccaat acgaacgtga aaaaggtgtt gatcgtccaa acttatcttg ttctaactta 180ttaatccaat acgaacgtga aaaaggtgtt gatcgtccaa acttatcttg ttctaactta 180
gctcacggtt tcgctgctat gaacggtgat aaaccagctt tacgtgattt caaccgtatg 240gctcacggtt tcgctgctat gaacggtgat aaaccagctt tacgtgattt caaccgtatg 240
aacatcggtg ttgttacttc ttacaacgat atgttatctg ctcacgaacc atactaccgt 300aacatcggtg ttgttacttc ttacaacgat atgttatctg ctcacgaacc atactaccgt 300
tacccagaac aaatgaaagt tttcgctcgt gaagttggtg ctactgttca agttgctggt 360tacccagaac aaatgaaagt tttcgctcgt gaagttggtg ctactgttca agttgctggt 360
ggtgttccag ctatgtgtga tggtgttact caaggtcaac caggtatgga agaatcttta 420ggtgttccag ctatgtgtga tggtgttact caaggtcaac caggtatgga agaatcttta 420
ttctctcgtg atgttatagc tctcgctact tctgtttctt tatctcacgg tatgttcgaa 480ttctctcgtg atgttatagc tctcgctact tctgtttctt tatctcacgg tatgttcgaa 480
ggtgctgctt tattaggtat ctgtgataaa atcgttccag gtttattaat gggtgcttta 540ggtgctgctt tattaggtat ctgtgataaa atcgttccag gtttattaat gggtgcttta 540
cgtttcggtc acttaccaac tatcttagtt ccatctggtc caatgactac tggtatccca 600cgtttcggtc acttaccaac tatcttagtt ccatctggtc caatgactac tggtatccca 600
aacaaagaaa aaatccgtat ccgtcaatta tacgctcaag gtaaaatcgg tcaaaaagaa 660aacaaagaaa aaatccgtat ccgtcaatta tacgctcaag gtaaaatcgg tcaaaaagaa 660
ttattagata tggaagctgc ttgttaccac gctgaaggta cttgtacttt ctacggtact 720ttattagata tggaagctgc ttgttaccac gctgaaggta cttgtacttt ctacggtact 720
gctaacacta accaaatggt tatggaagtg ctaggtttac acatgccagg ttctgctttc 780gctaacacta accaaatggt tatggaagtg ctaggtttac acatgccagg ttctgctttc 780
gttactccag gtactccatt acgtcaagct ttaactcgtg ctgctgttca ccgtgttgct 840gttactccag gtactccatt acgtcaagct ttaactcgtg ctgctgttca ccgtgttgct 840
gaattaggtt ggaaaggtga tgattaccgt ccattaggta aaatcatcga tgaaaaatct 900gaattaggtt ggaaaggtga tgattaccgt ccattaggta aaatcatcga tgaaaaatct 900
atcgttaacg ctatcgttgg tttattagct actggtggtt ctactaacca cactatgcac 960atcgttaacg ctatcgttgg tttattagct actggtggtt ctactaacca cactatgcac 960
atcccagcta tcgctcgtgc tgctggtgtt atcgtaaact ggaacgactt ccacgacctg 1020atcccagcta tcgctcgtgc tgctggtgtt atcgtaaact ggaacgactt ccacgacctg 1020
tctgaagttg ttccattaat cgctcgtatc tacccaaacg gtccacgtga tatcaacgaa 1080tctgaagttg ttccattaat cgctcgtatc tacccaaacg gtccacgtga tatcaacgaa 1080
ttccaaaacg ctggtggtat ggcttacgtt atcaaagaat tattatctgc taacttatta 1140ttccaaaacg ctggtggtat ggcttacgtt atcaaagaat tattatctgc taacttatta 1140
aaccgtgatg ttactactat cgctaaaggt ggtatcgaag aatacgctaa agctccagct 1200aaccgtgatg ttactactat cgctaaaggt ggtatcgaag aatacgctaa agctccagct 1200
ttaaacgatg ctggtgaatt agtttggaaa ccagctggtg aaccaggtga tgatactatc 1260ttaaacgatg ctggtgaatt agtttggaaa ccagctggtg aaccaggtga tgatactatc 1260
ttacgtccag tttctaaccc attcgctaaa gatggtggtt tacgtttatt agaaggtaac 1320ttacgtccag tttctaaccc attcgctaaa gatggtggtt tacgtttatt agaaggtaac 1320
ttaggtcgtg ctatgtacaa agcttctgct gttgatccaa aattctggac tatcgaagct 1380ttaggtcgtg ctatgtacaa agcttctgct gttgatccaa aattctggac tatcgaagct 1380
ccagttcgtg ttttctctga tcaagatgat gttcaaaaag ctttcaaagc tggtgaatta 1440ccagttcgtg ttttctctga tcaagatgat gttcaaaaag ctttcaaagc tggtgaatta 1440
aacaaagatg ttatcgttgt tgttcgtttc caaggtccac gtgctaacgg tatgccagaa 1500aacaaagatg ttatcgttgt tgttcgtttc caaggtccac gtgctaacgg tatgccagaa 1500
ttacacaaat taactccagc tttaggtgtt ttacaagata acggttacaa agttgcttta 1560ttacacaaat taactccagc tttaggtgtt ttacaagata acggttacaa agttgcttta 1560
gttactgatg gtcgtatgtc tggtgctaca ggtaaagttc cagttgctct ccacgtttct 1620gttactgatg gtcgtatgtc tggtgctaca ggtaaagttc cagttgctct ccacgtttct 1620
ccagaggctc tcggtggtgg tgcgatcggt aaattacgtg atggtgatat cgttcgtatc 1680ccagaggctc tcggtggtgg tgcgatcggt aaattacgtg atggtgatat cgttcgtatc 1680
tctgttgaag aaggtaaatt agaagcttta gttccagctg atgaatggaa cgctcgtcca 1740tctgttgaag aaggtaaatt agaagcttta gttccagctg atgaatggaa cgctcgtcca 1740
cacgctgaaa agcccgcgtt ccgtccaggt actggtcgtg aattattcga tatcttccgt 1800cacgctgaaa agcccgcgtt ccgtccaggt actggtcgtg aattattcga tatcttccgt 1800
caaaacgctg ctaaagctga agatggtgct gttgctatct acgctggtgc tggtatctaa 1860caaaacgctg ctaaagctga agatggtgct gttgctatct acgctggtgc tggtatctaa 1860
tctccccaaa ctagtccctg cagggct 1887tctccccaaa ctagtccctg cagggct 1887
<210> 8<210> 8
<211> 743<211> 743
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 8<400> 8
gctctagatt gacaattaat catcggctcg tataatgtgt ggaattgtga gcggataaca 60gctctagatt gacaattaat catcggctcg tataatgtgt ggaattgtga gcggataaca 60
atactagaga aagaggagaa atactagaga tgcgtgatat cgattctgtt atgcgtttag 120atactagaga aagaggagaa atactagaga tgcgtgatat cgattctgtt atgcgtttag 120
ctccagttat gccagtttta gttatcgaag atatcgctga tgctaaacca atcgctgaag 180ctccagttat gccagtttta gttatcgaag atatcgctga tgctaaacca atcgctgaag 180
ctttagttgc tggtggttta aacgttttag aagttacttt acgtactcca tgtgctttag 240ctttagttgc tggtggttta aacgttttag aagttacttt acgtactcca tgtgctttag 240
aagctatcaa aatcatgaaa gaagttccag gtgctgttgt tggtgctggt actgttttaa 300aagctatcaa aatcatgaaa gaagttccag gtgctgttgt tggtgctggt actgttttaa 300
acgctaaaat gttagatcaa gctcaagaag ctggttgtga attcttcgtt tctccaggtt 360acgctaaaat gttagatcaa gctcaagaag ctggttgtga attcttcgtt tctccaggtt 360
taactgctga tttaggtaaa cacgctgttg ctcaaaaagc tgctttatta ccaggtgttg 420taactgctga tttaggtaaa cacgctgttg ctcaaaaagc tgctttatta ccaggtgttg 420
ctaacgctgc tgatgttatg ttaggtttag atttaggcct cgataggttc aaattcttcc 480ctaacgctgc tgatgttatg ttaggtttag atttaggcct cgataggttc aaattcttcc 480
cagctgaaaa catcggtggt ctcccagctc tcaaatctat ggcgtctgtt ttccgtcaag 540cagctgaaaa catcggtggt ctcccagctc tcaaatctat ggcgtctgtt ttccgtcaag 540
ttcgtttctg tccaactggt ggtatcactc caacttctgc tccaaaatac ttagaaaacc 600ttcgtttctg tccaactggt ggtatcactc caacttctgc tccaaaatac ttagaaaacc 600
catctatctt atgtgttggt ggttcttggg ttgttccagc tggtaaacca gatgttgcta 660catctatctt atgtgttggt ggttcttggg ttgttccagc tggtaaacca gatgttgcta 660
aaatcactgc tttagctaaa gaagcttctg ctttcaaacg tgctgctgtt gcttaatctc 720aaatcactgc tttagctaaa gaagcttctg ctttcaaacg tgctgctgtt gcttaatctc 720
cccaaactag tccctgcagg gct 743cccaaactag tccctgcagg gct 743
<210> 9<210> 9
<211> 1071<211> 1071
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 9<400> 9
gctctagatt gacaattaat catcggctcg tataatgtgt ggaattgtga gcggataaca 60gctctagatt gacaattaat catcggctcg tataatgtgt ggaattgtga gcggataaca 60
atactagaga aagaggagaa aatgatcaaa aaaatcggtg ttttaacttc tggtggtgat 120atactagaga aagaggagaa aatgatcaaa aaaatcggtg ttttaacttc tggtggtgat 120
gctccaggta tgaacgctgc tatccgtggt gttgttcgtt ctgctttaac tgaaggttta 180gctccaggta tgaacgctgc tatccgtggt gttgttcgtt ctgctttaac tgaaggttta 180
gaagttatgg gtatctacga tggttactta ggtttatacg aagatcgtat ggttcaatta 240gaagttatgg gtatctacga tggttactta ggtttatacg aagatcgtat ggttcaatta 240
gatcgttact ctgtttctga tatgatcaac cgtggtggta ctttcttagg ttctgctcgt 300gatcgttact ctgtttctga tatgatcaac cgtggtggta ctttcttagg ttctgctcgt 300
ttcccagaat tccgtgatga aaacatccgt gctgttgcta tcgaaaactt aaaaaaacgt 360ttcccagaat tccgtgatga aaacatccgt gctgttgcta tcgaaaactt aaaaaaacgt 360
ggtatcgatg ctttagttgt tatcggtggt gatggttctt atatgggcgc tatgcgtctc 420ggtatcgatg ctttagttgt tatcggtggt gatggttctt atatgggcgc tatgcgtctc 420
actgaaatgg gcttcccatg tatcggttta ccaggtacta tcgataacga tatcaaaggt 480actgaaatgg gcttcccatg tatcggttta ccaggtacta tcgataacga tatcaaaggt 480
actgattaca ctatcggttt cttcactgct ttatctactg ttgttgaagc tatcgatcgt 540actgattaca ctatcggttt cttcactgct ttatctactg ttgttgaagc tatcgatcgt 540
ttacgtgata cttcttcttc tcaccaacgt atctctgttg ttgaagttat gggtcgttac 600ttacgtgata cttcttcttc tcaccaacgt atctctgttg ttgaagttat gggtcgttac 600
tgtggtgatt taactttagc tgctgctatc gctggtggtt gtgaattcgt tgttgttcca 660tgtggtgatt taactttagc tgctgctatc gctggtggtt gtgaattcgt tgttgttcca 660
gaagttgaat tctctcgtga agatttagtt aacgaaatca aagctggtat cgctaaaggt 720gaagttgaat tctctcgtga agatttagtt aacgaaatca aagctggtat cgctaaaggt 720
aaaaaacacg ctatcgttgc tatcactgaa cacatgtgtg atgttgatga attagctcac 780aaaaaacacg ctatcgttgc tatcactgaa cacatgtgtg atgttgatga attagctcac 780
ttcatcgaaa aagaaactgg tcgtgaaact cgtgctactg ttttaggtca catccaacgt 840ttcatcgaaa aagaaactgg tcgtgaaact cgtgctactg ttttaggtca catccaacgt 840
ggtggttctc cagttccata cgatcgtatc ttagcttctc gtatgggtgc ttacgctatc 900ggtggttctc cagttccata cgatcgtatc ttagcttctc gtatgggtgc ttacgctatc 900
gatttattat tagctggtta cggtggtcgt tgtgttggta tccaaaacga acaattagtt 960gatttattat tagctggtta cggtggtcgt tgtgttggta tccaaaacga acaattagtt 960
caccacgata tcatcgatgc tatcgaaaac atgaaacgtc cattcaaagg tgattggtta 1020caccacgata tcatcgatgc tatcgaaaac atgaaacgtc cattcaaagg tgattggtta 1020
gattgtgcta aaaaattata ctaatctccc caaactagtc cctgcagggc t 1071gattgtgcta aaaaattata ctaatctccc caaactagtc cctgcagggc t 1071
<210> 10<210> 10
<211> 1503<211> 1503
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 10<400> 10
gctctagata ctagagaaag aggagaaata ctagagatgt tccgtcgtac taaaatcgtt 60gctctagata ctagagaaag aggagaaata ctagagatgt tccgtcgtac taaaatcgtt 60
actactttag gtccagctac tgatcgtgat gataacttac gtcgtatcat cgctgctggt 120actactttag gtccagctac tgatcgtgat gataacttac gtcgtatcat cgctgctggt 120
gctaacgttg ttcgtttaaa cttctctcac ggttctccag aagatcactt aaaacgtgct 180gctaacgttg ttcgtttaaa cttctctcac ggttctccag aagatcactt aaaacgtgct 180
actcaagctc gtgaaatcgc taaagaatta ggtgttcacg ttgctatctt aggtgattta 240actcaagctc gtgaaatcgc taaagaatta ggtgttcacg ttgctatctt aggtgattta 240
caaggtccaa aaatccgtgt ttctactttc aaagataaca aaaaaatcca attaaaatta 300caaggtccaa aaatccgtgt ttctactttc aaagataaca aaaaaatcca attaaaatta 300
ggtcaaactt acatcttaga tgctgaatta gctaaaggtg aaggtgatga aaaccaagtt 360ggtcaaactt acatcttaga tgctgaatta gctaaaggtg aaggtgatga aaaccaagtt 360
ggtatcgatt acaaacaatt accagatgat gttaacgttg gtgatatctt aatgttagat 420ggtatcgatt acaaacaatt accagatgat gttaacgttg gtgatatctt aatgttagat 420
gatggtcgtg ttcaattacg tgttgaacgt gttgaaggtc gtaaagttca cactactgtt 480gatggtcgtg ttcaattacg tgttgaacgt gttgaaggtc gtaaagttca cactactgtt 480
actgttgctg gtccattatc taacaacaaa ggtatcaaca aacaaggtgg tggtttatct 540actgttgctg gtccattatc taacaacaaa ggtatcaaca aacaaggtgg tggtttatct 540
gctgctgctt taactgaaaa agataaagct gatatcttaa ctgctgctat gatccaagtt 600gctgctgctt taactgaaaa agataaagct gatatcttaa ctgctgctat gatccaagtt 600
gattacttag ctgtttcttt cccacgttct ggtgctgatt tagaatacgc tcgttcttta 660gattacttag ctgtttcttt cccacgttct ggtgctgatt tagaatacgc tcgttcttta 660
gctcaacaag ctggttctaa cgctttaatc gttgctaaag ttgaacgtgc tgaagctgtt 720gctcaacaag ctggttctaa cgctttaatc gttgctaaag ttgaacgtgc tgaagctgtt 720
gcttctgatg aagctatgga tgatgttatc ttagcttctg atgttgttat ggttgctcgt 780gcttctgatg aagctatgga tgatgttatc ttagcttctg atgttgttat ggttgctcgt 780
ggtgatttag gtgttgaaat cggtgatgct gctttagttg ctgttcaaaa aaaattaatc 840ggtgatttag gtgttgaaat cggtgatgct gctttagttg ctgttcaaaa aaaattaatc 840
gctcgttctc gtcaattaaa caaaatcgtt atcactgcta ctcaaatgat ggaatctatg 900gctcgttctc gtcaattaaa caaaatcgtt atcactgcta ctcaaatgat ggaatctatg 900
atctcttctc caatgccaac tcgtgctgaa gttatggatg ttgctaacgc tgttttagat 960atctcttctc caatgccaac tcgtgctgaa gttatggatg ttgctaacgc tgttttagat 960
ggtactgatg ctgttatgtt atctgctgaa actgctgctg gtgatttccc agaagaaact 1020ggtactgatg ctgttatgtt atctgctgaa actgctgctg gtgatttccc agaagaaact 1020
gttaaagcta tggctaacgt ttgtgttggt gctgaatctc acccatctgt taaagtttct 1080gttaaagcta tggctaacgt ttgtgttggt gctgaatctc acccatctgt taaagtttct 1080
aaacaccgtc tcgacgctag gttcacttct gttgaggaaa ctatcgcttt atctactatg 1140aaacaccgtc tcgacgctag gttcacttct gttgaggaaa ctatcgcttt atctactatg 1140
tacgctgcta accacttaga aggtgttaaa gctatcatcg ctttaactga atctggtgct 1200tacgctgcta accacttaga aggtgttaaa gctatcatcg ctttaactga atctggtgct 1200
actccaaaat taatgtctcg tatctcttct tctttaccaa tcttaggttt atctcgtcac 1260actccaaaat taatgtctcg tatctcttct tctttaccaa tcttaggttt atctcgtcac 1260
gatactactt tagcgaagat ggcgttatac cgtggtgttt taccaatcta cttcgattct 1320gatactactt tagcgaagat ggcgttatac cgtggtgttt taccaatcta cttcgattct 1320
actatctacc cagctgatga attagctcaa aaagctttag aatctttaac taaagctggt 1380actatctacc cagctgatga attagctcaa aaagctttag aatctttaac taaagctggt 1380
tacttacact ctggtgattt agttttaatg actaaaggtg atgctatgga aactatcggt 1440tacttacact ctggtgattt agttttaatg actaaaggtg atgctatgga aactatcggt 1440
ggtactaaca cttgtaaagt tttaatcgtt gcttaatctc cccaaactag tccctgcagg 1500ggtactaaca cttgtaaagt tttaatcgtt gcttaatctc cccaaactag tccctgcagg 1500
gct 1503gct 1503
<210> 11<210> 11
<211> 5904<211> 5904
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 11<400> 11
cacctcgcta acggattcac cgtttttatc aggctctggg aggcagaata aatgatcata 60cacctcgcta acggattcac cgtttttatc aggctctggg aggcagaata aatgatcata 60
tcgtcaatta ttacctccac ggggagagcc tgagcaaact ggcctcaggc atttgagaag 120tcgtcaatta ttacctccac ggggagagcc tgagcaaact ggcctcaggc atttgagaag 120
cacacggtca cactgcttcc ggtagtcaat aaaccggtca gaatttcaga taaaaaaaat 180cacacggtca cactgcttcc ggtagtcaat aaaccggtca gaatttcaga taaaaaaaat 180
ccttagcttt cgctaaggat gatttctgtg gtacctcgga tcccggggag ctagcacgaa 240ccttagcttt cgctaaggat gatttctgtg gtacctcgga tcccggggag ctagcacgaa 240
ttcgcggccg cttctagacc gacaccatcg aatggtgcaa aacctttcgc ggtatggcat 300ttcgcggccg cttctagacc gacaccatcg aatggtgcaa aacctttcgc ggtatggcat 300
gatagcgccc ggaagagagt caattcaggg tggtgaatgt gaaaccagta acgttatacg 360gatagcgccc ggaagagagt caattcaggg tggtgaatgt gaaaccagta acgttatacg 360
atgtcgcaga gtatgccggt gtctcttatc agaccgtttc ccgcgtggtg aaccaggcca 420atgtcgcaga gtatgccggt gtctcttatc agaccgtttc ccgcgtggtg aaccaggcca 420
gccacgtttc tgcgaaaacg cgggaaaaag tggaagcggc gatggcggag ctgaattaca 480gccacgtttc tgcgaaaacg cgggaaaaag tggaagcggc gatggcggag ctgaattaca 480
ttcccaaccg cgtggcacaa caactggcgg gcaaacagtc gttgctgatt ggcgttgcca 540ttcccaaccg cgtggcacaa caactggcgg gcaaacagtc gttgctgatt ggcgttgcca 540
cctccagtct ggccctgcac gcgccgtcgc aaattgtcgc ggcgattaaa tctcgcgccg 600cctccagtct ggccctgcac gcgccgtcgc aaattgtcgc ggcgattaaa tctcgcgccg 600
atcaactggg tgccagcgtg gtggtgtcga tggtagaacg aagcggcgtc gaagcctgta 660atcaactggg tgccagcgtg gtggtgtcga tggtagaacg aagcggcgtc gaagcctgta 660
aagcggcggt gcacaatctt ctcgcgcaac gcgtcagtgg gctgatcatt aactatccgc 720aagcggcggt gcacaatctt ctcgcgcaac gcgtcagtgg gctgatcatt aactatccgc 720
tggatgacca ggatgccatt gctgtggaag ctgcctgcac taatgttccg gcgttatttc 780tggatgacca ggatgccatt gctgtggaag ctgcctgcac taatgttccg gcgttatttc 780
ttgatgtctc tgaccagaca cccatcaaca gtattatttt ctcccatgaa gacggtacgc 840ttgatgtctc tgaccagaca cccatcaaca gtattatttt ctcccatgaa gacggtacgc 840
gactgggcgt ggagcatctg gtcgcattgg gtcaccagca aatcgcgctg ttagcgggcc 900gactgggcgt ggagcatctg gtcgcattgg gtcaccagca aatcgcgctg ttagcgggcc 900
cattaagttc tgtctcggcg cgtctgcgtc tggctggctg gcataaatat ctcactcgca 960cattaagttc tgtctcggcg cgtctgcgtc tggctggctg gcataaatat ctcactcgca 960
atcaaattca gccgatagcg gaacgggaag gcgactggag tgccatgtcc ggttttcaac 1020atcaaattca gccgatagcg gaacgggaag gcgactggag tgccatgtcc ggttttcaac 1020
aaaccatgca aatgctgaat gagggcatcg ttcccactgc gatgctggtt gccaacgatc 1080aaaccatgca aatgctgaat gagggcatcg ttcccactgc gatgctggtt gccaacgatc 1080
agatggcgct gggcgcaatg cgcgccatta ccgagtccgg gctgcgcgtt ggtgcggata 1140agatggcgct gggcgcaatg cgcgccatta ccgagtccgg gctgcgcgtt ggtgcggata 1140
tctcggtagt gggatacgac gataccgaag acagctcatg ttatatcccg ccgttaacca 1200tctcggtagt gggatacgac gataccgaag acagctcatg ttatatcccg ccgttaacca 1200
ccatcaaaca ggattttcgc ctgctggggc aaaccagcgt ggaccgcttg ctgcaactct 1260ccatcaaaca ggattttcgc ctgctggggc aaaccagcgt ggaccgcttg ctgcaactct 1260
ctcagggcca ggcggtgaag ggcaatcagc tgttgcccgt ctcactggtg aaaagaaaaa 1320ctcagggcca ggcggtgaag ggcaatcagc tgttgcccgt ctcactggtg aaaagaaaaa 1320
ccaccctggc gcccaatacg caaaccgcct ctccccgcgc gttggccgat tcattaatgc 1380ccaccctggc gcccaatacg caaaccgcct ctccccgcgc gttggccgat tcattaatgc 1380
agctggcacg acaggtttcc cgactggaaa gcgggcagtg agcgcaacgc aattaatgta 1440agctggcacg acaggtttcc cgactggaaa gcgggcagtg agcgcaacgc aattaatgta 1440
agttagctca ctcattaggc acaattctca tgtttgacag cttatcatcg actgcacggt 1500agttagctca ctcattaggc acaattctca tgtttgacag cttatcatcg actgcacggt 1500
gcaccaatgc ttctggcgtc aggcagccat cggaagctgt ggtatggctg tgcaggtcgt 1560gcaccaatgc ttctggcgtc aggcagccat cggaagctgt ggtatggctg tgcaggtcgt 1560
aaatcactgc ataattcgtg tcgctcaagg cgcactcccg ttctggataa tgttttttgc 1620aaatcactgc ataattcgtg tcgctcaagg cgcactcccg ttctggataa tgtttttttgc 1620
gccgacatca taacggttct ggcaaatatt ctgaaatgag ctgttgacaa ttaatcatcg 1680gccgacatca taacggttct ggcaaatatt ctgaaatgag ctgttgacaa ttaatcatcg 1680
gctcgtataa tgtgtggaat tgtgagcgga taacaatttc acacaggaaa cagccagtcc 1740gctcgtataa tgtgtggaat tgtgagcgga taacaatttc acacaggaaa cagccagtcc 1740
gtttaggtgt tttcacgagc acttcaccaa caaggaccat agcatatgcc actagtagcg 1800gtttaggtgt tttcacgagc acttcaccaa caaggaccat agcatatgcc actagtagcg 1800
gccgcctgca ggtggtcgac cactcgaggc caggcatcaa ataaaacgaa aggctcagtc 1860gccgcctgca ggtggtcgac cactcgaggc caggcatcaa ataaaacgaa aggctcagtc 1860
gaaagactgg gcctttcgtt ttatctgttg tttgtcggtg aacgctctct actagagtca 1920gaaagactgg gcctttcgtt ttatctgttg tttgtcggtg aacgctctct actagagtca 1920
cactggctca ccttcgggtg ggcctttctg cgtttataac cggtaaacca gcaatagaca 1980cactggctca ccttcgggtg ggcctttctg cgtttataac cggtaaacca gcaatagaca 1980
taagcggcta tttaacgacc ctgccctgaa ccgacgaccg ggtcgaattt gctttcgaac 2040taagcggcta tttaacgacc ctgccctgaa ccgacgaccg ggtcgaattt gctttcgaac 2040
cccagagtcc cgctcagaag aactcgtcaa gaaggcgata gaaggcgatg cgctgcgaat 2100cccagagtcc cgctcagaag aactcgtcaa gaaggcgata gaaggcgatg cgctgcgaat 2100
cgggagcggc gataccgtaa agcacgagga agcggtcagc ccattcgccg ccaagctctt 2160cgggagcggc gataccgtaa agcacgagga agcggtcagc ccattcgccg ccaagctctt 2160
cagcaatatc acgggtagcc aacgctatgt cctgatagcg gtccgccaca cccagccggc 2220cagcaatatc acgggtagcc aacgctatgt cctgatagcg gtccgccaca cccagccggc 2220
cacagtcgat gaatccagaa aagcggccat tttccaccat gatattcggc aagcaggcat 2280cacagtcgat gaatccagaa aagcggccat tttccaccat gatattcggc aagcaggcat 2280
cgccatgggt cacgacgaga tcctcgccgt cgggcatgcg cgccttgagc ctggcgaaca 2340cgccatgggt cacgacgaga tcctcgccgt cgggcatgcg cgccttgagc ctggcgaaca 2340
gttcggctgg cgcgagcccc tgatgctctt cgtccagatc atcctgatcg acaagaccgg 2400gttcggctgg cgcgagcccc tgatgctctt cgtccagatc atcctgatcg acaagaccgg 2400
cttccatccg agtacgtgct cgctcgatgc gatgtttcgc ttggtggtcg aatgggcagg 2460cttccatccg agtacgtgct cgctcgatgc gatgtttcgc ttggtggtcg aatgggcagg 2460
tagccggatc aagcgtatgc agccgccgca ttgcatcagc catgatggat actttctcgg 2520tagccggatc aagcgtatgc agccgccgca ttgcatcagc catgatggat actttctcgg 2520
caggagcaag gtgagatgac aggagatcct gccccggcac ttcgcccaat agcagccagt 2580caggagcaag gtgagatgac aggagatcct gccccggcac ttcgcccaat agcagccagt 2580
cccttcccgc ttcagtgaca acgtcgagca cagctgcgca aggaacgccc gtcgtggcca 2640cccttcccgc ttcagtgaca acgtcgagca cagctgcgca aggaacgccc gtcgtggcca 2640
gccacgatag ccgcgctgcc tcgtcctgca gttcattcag ggcaccggac aggtcggtct 2700gccacgatag ccgcgctgcc tcgtcctgca gttcattcag ggcaccggac aggtcggtct 2700
tgacaaaaag aaccgggcgc ccctgcgctg acagccggaa cacggcggca tcagagcagc 2760tgacaaaaag aaccgggcgc ccctgcgctg acagccggaa cacggcggca tcagagcagc 2760
cgattgtctg ttgtgcccag tcatagccga atagcctctc cacccaagcg gccggagaac 2820cgattgtctg ttgtgcccag tcatagccga atagcctctc cacccaagcg gccggagaac 2820
ctgcgtgcaa tccatcttgt tcaatcatgc gaaacgatcc tcatcctgtc tcttgatcag 2880ctgcgtgcaa tccatcttgt tcaatcatgc gaaacgatcc tcatcctgtc tcttgatcag 2880
atcttgatcc cctgcgccat cagatccttg gcggcaagaa agccatccag tttactttgc 2940atcttgatcc cctgcgccat cagatccttg gcggcaagaa agccatccag tttactttgc 2940
agggcttccc aaccttacca gagggcgccc cagctggcaa ttccggttcg cttgctgtcc 3000agggcttccc aaccttacca gagggcgccc cagctggcaa ttccggttcg cttgctgtcc 3000
ataaaaccgc ccagtctagc tatcgccatg taagcccact gcaagctacc tgctttctct 3060ataaaaccgc ccagtctagc tatcgccatg taagcccact gcaagctacc tgctttctct 3060
ttgcgcttgc gttttccctt gtccagatag cccagtagct gacattcatc ccaggtggca 3120ttgcgcttgc gttttccctt gtccagatag cccagtagct gacattcatc ccaggtggca 3120
cttttcgggg aaatgtgcgc gcccgcgttc ctgctggcgc tgggcctgtt tctggcgctg 3180cttttcgggg aaatgtgcgc gcccgcgttc ctgctggcgc tgggcctgtt tctggcgctg 3180
gacttcccgc tgttccgtca gcagcttttc gcccacggcc ttgatgatcg cggcggcctt 3240gacttcccgc tgttccgtca gcagcttttc gcccacggcc ttgatgatcg cggcggcctt 3240
ggcctgcata tcccgattca acggccccag ggcgtccaga acgggcttca ggcgctcccg 3300ggcctgcata tcccgattca acggccccag ggcgtccaga acgggcttca ggcgctcccg 3300
aaggtctcgg gccgtctctt gggcttgatc ggccttcttg cgcatctcac gcgctcctgc 3360aaggtctcgg gccgtctctt gggcttgatc ggccttcttg cgcatctcac gcgctcctgc 3360
ggcggcctgt agggcaggct catacccctg ccgaaccgct tttgtcagcc ggtcggccac 3420ggcggcctgt agggcaggct catacccctg ccgaaccgct tttgtcagcc ggtcggccac 3420
ggcttccggc gtctcaacgc gctttgagat tcccagcttt tcggccaatc cctgcggtgc 3480ggcttccggc gtctcaacgc gctttgagat tcccagcttt tcggccaatc cctgcggtgc 3480
ataggcgcgt ggctcgaccg cttgcgggct gatggtgacg tggcccactg gtggccgctc 3540ataggcgcgt ggctcgaccg cttgcgggct gatggtgacg tggcccactg gtggccgctc 3540
cagggcctcg tagaacgcct gaatgcgcgt gtgacgtgcc ttgctgccct cgatgccccg 3600cagggcctcg tagaacgcct gaatgcgcgt gtgacgtgcc ttgctgccct cgatgccccg 3600
ttgcagccct agatcggcca cagcggccgc aaacgtggtc tggtcgcggg tcatctgcgc 3660ttgcagccct agatcggcca cagcggccgc aaacgtggtc tggtcgcggg tcatctgcgc 3660
tttgttgccg atgaactcct tggccgacag cctgccgtcc tgcgtcagcg gcaccacgaa 3720tttgttgccg atgaactcct tggccgacag cctgccgtcc tgcgtcagcg gcaccacgaa 3720
cgcggtcatg tgcgggctgg tttcgtcacg gtggatgctg gccgtcacga tgcgatccgc 3780cgcggtcatg tgcgggctgg tttcgtcacg gtggatgctg gccgtcacga tgcgatccgc 3780
cccgtacttg tccgccagcc acttgtgcgc cttctcgaag aacgccgcct gctgttcttg 3840cccgtacttg tccgccagcc acttgtgcgc cttctcgaag aacgccgcct gctgttcttg 3840
gctggccgac ttccaccatt ccgggctggc cgtcatgacg tactcgaccg ccaacacagc 3900gctggccgac ttccaccatt ccgggctggc cgtcatgacg tactcgaccg ccaacacagc 3900
gtccttgcgc cgcttctctg gcagcaactc gcgcagtcgg cccatcgctt catcggtgct 3960gtccttgcgc cgcttctctg gcagcaactc gcgcagtcgg cccatcgctt catcggtgct 3960
gctggccgcc cagtgctcgt tctctggcgt cctgctggcg tcagcgttgg gcgtctcgcg 4020gctggccgcc cagtgctcgt tctctggcgt cctgctggcg tcagcgttgg gcgtctcgcg 4020
ctcgcggtag gcgtgcttga gactggccgc cacgttgccc attttcgcca gcttcttgca 4080ctcgcggtag gcgtgcttga gactggccgc cacgttgccc attttcgcca gcttcttgca 4080
tcgcatgatc gcgtatgccg ccatgcctgc ccctcccttt tggtgtccaa ccggctcgac 4140tcgcatgatc gcgtatgccg ccatgcctgc ccctcccttt tggtgtccaa ccggctcgac 4140
gggggcagcg caaggcggtg cctccggcgg gccactcaat gcttgagtat actcactaga 4200gggggcagcg caaggcggtg cctccggcgg gccactcaat gcttgagtat actcactaga 4200
ctttgcttcg caaagtcgtg accgcctacg gcggctgcgg cgccctacgg gcttgctctc 4260ctttgcttcg caaagtcgtg accgcctacg gcggctgcgg cgccctacgg gcttgctctc 4260
cgggcttcgc cctgcgcggt cgctgcgctc ccttgccagc ccgtggatat gtggacgatg 4320cgggcttcgc cctgcgcggt cgctgcgctc ccttgccagc ccgtggatat gtggacgatg 4320
gccgcgagcg gccaccggct ggctcgcttc gctcggcccg tggacaaccc tgctggacaa 4380gccgcgagcg gccaccggct ggctcgcttc gctcggcccg tggacaaccc tgctggacaa 4380
gctgatggac aggctgcgcc tgcccacgag cttgaccaca gggattgccc accggctacc 4440gctgatggac aggctgcgcc tgcccacgag cttgaccaca gggattgccc accggctacc 4440
cagccttcga ccacataccc accggctcca actgcgcggc ctgcggcctt gccccatcaa 4500cagccttcga ccacataccc accggctcca actgcgcggc ctgcggcctt gccccatcaa 4500
tttttttaat tttctctggg gaaaagcctc cggcctgcgg cctgcgcgct tcgcttgccg 4560ttttttttaat tttctctggg gaaaagcctc cggcctgcgg cctgcgcgct tcgcttgccg 4560
gttggacacc aagtggaagg cgggtcaagg ctcgcgcagc gaccgcgcag cggcttggcc 4620gttggacacc aagtggaagg cgggtcaagg ctcgcgcagc gaccgcgcag cggcttggcc 4620
ttgacgcgcc tggaacgacc caagcctatg cgagtggggg cagtcgaagg cgaagcccgc 4680ttgacgcgcc tggaacgacc caagcctatg cgagtggggg cagtcgaagg cgaagcccgc 4680
ccgcctgccc cccgagcctc acggcggcga gtgcgggggt tccaaggggg cagcgccacc 4740ccgcctgccc cccgagcctc acggcggcga gtgcgggggt tccaaggggg cagcgccacc 4740
ttgggcaagg ccgaaggccg cgcagtcgat caacaagccc cggaggggcc actttttgcc 4800ttgggcaagg ccgaaggccg cgcagtcgat caacaagccc cggaggggcc actttttgcc 4800
ggagggggag ccgcgccgaa ggcgtggggg aaccccgcag gggtgccctt ctttgggcac 4860ggagggggag ccgcgccgaa ggcgtggggg aaccccgcag gggtgccctt ctttgggcac 4860
caaagaacta gatatagggc gaaatgcgaa agacttaaaa atcaacaact taaaaaaggg 4920caaagaacta gatatagggc gaaatgcgaa agacttaaaa atcaacaact taaaaaaggg 4920
gggtacgcaa cagctcattg cggcaccccc cgcaatagct cattgcgtag gttaaagaaa 4980gggtacgcaa cagctcattg cggcaccccc cgcaatagct cattgcgtag gttaaagaaa 4980
atctgtaatt gactgccact tttacgcaac gcataattgt tgtcgcgctg ccgaaaagtt 5040atctgtaatt gactgccact tttacgcaac gcataattgt tgtcgcgctg ccgaaaagtt 5040
gcagctgatt gcgcatggtg ccgcaaccgt gcggcaccct accgcatgga gataagcatg 5100gcagctgatt gcgcatggtg ccgcaaccgt gcggcaccct accgcatgga gataagcatg 5100
gccacgcagt ccagagaaat cggcattcaa gccaagaaca agcccggtca ctgggtgcaa 5160gccacgcagt ccagagaaat cggcattcaa gccaagaaca agcccggtca ctgggtgcaa 5160
acggaacgca aagcgcatga ggcgtgggcc gggcttattg cgaggaaacc cacggcggca 5220acggaacgca aagcgcatga ggcgtgggcc gggcttattg cgaggaaacc cacggcggca 5220
atgctgctgc atcacctcgt ggcgcagatg ggccaccaga acgccgtggt ggtcagccag 5280atgctgctgc atcacctcgt ggcgcagatg ggccaccaga acgccgtggt ggtcagccag 5280
aagacacttt ccaagctcat cggacgttct ttgcggacgg tccaatacgc agtcaaggac 5340aagacacttt ccaagctcat cggacgttct ttgcggacgg tccaatacgc agtcaaggac 5340
ttggtggccg agcgctggat ctccgtcgtg aagctcaacg gccccggcac cgtgtcggcc 5400ttggtggccg agcgctggat ctccgtcgtg aagctcaacg gccccggcac cgtgtcggcc 5400
tacgtggtca atgaccgcgt ggcgtggggc cagccccgcg accagttgcg cctgtcggtg 5460tacgtggtca atgaccgcgt ggcgtggggc cagccccgcg accagttgcg cctgtcggtg 5460
ttcagtgccg ccgtggtggt tgatcacgac gaccaggacg aatcgctgtt ggggcatggc 5520ttcagtgccg ccgtggtggt tgatcacgac gaccaggacg aatcgctgtt ggggcatggc 5520
gacctgcgcc gcatcccgac cctgtatccg ggcgagcagc aactaccgac cggccccggc 5580gacctgcgcc gcatcccgac cctgtatccg ggcgagcagc aactaccgac cggccccggc 5580
gaggagccgc ccagccagcc cggcattccg ggcatggaac cagacctgcc agccttgacc 5640gaggagccgc ccagccagcc cggcattccg ggcatggaac cagacctgcc agccttgacc 5640
gaaacggagg aatgggaacg gcgcgggcag cagcgcctgc cgatgcccga tgagccgtgt 5700gaaacggagg aatgggaacg gcgcgggcag cagcgcctgc cgatgcccga tgagccgtgt 5700
tttctggacg atggcgagcc gttggagccg ccgacacggg tcacgctgcc gcgccggtag 5760tttctggacg atggcgagcc gttggagccg ccgacacggg tcacgctgcc gcgccggtag 5760
cacttgggtt gcgcagcaac ccgtaagtgc gctgttccag actatcggct gtagccgcct 5820cacttgggtt gcgcagcaac ccgtaagtgc gctgttccag actatcggct gtagccgcct 5820
cgccgcccta taccttgtct gcctccccgc gttgcgtcgc ggtgcatgga gccgggccac 5880cgccgcccta taccttgtct gcctccccgc gttgcgtcgc ggtgcatgga gccgggccac 5880
ctcgacctga atggaagccg gcgg 5904ctcgacctga atggaagccg gcgg 5904
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210175954.0A CN114540396A (en) | 2022-02-24 | 2022-02-24 | Construction method of glucose metabolic pathway in Shewanella strain |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210175954.0A CN114540396A (en) | 2022-02-24 | 2022-02-24 | Construction method of glucose metabolic pathway in Shewanella strain |
Publications (1)
Publication Number | Publication Date |
---|---|
CN114540396A true CN114540396A (en) | 2022-05-27 |
Family
ID=81679915
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210175954.0A Pending CN114540396A (en) | 2022-02-24 | 2022-02-24 | Construction method of glucose metabolic pathway in Shewanella strain |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114540396A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114410672A (en) * | 2022-01-12 | 2022-04-29 | 天津大学(青岛)海洋工程研究院有限公司 | Construction method for xylose and glucose co-utilization metabolism in Shewanella |
CN114540395A (en) * | 2022-01-10 | 2022-05-27 | 天津大学(青岛)海洋工程研究院有限公司 | Construction method for xylose utilization metabolism in Shewanella |
Citations (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5602030A (en) * | 1994-03-28 | 1997-02-11 | University Of Florida Research Foundation | Recombinant glucose uptake system |
US20050221455A1 (en) * | 2003-10-21 | 2005-10-06 | Cargill, Inc. | Production of monatin and monatin precursors |
CN1768147A (en) * | 2003-04-01 | 2006-05-03 | 底古萨股份公司 | A process for the production of l-amino acids using strains of the enterobacteriaceae family which overexpress the galP gene, coding for a galactose proton symporter |
KR20110128582A (en) * | 2010-05-24 | 2011-11-30 | 광주과학기술원 | Shiwanella mutant strain, preparation method and use thereof |
US20120015413A1 (en) * | 2010-07-16 | 2012-01-19 | Neste Oil Oyj | Microorganisms with Extended Substrate Utilization Range |
CN103243064A (en) * | 2013-05-28 | 2013-08-14 | 山东大学 | Escherichia coli engineered strain and application in succinic acid production through aerobic-microaerobic-anaerobic full-stage fermentation of Escherichia coli engineered strain |
CN106164252A (en) * | 2014-02-07 | 2016-11-23 | 巴斯夫欧洲公司 | The improvement microorganism produced for succinic acid |
CN106755035A (en) * | 2016-12-05 | 2017-05-31 | 天津大学 | A kind of Escherichia coli based on efficiently low residual sugar fermentation isobutanol synthesize bacterial strain construction method |
CN109415684A (en) * | 2016-03-02 | 2019-03-01 | Ptt全球化学公众有限公司 | From the improved glutinous health acid production of genetically engineered microorganism |
CN109402035A (en) * | 2018-11-06 | 2019-03-01 | 华中农业大学 | A kind of parenteral enteropathogenic E. Coli recombinant bacterial strain and its application |
CN110079488A (en) * | 2018-01-25 | 2019-08-02 | 中国科学院天津工业生物技术研究所 | A kind of engineered strain producing psicose, construction method and application |
CN110283789A (en) * | 2019-06-13 | 2019-09-27 | 天津大学 | Recombinant bacterial strain and its application |
WO2020018506A2 (en) * | 2018-07-16 | 2020-01-23 | Manus Bio, Inc. | Production of steviol glycosides through whole cell biotransformation |
CN111549049A (en) * | 2020-05-29 | 2020-08-18 | 天津大学 | Recombinant Shewanella alga capable of producing riboflavin and application of Shewanella alga in power generation |
CN112105716A (en) * | 2018-05-01 | 2020-12-18 | 公益财团法人地球环境产业技术研究机构 | Transformant and method for producing organic compound using same |
CN112877272A (en) * | 2021-04-28 | 2021-06-01 | 中国农业科学院北京畜牧兽医研究所 | Escherichia coli engineering bacteria of N-acetylglucosamine and fermentation production method |
CN113817658A (en) * | 2021-08-24 | 2021-12-21 | 天津科技大学 | Genetically engineered bacterium for producing N-acetylneuraminic acid and construction and application thereof |
CN114381416A (en) * | 2022-03-23 | 2022-04-22 | 北京道合成企业管理有限公司 | Recombinant escherichia coli strain for high yield of 5-aminolevulinic acid and application thereof |
CN114410672A (en) * | 2022-01-12 | 2022-04-29 | 天津大学(青岛)海洋工程研究院有限公司 | Construction method for xylose and glucose co-utilization metabolism in Shewanella |
CN114806998A (en) * | 2022-06-27 | 2022-07-29 | 中国农业科学院北京畜牧兽医研究所 | Ralstonia engineering bacterium for producing glucose and fermentation production method |
-
2022
- 2022-02-24 CN CN202210175954.0A patent/CN114540396A/en active Pending
Patent Citations (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5602030A (en) * | 1994-03-28 | 1997-02-11 | University Of Florida Research Foundation | Recombinant glucose uptake system |
CN1768147A (en) * | 2003-04-01 | 2006-05-03 | 底古萨股份公司 | A process for the production of l-amino acids using strains of the enterobacteriaceae family which overexpress the galP gene, coding for a galactose proton symporter |
US20050221455A1 (en) * | 2003-10-21 | 2005-10-06 | Cargill, Inc. | Production of monatin and monatin precursors |
KR20110128582A (en) * | 2010-05-24 | 2011-11-30 | 광주과학기술원 | Shiwanella mutant strain, preparation method and use thereof |
US20120015413A1 (en) * | 2010-07-16 | 2012-01-19 | Neste Oil Oyj | Microorganisms with Extended Substrate Utilization Range |
CN103243064A (en) * | 2013-05-28 | 2013-08-14 | 山东大学 | Escherichia coli engineered strain and application in succinic acid production through aerobic-microaerobic-anaerobic full-stage fermentation of Escherichia coli engineered strain |
CN106164252A (en) * | 2014-02-07 | 2016-11-23 | 巴斯夫欧洲公司 | The improvement microorganism produced for succinic acid |
CN109415684A (en) * | 2016-03-02 | 2019-03-01 | Ptt全球化学公众有限公司 | From the improved glutinous health acid production of genetically engineered microorganism |
CN106755035A (en) * | 2016-12-05 | 2017-05-31 | 天津大学 | A kind of Escherichia coli based on efficiently low residual sugar fermentation isobutanol synthesize bacterial strain construction method |
CN110079488A (en) * | 2018-01-25 | 2019-08-02 | 中国科学院天津工业生物技术研究所 | A kind of engineered strain producing psicose, construction method and application |
CN112105716A (en) * | 2018-05-01 | 2020-12-18 | 公益财团法人地球环境产业技术研究机构 | Transformant and method for producing organic compound using same |
WO2020018506A2 (en) * | 2018-07-16 | 2020-01-23 | Manus Bio, Inc. | Production of steviol glycosides through whole cell biotransformation |
CN109402035A (en) * | 2018-11-06 | 2019-03-01 | 华中农业大学 | A kind of parenteral enteropathogenic E. Coli recombinant bacterial strain and its application |
CN110283789A (en) * | 2019-06-13 | 2019-09-27 | 天津大学 | Recombinant bacterial strain and its application |
CN111549049A (en) * | 2020-05-29 | 2020-08-18 | 天津大学 | Recombinant Shewanella alga capable of producing riboflavin and application of Shewanella alga in power generation |
CN112877272A (en) * | 2021-04-28 | 2021-06-01 | 中国农业科学院北京畜牧兽医研究所 | Escherichia coli engineering bacteria of N-acetylglucosamine and fermentation production method |
CN113817658A (en) * | 2021-08-24 | 2021-12-21 | 天津科技大学 | Genetically engineered bacterium for producing N-acetylneuraminic acid and construction and application thereof |
CN114410672A (en) * | 2022-01-12 | 2022-04-29 | 天津大学(青岛)海洋工程研究院有限公司 | Construction method for xylose and glucose co-utilization metabolism in Shewanella |
CN114381416A (en) * | 2022-03-23 | 2022-04-22 | 北京道合成企业管理有限公司 | Recombinant escherichia coli strain for high yield of 5-aminolevulinic acid and application thereof |
CN114806998A (en) * | 2022-06-27 | 2022-07-29 | 中国农业科学院北京畜牧兽医研究所 | Ralstonia engineering bacterium for producing glucose and fermentation production method |
Non-Patent Citations (2)
Title |
---|
DONGGEON CHOI等: "Metabolically engineered glucose-utilizing Shewanella strains under anaerobic conditions", BIORESOURCE TECHNOLOGY, pages 234 - 235 * |
胡涛;马尧;战嵛华;陆伟;黄和;林敏;燕永亮;: "6-磷酸果糖激酶基因pfkA在施氏假单胞菌中的异源表达及其表型分析", 中国农业科技导报, no. 02, pages 72 - 80 * |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114540395A (en) * | 2022-01-10 | 2022-05-27 | 天津大学(青岛)海洋工程研究院有限公司 | Construction method for xylose utilization metabolism in Shewanella |
CN114540395B (en) * | 2022-01-10 | 2023-06-27 | 天津大学(青岛)海洋工程研究院有限公司 | Construction method of xylose utilization metabolism in Shewanella |
CN114410672A (en) * | 2022-01-12 | 2022-04-29 | 天津大学(青岛)海洋工程研究院有限公司 | Construction method for xylose and glucose co-utilization metabolism in Shewanella |
CN114410672B (en) * | 2022-01-12 | 2023-11-07 | 天津大学(青岛)海洋工程研究院有限公司 | Construction method of xylose and glucose co-utilization metabolism in Shewanella |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN114410672B (en) | Construction method of xylose and glucose co-utilization metabolism in Shewanella | |
EP0963439B1 (en) | Genetically modified cyanobacteria for the production of ethanol | |
ES2546669T3 (en) | Improved use of xylose in recombinant Zymomonas bacteria that have increased ribose-5-phosphate activity | |
JP5907865B2 (en) | Zymomonas with improved arabinose utilization capacity | |
CN114540396A (en) | Construction method of glucose metabolic pathway in Shewanella strain | |
CN114438112A (en) | Transformation method and application of acetate metabolism in Shewanella strains | |
CN112301049B (en) | Recombinant plasmid and genetic engineering strain for high yield of heme, construction method thereof and method for high yield of heme | |
CN102559709B (en) | Flavin monooxygenase (FMO) gene from stink pseudomonas as well as preparation method and application of FMO gene | |
Dong et al. | Design and construction of improved new vectors for Zymomonas mobilis recombinants | |
CN115806922B (en) | Genetic engineering strain of Zymomonas mobilis and its application | |
ES2697757T3 (en) | Use of enzymes that catalyze the synthesis of pyruvate from formate and acetyl-CoA and bacteria that express the same | |
CN114540395B (en) | Construction method of xylose utilization metabolism in Shewanella | |
CN109706104B (en) | Application of sll0528 gene in improving ethanol tolerance of Synechocystis PCC6803 | |
CN118325935A (en) | An artificial combination module and application | |
CN103160544B (en) | Method for simultaneously fermenting pentose and hexose by microorganisms | |
CN116606788A (en) | Construction and application of a DNA scaffold to assist E. coli to produce ectoine | |
CN114107356B (en) | Method for transforming pseudomonas putida to assimilate D-galactose | |
CN109929853B (en) | Application of heat shock protein gene derived from thermophilic bacteria | |
CN114561416A (en) | Fixation of CO using electrical energy2Engineering bacteria for synthesizing isopropanol and construction method | |
CN114836458B (en) | Method for enhancing riboflavin synthesis of Shewanella crucianus to promote MO degradation and electrical energy recovery | |
CN102311966B (en) | For the synthesis of the construct of fatty alcohol, carrier, cyanobacteria, and the method for producing fatty alcohol in cyanobacteria | |
CN114015634B (en) | Recombinant Escherichia coli with high succinic acid production and its construction method and application | |
CN116240232B (en) | Method for constructing Weimberg xylose metabolic pathway in gluconoacetobacter xylinum | |
CN118620969B (en) | A two-stage biological method for producing xylitol using hemicellulose hydrolysate | |
CN101633690A (en) | Hydrogen production associated protein, coding genes thereof and application thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
WD01 | Invention patent application deemed withdrawn after publication | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20220527 |