CN114540328A - A kind of temperature-sensitive alpha-amylase and its preparation method and application - Google Patents
A kind of temperature-sensitive alpha-amylase and its preparation method and application Download PDFInfo
- Publication number
- CN114540328A CN114540328A CN202210151867.1A CN202210151867A CN114540328A CN 114540328 A CN114540328 A CN 114540328A CN 202210151867 A CN202210151867 A CN 202210151867A CN 114540328 A CN114540328 A CN 114540328A
- Authority
- CN
- China
- Prior art keywords
- amylase
- temperature
- sensitive
- recombinant
- expression plasmid
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/14—Hydrolases (3)
- C12N9/24—Hydrolases (3) acting on glycosyl compounds (3.2)
- C12N9/2402—Hydrolases (3) acting on glycosyl compounds (3.2) hydrolysing O- and S- glycosyl compounds (3.2.1)
- C12N9/2405—Glucanases
- C12N9/2408—Glucanases acting on alpha -1,4-glucosidic bonds
- C12N9/2411—Amylases
- C12N9/2414—Alpha-amylase (3.2.1.1.)
- C12N9/2417—Alpha-amylase (3.2.1.1.) from microbiological source
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/70—Vectors or expression systems specially adapted for E. coli
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Y—ENZYMES
- C12Y302/00—Hydrolases acting on glycosyl compounds, i.e. glycosylases (3.2)
- C12Y302/01—Glycosidases, i.e. enzymes hydrolysing O- and S-glycosyl compounds (3.2.1)
- C12Y302/01001—Alpha-amylase (3.2.1.1)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2800/00—Nucleic acids vectors
- C12N2800/10—Plasmid DNA
- C12N2800/101—Plasmid DNA for bacteria
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2800/00—Nucleic acids vectors
- C12N2800/22—Vectors comprising a coding region that has been codon optimised for expression in a respective host
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Genetics & Genomics (AREA)
- Organic Chemistry (AREA)
- Zoology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Wood Science & Technology (AREA)
- Biomedical Technology (AREA)
- Biotechnology (AREA)
- General Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Biochemistry (AREA)
- Molecular Biology (AREA)
- Microbiology (AREA)
- Medicinal Chemistry (AREA)
- Physics & Mathematics (AREA)
- Biophysics (AREA)
- Plant Pathology (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Enzymes And Modification Thereof (AREA)
Abstract
一种温度敏感型α‑淀粉酶及其制备方法与应用,属于生物工程技术领域。所述温度敏感型α‑淀粉酶核苷酸序列如SEQ ID NO 1,氨基酸序列如SEQ ID NO 2。温度敏感型度敏感型α‑淀粉酶的制备方法:1)通过基因组分析得到一条目的基因序列AAO78808.1,去除信号肽并经过密码子优化后得到SEQ ID NO 1,SEQ ID NO 1交由公司合成α‑淀粉酶目的基因;2)含α‑淀粉酶目的基因重组菌株的构建;3)重组温度敏感型α‑淀粉酶的表达与纯化。所述温度敏感型α‑淀粉酶在30‑40℃活性较好,50℃时活性骤降且稳定性不佳。可用于纺织、造纸、洗涤剂、发酵和食品工业等。A temperature-sensitive alpha-amylase and a preparation method and application thereof belong to the technical field of bioengineering. The temperature-sensitive α-amylase nucleotide sequence is shown in SEQ ID NO 1, and the amino acid sequence is shown in SEQ ID NO 2. The preparation method of temperature-sensitive α-amylase: 1) Obtain a target gene sequence AAO78808.1 through genome analysis, remove the signal peptide and obtain SEQ ID NO 1 after codon optimization, and SEQ ID NO 1 is handed over to the company Synthesis of α-amylase target gene; 2) Construction of recombinant strain containing α-amylase target gene; 3) Expression and purification of recombinant temperature-sensitive α-amylase. The temperature-sensitive α-amylase has good activity at 30-40°C, and has a sharp drop in activity and poor stability at 50°C. It can be used in textile, paper, detergent, fermentation and food industries.
Description
(一)技术领域(1) Technical field
本发明属于生物工程技术领域,具体涉及一种温度敏感型α-淀粉酶及其制备方法与应用。The invention belongs to the technical field of bioengineering, and in particular relates to a temperature-sensitive alpha-amylase and a preparation method and application thereof.
(二)背景技术(2) Background technology
淀粉酶是一类能水解淀粉分子,得到葡萄糖、麦芽糖、环糊精等产物的一系列酶的总称。根据酶解产物的异构类型,淀粉酶可以分为α-淀粉酶、β-淀粉酶或γ-淀粉酶;根据酶学性质,淀粉酶可以分为酸性淀粉酶、中性淀粉酶、碱性淀粉酶、低温淀粉酶、温度敏感型淀粉酶、高温淀粉酶等。其中α-淀粉酶又称α-1,4-葡聚糖-4-葡聚糖水解酶,为内切酶,可随机作用于淀粉分子内部的α-1,4糖苷键,从而释放葡萄糖等产物。Amylase is a general term for a series of enzymes that can hydrolyze starch molecules to obtain products such as glucose, maltose, and cyclodextrin. Amylases can be divided into α-amylase, β-amylase or γ-amylase according to the isomeric type of enzymatic hydrolysis products; according to their enzymatic properties, amylase can be divided into acid amylase, neutral amylase, alkaline Amylase, low temperature amylase, temperature sensitive amylase, high temperature amylase, etc. Among them, α-amylase, also known as α-1,4-glucan-4-glucanohydrolase, is an endonuclease, which can randomly act on the α-1,4 glycosidic bond inside the starch molecule, thereby releasing glucose, etc. product.
α-淀粉酶在商业上有着广泛的应用,是一类重要的水解淀粉酶制剂。在面包等烘焙食品生产过程中,人们普遍通过使用α-淀粉酶来减少发酵时间,降低发酵面团的粘度,从而提高面包的品质和产品的生产效率。同时α-淀粉酶水解淀粉所产生的葡萄糖等物质有助于改善面包着色,并提高面包的风味,进一步增加产品的竞争力。但由于使用时酶制剂的用量不易掌握,稍过量便有可能导致淀粉过分降解、面包等产品粘度增加等问题。因此目前人们逐渐转用温度敏感型α-淀粉酶,这是由于其可在生产前期发挥作用,在烘焙时逐渐失活并最终完全丧失活性。且有别于低温或高温淀粉酶,温度敏感型淀粉酶的最适反应温度在30℃~60℃,能耗更小、更加环保,从而拓宽了其在纺织、造纸、洗涤剂、发酵和食品工业中的应用。Alpha-amylase has a wide range of commercial applications and is an important class of hydrolytic amylase preparations. In the production process of baked goods such as bread, people generally use alpha-amylase to reduce fermentation time and reduce the viscosity of fermented dough, thereby improving the quality of bread and the production efficiency of products. At the same time, substances such as glucose produced by α-amylase hydrolysis of starch help to improve the coloring of bread, improve the flavor of bread, and further increase the competitiveness of products. However, due to the difficulty in controlling the dosage of enzyme preparations, a slight excess may lead to excessive degradation of starch and increased viscosity of products such as bread. Therefore, people are gradually switching to temperature-sensitive α-amylase, because it can play a role in the early stage of production, gradually inactivate during baking, and finally lose activity completely. And different from low-temperature or high-temperature amylase, the optimum reaction temperature of temperature-sensitive amylase is 30℃~60℃, energy consumption is smaller, and it is more environmentally friendly, thus broadening its application in textile, papermaking, detergent, fermentation and food. applications in industry.
(三)发明内容(3) Contents of the invention
本发明的目的是提供一种温度敏感型α-淀粉酶及其制备方法,具有活性高、能耗低、安全环保等优点。The purpose of the present invention is to provide a temperature-sensitive alpha-amylase and a preparation method thereof, which have the advantages of high activity, low energy consumption, safety and environmental protection, and the like.
为了实现上述目的,本发明采用如下技术方案:In order to achieve the above object, the present invention adopts the following technical solutions:
第一方面,本发明提供一种温度敏感型α-淀粉酶,所述温度敏感型α-淀粉酶的氨基酸序列如SEQ ID NO:2所示。In a first aspect, the present invention provides a temperature-sensitive α-amylase, and the amino acid sequence of the temperature-sensitive α-amylase is shown in SEQ ID NO: 2.
第二方面,本发明提供一种上述温度敏感型α-淀粉酶的编码基因,所述编码基因的核苷酸序列如SEQ ID NO:1所示。In a second aspect, the present invention provides a gene encoding the above temperature-sensitive α-amylase, and the nucleotide sequence of the encoding gene is shown in SEQ ID NO: 1.
第三方面,本发明提供一种上述编码基因插入的重组表达质粒。In a third aspect, the present invention provides a recombinant expression plasmid into which the above-mentioned encoding gene is inserted.
优选地,所述重组表达质粒是将所述编码基因插入pET-28a(+)载体的BamHI和XhoI位点得到的。Preferably, the recombinant expression plasmid is obtained by inserting the coding gene into the BamHI and XhoI sites of the pET-28a(+) vector.
第四方面,本发明提供一种含所述重组表达质粒的重组基因工程菌。In a fourth aspect, the present invention provides a recombinant genetically engineered bacterium containing the recombinant expression plasmid.
具体地,所述重组基因工程菌是将所述重组表达质粒转入宿主细胞E.coli BL21(DE3)得到。Specifically, the recombinant genetically engineered bacteria are obtained by transferring the recombinant expression plasmid into a host cell E. coli BL21 (DE3).
第五方面,本发明提供一种上述重组基因工程菌在制备温度敏感型α-淀粉酶中的应用。In a fifth aspect, the present invention provides an application of the above-mentioned recombinant genetically engineered bacteria in the preparation of temperature-sensitive α-amylase.
进一步,所述重组基因工程菌按如下方法制备:将如SEQ ID NO:1所示的编码基因插入pET-28a(+)载体的BamHI和XhoI位点,得到重组表达质粒;将所述重组表达质粒转入宿主细胞E.coli BL21(DE3),得到所述重组基因工程菌;Further, the recombinant genetically engineered bacteria are prepared as follows: insert the coding gene shown in SEQ ID NO: 1 into the BamHI and XhoI sites of the pET-28a(+) vector to obtain a recombinant expression plasmid; the recombinant expression The plasmid was transferred into host cell E.coli BL21 (DE3) to obtain the recombinant genetically engineered bacteria;
所述应用为:将所述重组基因工程菌接种至含卡那霉素的LB液体培养基中,37℃、120rpm培养过夜,加入终浓度为0.25mM的IPTG,在16℃、180rpm继续培养6~8h,离心收集菌体,所得菌体沉淀用PBS缓冲液重悬,冰浴下超声破碎,离心,收集上清液即为粗酶液;所述粗酶液采用Ni-NTA琼脂糖亲合树脂进行纯化:依次用平衡缓冲液平衡所述Ni-NTA琼脂糖亲合树脂,洗涤缓冲液洗去杂蛋白,洗脱缓冲液分离目的蛋白,收集含目的蛋白的洗脱缓冲液,超滤浓缩,得到所述温度敏感型α-淀粉酶。The application is as follows: inoculating the recombinant genetically engineered bacteria into LB liquid medium containing kanamycin, culturing overnight at 37°C and 120 rpm, adding IPTG with a final concentration of 0.25 mM, and continuing to culture at 16°C and 180 rpm for 6 days. ~8h, the cells were collected by centrifugation, the obtained cell pellets were resuspended with PBS buffer, sonicated under ice bath, centrifuged, and the supernatant was collected as crude enzyme liquid; the crude enzyme liquid was obtained by using Ni-NTA agarose affinity Resin for purification: sequentially equilibrate the Ni-NTA agarose affinity resin with equilibration buffer, wash buffer to remove impurities, elution buffer to separate target protein, collect elution buffer containing target protein, and concentrate by ultrafiltration , to obtain the temperature-sensitive α-amylase.
进一步,所述平衡缓冲液的组成为:20mM Tris,500mM NaCl,10%(v/v)甘油,溶剂为水;Further, the composition of the equilibration buffer is: 20 mM Tris, 500 mM NaCl, 10% (v/v) glycerol, and the solvent is water;
所述洗涤缓冲液的组成为:20mM Tris,500mM NaCl,10%(v/v)甘油,20mM咪唑,溶剂为水;The composition of the washing buffer is: 20 mM Tris, 500 mM NaCl, 10% (v/v) glycerol, 20 mM imidazole, and the solvent is water;
所述洗脱缓冲液的组成为:20mM Tris,500mM NaCl,10%(v/v)甘油,250mM咪唑,溶剂为水。The composition of the elution buffer was: 20 mM Tris, 500 mM NaCl, 10% (v/v) glycerol, 250 mM imidazole, and the solvent was water.
优选地,所述含卡那霉素的LB液体培养基中,卡那霉素的终浓度为30μg/mL。Preferably, in the LB liquid medium containing kanamycin, the final concentration of kanamycin is 30 μg/mL.
与现有技术相比,本发明的有益效果在于:Compared with the prior art, the beneficial effects of the present invention are:
所述温度敏感型α-淀粉酶可用于面包生产等烘焙食品行业。在生产时加入α-淀粉酶可有助于面团发酵,增加生产效率,改善面包的着色和风味。同时温度敏感型α-淀粉酶在面包烘焙时会逐渐失活,可有效防止高温α-淀粉酶在烘焙时持续发酵所带来的淀粉过度降解等问题。The temperature-sensitive α-amylase can be used in bakery food industries such as bread production. Adding alpha-amylase during production can help dough fermentation, increase production efficiency, and improve the color and flavor of bread. At the same time, the temperature-sensitive α-amylase will gradually inactivate during bread baking, which can effectively prevent the excessive degradation of starch caused by the continuous fermentation of high-temperature α-amylase during baking.
多孔淀粉是一种通过物理、化学或生物等方法处理后得到的变性淀粉,其特征在于淀粉颗粒表面存在延申至颗粒内部的孔洞。这种多孔结构使其具有良好的吸附能力,因此可以作为微胶囊芯材或吸附剂,广泛应用于医药、化工、食品、农业等领域。由于淀粉在高温时会发生糊化,因此多孔淀粉生产时多选用温度敏感型α-淀粉酶。Porous starch is a modified starch obtained by physical, chemical or biological treatment, and is characterized in that there are pores on the surface of starch granules that extend to the interior of the granules. This porous structure makes it have good adsorption capacity, so it can be used as a microcapsule core material or adsorbent, and is widely used in medicine, chemical industry, food, agriculture and other fields. Since starch will gelatinize at high temperature, temperature-sensitive α-amylase is often used in the production of porous starch.
现代纺织工业中为防止织物在编织过程中因张力过大而发生断裂,必须在过程中加入浆液对其进行保护。淀粉由于其来源广泛、便宜易得、容易退浆等,因此工业生产中多采用淀粉浆液。织物退浆时应用本发明中的温度敏感型α-淀粉酶,可将淀粉降解为水溶性产物,更易用水洗去。In the modern textile industry, in order to prevent the fabric from breaking due to excessive tension during the weaving process, it must be protected by adding a slurry during the process. Starch is widely used in industrial production due to its wide range of sources, cheap and easy availability, and easy desizing. The temperature-sensitive α-amylase of the present invention can be used to degrade starch into water-soluble products during fabric desizing, which can be easily washed away with water.
本发明所述温度敏感型α-淀粉酶具有较高的活性和较好的稳定性,可应用于纺织、造纸、洗涤剂、发酵和食品工业等多个方面中。The temperature-sensitive alpha-amylase of the present invention has higher activity and better stability, and can be applied in textile, papermaking, detergent, fermentation and food industries and other fields.
(四)附图说明(4) Description of drawings
图1为葡萄糖标准曲线;Fig. 1 is a glucose standard curve;
图2不同温度对酶活力的影响;Figure 2 The effect of different temperatures on enzyme activity;
图3不同温度下酶的稳定性实验;Fig. 3 Stability experiments of enzymes at different temperatures;
图4不同pH对酶活力的影响;Fig. 4 Effect of different pH on enzyme activity;
图5不同温度下酶的稳定性实验;Fig. 5 Stability experiments of enzymes at different temperatures;
图6金属离子及螯合剂对酶活力的影响;Figure 6 Effects of metal ions and chelators on enzyme activity;
图7为酶的Lineweaver-Burk图;Fig. 7 is the Lineweaver-Burk diagram of enzyme;
图8为酶解产物的TLC分析结果;Fig. 8 is the TLC analysis result of enzymolysis product;
图9为酶解产物的HPLC分析结果。Figure 9 shows the results of HPLC analysis of enzymatic hydrolysis products.
(五)具体实施方式(5) Specific implementations
以下实施例结合附图对本发明作进一步说明,实施例仅用来说明本发明,并不限制本发明的范围。The following embodiments will further illustrate the present invention in conjunction with the accompanying drawings. The embodiments are only used to illustrate the present invention and do not limit the scope of the present invention.
实施例1:温度敏感型α-淀粉酶的制备Example 1: Preparation of temperature-sensitive alpha-amylase
表1为实验材料Table 1 is the experimental material
LB液体培养基:蛋白胨1%,酵母提取物0.5%,氯化钠1%。LB liquid medium:
LB固体培养基:蛋白胨1%,酵母提取物0.5%,氯化钠1%,琼脂1%~2%。LB solid medium:
IPTG母液:称取适量异丙基硫代-β-D半乳糖苷(IPTG)粉末,用纯水配制成100mM,0.22μm针式过滤器过滤除菌,分装至1.5mL离心管中,储存于-20℃备用。IPTG mother liquor: Weigh an appropriate amount of isopropylthio-β-D-galactoside (IPTG) powder, prepare it into 100mM with pure water, filter and sterilize it with a 0.22μm syringe filter, and distribute it into 1.5mL centrifuge tubes for storage. Reserve at -20°C.
Kan母液:称取适量卡那霉素硫酸盐(Kan)粉末,用纯水配制成30mg/mL,0.22μm针式过滤器过滤除菌,分装至1.5mL离心管中,储存于-20℃备用。Kan mother liquor: Weigh an appropriate amount of kanamycin sulfate (Kan) powder, prepare 30 mg/mL with pure water, filter and sterilize with a 0.22 μm syringe filter, dispense into 1.5 mL centrifuge tubes, and store at -20°C spare.
平衡缓冲液:20mM Tris,500mM NaCl,10%(v/v)甘油。Equilibration buffer: 20 mM Tris, 500 mM NaCl, 10% (v/v) glycerol.
洗涤缓冲液:20mM Tris,500mM NaCl,10%(v/v)甘油,20mM咪唑。Washing buffer: 20 mM Tris, 500 mM NaCl, 10% (v/v) glycerol, 20 mM imidazole.
洗脱缓冲液:20mM Tris,500mM NaCl,10%(v/v)甘油,250mM咪唑。Elution buffer: 20 mM Tris, 500 mM NaCl, 10% (v/v) glycerol, 250 mM imidazole.
实验步骤:Experimental steps:
(1)含有α-淀粉酶基因的重组菌株的构建(1) Construction of recombinant strains containing α-amylase gene
从EZbiocloud中获取α-淀粉酶原始序列AAO78808.1,去除信号肽并经过密码子优化后得到SEQ NO.1,SEQ NO.1交由生物公司合成目的基因PL2。设计酶切位点为BamHI/XhoI,将目的基因与pET-28a(+)空载体连接。将连接产物与受体菌TOP10感受态混合,冰上放置10~15min,42℃热激120s后立即取出再置于冰上2~5min,加入800μL LB液体培养基,37℃、200rpm复苏生长45min,将部分或全部转化到含有100μg/mL卡那霉素的LB琼脂平板上,37℃过夜培养,筛选重组质粒,并对重组质粒进行电泳和测序验证。测序引物序列如下:The original sequence of α-amylase AAO78808.1 was obtained from EZbiocloud, the signal peptide was removed and SEQ NO.1 was obtained after codon optimization. SEQ NO.1 was handed over to the bio-company to synthesize the target gene PL2. The designed restriction site is BamHI/XhoI, and the target gene is connected with pET-28a(+) empty vector. The ligation product was mixed with the competent recipient bacteria TOP10, placed on ice for 10-15 minutes, immediately taken out after heat shock at 42°C for 120s, then placed on ice for 2-5 minutes, added 800 μL LB liquid medium, 37°C, 200rpm recovery growth for 45min , transform part or all of it onto LB agar plates containing 100 μg/mL kanamycin, cultivate overnight at 37°C, screen the recombinant plasmid, and verify the recombinant plasmid by electrophoresis and sequencing. The sequencing primer sequences are as follows:
正向引物:Forward primer:
T7:TAATACGACTCACTATAGGGT7: TAATACGACTCACTATAGGG
反向引物:Reverse primer:
T7ter:TGCTAGTTATTGCTCAGCGGT7ter:TGCTAGTTATTGCTCAGCGGG
(2)酶的诱导表达与粗酶液制备(2) Induction of enzyme expression and preparation of crude enzyme solution
将验证正确的重组质粒转化入E.coli BL21(DE3)中,获得含有α-淀粉酶基因的重组菌株。将含有α-淀粉酶基因的重组菌株接种于LB/Kan固体平板(Kan终浓度为30μg/mL)中,37℃下培养至单菌落产生。挑取单菌落接种于200mL LB/Kan液体培养基(Kan终浓度为30μg/mL)中,37℃、180rpm培养至OD600为0.6~0.8,加入IPTG使其终浓度为0.25mM,16℃、180rpm下继续培养6~8h,诱导结束后8000rpm离心10min收集菌体。菌体用15mLPBS缓冲液重悬,冰浴下超声破碎菌体,8000rpm离心10min,收集上清液即为粗酶液。The correct recombinant plasmid was transformed into E. coli BL21 (DE3) to obtain a recombinant strain containing α-amylase gene. The recombinant strain containing the α-amylase gene was inoculated in LB/Kan solid plate (the final concentration of Kan was 30 μg/mL), and cultured at 37°C until a single colony was produced. Pick a single colony and inoculate it in 200mL LB/Kan liquid medium (the final concentration of Kan is 30μg/mL), cultivate at 37°C and 180rpm until the OD 600 is 0.6-0.8, add IPTG to make the final concentration 0.25mM, 16°C, The culture was continued at 180 rpm for 6-8 h, and the cells were collected by centrifugation at 8000 rpm for 10 min after induction. The bacterial cells were resuspended with 15 mL of PBS buffer, sonicated in an ice bath, centrifuged at 8000 rpm for 10 min, and the supernatant was collected as the crude enzyme solution.
(3)酶的纯化(3) Purification of enzymes
取适量Ni-NTA琼脂糖亲合树脂加入层析管空管中,自然流干储存液,用纯水洗净后,加入4倍体积平衡缓冲液平衡树脂。吸取粗酶液与树脂混匀,4℃下螯合3h。螯合结束后自然流干粗酶液,分别用3倍体积的平衡缓冲液、洗涤缓冲液和洗脱缓冲液洗涤树脂,每次洗脱液分别保存,SDS-PAGE检测验证目标蛋白所处管号及相应纯度。根据SDS-PAGE结果收集目标蛋白,经30KDa超滤管超滤浓缩除盐后得到α-淀粉酶纯蛋白PL2。Take an appropriate amount of Ni-NTA agarose affinity resin and add it to the empty tube of the chromatography tube, drain the storage solution naturally, wash it with pure water, and add 4 times the volume of equilibration buffer to equilibrate the resin. Pipette the crude enzyme solution and mix with the resin, and chelate for 3h at 4°C. After the chelation, the crude enzyme solution was naturally drained, and the resin was washed with 3 times the volume of equilibration buffer, washing buffer and elution buffer, respectively. and the corresponding purity. The target protein was collected according to the results of SDS-PAGE, and the pure α-amylase protein PL2 was obtained after ultrafiltration, concentration and desalting through a 30KDa ultrafiltration tube.
(4)酶的浓度测定(4) Determination of enzyme concentration
本说明中蛋白浓度均采用BCA蛋白浓度测定试剂盒测定。The protein concentrations in this description were all measured using the BCA protein concentration assay kit.
取适量25mg/mL蛋白标准液,用PBS缓冲液稀释至0.5mg/mL。将标准品按0、1、2、4、8、12、16、20μL加到96孔板标准品孔中,加标准品稀释液补足至20μL。取适量α淀粉酶纯蛋白用缓冲液稀释至适宜体积后,取20μL加入96孔板样品孔中。根据标准品和样品数量,按BCA试剂盒A液:BCA试剂盒B液体积比50:1配制适量BCA工作液,充分混匀。各标准品孔及样品孔加入200μL BCA工作液,37℃孵育30min。用酶标仪测定各孔在562nm下吸光度,绘制标准曲线,并根据标准曲线计算样品中蛋白浓度。Take an appropriate amount of 25mg/mL protein standard solution and dilute it to 0.5mg/mL with PBS buffer. Add 0, 1, 2, 4, 8, 12, 16, 20 μL of standard to standard wells of 96-well plate, and add standard dilution to make up to 20 μL. Dilute an appropriate amount of pure α-amylase protein with buffer to an appropriate volume, and add 20 μL to the sample well of a 96-well plate. According to the quantity of standard and sample, prepare an appropriate amount of BCA working solution according to the volume ratio of BCA kit A solution: BCA kit B solution 50:1, and mix well. Add 200 μL of BCA working solution to each standard well and sample well, and incubate at 37°C for 30 min. Measure the absorbance of each well at 562 nm with a microplate reader, draw a standard curve, and calculate the protein concentration in the sample according to the standard curve.
实施例2:温度敏感型α淀粉酶的酶学性质Example 2: Enzymatic properties of temperature-sensitive alpha amylase
葡萄糖标准品溶液:精密称取75.0mg无水葡萄糖,加适量纯水溶解并定容至25mL容量瓶中。Glucose standard solution: Accurately weigh 75.0 mg of anhydrous glucose, add an appropriate amount of pure water to dissolve and dilute to a 25 mL volumetric flask.
3,5-二硝基水杨酸(DNS)显色剂溶液:称量18.2g酒石酸钾钠于少量蒸馏水中加热,趁热加入0.63g 3,5-二硝基水杨酸,再加入2mol/L NaOH水溶液26.2mL,称取0.5g苯酚和0.5g无水亚硫酸钠移入配制好的溶液中,搅拌溶解,用蒸馏水定容至100mL,避光保存一周后使用。3,5-Dinitrosalicylic acid (DNS) developer solution: Weigh 18.2g of potassium sodium tartrate and heat it in a small amount of distilled water, add 0.63g of 3,5-dinitrosalicylic acid while still hot, and then add 2mol /L NaOH aqueous solution 26.2mL, weigh 0.5g phenol and 0.5g anhydrous sodium sulfite into the prepared solution, stir to dissolve, dilute to 100mL with distilled water, and store in the dark for one week before use.
标准曲线:取上述葡萄糖标准溶液分别0、20、40、60、80、100μL于相应编号的1.5mL的塑料离心管中,再分别加入蒸馏水100、80、60、40、20、0μL,再各加DNS试剂100μL,混匀后于沸水浴中加热5min,流水冷却后分别向各试管中加入800μL蒸馏水,混匀,每管移取200μL于96孔板中,用酶标仪检测各管492nm波长下的吸光度,以葡萄糖质量浓度为横坐标,吸光度(A492)为纵坐标绘制标准曲线。Standard curve: Take 0, 20, 40, 60, 80, 100 μL of the above-mentioned glucose standard solution into 1.5 mL plastic centrifuge tubes with corresponding numbers, and then add 100, 80, 60, 40, 20, 0 μL of distilled water, respectively, Add 100 μL of DNS reagent, and heat in a boiling water bath for 5 min after mixing. After cooling in running water, add 800 μL of distilled water to each test tube, mix well, pipette 200 μL from each tube into a 96-well plate, and use a microplate reader to detect the wavelength of 492 nm in each tube. The standard curve was drawn with the concentration of glucose as the abscissa and the absorbance (A492) as the ordinate.
(1)温度对淀粉酶活性的影响(1) The effect of temperature on the activity of amylase
取5μL(2mg/mL)PL2酶液,加入95μL PBS,加1%可溶性淀粉(PBS溶解)100μL,在不同温度(20℃、30℃、40℃、50℃、60℃、70℃、80℃)下孵育30min。孵育结束后沸水浴灭活5min,离心取100μL上清液与100μL DNS检测液混匀,置于沸水浴中加热5min,流水冷却后在反应液中加入800μL纯水,取200μL于492nm下测定吸光度。根据酶活定义计算不同温度下的酶活,以最大酶活作为100%,再计算其余温度下的相对酶活,确定淀粉酶的最适反应温度。结果表明,PL2在水解淀粉时的最适反应温度为40℃,酶在20℃~50℃范围内有较好的活力,酶活均在50%以上。随着温度的升高,酶活逐渐下降,超过50℃后酶活急剧下降,超过60℃后酶活几乎为0。Take 5μL (2mg/mL) of PL2 enzyme solution, add 95μL PBS, add
(2)淀粉酶热稳定性(2) Thermal stability of amylase
取5μL(2mg/mL)PL2酶液,加入95μL PBS,在不同温度下(30℃、40℃、50℃)保温1h、2h、4h、8h后,再加入可溶性淀粉100μL,最适温度(40℃)下反应30min,DNS法测定酶活,以最适温度下未经保温处理测得的酶活作为100%,计算其余条件下的相对酶活以评判其温度稳定性。结果表明,保温温度为30℃和40℃时,PL2的稳定性较好,其在8h内酶活基本保持不变。但在50℃时,PL2的活性急剧下降,并在1h内完全失活。Take 5μL (2mg/mL) of PL2 enzyme solution, add 95μL PBS, and incubate at different temperatures (30°C, 40°C, 50°C) for 1h, 2h, 4h, 8h, then add 100μL of soluble starch, the optimum temperature (40 ℃) for 30 min, the enzyme activity was determined by DNS method, the enzyme activity measured at the optimum temperature without incubation was taken as 100%, and the relative enzyme activity under other conditions was calculated to evaluate its temperature stability. The results showed that the stability of PL2 was better when the incubation temperature was 30 ℃ and 40 ℃, and its enzymatic activity remained basically unchanged within 8 h. But at 50 °C, the activity of PL2 dropped sharply and was completely inactivated within 1 h.
(3)pH对淀粉酶的影响(3) The effect of pH on amylase
取5μL(2mg/mL)PL2酶液,加入不同pH的缓冲液95μL,加1%可溶性淀粉100μL(不同pH缓冲液溶解),最适温度(40℃)下孵育30min,DNS法测定酶活,以最大酶活作为100%,计算其余条件下的相对酶活以确定其反应最适pH。结果表明,PL2的最适pH为8.6,在pH4~7范围内酶活力呈上升趋势,pH7~8.6范围内有一定的波动性,pH超过8.6后酶活力逐渐下降,并在pH为10时基本失去活性。Take 5μL (2mg/mL) of PL2 enzyme solution, add 95μL of buffers with different pH, add 100μL of 1% soluble starch (dissolved in different pH buffers), incubate at the optimum temperature (40°C) for 30min, and determine the enzyme activity by DNS method. Taking the maximum enzymatic activity as 100%, the relative enzymatic activity under other conditions was calculated to determine the optimum pH for the reaction. The results showed that the optimum pH of PL2 was 8.6. The enzyme activity showed an upward trend in the range of
(4)淀粉酶的pH稳定性(4) pH stability of amylase
取5μL(2mg/mL)PL2酶液,加入不同pH缓冲液(pH:6、7、8、8.6、9)95μL,4℃下分别保温1h、2h、4h,而后加1%可溶性淀粉(不同pH缓冲液溶解)100μL,最适温度(40℃)下孵育30min,DNS法测定酶活,以最适温度和pH反应条件下未经处理时测得的酶活作为100%,计算其余条件下的相对酶活以评判其pH稳定性。结果表明,在pH6~9范围内,PL2具有较好的稳定性,在保温8h后最低仍具有50%左右的活性。Take 5μL (2mg/mL) of PL2 enzyme solution, add 95μL of different pH buffers (pH: 6, 7, 8, 8.6, 9), keep at 4°C for 1h, 2h, and 4h respectively, and then add 1% soluble starch (different). pH buffer solution) 100 μL, incubated at the optimum temperature (40°C) for 30 min, and the enzyme activity was determined by DNS method. relative enzyme activity to evaluate its pH stability. The results showed that in the pH range of 6-9, PL2 had good stability, and it still had a minimum activity of about 50% after being incubated for 8 hours.
(5)金属离子及螯合剂对PL2活性的影响(5) Effects of metal ions and chelating agents on the activity of PL2
取5μL(2mg/mL)PL2酶液,加入最适pH的缓冲液93μL,加1%可溶性淀粉100μL(最适pH缓冲液溶解),分别加入2μL金属离子和螯合剂,使其终浓度为1mM。最适温度(40℃)下孵育30min,DNS法测定酶活,以未加入金属离子或螯合剂时的测得的酶活作为100%,计算其余条件下的相对酶活以评判不同离子及螯合剂对酶活的影响。结果表明,Cu2+、Co2+两种金属离子对酶活有较强的促进作用,Mg2+、Mn2+、Zn2+、Ba2+这四种金属离子对酶活有较强的抑制作用,而螯合剂EDTA可完全抑制酶活性。Take 5μL (2mg/mL) of PL2 enzyme solution, add 93μL of buffer with optimal pH, add 100μL of 1% soluble starch (dissolved in optimal pH buffer), and add 2μL of metal ions and chelating agent respectively to make the final concentration 1mM . Incubate at the optimum temperature (40°C) for 30min, measure the enzyme activity by DNS method, take the measured enzyme activity when no metal ions or chelating agents are added as 100%, and calculate the relative enzyme activity under other conditions to judge different ions and chelators. The effect of mixture on enzyme activity. The results showed that the two metal ions Cu 2+ and Co 2+ had a strong promoting effect on the enzyme activity, and the four metal ions Mg 2+ , Mn 2+ , Zn 2+ and Ba 2+ had a stronger effect on the enzyme activity , while the chelating agent EDTA completely inhibited the enzymatic activity.
(6)酶动力学参数的测定(6) Determination of enzyme kinetic parameters
在最适反应条件下,加入100μL浓度分别为0.1%、0.2%、0.4%、0.6%、0.8%、1.0%的可溶性淀粉,反应30min,以底物浓度的倒数为横坐标,反应速率的倒数为纵坐标,并根据线性回归方程计算出酶的Km和Vmax值。根据线性回归方程计算可知,Km为1.17mg/mL,Vmax为32.0μmol/L*min,R2等于0.9985,R2接近于1表明该实验结果可靠。Under the optimum reaction conditions, add 100 μL of soluble starch with concentrations of 0.1%, 0.2%, 0.4%, 0.6%, 0.8%, and 1.0%, respectively, and react for 30 minutes. The inverse of the substrate concentration is the abscissa and the inverse of the reaction rate. is the ordinate, and the Km and Vmax values of the enzyme were calculated according to the linear regression equation. According to the calculation of the linear regression equation, K m is 1.17 mg/mL, V max is 32.0 μmol/L*min, R 2 is equal to 0.9985, and R 2 is close to 1, indicating that the experimental results are reliable.
(7)淀粉酶酶解产物的分析(7) Analysis of amylase enzymatic hydrolysis products
1.TLC产物分析1. TLC product analysis
采用薄层色谱法分析酶解产物,取400μL(0.2mg/mL)PL2酶液与400μL 1%可溶性淀粉底物混合,最适温度下反应,分别于0.5h、1h、2h、4h取200μL反应物,放入100℃沸水浴中灭活5min,离心取上清。以2mg/mL麦芽糖(麦芽二糖)和2mg/mL葡萄糖为标准品,分别取标准品和反应物用毛细血管点在薄层层析板上,吹干后置于展层缸中,展开剂组成及体积比为:正丁醇︰乙酸︰水=3︰1︰1。待液面迁移至顶端1cm边缘时取出层析板,用吹风机吹干后,放入展层缸中再次展开一次。展层结束后,将展层板浸泡在10%H2SO4乙醇溶液中约半分钟,放置于110℃烘箱内加热5min显色。显色后,对应标准品的层析结果分析不同时间点的酶解产物。结果表明,不同时间段内的降解产物均为葡萄糖,未见有其他产物产生。The enzymatic hydrolysis products were analyzed by thin-layer chromatography. 400 μL (0.2 mg/mL) of PL2 enzyme solution was mixed with 400 μL of 1% soluble starch substrate, reacted at the optimum temperature, and 200 μL were reacted at 0.5 h, 1 h, 2 h and 4 h respectively. The material was inactivated in a 100 °C boiling water bath for 5 min, and the supernatant was collected by centrifugation. Take 2mg/mL maltose (maltobiose) and 2mg/mL glucose as the standard products, respectively take the standard product and the reactant and spot them on the thin layer chromatography plate with capillaries. The composition and volume ratio are: n-butanol: acetic acid: water = 3:1:1. When the liquid level migrates to the top 1cm edge, take out the chromatography plate, dry it with a hair dryer, and then put it into a layer developing cylinder and expand it again. After the layering is finished, soak the layered plate in a 10% H 2 SO 4 ethanol solution for about half a minute, and place it in a 110° C. oven to heat for 5 minutes to develop color. After color development, the enzymatic hydrolysis products at different time points were analyzed corresponding to the chromatographic results of the standard. The results showed that the degradation products in different time periods were all glucose, and no other products were produced.
2.高效液相色谱法2. High performance liquid chromatography
样品准备:分别取200μL反应物与空白对照,用0.22μm水性针式过滤器过滤后进行检测。检测条件如下:Sample preparation: Take 200 μL of reaction and blank control respectively, filter with 0.22 μm aqueous needle filter for detection. The detection conditions are as follows:
液相条件:流动相为纯水,色谱柱为TSK gel G3000Pwxl,流速0.5mL/min,进样体积10μL,采集时间30min。Liquid phase conditions: the mobile phase was pure water, the chromatographic column was TSK gel G3000Pwxl, the flow rate was 0.5 mL/min, the injection volume was 10 μL, and the collection time was 30 min.
检测器:采用蒸发光散射检测器。Detector: An evaporative light scattering detector was used.
结果表明:如图9所示,通过比对葡萄糖和麦芽糖标准品(麦芽糖二糖)与酶解产物的出峰时间,可以进一步确定PL2的酶解产物为葡萄糖。The results show that: as shown in Figure 9, by comparing the peak time of the glucose and maltose standard (maltobiose) and the enzymatic hydrolysis product, it can be further determined that the enzymatic hydrolysis product of PL2 is glucose.
序列表sequence listing
<110> 浙江工业大学<110> Zhejiang University of Technology
<120> 一种温度敏感型α-淀粉酶及其制备方法与应用<120> A temperature-sensitive alpha-amylase and its preparation method and application
<160> 2<160> 2
<170> SIPOSequenceListing 1.0<170> SIPOSequenceListing 1.0
<210> 1<210> 1
<211> 2154<211> 2154
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 1<400> 1
caacagaaac taacatcacc cgataataac ttggtcatga cctttcaggt tgatagcaag 60caacagaaac taacatcacc cgataataac ttggtcatga cctttcaggt tgatagcaag 60
ggcgcaccga cgtacgagct cacctacaaa aacaaagttg ttatcaagcc gagcaccctg 120ggcgcaccga cgtacgagct cacctacaaa aacaaagttg ttatcaagcc gagcaccctg 120
ggtttggagc tgaaaaaaga agataacacc cgtaccgatt ttgattgggt tgatcgtcgt 180ggtttggagc tgaaaaaaga agataacacc cgtaccgatt ttgattgggt tgatcgtcgt 180
gatctgacca aattagactc gaagaccaat ttgtacgacg gtttcgaggt gaaagacacg 240gatctgacca aattagactc gaagaccaat ttgtacgacg gtttcgaggt gaaagacacg 240
cagactgcta ccttcgatga gacgtggcag ccggtttggg gtgaagagaa agagatccgc 300cagactgcta ccttcgatga gacgtggcag ccggtttggg gtgaagagaa agagatccgc 300
aaccactata acgagctggc ggtgactctg taccaaccga tgaatgatcg ctctattgtg 360aaccactata acgagctggc ggtgactctg taccaaccga tgaatgatcg ctctattgtg 360
atccgctttc gtcttttcaa cgatggcctg ggttttcgtt acgaatttcc gcaacaaaaa 420atccgctttc gtcttttcaa cgatggcctg ggttttcgtt acgaatttcc gcaacaaaaa 420
tccctgaatt acttcgtgat taaggaggaa cattcccagt tcggtatgaa cggtgaccac 480tccctgaatt acttcgtgat taaggaggaa cattcccagt tcggtatgaa cggtgaccac 480
attgcgtttt ggattccggg cgactatgat acccaagaat atgactacac catcagccgt 540attgcgtttt ggattccggg cgactatgat acccaagaat atgactacac catcagccgt 540
ttaagcgaaa ttcgcggtct gatgaaagag gcgattacgc caaactctag ccaaaccccg 600ttaagcgaaa ttcgcggtct gatgaaagag gcgattacgc caaactctag ccaaaccccg 600
tttagccaaa ccggcgttca gactgcctta atgatgaaaa ccgacgacgg cttgtacatc 660tttagccaaa ccggcgttca gactgcctta atgatgaaaa ccgacgacgg cttgtacatc 660
aacttgcacg aagcggcttt ggtggattac agctgtatgc acctgaacct ggacgacaaa 720aacttgcacg aagcggcttt ggtggattac agctgtatgc acctgaacct ggacgacaaa 720
aacatggtct tcgaaagctg gctgacccca gatgcgaagg gtgacaaagg ctatatgcag 780aacatggtct tcgaaagctg gctgacccca gatgcgaagg gtgacaaagg ctatatgcag 780
accccgtgca acactccgtg gcgtacaatc atcgtgagcg atgatgcgcg caatattctg 840accccgtgca acactccgtg gcgtacaatc atcgtgagcg atgatgcgcg caatattctg 840
gcgtcgcgca ttaccctgaa tttgaatgag ccgtgtaaaa tcgccgacgc cgctagctgg 900gcgtcgcgca ttaccctgaa tttgaatgag ccgtgtaaaa tcgccgacgc cgctagctgg 900
gttaagccgg tgaagtatat cggtgtttgg tgggatatga ttactggaaa gggcagctgg 960gttaagccgg tgaagtatat cggtgtttgg tgggatatga ttactggaaa gggcagctgg 960
gcatataccg acgaattgac gtctgtgaag ctaggagaga ctgactactc caagacgaaa 1020gcatataccg acgaattgac gtctgtgaag ctaggagaga ctgactactc caagacgaaa 1020
ccaaacggca aacactctgc gaataccgcg aatgttaagc gctacattga ttttgcggct 1080ccaaacggca aacactctgc gaataccgcg aatgttaagc gctacattga ttttgcggct 1080
gcgcatggtt tcgacgcggt tctggttgaa ggctggaacg agggctggga agattggttt 1140gcgcatggtt tcgacgcggt tctggttgaa ggctggaacg agggctggga agattggttt 1140
ggtaacagca aggactacgt gttcgacttc gttacccctt atccggattt cgacgtcaag 1200ggtaacagca aggactacgt gttcgacttc gttacccctt atccggattt cgacgtcaag 1200
gagattcatc gttacgcggc tcgcaaaggc atcaagatga tgatgcacca cgaaaccagt 1260gagattcatc gttacgcggc tcgcaaaggc atcaagatga tgatgcacca cgaaaccagt 1260
gcgagcgttc gtaattacga acgtcatatg gacaaggcgt accagtttat ggcagacaac 1320gcgagcgttc gtaattacga acgtcatatg gacaaggcgt accagtttat ggcagacaac 1320
ggctataatt ccgtgaagtc cggttatgtg ggtaacatca ttccgcgtgg tgagcatcat 1380ggctataatt ccgtgaagtc cggttatgtg ggtaacatca ttccgcgtgg tgagcatcat 1380
tatggtcagt ggatgaacaa ccactacctg tacgccgtca agaaggcggc tgactataaa 1440tatggtcagt ggatgaacaa ccactacctg tacgccgtca agaaggcggc tgactataaa 1440
atcatggtga atgcacacga ggctacccgt ccgaccggta tctgccgtac ctacccgaac 1500atcatggtga atgcacacga ggctacccgt ccgaccggta tctgccgtac ctacccgaac 1500
ctgattggta acgaatctgc cagaggcacc gaatacgaga gctttggtgg caacaaggtt 1560ctgattggta acgaatctgc cagaggcacc gaatacgaga gctttggtgg caacaaggtt 1560
tatcatacca ccatcctgcc gttcacccgt ttggtgggtg gtccgatgga ttacactccg 1620tatcatacca ccatcctgcc gttcacccgt ttggtgggtg gtccgatgga ttacactccg 1620
ggtatttttg agacgcactg caacaagatg aatccggcaa acaactccca agtcagaagc 1680ggtatttttg agacgcactg caacaagatg aatccggcaa acaactccca agtcagaagc 1680
accatagcgc gtcagctggc actgtatgtg accatgtatt ctccgctgca gatggctgcc 1740accatagcgc gtcagctggc actgtatgtg accatgtatt ctccgctgca gatggctgcc 1740
gacatcccgg aaaactatga gcgcttcatg gatgcgtttc aattcattaa ggacgttgca 1800gacatcccgg aaaactatga gcgcttcatg gatgcgtttc aattcattaa ggacgttgca 1800
ttggactggg atgaaacaaa ttacctggag gcggaaccgg gcgagtacat caccatcgcg 1860ttggactggg atgaaacaaa ttacctggag gcggaaccgg gcgagtacat caccatcgcg 1860
cgtaaggcga aagacaccga tgactggtat gtagggtgca ccgcgggtga gaatggtcat 1920cgtaaggcga aagacaccga tgactggtat gtagggtgca ccgcgggtga gaatggtcat 1920
acctccaagc tggttttcga cttcctgacg ccgggcaaac agtatatcgc taccgtttat 1980acctccaagc tggttttcga cttcctgacg ccgggcaaac agtatatcgc taccgtttat 1980
gcagacgcga aagacgctga ttggaaagaa aatccccagg catacaccat caagaagggc 2040gcagacgcga aagacgctga ttggaaagaa aatccccagg catacaccat caagaagggc 2040
atcctgacga acaaaagcaa gttgaatctc cacgctgcga acggcggtgg ctatgccatt 2100atcctgacga acaaaagcaa gttgaatctc cacgctgcga acggcggtgg ctatgccatt 2100
tcgatcaagg aggttaaaga taaaagcgaa gccaaaggtc tgaaacgcct gtaa 2154tcgatcaagg aggttaaaga taaaagcgaa gccaaaggtc tgaaacgcct gtaa 2154
<210> 2<210> 2
<211> 717<211> 717
<212> PRT<212> PRT
<213> Bacteroides thetaiotaomicron<213> Bacteroides thetaiotaomicron
<400> 2<400> 2
Gln Gln Lys Leu Thr Ser Pro Asp Asn Asn Leu Val Met Thr Phe GlnGln Gln Lys Leu Thr Ser Pro Asp Asn Asn Leu Val Met Thr Phe Gln
1 5 10 151 5 10 15
Val Asp Ser Lys Gly Ala Pro Thr Tyr Glu Leu Thr Tyr Lys Asn LysVal Asp Ser Lys Gly Ala Pro Thr Tyr Glu Leu Thr Tyr Lys Asn Lys
20 25 30 20 25 30
Val Val Ile Lys Pro Ser Thr Leu Gly Leu Glu Leu Lys Lys Glu AspVal Val Ile Lys Pro Ser Thr Leu Gly Leu Glu Leu Lys Lys Glu Asp
35 40 45 35 40 45
Asn Thr Arg Thr Asp Phe Asp Trp Val Asp Arg Arg Asp Leu Thr LysAsn Thr Arg Thr Asp Phe Asp Trp Val Asp Arg Arg Asp Leu Thr Lys
50 55 60 50 55 60
Leu Asp Ser Lys Thr Asn Leu Tyr Asp Gly Phe Glu Val Lys Asp ThrLeu Asp Ser Lys Thr Asn Leu Tyr Asp Gly Phe Glu Val Lys Asp Thr
65 70 75 8065 70 75 80
Gln Thr Ala Thr Phe Asp Glu Thr Trp Gln Pro Val Trp Gly Glu GluGln Thr Ala Thr Phe Asp Glu Thr Trp Gln Pro Val Trp Gly Glu Glu
85 90 95 85 90 95
Lys Glu Ile Arg Asn His Tyr Asn Glu Leu Ala Val Thr Leu Tyr GlnLys Glu Ile Arg Asn His Tyr Asn Glu Leu Ala Val Thr Leu Tyr Gln
100 105 110 100 105 110
Pro Met Asn Asp Arg Ser Ile Val Ile Arg Phe Arg Leu Phe Asn AspPro Met Asn Asp Arg Ser Ile Val Ile Arg Phe Arg Leu Phe Asn Asp
115 120 125 115 120 125
Gly Leu Gly Phe Arg Tyr Glu Phe Pro Gln Gln Lys Ser Leu Asn TyrGly Leu Gly Phe Arg Tyr Glu Phe Pro Gln Gln Lys Ser Leu Asn Tyr
130 135 140 130 135 140
Phe Val Ile Lys Glu Glu His Ser Gln Phe Gly Met Asn Gly Asp HisPhe Val Ile Lys Glu Glu His Ser Gln Phe Gly Met Asn Gly Asp His
145 150 155 160145 150 155 160
Ile Ala Phe Trp Ile Pro Gly Asp Tyr Asp Thr Gln Glu Tyr Asp TyrIle Ala Phe Trp Ile Pro Gly Asp Tyr Asp Thr Gln Glu Tyr Asp Tyr
165 170 175 165 170 175
Thr Ile Ser Arg Leu Ser Glu Ile Arg Gly Leu Met Lys Glu Ala IleThr Ile Ser Arg Leu Ser Glu Ile Arg Gly Leu Met Lys Glu Ala Ile
180 185 190 180 185 190
Thr Pro Asn Ser Ser Gln Thr Pro Phe Ser Gln Thr Gly Val Gln ThrThr Pro Asn Ser Ser Gln Thr Pro Phe Ser Gln Thr Gly Val Gln Thr
195 200 205 195 200 205
Ala Leu Met Met Lys Thr Asp Asp Gly Leu Tyr Ile Asn Leu His GluAla Leu Met Met Lys Thr Asp Asp Gly Leu Tyr Ile Asn Leu His Glu
210 215 220 210 215 220
Ala Ala Leu Val Asp Tyr Ser Cys Met His Leu Asn Leu Asp Asp LysAla Ala Leu Val Asp Tyr Ser Cys Met His Leu Asn Leu Asp Asp Lys
225 230 235 240225 230 235 240
Asn Met Val Phe Glu Ser Trp Leu Thr Pro Asp Ala Lys Gly Asp LysAsn Met Val Phe Glu Ser Trp Leu Thr Pro Asp Ala Lys Gly Asp Lys
245 250 255 245 250 255
Gly Tyr Met Gln Thr Pro Cys Asn Thr Pro Trp Arg Thr Ile Ile ValGly Tyr Met Gln Thr Pro Cys Asn Thr Pro Trp Arg Thr Ile Ile Val
260 265 270 260 265 270
Ser Asp Asp Ala Arg Asn Ile Leu Ala Ser Arg Ile Thr Leu Asn LeuSer Asp Asp Ala Arg Asn Ile Leu Ala Ser Arg Ile Thr Leu Asn Leu
275 280 285 275 280 285
Asn Glu Pro Cys Lys Ile Ala Asp Ala Ala Ser Trp Val Lys Pro ValAsn Glu Pro Cys Lys Ile Ala Asp Ala Ala Ser Trp Val Lys Pro Val
290 295 300 290 295 300
Lys Tyr Ile Gly Val Trp Trp Asp Met Ile Thr Gly Lys Gly Ser TrpLys Tyr Ile Gly Val Trp Trp Asp Met Ile Thr Gly Lys Gly Ser Trp
305 310 315 320305 310 315 320
Ala Tyr Thr Asp Glu Leu Thr Ser Val Lys Leu Gly Glu Thr Asp TyrAla Tyr Thr Asp Glu Leu Thr Ser Val Lys Leu Gly Glu Thr Asp Tyr
325 330 335 325 330 335
Ser Lys Thr Lys Pro Asn Gly Lys His Ser Ala Asn Thr Ala Asn ValSer Lys Thr Lys Pro Asn Gly Lys His Ser Ala Asn Thr Ala Asn Val
340 345 350 340 345 350
Lys Arg Tyr Ile Asp Phe Ala Ala Ala His Gly Phe Asp Ala Val LeuLys Arg Tyr Ile Asp Phe Ala Ala Ala His Gly Phe Asp Ala Val Leu
355 360 365 355 360 365
Val Glu Gly Trp Asn Glu Gly Trp Glu Asp Trp Phe Gly Asn Ser LysVal Glu Gly Trp Asn Glu Gly Trp Glu Asp Trp Phe Gly Asn Ser Lys
370 375 380 370 375 380
Asp Tyr Val Phe Asp Phe Val Thr Pro Tyr Pro Asp Phe Asp Val LysAsp Tyr Val Phe Asp Phe Val Thr Pro Tyr Pro Asp Phe Asp Val Lys
385 390 395 400385 390 395 400
Glu Ile His Arg Tyr Ala Ala Arg Lys Gly Ile Lys Met Met Met HisGlu Ile His Arg Tyr Ala Ala Arg Lys Gly Ile Lys Met Met Met His
405 410 415 405 410 415
His Glu Thr Ser Ala Ser Val Arg Asn Tyr Glu Arg His Met Asp LysHis Glu Thr Ser Ala Ser Val Arg Asn Tyr Glu Arg His Met Asp Lys
420 425 430 420 425 430
Ala Tyr Gln Phe Met Ala Asp Asn Gly Tyr Asn Ser Val Lys Ser GlyAla Tyr Gln Phe Met Ala Asp Asn Gly Tyr Asn Ser Val Lys Ser Gly
435 440 445 435 440 445
Tyr Val Gly Asn Ile Ile Pro Arg Gly Glu His His Tyr Gly Gln TrpTyr Val Gly Asn Ile Ile Pro Arg Gly Glu His His Tyr Gly Gln Trp
450 455 460 450 455 460
Met Asn Asn His Tyr Leu Tyr Ala Val Lys Lys Ala Ala Asp Tyr LysMet Asn Asn His Tyr Leu Tyr Ala Val Lys Lys Ala Ala Asp Tyr Lys
465 470 475 480465 470 475 480
Ile Met Val Asn Ala His Glu Ala Thr Arg Pro Thr Gly Ile Cys ArgIle Met Val Asn Ala His Glu Ala Thr Arg Pro Thr Gly Ile Cys Arg
485 490 495 485 490 495
Thr Tyr Pro Asn Leu Ile Gly Asn Glu Ser Ala Arg Gly Thr Glu TyrThr Tyr Pro Asn Leu Ile Gly Asn Glu Ser Ala Arg Gly Thr Glu Tyr
500 505 510 500 505 510
Glu Ser Phe Gly Gly Asn Lys Val Tyr His Thr Thr Ile Leu Pro PheGlu Ser Phe Gly Gly Asn Lys Val Tyr His Thr Thr Ile Leu Pro Phe
515 520 525 515 520 525
Thr Arg Leu Val Gly Gly Pro Met Asp Tyr Thr Pro Gly Ile Phe GluThr Arg Leu Val Gly Gly Pro Met Asp Tyr Thr Pro Gly Ile Phe Glu
530 535 540 530 535 540
Thr His Cys Asn Lys Met Asn Pro Ala Asn Asn Ser Gln Val Arg SerThr His Cys Asn Lys Met Asn Pro Ala Asn Asn Ser Gln Val Arg Ser
545 550 555 560545 550 555 560
Thr Ile Ala Arg Gln Leu Ala Leu Tyr Val Thr Met Tyr Ser Pro LeuThr Ile Ala Arg Gln Leu Ala Leu Tyr Val Thr Met Tyr Ser Pro Leu
565 570 575 565 570 575
Gln Met Ala Ala Asp Ile Pro Glu Asn Tyr Glu Arg Phe Met Asp AlaGln Met Ala Ala Asp Ile Pro Glu Asn Tyr Glu Arg Phe Met Asp Ala
580 585 590 580 585 590
Phe Gln Phe Ile Lys Asp Val Ala Leu Asp Trp Asp Glu Thr Asn TyrPhe Gln Phe Ile Lys Asp Val Ala Leu Asp Trp Asp Glu Thr Asn Tyr
595 600 605 595 600 605
Leu Glu Ala Glu Pro Gly Glu Tyr Ile Thr Ile Ala Arg Lys Ala LysLeu Glu Ala Glu Pro Gly Glu Tyr Ile Thr Ile Ala Arg Lys Ala Lys
610 615 620 610 615 620
Asp Thr Asp Asp Trp Tyr Val Gly Cys Thr Ala Gly Glu Asn Gly HisAsp Thr Asp Asp Trp Tyr Val Gly Cys Thr Ala Gly Glu Asn Gly His
625 630 635 640625 630 635 640
Thr Ser Lys Leu Val Phe Asp Phe Leu Thr Pro Gly Lys Gln Tyr IleThr Ser Lys Leu Val Phe Asp Phe Leu Thr Pro Gly Lys Gln Tyr Ile
645 650 655 645 650 655
Ala Thr Val Tyr Ala Asp Ala Lys Asp Ala Asp Trp Lys Glu Asn ProAla Thr Val Tyr Ala Asp Ala Lys Asp Ala Asp Trp Lys Glu Asn Pro
660 665 670 660 665 670
Gln Ala Tyr Thr Ile Lys Lys Gly Ile Leu Thr Asn Lys Ser Lys LeuGln Ala Tyr Thr Ile Lys Lys Gly Ile Leu Thr Asn Lys Ser Lys Leu
675 680 685 675 680 685
Asn Leu His Ala Ala Asn Gly Gly Gly Tyr Ala Ile Ser Ile Lys GluAsn Leu His Ala Ala Asn Gly Gly Gly Tyr Ala Ile Ser Ile Lys Glu
690 695 700 690 695 700
Val Lys Asp Lys Ser Glu Ala Lys Gly Leu Lys Arg LeuVal Lys Asp Lys Ser Glu Ala Lys Gly Leu Lys Arg Leu
705 710 715705 710 715
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210151867.1A CN114540328A (en) | 2022-02-18 | 2022-02-18 | A kind of temperature-sensitive alpha-amylase and its preparation method and application |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210151867.1A CN114540328A (en) | 2022-02-18 | 2022-02-18 | A kind of temperature-sensitive alpha-amylase and its preparation method and application |
Publications (1)
Publication Number | Publication Date |
---|---|
CN114540328A true CN114540328A (en) | 2022-05-27 |
Family
ID=81676467
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210151867.1A Pending CN114540328A (en) | 2022-02-18 | 2022-02-18 | A kind of temperature-sensitive alpha-amylase and its preparation method and application |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114540328A (en) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101636499A (en) * | 2006-09-12 | 2010-01-27 | 马里兰大学技术商业化办公室 | Enzyme system for saccharification of plant cell wall polysaccharides |
CN111315784A (en) * | 2017-10-31 | 2020-06-19 | 非营利性组织佛兰芒综合大学生物技术研究所 | Novel antigen-binding chimeric proteins and methods and uses thereof |
CN112626053A (en) * | 2020-12-01 | 2021-04-09 | 自然资源部第三海洋研究所 | Acid alpha amylase and preparation method and application thereof |
-
2022
- 2022-02-18 CN CN202210151867.1A patent/CN114540328A/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101636499A (en) * | 2006-09-12 | 2010-01-27 | 马里兰大学技术商业化办公室 | Enzyme system for saccharification of plant cell wall polysaccharides |
CN111315784A (en) * | 2017-10-31 | 2020-06-19 | 非营利性组织佛兰芒综合大学生物技术研究所 | Novel antigen-binding chimeric proteins and methods and uses thereof |
CN112626053A (en) * | 2020-12-01 | 2021-04-09 | 自然资源部第三海洋研究所 | Acid alpha amylase and preparation method and application thereof |
Non-Patent Citations (1)
Title |
---|
MOMOYO KITAMURA,ET AL: "Structural and Functional Analysis of a Glycoside Hydrolase Family 97 Enzyme from Bacteroides thetaiotaomicron", THE JOURNAL OF BIOLOGICAL CHEMISTRY, vol. 283, no. 52, pages 1 - 2 * |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102787130B (en) | Acid and high temperature resistant alpha-amylase, and its gene, engineering bacterium and preparation method | |
CN114836405B (en) | Agarase mutant with improved thermal stability and application thereof | |
CN108588061B (en) | Low-temperature alkaline pectinase mutant with improved specific enzyme activity and thermal stability | |
CN108660145A (en) | The encoding gene and its recombinant expression of heat resistant type Pullulanase and application | |
CN107760700B (en) | β-mannanase gene, recombinant expression vector, strain, β-mannanase and preparation method and application thereof | |
CN112301023B (en) | 2709 alkaline protease mutant modified based on molecular dynamics calculation and application thereof | |
CN107739734A (en) | The glutamine transaminage mutant that a kind of enzyme activity improves | |
CN111500555B (en) | Chitosanase OUC-CsnCA and application thereof | |
Wang et al. | Purification and characterization of a novel wild-type α-amylase from Antarctic sea ice bacterium Pseudoalteromonas sp. M175 | |
CN104774813A (en) | Leucine dehydrogenase and preparation method and application thereof | |
CN112574975A (en) | Glyceride lipase mutant G28C-P206C, and coding gene and application thereof | |
CN107858337A (en) | A kind of heat-resisting mutant lipase and preparation method and application | |
CN102358896B (en) | A kind of thermostable cutinase-CBD fusion enzyme and its mutant and application | |
CN100415879C (en) | Acid-resistant and high-temperature-resistant α-amylase and preparation method thereof | |
CN104293748A (en) | Endo-xylanase with high thermal stability and application thereof | |
CN104862290B (en) | A kind of 1,3 1,4 beta glucan enzyme mutants | |
CN115197924B (en) | Pullulanase | |
CN112626053B (en) | Acidic alpha amylase and preparation method and application thereof | |
CN112626051B (en) | A kind of 1,3/1,4-xylanase MLX1034 and its encoding gene and application | |
CN110951716B (en) | An exo-alginate lyase VsAly7D and its recombinant strain and application | |
CN114540328A (en) | A kind of temperature-sensitive alpha-amylase and its preparation method and application | |
CN102102094B (en) | Thermostable lipase, expression of coding gene of thermostable lipase and applications of thermostable lipase | |
CN105671022A (en) | 1,3-1,4-beta-glucanase mutant | |
CN109234293B (en) | A gene encoding β-glucosidase and its expression vector and protein | |
CN108165540B (en) | Rhizomucor miehei alpha-amylase and coding gene and application thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
WD01 | Invention patent application deemed withdrawn after publication | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20220527 |