CN114538772B - Glass, glass element and optical filter - Google Patents
Glass, glass element and optical filter Download PDFInfo
- Publication number
- CN114538772B CN114538772B CN202210294645.5A CN202210294645A CN114538772B CN 114538772 B CN114538772 B CN 114538772B CN 202210294645 A CN202210294645 A CN 202210294645A CN 114538772 B CN114538772 B CN 114538772B
- Authority
- CN
- China
- Prior art keywords
- glass
- percent
- expressed
- glass according
- composition
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C3/00—Glass compositions
- C03C3/12—Silica-free oxide glass compositions
- C03C3/23—Silica-free oxide glass compositions containing halogen and at least one oxide, e.g. oxide of boron
- C03C3/247—Silica-free oxide glass compositions containing halogen and at least one oxide, e.g. oxide of boron containing fluorine and phosphorus
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C3/00—Glass compositions
- C03C3/12—Silica-free oxide glass compositions
- C03C3/16—Silica-free oxide glass compositions containing phosphorus
- C03C3/17—Silica-free oxide glass compositions containing phosphorus containing aluminium or beryllium
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C3/00—Glass compositions
- C03C3/04—Glass compositions containing silica
- C03C3/062—Glass compositions containing silica with less than 40% silica by weight
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C3/00—Glass compositions
- C03C3/04—Glass compositions containing silica
- C03C3/062—Glass compositions containing silica with less than 40% silica by weight
- C03C3/064—Glass compositions containing silica with less than 40% silica by weight containing boron
- C03C3/068—Glass compositions containing silica with less than 40% silica by weight containing boron containing rare earths
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C4/00—Compositions for glass with special properties
- C03C4/02—Compositions for glass with special properties for coloured glass
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C4/00—Compositions for glass with special properties
- C03C4/08—Compositions for glass with special properties for glass selectively absorbing radiation of specified wave lengths
- C03C4/082—Compositions for glass with special properties for glass selectively absorbing radiation of specified wave lengths for infrared absorbing glass
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/20—Filters
- G02B5/22—Absorbing filters
- G02B5/226—Glass filters
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C2204/00—Glasses, glazes or enamels with special properties
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/20—Filters
- G02B5/208—Filters for use with infrared or ultraviolet radiation, e.g. for separating visible light from infrared and/or ultraviolet radiation
Landscapes
- Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Life Sciences & Earth Sciences (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Glass Compositions (AREA)
- Filtering Materials (AREA)
Abstract
本发明提供一种玻璃,所述玻璃以摩尔百分比表示,阳离子组分含有:P5+:51~72%;Al3+:0~10%;Cu2+:5~25%;Rn+:5~25%;R2+:1~18%;Ln3+:0~8%,所述Rn+为Li+、Na+、K+中的一种或多种,R2+为Mg2+、Ca2+、Sr2+、Ba2+中的一种或多种,Ln3+为La3+、Gd3+、Y3+中的一种或多种;阴离子组分含有O2‑和F‑,O2‑和F‑的合计含量O2‑+F‑为98%以上。通过合理的组分设计,本发明获得的玻璃具有优异的内在质量,在可视域优异的透过特性和近红外区域优异的吸收特性。The invention provides a kind of glass, said glass is represented by mole percentage, cationic component contains: P 5+ : 51-72%; Al 3+ : 0-10%; Cu 2+ : 5-25%; Rn + : 5-25%; R 2+ : 1-18%; Ln 3+ : 0-8%, the Rn + is one or more of Li + , Na + , K + , and R 2+ is Mg 2 + , Ca 2+ , Sr 2+ , Ba 2+ one or more, Ln 3+ is one or more of La 3+ , Gd 3+ , Y 3+ ; the anion component contains O 2 ‑ and F‑ , the total content of O 2‑ and F‑, O 2‑ + F ‑, is more than 98%. Through reasonable component design, the glass obtained by the invention has excellent internal quality, excellent transmission properties in the visible region and excellent absorption properties in the near-infrared region.
Description
技术领域technical field
本发明涉及一种玻璃,特别是涉及一种近红外光吸收玻璃。The invention relates to a glass, in particular to a near-infrared light absorbing glass.
背景技术Background technique
近年来,用于数码照相机、可拍照手机及VTR照相机的CCD、CMOS等半导体摄像元件的光谱灵敏度,普及到从可视领域开始到近红外领域,使用吸收近红外领域光的滤光器可以得到近似于人的视感度。一般人的眼睛可以感知的可见光波长在400~700nm之间,因此,通过使用吸收近红外光的滤光器可以获得与人眼的亮度因数相近的图像。随着人们对色灵敏度修正用滤光器的需求不断增长,相应的就对用于制造此类滤光器的近红外光吸收玻璃提出了更高的要求,要求此类玻璃具有在可视域优异的透过特性和近红外区域优异的吸收特性。现有技术中的近红外光吸收玻璃通常含有大量的氟(F-),如中国专利CN102656125A,其在大量含氟的情况下,玻璃熔制过程中氟产生挥发,造成玻璃容易出现条纹、内部不均匀等缺陷,玻璃内在质量难以达到要求。In recent years, the spectral sensitivity of semiconductor imaging elements such as CCD and CMOS used in digital cameras, camera phones, and VTR cameras has spread from the visible field to the near-infrared field. Using filters that absorb light in the near-infrared field can obtain Approximate to human visual sensitivity. The wavelength of visible light that ordinary human eyes can perceive is between 400 and 700nm. Therefore, an image with a brightness factor close to that of the human eye can be obtained by using a filter that absorbs near-infrared light. As people's demand for filters for color sensitivity correction continues to grow, correspondingly higher requirements are placed on the near-infrared light-absorbing glass used to manufacture such filters. Excellent transmission characteristics and excellent absorption characteristics in the near infrared region. Near-infrared light-absorbing glass in the prior art usually contains a large amount of fluorine (F - ), such as Chinese patent CN102656125A, in the case of a large amount of fluorine, the fluorine volatilizes during the glass melting process, causing streaks and internal Inhomogeneity and other defects, the intrinsic quality of the glass is difficult to meet the requirements.
发明内容Contents of the invention
基于以上原因,本发明所要解决的技术问题是提供一种内在质量优异,具有在可视域优异的透过特性和近红外区域优异的吸收特性的玻璃。Based on the above reasons, the technical problem to be solved by the present invention is to provide a glass with excellent intrinsic quality, excellent transmission properties in the visible region and excellent absorption properties in the near-infrared region.
本发明解决技术问题采用的技术方案是:The technical scheme that the present invention solves technical problem adopts is:
(1)一种玻璃,以摩尔百分比表示,阳离子组分含有:P5+:51~72%;Al3+:0~10%;Cu2+:5~25%;Rn+:5~25%;R2+:1~18%;Ln3+:0~8%,所述Rn+为Li+、Na+、K+中的一种或多种,R2+为Mg2+、Ca2+、Sr2+、Ba2+中的一种或多种,Ln3+为La3+、Gd3+、Y3+中的一种或多种;(1) A glass, expressed in molar percentage, the cationic component contains: P 5+ : 51-72%; Al 3+ : 0-10%; Cu 2+ : 5-25%; Rn + : 5-25% %; R 2+ : 1-18%; Ln 3+ : 0-8%, the Rn + is one or more of Li + , Na + , K + , and R 2+ is Mg 2+ , Ca One or more of 2+ , Sr 2+ , Ba 2+ , Ln 3+ is one or more of La 3+ , Gd 3+ , Y 3+ ;
阴离子组分含有O2-和F-,O2-和F-的合计含量O2-+F-为98%以上。The anion component contains O 2- and F - , and the total content O 2- + F - of O 2 - and F - is more than 98%.
(2)根据(1)所述的玻璃,其特征在于,以摩尔百分比表示,阳离子组分还含有:Zn2 +:0~10%;和/或Si4+:0~5%;和/或B3+:0~5%;和/或Zr4+:0~5%;和/或Sb3++Sn4++Ce4+:0~1%。(2) The glass according to (1), characterized in that, expressed in molar percentage, the cationic component further contains: Zn 2 + : 0-10%; and/or Si 4+ : 0-5%; and/or Or B 3+ : 0-5%; and/or Zr 4+ : 0-5%; and/or Sb 3+ +Sn 4+ +Ce 4+ : 0-1%.
(3)一种玻璃,以摩尔百分比表示,阳离子组分为:P5+:51~72%;Al3+:0~10%;Cu2 +:5~25%;Rn+:5~25%;R2+:1~18%;Ln3+:0~8%;Zn2+:0~10%;Si4+:0~5%;B3+:0~5%;Zr4+:0~5%;Sb3++Sn4++Ce4+:0~1%,所述Rn+为Li+、Na+、K+中的一种或多种,R2+为Mg2+、Ca2+、Sr2+、Ba2+中的一种或多种,Ln3+为La3+、Gd3+、Y3+中的一种或多种,阴离子组分为O2-和F-。(3) A glass, expressed in molar percentage, the cationic components are: P 5+ : 51-72%; Al 3+ : 0-10%; Cu 2 + : 5-25%; Rn + : 5-25% %; R 2+ : 1~18%; Ln 3+ : 0~8%; Zn 2+ : 0~10%; Si 4+ : 0~5%; B 3+ : 0~5%; Zr 4+ : 0~5%; Sb 3+ +Sn 4+ +Ce 4+ : 0~1%, the Rn + is one or more of Li + , Na + , K + , R 2+ is Mg 2 + , Ca 2+ , Sr 2+ , Ba 2+ one or more, Ln 3+ is one or more of La 3+ , Gd 3+ , Y 3+ , the anion component is O 2 - and F- .
(4)根据(1)~(3)任一所述的玻璃,其组分以摩尔百分比表示,其中:Al3+/Ln3+为0.2以上,优选Al3+/Ln3+为0.2~20.0,更优选Al3+/Ln3+为0.5~15.0,进一步优选Al3+/Ln3+为1.0~10.0,更进一步优选Al3+/Ln3+为1.5~8.0。(4) The glass according to any one of (1) to (3), the components of which are represented by mole percentage, wherein: Al 3+ /Ln 3+ is 0.2 or more, preferably Al 3+ /Ln 3+ is 0.2 to 20.0, more preferably Al 3+ /Ln 3+ is 0.5-15.0, still more preferably Al 3+ /Ln 3+ is 1.0-10.0, still more preferably Al 3+ /Ln 3+ is 1.5-8.0 .
(5)根据(1)~(4)任一所述的玻璃,其组分以摩尔百分比表示,其中:Li+/(Mg2++Al3+)为0.4~10.0,优选Li+/(Mg2++Al3+)为0.6~7.0,更优选Li+/(Mg2++Al3+)为1.0~5.0,进一步优选Li+/(Mg2++Al3+)为1.2~3.0。(5) The glass according to any one of (1) to (4), the components of which are represented by mole percent, wherein: Li + /(Mg 2+ +Al 3+ ) is 0.4 to 10.0, preferably Li + /( Mg 2+ +Al 3+ ) is 0.6 to 7.0, more preferably Li + /(Mg 2+ +Al 3+ ) is 1.0 to 5.0, more preferably Li + /(Mg 2+ +Al 3+ ) is 1.2 to 3.0 .
(6)根据(1)~(5)任一所述的玻璃,其组分以摩尔百分比表示,其中:Cu2+/Al3+为1.0~15.0,优选Cu2+/Al3+为2.0~10.0,更优选Cu2+/Al3+为3.0~8.0,进一步优选Cu2+/Al3+为4.0~7.0。(6) The glass according to any one of (1) to (5), the components of which are represented by mole percentage, wherein: Cu 2+ /Al 3+ is 1.0 to 15.0, preferably Cu 2+ /Al 3+ is 2.0 ~10.0, more preferably Cu 2+ /Al 3+ is 3.0-8.0, still more preferably Cu 2+ /Al 3+ is 4.0-7.0.
(7)根据(1)~(6)任一所述的玻璃,其组分以摩尔百分比表示,其中:(Cu2++Mg2+)/(Li++Al3+)为0.3~6.0,优选(Cu2++Mg2+)/(Li++Al3+)为0.5~5.0,更优选(Cu2++Mg2+)/(Li++Al3+)为0.7~3.0,进一步优选(Cu2++Mg2+)/(Li++Al3+)为0.8~2.0。(7) The glass according to any one of (1) to (6), the components of which are expressed in molar percentages, wherein: (Cu 2+ +Mg 2+ )/(Li ++ +Al 3+ ) is 0.3 to 6.0 , preferably (Cu 2+ +Mg 2+ )/(Li + +Al 3+ ) is 0.5-5.0, more preferably (Cu 2+ +Mg 2+ )/(Li + +Al 3+ ) is 0.7-3.0, More preferably, (Cu 2+ +Mg 2+ )/(Li + +Al 3+ ) is 0.8 to 2.0.
(8)根据(1)~(7)任一所述的玻璃,其组分以摩尔百分比表示,其中:Ln3+/R2+为0.01以上,优选Ln3+/R2+为0.01~3.0,更优选Ln3+/R2+为0.03~1.0,进一步优选Ln3+/R2+为0.05~0.8,更进一步优选Ln3+/R2+为0.07~0.5。(8) The glass according to any one of (1) to (7), the components of which are represented by mole percentage, wherein: Ln 3+ /R 2+ is more than 0.01, preferably Ln 3+ /R 2+ is 0.01 to 3.0, more preferably Ln 3+ /R 2+ is 0.03-1.0, still more preferably Ln 3+ /R 2+ is 0.05-0.8, still more preferably Ln 3+ /R 2+ is 0.07-0.5.
(9)根据(1)~(8)任一所述的玻璃,其组分以摩尔百分比表示,其中:Ln3+/(Ba2++Al3+)为0.02以上,优选Ln3+/(Ba2++Al3+)为0.02~2.0,更优选Ln3+/(Ba2++Al3+)为0.05~1.0,进一步优选Ln3+/(Ba2++Al3+)为0.08~0.8,更进一步优选Ln3+/(Ba2++Al3+)为0.1~0.5。(9) The glass according to any one of (1) to (8), the components of which are expressed in mole percent, wherein: Ln 3+ /(Ba 2+ +Al 3+ ) is more than 0.02, preferably Ln 3+ / (Ba 2+ +Al 3+ ) is 0.02 to 2.0, more preferably Ln 3+ /(Ba 2+ +Al 3+ ) is 0.05 to 1.0, more preferably Ln 3+ /(Ba 2+ +Al 3+ ) is 0.08 to 0.8, more preferably Ln 3+ /(Ba 2+ +Al 3+ ) is 0.1 to 0.5.
(10)根据(1)~(9)任一所述的玻璃,其组分以摩尔百分比表示,其中:P5+/(Al3++Ln3+)为5.0~50.0,优选P5+/(Al3++Ln3+)为10.0~35.0,更优选P5+/(Al3++Ln3+)为12.0~30.0,进一步优选P5+/(Al3++Ln3+)为15.0~25.0。(10) The glass according to any one of (1) to (9), the components of which are expressed in molar percentages, wherein: P 5+ /(Al 3+ +Ln 3+ ) is 5.0 to 50.0, preferably P 5+ /(Al 3+ +Ln 3+ ) is 10.0 to 35.0, more preferably P 5+ /(Al 3+ +Ln 3+ ) is 12.0 to 30.0, more preferably P 5+ /(Al 3+ +Ln 3+ ) 15.0 to 25.0.
(11)根据(1)~(10)任一所述的玻璃,其组分以摩尔百分比表示,其中:Cu2+/Ln3+为2.0以上,优选Cu2+/Ln3+为2.0~40.0,更优选Cu2+/Ln3+为5.0~30.0,进一步优选Cu2+/Ln3+为8.0~20.0,更进一步优选Cu2+/Ln3+为10.0~15.0。(11) The glass according to any one of (1) to (10), the components of which are represented by mole percentage, wherein: Cu 2+ /Ln 3+ is 2.0 or more, preferably Cu 2+ /Ln 3+ is 2.0 to 40.0, more preferably Cu 2+ /Ln 3+ is 5.0-30.0, still more preferably Cu 2+ /Ln 3+ is 8.0-20.0, still more preferably Cu 2+ /Ln 3+ is 10.0-15.0.
(12)根据(1)~(11)任一所述的玻璃,其组分以摩尔百分比表示,其中:P5+/R2+为3.0~30.0,优选P5+/R2+为3.5~25.0,更优选P5+/R2+为4.0~20.0,进一步优选P5+/R2+为5.0~10.0。(12) The glass according to any one of (1) to (11), the components of which are represented by mole percentage, wherein: P 5+ /R 2+ is 3.0 to 30.0, preferably P 5+ /R 2+ is 3.5 ~25.0, more preferably P 5+ /R 2+ is 4.0-20.0, still more preferably P 5+ /R 2+ is 5.0-10.0.
(13)根据(1)~(12)任一所述的玻璃,其组分以摩尔百分比表示,其中:Ln3+/F-为0.01以上,优选Ln3+/F-为0.02~10.0,更优选Ln3+/F-为0.05~5.0,进一步优选Ln3+/F-为0.05~2.0,更进一步优选Ln3+/F-为0.1~1.0。(13) The glass according to any one of (1) to (12), the components of which are represented by mole percentage, wherein: Ln 3+ /F - is more than 0.01, preferably Ln 3+ /F - is 0.02 to 10.0, More preferably, Ln 3+ /F - is 0.05 to 5.0, still more preferably, Ln 3+ /F - is 0.05 to 2.0, and still more preferably, Ln 3+ /F - is 0.1 to 1.0.
(14)根据(1)~(13)任一所述的玻璃,其组分以摩尔百分比表示,其中:F-/Cu2+为0.05~2.0,优选F-/Cu2+为0.1~1.5,更优选F-/Cu2+为0.2~1.0,进一步优选F-/Cu2+为0.3~0.8。(14) The glass according to any one of (1) to (13), the components of which are expressed in mole percent, wherein: F - /Cu 2+ is 0.05 to 2.0, preferably F - /Cu 2+ is 0.1 to 1.5 , more preferably F − /Cu 2+ is 0.2 to 1.0, further preferably F − /Cu 2+ is 0.3 to 0.8.
(15)根据(1)~(14)任一所述的玻璃,其组分以摩尔百分比表示,其中:P5+:56~68%,优选P5+:60~65%;和/或Al3+:0.5~8%,优选Al3+:1~5%;和/或Cu2+:6~20%,优选Cu2+:8~15%;和/或Rn+:7~20%,优选Rn+:10~17%;和/或R2+:3~16%,优选R2+:5~14%;和/或Ln3+:0.1~6%,优选Ln3+:0.5~4%;和/或Zn2+:0~5%,优选Zn2+:0~2%;和/或Si4+:0~2%,优选Si4+:0~1%;和/或B3+:0~2%,优选B3+:0~1%;和/或Zr4+:0~2%,优选Zr4+:0~1%;和/或Sb3++Sn4++Ce4+:0~0.5%,优选Sb3++Sn4++Ce4+:0~0.1%,所述Rn+为Li+、Na+、K+中的一种或多种,R2+为Mg2+、Ca2+、Sr2+、Ba2+中的一种或多种,Ln3+为La3+、Gd3+、Y3+中的一种或多种。(15) The glass according to any one of (1) to (14), the components of which are represented by mole percentage, wherein: P 5+ : 56-68%, preferably P 5+ : 60-65%; and/or Al 3+ : 0.5-8%, preferably Al 3+ : 1-5%; and/or Cu 2+ : 6-20%, preferably Cu 2+ : 8-15%; and/or Rn + : 7-20% %, preferably Rn + : 10-17%; and/or R 2+ : 3-16%, preferably R 2+ : 5-14%; and/or Ln 3+ : 0.1-6%, preferably Ln 3+ : 0.5-4%; and/or Zn 2+ : 0-5%, preferably Zn 2+ : 0-2%; and/or Si 4+ : 0-2%, preferably Si 4+ : 0-1%; and /or B 3+ : 0-2%, preferably B 3+ : 0-1%; and/or Zr 4+ : 0-2%, preferably Zr 4+ : 0-1%; and/or Sb 3+ + Sn 4+ +Ce 4+ : 0-0.5%, preferably Sb 3+ +Sn 4+ +Ce 4+ : 0-0.1%, the Rn + is one or more of Li + , Na + , K + R 2+ is one or more of Mg 2+ , Ca 2+ , Sr 2+ , Ba 2+ , Ln 3+ is one or more of La 3+ , Gd 3+ , Y 3+ kind.
(16)根据(1)~(15)任一所述的玻璃,其组分以摩尔百分比表示,其中:Li+:5~25%,优选Li+:8~20%,更优选Li+:10~16%;和/或Na+:0~10%,优选Na+:0~5%,更优选Na+:0~2%;和/或K+:0~10%,优选K+:0~5%,更优选K+:0~2%;和/或Mg2+:0~15%,优选Mg2+:0.5~10%,更优选Mg2+:2~8%;和/或Ca2+:0~10%,优选Ca2+:0~5%,更优选Ca2+:0~2%;和/或Sr2+:0~10%,优选Sr2+:0~5%,更优选Sr2+:0~2%;和/或Ba2+:0~10%,优选Ba2+:0.5~8%,更优选Ba2+:1~6%;和/或La3+:0~5%,优选La3+:0~3%,更优选La3+:0~2%;和/或Gd3+:0~5%,优选Gd3+:0~3%,更优选Gd3+:0~2%;和/或Y3+:0~6%,优选Y3+:0.1~5%,更优选Y3+:0.5~3%。(16) The glass according to any one of (1) to (15), the components of which are represented by mole percentage, wherein: Li + : 5-25%, preferably Li + : 8-20%, more preferably Li + : 10-16%; and/or Na + : 0-10%, preferably Na + : 0-5%, more preferably Na + : 0-2%; and/or K + : 0-10%, preferably K + : 0-5%, more preferably K + : 0-2%; and/or Mg 2+ : 0-15%, preferably Mg 2+ : 0.5-10%, more preferably Mg 2+ : 2-8%; and/or Or Ca 2+ : 0-10%, preferably Ca 2+ : 0-5%, more preferably Ca 2+ : 0-2%; and/or Sr 2+ : 0-10%, preferably Sr 2+ : 0-2% 5%, more preferably Sr 2+ : 0-2%; and/or Ba 2+ : 0-10%, preferably Ba 2+ : 0.5-8%, more preferably Ba 2+ : 1-6%; and/or La 3+ : 0-5%, preferably La 3+ : 0-3%, more preferably La 3+ : 0-2%; and/or Gd 3+ : 0-5%, preferably Gd 3+ : 0-3% %, more preferably Gd 3+ : 0-2%; and/or Y 3+ : 0-6%, preferably Y 3+ : 0.1-5%, more preferably Y 3+ : 0.5-3%.
(17)根据(1)或(2)所述的玻璃,其组分以摩尔百分比表示,阴离子组分还含有:Cl-+Br-+I-:0~2%,优选Cl-+Br-+I-:0~1%,更优选Cl-+Br-+I-:0~0.5%。(17) The glass according to (1) or (2), its components are represented by mole percentage, and the anion component also contains: Cl - +Br - +I - : 0~2%, preferably Cl - +Br - +I - : 0 to 1%, more preferably Cl - +Br - +I - : 0 to 0.5%.
(18)根据(1)~(17)任一所述的玻璃,其组分以摩尔百分比表示,其中:O2-:85~99.5%,优选O2-:88~99%,更优选O2-:91~98%;和/或F-:0.5~15%,优选F-:1~12%,更优选F-:2~9%。(18) The glass according to any one of (1) to (17), the components of which are represented by mole percentage, wherein: O 2- : 85-99.5%, preferably O 2- : 88-99%, more preferably O 2- : 91 to 98%; and/or F - : 0.5 to 15%, preferably F - : 1 to 12%, more preferably F - : 2 to 9%.
(19)根据(1)~(18)任一所述的玻璃,所述玻璃的转变温度Tg为410℃以下,优选为400℃以下,更优选为390℃以下,进一步优选为370~390℃;和/或密度ρ为3.3g/cm3以下,优选为3.2g/cm3以下,更优选为3.1g/cm3以下,进一步优选为3.0g/cm3以下;和/或热膨胀系数α20-120℃为110×10-7/K以下,优选为100×10-7/K以下,更优选为95×10-7/K以下;和/或硬度Hv为380kgf/mm2以上,优选为390kgf/mm2以上,更优选为400kgf/mm2以上,进一步优选为410kgf/mm2以上;杨氏模量E为5500×107~8500×107Pa,优选为6000×107~8000×107Pa,更优选为6500×107~7500×107Pa。(19) The glass according to any one of (1) to (18), wherein the transition temperature T g of the glass is 410° C. or lower, preferably 400° C. or lower, more preferably 390° C. or lower, and still more preferably 370 to 390° C. °C; and/or the density ρ is 3.3 g/cm 3 or less, preferably 3.2 g/cm 3 or less, more preferably 3.1 g/cm 3 or less, further preferably 3.0 g/cm 3 or less; and/or thermal expansion coefficient α 20-120°C is 110×10 -7 /K or less, preferably 100×10 -7 /K or less, more preferably 95×10 -7 /K or less; and/or the hardness H v is 380kgf/mm 2 or more, It is preferably 390kgf/ mm2 or more, more preferably 400kgf/ mm2 or more, and even more preferably 410kgf/ mm2 or more; Young's modulus E is 5500×10 7 to 8500×10 7 Pa, preferably 6000×10 7 to 8000×10 7 Pa, more preferably 6500×10 7 to 7500×10 7 Pa.
(20)根据(1)~(19)任一所述的玻璃,0.5mm以下厚度的玻璃,500~700nm的波长范围内的光谱透过率中,透过率达50%时对应的波长λ50为635nm以下,优选为600~630nm,更优选为610~625nm。(20) For the glass according to any one of (1) to (19), the wavelength λ corresponding to when the transmittance reaches 50% of the spectral transmittance in the wavelength range of 500 to 700 nm for glass with a thickness of 0.5 mm or less 50 is 635 nm or less, preferably 600 to 630 nm, more preferably 610 to 625 nm.
(21)根据(1)~(20)任一所述的玻璃,0.5mm以下厚度的玻璃400nm处的透过率τ400为80.0%以上,优选为82.0%以上,更优选为84.0%以上;和/或500nm处的透过率τ500为83.0%以上,优选为85.0%以上,更优选为88.0%以上;和/或1100nm处的透过率τ1100为10.0%以下,优选为7.0%以下,更优选为5.0%以下,进一步优选为3.0%以下。(21) The glass according to any one of (1) to (20), wherein the transmittance τ 400 at 400 nm of the glass with a thickness of 0.5 mm or less is 80.0% or more, preferably 82.0% or more, more preferably 84.0% or more; And/or the transmittance τ 500 at 500nm is 83.0% or more, preferably 85.0% or more, more preferably 88.0% or more; and/or the transmittance τ 1100 at 1100nm is 10.0% or less, preferably 7.0% or less , more preferably 5.0% or less, still more preferably 3.0% or less.
(22)根据(20)或(21)所述的玻璃,所述玻璃的厚度为0.05~0.4mm,优选为0.1~0.3mm,更优选为0.1mm或0.15mm或0.2mm或0.25mm。(22) The glass according to (20) or (21), which has a thickness of 0.05-0.4 mm, preferably 0.1-0.3 mm, more preferably 0.1 mm or 0.15 mm or 0.2 mm or 0.25 mm.
(23)玻璃元件,含有(1)~(21)任一所述的玻璃。(23) A glass element containing the glass described in any one of (1) to (21).
(24)滤光器,含有(1)~(21)任一所述的玻璃,或含有(23)所述的玻璃元件。(24) An optical filter comprising the glass described in any one of (1) to (21), or comprising the glass element described in (23).
(25)一种设备,含有(1)~(21)任一所述的玻璃,或含有(23)所述的玻璃元件,或含有(24)所述的滤光器。(25) A device comprising the glass described in any one of (1) to (21), or comprising the glass element described in (23), or comprising the optical filter described in (24).
本发明的有益效果是:通过合理的组分设计,本发明获得的玻璃具有优异的内在质量,在可视域优异的透过特性和近红外区域优异的吸收特性。The beneficial effects of the invention are: through reasonable component design, the glass obtained by the invention has excellent internal quality, excellent transmission properties in the visible region and excellent absorption properties in the near-infrared region.
具体实施方式Detailed ways
下面,对本发明的实施方式进行详细说明,但本发明不限于下述的实施方式,在本发明目的的范围内可进行适当的变更来加以实施。此外,关于重复说明部分,虽然有适当的省略说明的情况,但不会因此而限制发明的主旨。Embodiments of the present invention will be described in detail below, but the present invention is not limited to the following embodiments, and can be implemented with appropriate changes within the scope of the purpose of the present invention. In addition, although there may be cases where descriptions are appropriately omitted regarding overlapping descriptions, the gist of the invention is not limited thereto.
[玻璃][Glass]
下面对本发明组成玻璃的各组分(成分)范围进行说明。在本说明书中,如果没有特殊说明,阳离子组分的含量以该阳离子占全部阳离子组分的摩尔百分比(mol%)表示,阴离子组分的含量以该阴离子占全部阴离子组分的摩尔百分比(mol%)表示;阳离子组分含量之间的比值是各阳离子组分含量之间的摩尔百分比含量的比值;阴离子组分含量之间的比值是各阴离子组分含量之间的摩尔百分比含量的比值;阴阳离子组分含量之间的比值,是阳离子组分占所有阳离子组分的摩尔百分比含量与阴离子组分占所有阴离子组分的摩尔百分比含量之间的比值。The scope of each component (ingredient) constituting the glass of the present invention will be described below. In this specification, unless otherwise specified, the content of cationic components is represented by the molar percentage (mol%) of the cationic components in all cationic components, and the content of anionic components is represented by the molar percentage (mol%) of the anion in all cationic components. %) represents; the ratio between the cationic component contents is the ratio of the molar percentage content between the cationic component contents; the ratio between the anionic component contents is the ratio of the molar percent content between the various anionic component contents; The ratio between the content of anion and cation components is the ratio between the mole percentage content of cationic components accounting for all cationic components and the molar percentage content of anion components accounting for all anion components.
除非在具体情况下另外指出,本文所列出的数值范围包括上限和下限值,“以上”和“以下”包括端点值,以及包括在该范围内的所有整数和分数,而不限于所限定范围时所列的具体值。本文所称“和/或”是包含性的,例如“A和/或B”,是指只有A,或者只有B,或者同时有A和B。Unless otherwise indicated in a specific instance, the numerical ranges set forth herein include the upper and lower values, "above" and "below" include the endpoints, and all integers and fractions within the range, without limitation. Specific values listed when in range. The term "and/or" herein is inclusive, for example, "A and/or B" means only A, or only B, or both A and B.
需要说明的是,以下描述的各组分的离子价是为了方便而使用的代表值,与其他的离子价没有区别。玻璃中各组分的离子价存在代表值以外的可能性。例如,P通常以离子价为+5价的状态存在于玻璃中,因此在本专利中以“P5+”作为代表值,但是存在以其他的离子价状态存在的可能性,这也在本专利的保护范围之内。It should be noted that the ionic valences of the components described below are representative values used for convenience and are not different from other ionic valences. The ion valence of each component in the glass may be other than the representative value. For example, P usually exists in the glass with an ion valence of +5, so "P 5+ " is used as a representative value in this patent, but there is a possibility of existing in other ion valence states, which is also included in this patent. within the scope of patent protection.
<阳离子组分><Cation component>
P5+是本发明构成玻璃骨架不可缺少的组分,能够促进玻璃的形成并有利于提高玻璃的近红外吸收性能,若P5+的含量低于51%,上述效果不充分,玻璃的近红外吸收功能达不到设计要求;若P5+的含量超过72%,玻璃的失透倾向增加,耐候性降低。因此本发明中P5+的含量为51~72%,优选为56~68%,更优选为60~65%。在一些实施方式中,可包含约51%、52%、53%、54%、55%、56%、57%、58%、59%、60%、61%、62%、63%、64%、65%、66%、67%、68%、69%、70%、71%、72%的P5+。P 5+ is an indispensable component of the glass skeleton in the present invention, which can promote the formation of glass and help to improve the near-infrared absorption performance of the glass. If the content of P 5+ is lower than 51%, the above-mentioned effects are not sufficient, and the near-infrared absorption of the glass The infrared absorption function cannot meet the design requirements; if the P 5+ content exceeds 72%, the devitrification tendency of the glass increases and the weather resistance decreases. Therefore, the content of P 5+ in the present invention is 51-72%, preferably 56-68%, more preferably 60-65%. In some embodiments, about 51%, 52%, 53%, 54%, 55%, 56%, 57%, 58%, 59%, 60%, 61%, 62%, 63%, 64% , 65%, 66%, 67%, 68%, 69%, 70%, 71%, 72% of P 5+ .
Al3+有利于增加玻璃的稳定性,提高玻璃的强度以及改善玻璃的耐候性,但当其含量超过10%,玻璃的析晶倾向增加,且玻璃的熔融性能变差。因此本发明中Al3+的含量为0~10%,优选为0.5~8%,更优选为1~5%。在一些实施方式中,可包含约0、大于0、0.01%、0.05%、0.1%、0.5%、1%、1.5%、2%、2.5%、3%、3.5%、4%、4.5%、5%、5.5%、6%、6.5%、7%、7.5%、8%、8.5%、9%、9.5%、10%的Al3+。Al 3+ is beneficial to increase the stability of the glass, increase the strength of the glass and improve the weather resistance of the glass, but when its content exceeds 10%, the crystallization tendency of the glass increases, and the melting performance of the glass becomes poor. Therefore, the content of Al 3+ in the present invention is 0-10%, preferably 0.5-8%, more preferably 1-5%. In some embodiments, about 0, greater than 0, 0.01%, 0.05%, 0.1%, 0.5%, 1%, 1.5%, 2%, 2.5%, 3%, 3.5%, 4%, 4.5%, 5%, 5.5%, 6%, 6.5%, 7%, 7.5%, 8%, 8.5%, 9%, 9.5%, 10% Al 3+ .
Cu2+是本发明玻璃获得近红外光吸收性能的必要组分,若其含量低于5%,玻璃的近红外吸收性能难以达到设计要求,但若Cu2+的含量超过25%,玻璃的可见光区域透过率降低,玻璃中Cu的价态发生变化,难以获得期望的光吸收性能,玻璃的耐失透性降低。因此本发明中Cu2+的含量为5~25%,优选为6~20%,更优选为8~15%。在一些实施方式中,可包含约5%、5.5%、6%、6.5%、7%、7.5%、8%、8.5%、9%、9.5%、10%、10.5%、11%、11.5%、12%、12.5%、13%、13.5%、14%、14.5%、15%、15.5%、16%、16.5%、17%、17.5%、18%、18.5%、19%、19.5%、20%、20.5%、21%、21.5%、22%、22.5%、23%、23.5%、24%、24.5%、25%的Cu2+。Cu 2+ is an essential component for the glass of the present invention to obtain near-infrared light absorption performance. If its content is lower than 5%, the near-infrared absorption performance of the glass is difficult to meet the design requirements, but if the content of Cu 2+ exceeds 25%, the glass’s The transmittance in the visible light region decreases, the valence state of Cu in the glass changes, it is difficult to obtain the desired light absorption performance, and the devitrification resistance of the glass decreases. Therefore, the content of Cu 2+ in the present invention is 5-25%, preferably 6-20%, more preferably 8-15%. In some embodiments, about 5%, 5.5%, 6%, 6.5%, 7%, 7.5%, 8%, 8.5%, 9%, 9.5%, 10%, 10.5%, 11%, 11.5% , 12%, 12.5%, 13%, 13.5%, 14%, 14.5%, 15%, 15.5%, 16%, 16.5%, 17%, 17.5%, 18%, 18.5%, 19%, 19.5%, 20 %, 20.5%, 21%, 21.5%, 22%, 22.5%, 23%, 23.5%, 24%, 24.5%, 25% Cu 2+ .
在一些实施方式中,将Cu2+的含量与Al3+的含量之间的比值Cu2+/Al3+控制在1.0~15.0范围内,可使玻璃在可见光域具有优异的透过率,提高玻璃的近红外吸收性能,以及适宜的杨氏模量。因此,优选Cu2+/Al3+为1.0~15.0,更优选Cu2+/Al3+为2.0~10.0,进一步优选Cu2+/Al3+为3.0~8.0,更进一步优选Cu2+/Al3+为4.0~7.0。在一些实施方式中,Cu2+/Al3+的值可为1.0、1.5、2.0、2.5、3.0、3.5、4.0、4.5、5.0、5.5、6.0、6.5、7.0、7.5、8.0、8.5、9.0、9.5、10.0、10.5、11.0、11.5、12.0、12.5、13.0、13.5、14.0、14.5、15.0。In some embodiments, controlling the ratio Cu 2+ /Al 3+ between the content of Cu 2+ and the content of Al 3+ in the range of 1.0 to 15.0 can make the glass have excellent transmittance in the visible light range, Improve the near-infrared absorption performance of the glass, and the appropriate Young's modulus. Therefore, it is preferable that Cu 2+ /Al 3+ is 1.0 to 15.0, more preferably Cu 2+ /Al 3+ is 2.0 to 10.0, further preferably Cu 2+ /Al 3+ is 3.0 to 8.0, still more preferably Cu 2+ / Al 3+ is 4.0 to 7.0. In some embodiments, the value of Cu2 + /Al3 + can be 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0, 5.5, 6.0, 6.5, 7.0, 7.5, 8.0, 8.5, 9.0 , 9.5, 10.0, 10.5, 11.0, 11.5, 12.0, 12.5, 13.0, 13.5, 14.0, 14.5, 15.0.
Ln3+(Ln3+为La3+、Gd3+、Y3+中的一种或多种)有利于提高玻璃的可见光透过率和近红外吸收性能,改善玻璃的化学稳定性和硬度,若其含量超过8%,玻璃的抗析晶性能变差。因此,Ln3+的含量为8%以下,优选为0.1~6%,更优选为0.5~4%。在一些实施方式中,可包含约0、大于0、0.01%、0.05%、0.1%、0.2%、0.3%、0.4%、0.5%、0.6%、0.7%、0.8%、0.9%、1%、1.1%、1.2%、1.3%、1.4%、1.5%、1.6%、1.7%、1.8%、1.9%、2%、2.1%、2.2%、2.3%、2.4%、2.5%、2.6%、2.7%、2.8%、2.9%、3%、3.5%、4%、4.5%、5%、5.5%、6%、6.5%、7%、7.5%、8%的Ln3+。Ln 3+ (Ln 3+ is one or more of La 3+ , Gd 3+ , Y 3+ ) is beneficial to improve the visible light transmittance and near-infrared absorption performance of the glass, and improve the chemical stability and hardness of the glass , if its content exceeds 8%, the anti-devitrification performance of the glass will be deteriorated. Therefore, the content of Ln 3+ is 8% or less, preferably 0.1-6%, more preferably 0.5-4%. In some embodiments, about 0, greater than 0, 0.01%, 0.05%, 0.1%, 0.2%, 0.3%, 0.4%, 0.5%, 0.6%, 0.7%, 0.8%, 0.9%, 1%, 1.1%, 1.2%, 1.3%, 1.4%, 1.5%, 1.6%, 1.7%, 1.8%, 1.9%, 2%, 2.1%, 2.2%, 2.3%, 2.4%, 2.5%, 2.6%, 2.7% , 2.8%, 2.9%, 3%, 3.5%, 4%, 4.5%, 5%, 5.5%, 6%, 6.5%, 7%, 7.5%, 8% of Ln 3+ .
Y3+在玻璃中相比La3+和Gd3+,更有利于获得本发明期望的光谱特性,因此,优选Y3+的含量为0~6%,更优选为0.1~5%,进一步优选为0.5~3%;优选La3+的含量为0~5%,更优选为0~3%,进一步优选为0~2%;优选Gd3+的含量为0~5%,更优选为0~3%,进一步优选为0~2%。在一些实施方式中,可包含约0、大于0、0.01%、0.05%、0.1%、0.2%、0.3%、0.4%、0.5%、0.6%、0.7%、0.8%、0.9%、1%、1.1%、1.2%、1.3%、1.4%、1.5%、1.6%、1.7%、1.8%、1.9%、2%、2.1%、2.2%、2.3%、2.4%、2.5%、2.6%、2.7%、2.8%、2.9%、3%、3.5%、4%、4.5%、5%、5.5%、6%的Y3+。在一些实施方式中,可包含约0、大于0、0.01%、0.05%、0.1%、0.2%、0.3%、0.4%、0.5%、0.6%、0.7%、0.8%、0.9%、1%、1.1%、1.2%、1.3%、1.4%、1.5%、1.6%、1.7%、1.8%、1.9%、2%、2.1%、2.2%、2.3%、2.4%、2.5%、2.6%、2.7%、2.8%、2.9%、3%、3.5%、4%、4.5%、5%的La3+。在一些实施方式中,可包含约0、大于0、0.01%、0.05%、0.1%、0.2%、0.3%、0.4%、0.5%、0.6%、0.7%、0.8%、0.9%、1%、1.1%、1.2%、1.3%、1.4%、1.5%、1.6%、1.7%、1.8%、1.9%、2%、2.1%、2.2%、2.3%、2.4%、2.5%、2.6%、2.7%、2.8%、2.9%、3%、3.5%、4%、4.5%、5%的Gd3+。Compared with La 3+ and Gd 3+ in glass, Y 3+ is more conducive to obtaining the desired spectral characteristics of the present invention. Therefore, the content of Y 3+ is preferably 0-6%, more preferably 0.1-5%, and further Preferably 0.5-3%; preferably La 3+ content is 0-5%, more preferably 0-3%, further preferably 0-2%; preferably Gd 3+ content is 0-5%, more preferably 0 to 3%, more preferably 0 to 2%. In some embodiments, about 0, greater than 0, 0.01%, 0.05%, 0.1%, 0.2%, 0.3%, 0.4%, 0.5%, 0.6%, 0.7%, 0.8%, 0.9%, 1%, 1.1%, 1.2%, 1.3%, 1.4%, 1.5%, 1.6%, 1.7%, 1.8%, 1.9%, 2%, 2.1%, 2.2%, 2.3%, 2.4%, 2.5%, 2.6%, 2.7% , 2.8%, 2.9%, 3%, 3.5%, 4%, 4.5%, 5%, 5.5%, 6% of Y 3+ . In some embodiments, about 0, greater than 0, 0.01%, 0.05%, 0.1%, 0.2%, 0.3%, 0.4%, 0.5%, 0.6%, 0.7%, 0.8%, 0.9%, 1%, 1.1%, 1.2%, 1.3%, 1.4%, 1.5%, 1.6%, 1.7%, 1.8%, 1.9%, 2%, 2.1%, 2.2%, 2.3%, 2.4%, 2.5%, 2.6%, 2.7% , 2.8%, 2.9%, 3%, 3.5%, 4%, 4.5%, 5% of La 3+ . In some embodiments, about 0, greater than 0, 0.01%, 0.05%, 0.1%, 0.2%, 0.3%, 0.4%, 0.5%, 0.6%, 0.7%, 0.8%, 0.9%, 1%, 1.1%, 1.2%, 1.3%, 1.4%, 1.5%, 1.6%, 1.7%, 1.8%, 1.9%, 2%, 2.1%, 2.2%, 2.3%, 2.4%, 2.5%, 2.6%, 2.7% , 2.8%, 2.9%, 3%, 3.5%, 4%, 4.5%, 5% of Gd 3+ .
在一些实施方式中,将Al3+的含量与Ln3+的含量之间的比例Al3+/Ln3+控制在0.2以上,有利于玻璃获得适宜的杨氏模量与磨耗度。因此,优选Al3+/Ln3+为0.2以上,更优选Al3+/Ln3+为0.2~20.0,进一步优选Al3+/Ln3+为0.5~15.0。进一步的,将Al3+/Ln3+控制在1.0~10.0范围内,还有利于玻璃获得较高的硬度的同时,防止玻璃的转变温度升高。因此,更进一步优选Al3+/Ln3+为1.0~10.0,再进一步优选Al3+/Ln3+为1.5~8.0。在一些实施方式中,Al3+/Ln3+的值可为0.2、0.3、0.4、0.5、0.6、0.7、0.8、0.9、1.0、1.1、1.2、1.3、1.4、1.5、1.6、1.7、1.8、1.9、2.0、2.1、2.2、2.3、2.4、2.5、2.6、2.7、2.8、2.9、3.0、3.1、3.2、3.3、3.4、3.5、3.6、3.7、3.8、3.9、4.0、4.5、5.0、5.5、6.0、6.5、7.0、7.5、8.0、8.5、9.0、9.5、10.0、10.5、11.0、11.5、12.0、12.5、13.0、13.5、14.0、14.5、15.0、15.5、16.0、16.5、17.0、17.5、18.0、18.5、19.0、19.5、20.0。In some embodiments, the ratio Al 3+ /Ln 3+ between the content of Al 3+ and the content of Ln 3+ is controlled above 0.2, which is beneficial for the glass to obtain a suitable Young's modulus and degree of abrasion. Therefore, Al 3+ /Ln 3+ is preferably 0.2 or more, more preferably Al 3+ /Ln 3+ is 0.2 to 20.0, and still more preferably Al 3+ /Ln 3+ is 0.5 to 15.0. Further, controlling the Al 3+ /Ln 3+ within the range of 1.0 to 10.0 is also beneficial for the glass to obtain higher hardness while preventing the transition temperature of the glass from increasing. Therefore, it is more preferable that Al 3+ /Ln 3+ is 1.0 to 10.0, and it is still more preferable that Al 3+ /Ln 3+ is 1.5 to 8.0. In some embodiments, the value of Al 3+ /Ln 3+ can be 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8 ,1.9,2.0,2.1,2.2,2.3,2.4,2.5,2.6,2.7,2.8,2.9,3.0,3.1,3.2,3.3,3.4,3.5,3.6,3.7,3.8,3.9,4.0,4.5,5.0,5.5 ,6.0,6.5,7.0,7.5,8.0,8.5,9.0,9.5,10.0,10.5,11.0,11.5,12.0,12.5,13.0,13.5,14.0,14.5,15.0,15.5,16.0,16.5,17.0,17.5,18.0 , 18.5, 19.0, 19.5, 20.0.
在一些实施方式中,通过控制P5+/(Al3++Ln3+)在5.0~50.0范围内,可提高玻璃的硬度,防止玻璃密度增加。因此,优选P5+/(Al3++Ln3+)为5.0~50.0,更优选P5+/(Al3++Ln3+)为10.0~35.0。进一步的,将P5+/(Al3++Ln3+)控制在12.0~30.0范围内,还可进一步提高玻璃可见光透过率。因此,进一步优选P5+/(Al3++Ln3+)为12.0~30.0,更进一步优选P5+/(Al3++Ln3 +)为15.0~25.0。在一些实施方式中,P5+/(Al3++Ln3+)的值可为5.0、6.0、7.0、8.0、9.0、10.0、11.0、12.0、13.0、14.0、15.0、16.0、17.0、18.0、19.0、20.0、21.0、22.0、23.0、24.0、25.0、26.0、27.0、28.0、29.0、30.0、31.0、32.0、33.0、34.0、35.0、36.0、37.0、38.0、39.0、40.0、41.0、42.0、43.0、44.0、45.0、46.0、47.0、48.0、49.0、50.0。In some embodiments, by controlling P 5+ /(Al 3+ +Ln 3+ ) in the range of 5.0-50.0, the hardness of the glass can be improved and the density of the glass can be prevented from increasing. Therefore, P 5+ /(Al 3+ +Ln 3+ ) is preferably 5.0 to 50.0, more preferably P 5+ /(Al 3+ +Ln 3+ ) is 10.0 to 35.0. Further, controlling P 5+ /(Al 3+ +Ln 3+ ) within the range of 12.0-30.0 can further increase the visible light transmittance of the glass. Therefore, it is more preferable that P 5+ /(Al 3+ +Ln 3+ ) is 12.0 to 30.0, and it is still more preferable that P 5+ /(Al 3+ +Ln 3 + ) is 15.0 to 25.0. In some embodiments, the value of P 5+ /(Al 3+ +Ln 3+ ) may be 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0, 13.0, 14.0, 15.0, 16.0, 17.0, 18.0 . , 44.0, 45.0, 46.0, 47.0, 48.0, 49.0, 50.0.
在一些实施方式中,将Cu2+/Ln3+控制在2.0以上,有利于提高玻璃的近红外吸收性能。因此,优选Cu2+/Ln3+为2.0以上,更优选Cu2+/Ln3+为2.0~40.0。进一步的,当控制Cu2+/Ln3 +在5.0~30.0范围内,还有利于提高玻璃的硬度,降低转变温度。因此,进一步优选Cu2+/Ln3+为5.0~30.0,更进一步优选Cu2+/Ln3+为8.0~20.0,再进一步优选Cu2+/Ln3+为10.0~15.0。在一些实施方式中,Cu2+/Ln3+的值可为2.0、3.0、4.0、5.0、6.0、7.0、8.0、9.0、10.0、11.0、12.0、13.0、14.0、15.0、16.0、17.0、18.0、19.0、20.0、21.0、22.0、23.0、24.0、25.0、26.0、27.0、28.0、29.0、30.0、31.0、32.0、33.0、34.0、35.0、36.0、37.0、38.0、39.0、40.0。In some embodiments, controlling Cu 2+ /Ln 3+ to be above 2.0 is beneficial to improve the near-infrared absorption performance of the glass. Therefore, it is preferable that Cu 2+ /Ln 3+ is 2.0 or more, and it is more preferable that Cu 2+ /Ln 3+ is 2.0 to 40.0. Furthermore, when Cu 2+ /Ln 3 + is controlled within the range of 5.0-30.0, it is also beneficial to increase the hardness of the glass and reduce the transition temperature. Therefore, it is more preferable that Cu 2+ /Ln 3+ is 5.0-30.0, it is still more preferable that Cu 2+ /Ln 3+ is 8.0-20.0, and it is still more preferable that Cu 2+ /Ln 3+ is 10.0-15.0. In some embodiments, the value of Cu 2+ /Ln 3+ may be 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0, 13.0, 14.0, 15.0, 16.0, 17.0, 18.0 .
Rn+(Rn+为Li+、Na+、K+中的一种或多种)可降低玻璃的熔融温度和粘度,并能促进更多的Cu以Cu2+的状态存在,但随着Rn+增加,玻璃的化学稳定性变差。本发明中通过含有5%以上的Rn+以获得上述性能,但当Rn+的含量超过25%,玻璃的耐失透性能降低,玻璃的成型性能变差,热膨胀系数上升。因此,本发明中Rn+的含量为5~25%,优选为7~20%,更优选为10~17%。在一些实施方式中,可包含约5%、5.5%、6%、6.5%、7%、7.5%、8%、8.5%、9%、9.5%、10%、10.5%、11%、11.5%、12%、12.5%、13%、13.5%、14%、14.5%、15%、15.5%、16%、16.5%、17%、17.5%、18%、18.5%、19%、19.5%、20%、20.5%、21%、21.5%、22%、22.5%、23%、23.5%、24%、24.5%、25%的Rn+。Rn + (Rn + is one or more of Li + , Na + , K + ) can reduce the melting temperature and viscosity of the glass, and can promote more Cu to exist in the state of Cu 2+ , but with the Rn + increases, the chemical stability of the glass becomes worse. In the present invention, the above properties are obtained by containing more than 5% Rn + , but when the content of Rn + exceeds 25%, the devitrification resistance of the glass decreases, the formability of the glass deteriorates, and the thermal expansion coefficient increases. Therefore, the content of Rn + in the present invention is 5-25%, preferably 7-20%, more preferably 10-17%. In some embodiments, about 5%, 5.5%, 6%, 6.5%, 7%, 7.5%, 8%, 8.5%, 9%, 9.5%, 10%, 10.5%, 11%, 11.5% , 12%, 12.5%, 13%, 13.5%, 14%, 14.5%, 15%, 15.5%, 16%, 16.5%, 17%, 17.5%, 18%, 18.5%, 19%, 19.5%, 20 %, 20.5%, 21%, 21.5%, 22%, 22.5%, 23%, 23.5%, 24%, 24.5%, 25% of Rn + .
Li+可以降低玻璃的熔融温度和粘度,改善玻璃可见光透过率,同时对化学稳定性的贡献优于Na+和K+,本发明中优选含有5%以上的Li+。但当Li+含量超过25%,玻璃的耐失透性和成型性能降低。因此,Li+的含量下限优选为5%,下限更优选为8%,下限进一步优选为10%,Li+的含量上限优选为25%,更优选上限为20%,进一步优选上限为16%。在一些实施方式中,可包含约5%、5.5%、6%、6.5%、7%、7.5%、8%、8.5%、9%、9.5%、10%、10.5%、11%、11.5%、12%、12.5%、13%、13.5%、14%、14.5%、15%、15.5%、16%、16.5%、17%、17.5%、18%、18.5%、19%、19.5%、20%、20.5%、21%、21.5%、22%、22.5%、23%、23.5%、24%、24.5%、25%的Li+。Li + can reduce the melting temperature and viscosity of the glass, improve the visible light transmittance of the glass, and at the same time contribute more to the chemical stability than Na + and K + , preferably containing more than 5% Li + in the present invention. But when the Li + content exceeds 25%, the devitrification resistance and formability of the glass are reduced. Therefore , the lower limit of the Li content is preferably 5%, the lower limit is more preferably 8%, and the lower limit is still more preferably 10%, and the upper limit of the Li content is preferably 25%, more preferably 20%, and even more preferably 16%. In some embodiments, about 5%, 5.5%, 6%, 6.5%, 7%, 7.5%, 8%, 8.5%, 9%, 9.5%, 10%, 10.5%, 11%, 11.5% , 12%, 12.5%, 13%, 13.5%, 14%, 14.5%, 15%, 15.5%, 16%, 16.5%, 17%, 17.5%, 18%, 18.5%, 19%, 19.5%, 20 %, 20.5%, 21%, 21.5%, 22%, 22.5%, 23%, 23.5%, 24%, 24.5%, 25% of Li + .
Na+是改善玻璃熔融性的组分。本发明中,通过使Na+的含量为10%以下,可在改善玻璃化学稳定性的同时,防止耐候性和加工性降低。优选Na+的含量为5%以下,更优选Na+的含量为2%以下。在一些实施方式中,可包含约0、大于0、0.01%、0.05%、0.1%、0.5%、1%、1.5%、2%、2.5%、3%、3.5%、4%、4.5%、5%、5.5%、6%、6.5%、7%、7.5%、8%、8.5%、9%、9.5%、10%的Na+。Na + is a component that improves glass meltability. In the present invention, by making the content of Na + 10% or less, the chemical stability of the glass can be improved, and degradation of weather resistance and workability can be prevented. The Na + content is preferably 5% or less, and the Na + content is more preferably 2% or less. In some embodiments, about 0, greater than 0, 0.01%, 0.05%, 0.1%, 0.5%, 1%, 1.5%, 2%, 2.5%, 3%, 3.5%, 4%, 4.5%, 5%, 5.5%, 6%, 6.5%, 7%, 7.5%, 8%, 8.5%, 9%, 9.5%, 10% Na + .
K+可提高玻璃在可见光区域的透过率,当其含量超过10%,玻璃的稳定性降低。因此,K+的含量为10%以下,优选K+的含量为5%以下,更优选K+的含量为2%以下。在一些实施方式中,可包含约0、大于0、0.01%、0.05%、0.1%、0.5%、1%、1.5%、2%、2.5%、3%、3.5%、4%、4.5%、5%、5.5%、6%、6.5%、7%、7.5%、8%、8.5%、9%、9.5%、10%的K+。K + can increase the transmittance of glass in the visible light region, and when its content exceeds 10%, the stability of glass decreases. Therefore, the content of K + is 10% or less, preferably the content of K + is 5% or less, and more preferably the content of K + is 2% or less. In some embodiments, about 0, greater than 0, 0.01%, 0.05%, 0.1%, 0.5%, 1%, 1.5%, 2%, 2.5%, 3%, 3.5%, 4%, 4.5%, 5%, 5.5%, 6%, 6.5%, 7%, 7.5%, 8%, 8.5%, 9%, 9.5%, 10% K + .
R2+(R2+为Mg2+、Ca2+、Sr2+、Ba2+中的一种或多种)可用于降低玻璃的熔融温度和热膨胀系数,提高玻璃的成玻稳定性和强度,但当R2+的含量超过18%,玻璃的耐失透性下降。本发明中R2+的含量为1~18%,优选为3~16%,更优选为5~14%。在一些实施方式中,可包含约1%、1.5%、2%、2.5%、3%、3.5%、4%、4.5%、5%、5.5%、6%、6.5%、7%、7.5%、8%、8.5%、9%、9.5%、10%、10.5%、11%、11.5%、12%、12.5%、13%、13.5%、14%、14.5%、15%、15.5%、16%、16.5%、17%、17.5%、18%的R2+。R 2+ (R 2+ is one or more of Mg 2+ , Ca 2+ , Sr 2+ , Ba 2+ ) can be used to reduce the melting temperature and thermal expansion coefficient of glass, improve the glass-forming stability and Strength, but when the R 2+ content exceeds 18%, the devitrification resistance of the glass decreases. The content of R 2+ in the present invention is 1-18%, preferably 3-16%, more preferably 5-14%. In some embodiments, about 1%, 1.5%, 2%, 2.5%, 3%, 3.5%, 4%, 4.5%, 5%, 5.5%, 6%, 6.5%, 7%, 7.5% , 8%, 8.5%, 9%, 9.5%, 10%, 10.5%, 11%, 11.5%, 12%, 12.5%, 13%, 13.5%, 14%, 14.5%, 15%, 15.5%, 16 %, 16.5%, 17%, 17.5%, 18% of R 2+ .
在一些实施方式中,将Ln3+/R2+控制在0.01以上,可优化玻璃的抗析晶性能,有利于降低玻璃的热膨胀系数。因此,优选Ln3+/R2+为0.01以上,更优选Ln3+/R2+为0.01~3.0。进一步的,通过控制Ln3+/R2+在0.03~1.0范围内,还有利于提高玻璃的近红外吸收性能。因此,进一步优选Ln3+/R2+为0.03~1.0,更进一步优选Ln3+/R2+为0.05~0.8,再进一步优选Ln3 +/R2+为0.07~0.5。在一些实施方式中,Ln3+/R2+的值可为0.01、0.02、0.03、0.04、0.05、0.06、0.07、0.08、0.09、0.1、0.11、0.12、0.13、0.14、0.15、0.16、0.17、0.18、0.19、0.2、0.21、0.22、0.23、0.24、0.25、0.26、0.27、0.28、0.29、0.3、0.35、0.4、0.45、0.5、0.55、0.6、0.65、0.7、0.75、0.8、0.85、0.9、0.95、1.0、1.1、1.2、1.3、1.4、1.5、1.6、1.7、1.8、1.9、2.0、2.1、2.2、2.3、2.4、2.5、2.6、2.7、2.8、2.9、3.0。In some embodiments, controlling Ln 3+ /R 2+ to be above 0.01 can optimize the devitrification resistance of the glass, which is beneficial to reduce the thermal expansion coefficient of the glass. Therefore, it is preferable that Ln 3+ /R 2+ is 0.01 or more, and it is more preferable that Ln 3+ /R 2+ is 0.01 to 3.0. Further, by controlling Ln 3+ /R 2+ within the range of 0.03-1.0, it is also beneficial to improve the near-infrared absorption performance of the glass. Therefore, it is more preferable that Ln 3+ /R 2+ is 0.03-1.0, it is still more preferable that Ln 3+ /R 2+ is 0.05-0.8, and it is still more preferable that Ln 3+ /R 2+ is 0.07-0.5 . In some embodiments, the value of Ln 3+ /R 2+ can be 0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09, 0.1, 0.11, 0.12, 0.13, 0.14, 0.15, 0.16, 0.17 . ,0.95,1.0,1.1,1.2,1.3,1.4,1.5,1.6,1.7,1.8,1.9,2.0,2.1,2.2,2.3,2.4,2.5,2.6,2.7,2.8,2.9,3.0.
在一些实施方式中,通过控制P5+/R2+在3.0~30.0范围内,有利于提高玻璃的化学稳定性,降低玻璃的密度和热膨胀系数。因此,优选P5+/R2+为3.0~30.0,更优选P5+/R2+为3.5~25.0,进一步优选P5+/R2+为4.0~20.0,更进一步优选P5+/R2+为5.0~10.0。在一些实施方式中,P5+/R2+的值可为3.0、3.5、4.0、4.5、5.0、5.5、6.0、6.5、7.0、7.5、8.0、8.5、9.0、9.5、10.0、10.5、11.0、11.5、12.0、12.5、13.0、13.5、14.0、14.5、15.0、15.5、16.0、16.5、17.0、17.5、18.0、18.5、19.0、19.5、20.0、20.5、21.0、21.5、22.0、22.5、23.0、23.5、24.0、24.5、25.0、25.5、26.0、26.5、27.0、27.5、28.0、28.5、29.0、29.5、30.0。In some embodiments, by controlling P 5+ /R 2+ in the range of 3.0-30.0, it is beneficial to improve the chemical stability of the glass and reduce the density and thermal expansion coefficient of the glass. Therefore, preferably P 5+ /R 2+ is 3.0-30.0, more preferably P 5+ /R 2+ is 3.5-25.0, still more preferably P 5+ /R 2+ is 4.0-20.0, still more preferably P 5+ / R 2+ is 5.0 to 10.0. In some embodiments, the value of P 5+ /R 2+ can be 3.0, 3.5, 4.0, 4.5, 5.0, 5.5, 6.0, 6.5, 7.0, 7.5, 8.0, 8.5, 9.0, 9.5, 10.0, 10.5, 11.0 . , 24.0, 24.5, 25.0, 25.5, 26.0, 26.5, 27.0, 27.5, 28.0, 28.5, 29.0, 29.5, 30.0.
Mg2+可降低玻璃的熔融温度,提高玻璃的加工性能,若其含量超过15%,玻璃的抗析晶性能下降,因此Mg2+的含量为15%以下,优选Mg2+的含量为0.5~10%,更优选Mg2+的含量为2~8%。在一些实施方式中,可包含约0、大于0、0.1%、0.5%、1%、1.5%、2%、2.5%、3%、3.5%、4%、4.5%、5%、5.5%、6%、6.5%、7%、7.5%、8%、8.5%、9%、9.5%、10%、10.5%、11%、11.5%、12%、12.5%、13%、13.5%、14%、14.5%、15%的Mg2+。Mg 2+ can reduce the melting temperature of glass and improve the processability of glass. If its content exceeds 15%, the anti-devitrification performance of glass will decrease. Therefore, the content of Mg 2+ is less than 15%, and the content of Mg 2+ is preferably 0.5% ~10%, more preferably the content of Mg 2+ is 2~8%. In some embodiments, about 0, greater than 0, 0.1%, 0.5%, 1%, 1.5%, 2%, 2.5%, 3%, 3.5%, 4%, 4.5%, 5%, 5.5%, 6%, 6.5%, 7%, 7.5%, 8%, 8.5%, 9%, 9.5%, 10%, 10.5%, 11%, 11.5%, 12%, 12.5%, 13%, 13.5%, 14% , 14.5%, 15% Mg 2+ .
在一些实施方式中,将Li+/(Mg2++Al3+)的值控制在0.4~10.0范围内,可使玻璃在可见光域具有优异的透过率,提高玻璃近红外吸收,防止玻璃密度和热膨胀系数上升。因此,优选Li+/(Mg2++Al3+)为0.4~10.0,更优选Li+/(Mg2++Al3+)为0.6~7.0,进一步优选Li+/(Mg2++Al3+)为1.0~5.0,更进一步优选Li+/(Mg2++Al3+)为1.2~3.0。在一些实施方式中,Li+/(Mg2++Al3+)的值可为0.4、0.5、0.6、0.7、0.8、0.9、1.0、1.1、1.2、1.3、1.4、1.5、1.6、1.7、1.8、1.9、2.0、2.1、2.2、2.3、2.4、2.5、2.6、2.7、2.8、2.9、3.0、3.1、3.2、3.3、3.4、3.5、3.6、3.7、3.8、3.9、4.0、4.1、4.2、4.3、4.4、4.5、4.6、4.7、4.8、4.9、5.0、5.3、5.5、5.7、6.0、6.3、6.5、6.7、7.0、7.3、7.5、7.7、8.0、8.3、8.5、8.7、9.0、9.3、9.5、9.7、10.0。In some embodiments, controlling the value of Li + /(Mg 2+ +Al 3+ ) in the range of 0.4 to 10.0 can make the glass have excellent transmittance in the visible light range, improve the near-infrared absorption of the glass, and prevent the glass from Density and coefficient of thermal expansion rise. Therefore, Li + /(Mg 2+ +Al 3+ ) is preferably 0.4 to 10.0, more preferably Li + /(Mg 2+ +Al 3+ ) is 0.6 to 7.0, further preferably Li + /(Mg 2+ +Al 3+ ) is 1.0 to 5.0, more preferably Li + /(Mg 2+ +Al 3+ ) is 1.2 to 3.0. In some embodiments, the value of Li + /(Mg 2+ +Al 3+ ) can be 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0, 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9, 3.0, 3.1, 3.2, 3.3, 3.4, 3.5, 3.6, 3.7, 3.8, 3.9, 4.0, 4.1, 4.2, 4.3, 4.4, 4.5, 4.6, 4.7, 4.8, 4.9, 5.0, 5.3, 5.5, 5.7, 6.0, 6.3, 6.5, 6.7, 7.0, 7.3, 7.5, 7.7, 8.0, 8.3, 8.5, 8.7, 9.0, 9.3, 9.5, 9.7, 10.0.
在一些实施方式中,通过控制(Cu2++Mg2+)/(Li++Al3+)的值在0.3~6.0范围内,可使玻璃在具有适宜的杨氏模量的同时,提高玻璃的硬度。因此,优选(Cu2++Mg2+)/(Li++Al3+)为0.3~6.0,更优选(Cu2++Mg2+)/(Li++Al3+)为0.5~5.0,进一步优选(Cu2++Mg2+)/(Li++Al3+)为0.7~3.0,更进一步优选(Cu2++Mg2+)/(Li++Al3+)为0.8~2.0。在一些实施方式中,(Cu2++Mg2+)/(Li++Al3+)的值可为0.3、0.4、0.5、0.6、0.7、0.8、0.9、1.0、1.1、1.2、1.3、1.4、1.5、1.6、1.7、1.8、1.9、2.0、2.1、2.2、2.3、2.4、2.5、2.6、2.7、2.8、2.9、3.0、3.1、3.2、3.3、3.4、3.5、3.6、3.7、3.8、3.9、4.0、4.1、4.2、4.3、4.4、4.5、4.6、4.7、4.8、4.9、5.0、5.1、5.2、5.3、5.4、5.5、5.6、5.7、5.8、5.9、6.0。In some embodiments, by controlling the value of (Cu 2+ +Mg 2+ )/(Li ++ +Al 3+ ) in the range of 0.3 to 6.0, the glass can be improved while having a suitable Young's modulus. The hardness of the glass. Therefore, preferably (Cu 2+ +Mg 2+ )/(Li + +Al 3+ ) is 0.3 to 6.0, more preferably (Cu 2+ +Mg 2+ )/(Li + +Al 3+ ) is 0.5 to 5.0 , more preferably (Cu 2+ +Mg 2+ )/(Li + +Al 3+ ) is 0.7 to 3.0, more preferably (Cu 2+ +Mg 2+ )/(Li ++ +Al 3+ ) is 0.8 to 2.0. In some embodiments, the value of (Cu 2+ +Mg 2+ )/(Li ++ +Al 3+ ) can be 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0, 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9, 3.0, 3.1, 3.2, 3.3, 3.4, 3.5, 3.6, 3.7, 3.8, 3.9, 4.0, 4.1, 4.2, 4.3, 4.4, 4.5, 4.6, 4.7, 4.8, 4.9, 5.0, 5.1, 5.2, 5.3, 5.4, 5.5, 5.6, 5.7, 5.8, 5.9, 6.0.
通过含有10%以下的Ca2+,玻璃可以在降低高温粘度的同时防止抗析晶性能的降低,优选Ca2+的含量为5%以下,更优选为2%以下。在一些实施方式中,可包含约0、大于0、0.01%、0.05%、0.1%、0.5%、1%、1.5%、2%、2.5%、3%、3.5%、4%、4.5%、5%、5.5%、6%、6.5%、7%、7.5%、8%、8.5%、9%、9.5%、10%的Ca2+。By containing 10% or less of Ca 2+ , the glass can reduce the high-temperature viscosity while preventing a decrease in devitrification resistance. The Ca 2+ content is preferably 5% or less, more preferably 2% or less. In some embodiments, about 0, greater than 0, 0.01%, 0.05%, 0.1%, 0.5%, 1%, 1.5%, 2%, 2.5%, 3%, 3.5%, 4%, 4.5%, 5%, 5.5%, 6%, 6.5%, 7%, 7.5%, 8%, 8.5%, 9%, 9.5%, 10% Ca2 + .
通过含有10%以下的Sr2+,可以防止玻璃的化学稳定性和抗析晶性能的降低,优选Sr2+的含量为5%以下,更优选为2%以下。在一些实施方式中,可包含约0、大于0、0.01%、0.05%、0.1%、0.5%、1%、1.5%、2%、2.5%、3%、3.5%、4%、4.5%、5%、5.5%、6%、6.5%、7%、7.5%、8%、8.5%、9%、9.5%、10%的Sr2+。By containing 10% or less of Sr 2+ , the chemical stability and devitrification resistance of the glass can be prevented from being lowered, and the content of Sr 2+ is preferably 5% or less, more preferably 2% or less. In some embodiments, about 0, greater than 0, 0.01%, 0.05%, 0.1%, 0.5%, 1%, 1.5%, 2%, 2.5%, 3%, 3.5%, 4%, 4.5%, 5%, 5.5%, 6%, 6.5%, 7%, 7.5%, 8%, 8.5%, 9%, 9.5%, 10% Sr 2+ .
Ba2+可提高玻璃在可见光区域的透过率,改善玻璃的成玻稳定性和强度,若其含量超过10%,玻璃的密度上升。在本发明的一些实施方式中,通过使Ba2+的含量在0.5%以上,可改善玻璃的化学稳定性,降低玻璃的热膨胀系数。因此,Ba2+的含量为10%以下,优选Ba2+的含量为0.5~8%,更优选Ba2+的含量为1~6%。在一些实施方式中,可包含约0、大于0、0.01%、0.05%、0.1%、0.5%、1%、1.5%、2%、2.5%、3%、3.5%、4%、4.5%、5%、5.5%、6%、6.5%、7%、7.5%、8%、8.5%、9%、9.5%、10%的Ba2+。Ba 2+ can increase the transmittance of the glass in the visible light region, and improve the glass-forming stability and strength of the glass. If its content exceeds 10%, the density of the glass will increase. In some embodiments of the present invention, by making the content of Ba 2+ more than 0.5%, the chemical stability of the glass can be improved and the thermal expansion coefficient of the glass can be reduced. Therefore, the content of Ba 2+ is 10% or less, preferably the content of Ba 2+ is 0.5-8%, more preferably the content of Ba 2+ is 1-6%. In some embodiments, about 0, greater than 0, 0.01%, 0.05%, 0.1%, 0.5%, 1%, 1.5%, 2%, 2.5%, 3%, 3.5%, 4%, 4.5%, 5%, 5.5%, 6%, 6.5%, 7%, 7.5%, 8%, 8.5%, 9%, 9.5%, 10% Ba 2+ .
在一些实施方式中,通过使Ln3+/(Ba2++Al3+)在0.02以上,有利于降低玻璃的热膨胀系数的同时,防止转变温度上升。因此,优选Ln3+/(Ba2++Al3+)为0.02以上,更优选Ln3+/(Ba2++Al3+)为0.02~2.0,进一步优选Ln3+/(Ba2++Al3+)为0.05~1.0。进一步的,通过将Ln3+/(Ba2++Al3+)控制在0.08~0.8范围内,还有利于优化玻璃的硬度。因此,更进一步优选Ln3+/(Ba2++Al3+)为0.08~0.8,再进一步优选Ln3+/(Ba2++Al3+)为0.1~0.5。In some embodiments, by setting Ln 3+ /(Ba 2+ +Al 3+ ) at 0.02 or more, it is beneficial to reduce the thermal expansion coefficient of the glass while preventing the transition temperature from rising. Therefore, preferably Ln 3+ /(Ba 2+ +Al 3+ ) is 0.02 or more, more preferably Ln 3+ /(Ba 2+ +Al 3+ ) is 0.02 to 2.0, still more preferably Ln 3+ /(Ba 2+ +Al 3+ ) is 0.05 to 1.0. Further, by controlling Ln 3+ /(Ba 2+ +Al 3+ ) in the range of 0.08-0.8, it is also beneficial to optimize the hardness of the glass. Therefore, it is more preferable that Ln 3+ /(Ba 2+ +Al 3+ ) is 0.08 to 0.8, and it is still more preferable that Ln 3+ /(Ba 2+ +Al 3+ ) is 0.1 to 0.5.
B3+可以降低玻璃熔融温度,其当含量超过5%时,近红外光吸收特性降低。因此,B3 +含量为0~5%,优选为0~2%,更优选为0~1%,进一步优选为不含有B3+。在一些实施方式中,可包含约0、大于0、0.01%、0.05%、0.1%、0.5%、1%、1.5%、2%、2.5%、3%、3.5%、4%、4.5%、5%的B3+。B 3+ can lower the melting temperature of glass, and when its content exceeds 5%, the near-infrared light absorption properties will decrease. Therefore, the B 3 + content is 0 to 5%, preferably 0 to 2%, more preferably 0 to 1%, and even more preferably does not contain B 3+ . In some embodiments, about 0, greater than 0, 0.01%, 0.05%, 0.1%, 0.5%, 1%, 1.5%, 2%, 2.5%, 3%, 3.5%, 4%, 4.5%, 5% B 3+ .
Si4+能够促进玻璃的形成以及提高玻璃的化学稳定性,当其含量超过5%,玻璃的熔融性变差,易于在玻璃中形成未熔物杂质,同时玻璃的近红外光吸收特性容易降低。因此Si4+的含量为0~5%,优选为0~2%,更优选为0~1%,进一步优选为不含有Si4+。在一些实施方式中,可包含约0、大于0、0.01%、0.05%、0.1%、0.5%、1%、1.5%、2%、2.5%、3%、3.5%、4%、4.5%、5%的Si4+。Si 4+ can promote the formation of glass and improve the chemical stability of the glass. When its content exceeds 5%, the melting property of the glass will deteriorate, and unmelted impurities will easily form in the glass, and the near-infrared light absorption properties of the glass will easily decrease. . Therefore, the content of Si 4+ is 0 to 5%, preferably 0 to 2%, more preferably 0 to 1%, and further preferably does not contain Si 4+ . In some embodiments, about 0, greater than 0, 0.01%, 0.05%, 0.1%, 0.5%, 1%, 1.5%, 2%, 2.5%, 3%, 3.5%, 4%, 4.5%, 5% Si 4+ .
Zn2+可以降低玻璃的转变温度,提高玻璃热稳定性,当其含量超过10%时,玻璃耐失透性降低,因此Zn2+含量限定为10%以下,优选为5%以下,更优选为2%以下。在一些实施方式中,进一步优选不含有Zn2+。在一些实施方式中,可包含约0、大于0、0.01%、0.05%、0.1%、0.5%、1%、1.5%、2%、2.5%、3%、3.5%、4%、4.5%、5%的Zn2+。Zn 2+ can lower the transition temperature of the glass and improve the thermal stability of the glass. When its content exceeds 10%, the resistance to devitrification of the glass will decrease. Therefore, the Zn 2+ content is limited to less than 10%, preferably less than 5%, more preferably 2% or less. In some embodiments, it is further preferable not to contain Zn 2+ . In some embodiments, about 0, greater than 0, 0.01%, 0.05%, 0.1%, 0.5%, 1%, 1.5%, 2%, 2.5%, 3%, 3.5%, 4%, 4.5%, 5% Zn 2+ .
Zr4+可以改善玻璃的化学稳定性,但若其含量超过5%,玻璃的熔解性能会显著下降,抗析晶性能降低。因此,Zr4+含量限定为0~5%,优选为0~2%,更优选为0~1%,进一步优选不含有Zr4+。在一些实施方式中,可包含约0、大于0、0.01%、0.05%、0.1%、0.5%、1%、1.5%、2%、2.5%、3%、3.5%、4%、4.5%、5%的Zr4+。Zr 4+ can improve the chemical stability of the glass, but if its content exceeds 5%, the melting performance of the glass will be significantly reduced, and the anti-devitrification performance will be reduced. Therefore, the Zr 4+ content is limited to 0 to 5%, preferably 0 to 2%, more preferably 0 to 1%, and even more preferably does not contain Zr 4+ . In some embodiments, about 0, greater than 0, 0.01%, 0.05%, 0.1%, 0.5%, 1%, 1.5%, 2%, 2.5%, 3%, 3.5%, 4%, 4.5%, 5% Zr 4+ .
Sb3+、Sn4+、Ce4+中的一种或多种组分可作为澄清剂,以提高玻璃的澄清效果,提高玻璃的气泡度等级,Sb3+、Sn4+、Ce4+单独或合计含量为0~1%,优选为0~0.5%,更优选为0~0.1%。在一些实施方式中,可包含约0、大于0、0.01%、0.05%、0.1%、0.2%、0.3%、0.4%、0.5%、0.6%、0.7%、0.8%、0.9%、1%的Sb3+和/或Sn4+和/或Ce4+。One or more components of Sb 3+ , Sn 4+ , Ce 4+ can be used as a clarifier to improve the clarification effect of the glass and improve the bubble degree of the glass. Sb 3+ , Sn 4+ , Ce 4+ The individual or total content is 0 to 1%, preferably 0 to 0.5%, more preferably 0 to 0.1%. In some embodiments, about 0, greater than 0, 0.01%, 0.05%, 0.1%, 0.2%, 0.3%, 0.4%, 0.5%, 0.6%, 0.7%, 0.8%, 0.9%, 1% of Sb 3+ and/or Sn 4+ and/or Ce 4+ .
<阴离子组分><Anion component>
本发明玻璃的阴离子组分主要含有O2-和F-,为使本发明玻璃具有优异的稳定性和耐失透性,O2-和F-的合计含量O2-+F-为98%以上,优选为99%以上,更优选为99.5%以上。在一些实施方式中,O2-+F-可为98%、98.1%、98.2%、98.3%、98.4%、98.5%、98.6%、98.7%、98.8%、98.9%、99%、99.1%、99.2%、99.3%、99.4%、99.5%、99.6%、99.7%、99.8%、99.9%、100%。The anionic component of the glass of the present invention mainly contains O 2- and F - , in order to make the glass of the present invention have excellent stability and devitrification resistance , the total content of O 2- and F - is 98 % or more, preferably 99% or more, more preferably 99.5% or more. In some embodiments , O 2- +F- can be 98%, 98.1%, 98.2%, 98.3%, 98.4%, 98.5%, 98.6%, 98.7%, 98.8%, 98.9%, 99%, 99.1%, 99.2%, 99.3%, 99.4%, 99.5%, 99.6%, 99.7%, 99.8%, 99.9%, 100%.
O2-是本发明玻璃中的重要阴离子组分,其能够稳定网络结构,形成稳定的玻璃,还能够保证玻璃中的Cu离子以Cu2+的形式存在,进而保证玻璃吸收近红外区域光线的特性。若O2-的含量太少,则难以形成稳定的玻璃,且Cu2+容易被还原为Cu+,难以达到近红外区域光吸收的效果;但O2-的含量过多,会使玻璃的熔炼温度较高,导致可见光域光透过率明显下降。因此,将O2-的含量限定为85~99.5%,优选为88~99%,进一步优选为91~98%。在一些实施方式中,可包含约85%、85.5%、86%、86.5%、87%、87.5%、88%、88.5%、89%、89.5%、90%、90.5%、91%、91.5%、92%、92.5%、93%、93.5%、94%、94.5%、95%、95.5%、96%、96.5%、97%、97.5%、98%、98.5%、99%、99.5%的O2-。O 2- is an important anion component in the glass of the present invention, which can stabilize the network structure and form a stable glass, and can also ensure that the Cu ions in the glass exist in the form of Cu 2+ , thereby ensuring that the glass absorbs light in the near-infrared region characteristic. If the content of O 2- is too small, it is difficult to form a stable glass, and Cu 2+ is easily reduced to Cu + , and it is difficult to achieve the effect of light absorption in the near-infrared region; but too much content of O 2- will make the glass The high melting temperature leads to a significant decrease in the light transmittance in the visible light region. Therefore, the O 2 - content is limited to 85 to 99.5%, preferably 88 to 99%, and more preferably 91 to 98%. In some embodiments, about 85%, 85.5%, 86%, 86.5%, 87%, 87.5%, 88%, 88.5%, 89%, 89.5%, 90%, 90.5%, 91%, 91.5% , 92%, 92.5%, 93%, 93.5%, 94%, 94.5%, 95%, 95.5%, 96%, 96.5%, 97%, 97.5%, 98%, 98.5%, 99%, 99.5% of O 2- .
F-能够降低玻璃的熔炼温度,并能够提高玻璃的可见光域透过率,降低玻璃的粘度,适量的含有有利于提高玻璃的抗析晶性能。若F-含量超过15%,玻璃的稳定性降低,玻璃熔制过程中易挥发,对环境造成污染,玻璃容易形成条纹。因此,F-的含量限定为0.5~15%,优选为1~12%,更优选为2~9%。在一些实施方式中,可包含约0.5%、1%、1.5%、2%、2.5%、3%、3.5%、4%、4.5%、5%、5.5%、6%、6.5%、7%、7.5%、8%、8.5%、9%、9.5%、10%、10.5%、11%、11.5%、12%、12.5%、13%、13.5%、14%、14.5%、15%的F-。F - It can lower the melting temperature of the glass, increase the transmittance in the visible light region of the glass, reduce the viscosity of the glass, and an appropriate amount is beneficial to improve the crystallization resistance of the glass. If the F - content exceeds 15%, the stability of the glass will decrease, and the glass will be volatile during the melting process, causing pollution to the environment, and the glass will easily form streaks. Therefore, the content of F - is limited to 0.5-15%, preferably 1-12%, more preferably 2-9%. In some embodiments, about 0.5%, 1%, 1.5%, 2%, 2.5%, 3%, 3.5%, 4%, 4.5%, 5%, 5.5%, 6%, 6.5%, 7% , 7.5%, 8%, 8.5%, 9%, 9.5%, 10%, 10.5%, 11%, 11.5%, 12%, 12.5%, 13%, 13.5%, 14%, 14.5%, 15% of F - .
在一些实施方式中,通过控制Ln3+/F-在0.01以上,可提高玻璃近红外吸收性能的同时,防止玻璃转变温度升高。因此,优选Ln3+/F-为0.01以上,更优选Ln3+/F-为0.02~10.0,进一步优选Ln3+/F-为0.05~5.0。进一步的,通过控制Ln3+/F-在0.05~2.0范围内,还可使玻璃获得适宜的杨氏模量。因此,更进一步优选Ln3+/F-为0.05~2.0,再进一步优选Ln3+/F-为0.1~1.0。在一些实施方式中,Ln3+/F-的值可为0.01、0.02、0.03、0.04、0.05、0.06、0.07、0.08、0.09、0.1、0.11、0.12、0.13、0.14、0.15、0.16、0.17、0.18、0.19、0.2、0.21、0.22、0.23、0.24、0.25、0.26、0.27、0.28、0.29、0.3、0.35、0.4、0.45、0.5、0.55、0.6、0.65、0.7、0.75、0.8、0.85、0.9、0.95、1.0、1.1、1.2、1.3、1.4、1.5、1.6、1.7、1.8、1.9、2.0、2.1、2.2、2.3、2.4、2.5、2.6、2.7、2.8、2.9、3.0、3.5、4.0、4.5、5.0、5.5、6.0、6.5、7.0、7.5、8.0、8.5、9.0、9.5、10.0。In some embodiments, by controlling Ln 3+ /F - to be above 0.01, the near-infrared absorption performance of the glass can be improved while preventing the glass transition temperature from increasing. Therefore, Ln 3+ /F - is preferably 0.01 or more, more preferably Ln 3+ /F - is 0.02 to 10.0, and even more preferably Ln 3+ /F - is 0.05 to 5.0. Further, by controlling Ln 3+ /F - in the range of 0.05-2.0, the glass can also obtain a suitable Young's modulus. Therefore, it is more preferable that Ln 3+ /F - is 0.05 to 2.0, and it is still more preferable that Ln 3+ /F - is 0.1 to 1.0. In some embodiments, the value of Ln 3+ /F - can be 0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09, 0.1, 0.11, 0.12, 0.13, 0.14, 0.15, 0.16, 0.17, 0.18,0.19,0.2,0.21,0.22,0.23,0.24,0.25,0.26,0.27,0.28,0.29,0.3,0.35,0.4,0.45,0.5,0.55,0.6,0.65,0.7,0.75,0.8,0.85,0.9, 0.95, 1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0, 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9, 3.0, 3.5, 4.0, 4.5, 5.0, 5.5, 6.0, 6.5, 7.0, 7.5, 8.0, 8.5, 9.0, 9.5, 10.0.
在一些实施方式中,通过控制F-/Cu2+在0.05~2.0范围内,玻璃可获得适宜的杨氏模量和较低的热膨胀系数。因此,优选F-/Cu2+为0.05~2.0,更优选F-/Cu2+为0.1~1.5,进一步优选F-/Cu2+为0.2~1.0,更进一步优选F-/Cu2+为0.3~0.8。在一些实施方式中,F-/Cu2+的值可为0.05、0.06、0.07、0.08、0.09、0.1、0.11、0.12、0.13、0.14、0.15、0.16、0.17、0.18、0.19、0.2、0.21、0.22、0.23、0.24、0.25、0.26、0.27、0.28、0.29、0.3、0.35、0.4、0.45、0.5、0.55、0.6、0.65、0.7、0.75、0.8、0.85、0.9、0.95、1.0、1.1、1.2、1.3、1.4、1.5、1.6、1.7、1.8、1.9、2.0In some embodiments, by controlling F - /Cu 2+ within the range of 0.05-2.0, the glass can obtain a suitable Young's modulus and a low thermal expansion coefficient. Therefore, preferably F - /Cu 2+ is 0.05-2.0, more preferably F - /Cu 2+ is 0.1-1.5, still more preferably F - /Cu 2+ is 0.2-1.0, still more preferably F - /Cu 2+ is 0.3~0.8. In some embodiments, the value of F − /Cu 2+ can be 0.05, 0.06, 0.07, 0.08, 0.09, 0.1, 0.11, 0.12, 0.13, 0.14, 0.15, 0.16, 0.17, 0.18, 0.19, 0.2, 0.21, 0.22, 0.23, 0.24, 0.25, 0.26, 0.27, 0.28, 0.29, 0.3, 0.35, 0.4, 0.45, 0.5, 0.55, 0.6, 0.65, 0.7, 0.75, 0.8, 0.85, 0.9, 0.95, 1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0
Cl-、Br-、I-中的一种或多种组分可作为澄清剂,以提高玻璃的澄清效果,提高玻璃的气泡度等级,Cl-、Br-、I-单独或合计含量为0~2%,优选为0~1%,更优选为0~0.5%。在一些实施方式中,可包含约0、大于0、0.01%、0.05%、0.1%、0.2%、0.3%、0.4%、0.5%、0.6%、0.7%、0.8%、0.9%、1%、1.1%、1.2%、1.3%、1.4%、1.5%、1.6%、1.7%、1.8%、1.9%、2%的Cl-和/或Br-和/或I-。One or more of Cl - , Br - , I - can be used as a clarifier to improve the clarification effect of the glass and improve the bubble degree of the glass. The content of Cl - , Br - , I - alone or in total is 0 -2%, preferably 0-1%, more preferably 0-0.5%. In some embodiments, about 0, greater than 0, 0.01%, 0.05%, 0.1%, 0.2%, 0.3%, 0.4%, 0.5%, 0.6%, 0.7%, 0.8%, 0.9%, 1%, 1.1%, 1.2%, 1.3%, 1.4%, 1.5%, 1.6%, 1.7%, 1.8%, 1.9%, 2% of Cl − and/or Br − and/or I − .
<不含有的组分><Ingredients not contained>
V、Cr、Mn、Fe、Co、Ni、Ag以及Mo等组分,即使单独或复合地少量含有的情况下,玻璃的光谱透过率会受到干扰,不利于形成本发明的玻璃,因此优选不含有上述组分。Even if components such as V, Cr, Mn, Fe, Co, Ni, Ag and Mo are contained in a small amount alone or in combination, the spectral transmittance of the glass will be disturbed, which is not conducive to forming the glass of the present invention, so it is preferred Does not contain the above components.
As、Pb、Th、Cd、Tl、Os、Be以及Se组分,近年来作为有害的化学物质而有控制使用的倾向,不仅在玻璃的制造工序,直至加工工序以及产品化后的处置上对环境保护的措施是必需的。因此,在重视对环境的影响的情况下,除了不可避免地混入以外,优选实际上不含有它们。由此,玻璃变得实际上不包含污染环境的物质。因此,即使不采取特殊的环境对策上的措施,本发明的玻璃也能够进行制造、加工以及废弃。As, Pb, Th, Cd, Tl, Os, Be, and Se components tend to be controlled and used as harmful chemical substances in recent years. Environmental protection measures are required. Therefore, when emphasis is placed on the influence on the environment, it is preferable not to contain them substantially except for unavoidable mixing. As a result, the glass becomes practically free of environmentally polluting substances. Therefore, the glass of the present invention can be manufactured, processed, and discarded without taking special environmental measures.
本文所记载的“不含有”“0%”是指没有故意将该组分作为原料添加到本发明玻璃中;但作为生产玻璃的原材料和/或设备,会存在某些不是故意添加的杂质或组分,会在最终的玻璃中少量或痕量含有,此种情形也在本发明专利的保护范围内。The "does not contain" and "0%" described herein means that the component is not intentionally added to the glass of the present invention as a raw material; but as a raw material and/or equipment for producing glass, there will be some impurities or impurities that are not intentionally added. Components may be contained in a small or trace amount in the final glass, and this situation is also within the protection scope of the patent of the present invention.
[制造方法][Manufacturing method]
本发明玻璃的制造方法如下:本发明的玻璃采用常规原料和常规工艺生产,使用碳酸盐、硝酸盐、磷酸盐、偏磷酸盐、硫酸盐、氢氧化物、氧化物、氟化物等为原料,按常规方法配料后,将配好的炉料投入到700~1000℃的熔炼炉中熔制,并且经澄清、搅拌和均化后,得到没有气泡及不含未溶解物质的均质熔融玻璃,将此熔融玻璃在模具内铸型并退火而成。本领域技术人员能够根据实际需要,适当地选择原料、工艺方法和工艺参数。The manufacturing method of the glass of the present invention is as follows: the glass of the present invention is produced using conventional raw materials and conventional processes, using carbonates, nitrates, phosphates, metaphosphates, sulfates, hydroxides, oxides, fluorides, etc. as raw materials After batching according to the conventional method, put the prepared charge into a melting furnace at 700-1000°C for melting, and after clarification, stirring and homogenization, a homogeneous molten glass without bubbles and undissolved substances is obtained. This molten glass is cast in a mold and annealed. Those skilled in the art can properly select raw materials, process methods and process parameters according to actual needs.
本发明的玻璃还可以通过众所周知的方法进行成型。在一些实施方式中,可通过各种工艺将本文所述的玻璃制造成成形体,所述成形体包括但不限于片材,所述工艺包括但不限于狭缝拉制、浮法、辊压和本领域公知的其他形成片材的工艺。或者,可通过本领域所公知的浮法或辊压法来形成玻璃。The glass of the present invention can also be shaped by well-known methods. In some embodiments, the glasses described herein can be manufactured into shaped bodies, including but not limited to sheets, by a variety of processes including, but not limited to, slot drawing, float, rolling and other sheet forming processes known in the art. Alternatively, the glass may be formed by float or roll methods as are known in the art.
本发明的玻璃可以采用研磨或抛光加工等方法制造片材的玻璃成形体,但制造玻璃成形体的方法,并不限定于这些方法。The glass of the present invention can be manufactured into a sheet glass molded body by methods such as grinding or buffing, but the method of manufacturing the glass molded body is not limited to these methods.
本发明所述的玻璃和玻璃成形体可具有合理有用的任何厚度。The glasses and glass forming bodies described herein can have any thickness that is reasonably useful.
下面,对本发明的玻璃的性能进行说明。Next, the performance of the glass of the present invention will be described.
<转变温度><transition temperature>
玻璃的转变温度(Tg)按GB/T7962.16-2010规定的方法进行测试。The transition temperature (T g ) of the glass is tested according to the method specified in GB/T7962.16-2010.
在一些实施方式中,本发明的玻璃的转变温度(Tg)为410℃以下,优选为400℃以下,更优选390℃以下,进一步优选为370~390℃。In some embodiments, the transition temperature (T g ) of the glass of the present invention is 410°C or lower, preferably 400°C or lower, more preferably 390°C or lower, and even more preferably 370-390°C.
<密度><density>
玻璃的密度(ρ)按GB/T7962.20-2010规定的方法进行测试。The density (ρ) of the glass is tested according to the method specified in GB/T7962.20-2010.
在一些实施方式中,本发明的玻璃的密度(ρ)为3.3g/cm3以下,优选为3.2g/cm3以下,更优选为3.1g/cm3以下,进一步优选为3.0g/cm3以下。In some embodiments, the density (ρ) of the glass of the present invention is 3.3 g/cm 3 or less, preferably 3.2 g/cm 3 or less, more preferably 3.1 g/cm 3 or less, even more preferably 3.0 g/cm 3 the following.
<热膨胀系数><Thermal expansion coefficient>
玻璃的热膨胀系数(α20-120℃)按照GB/T7962.16-2010规定的方法进行测试。The thermal expansion coefficient (α 20-120 ℃) of the glass is tested according to the method specified in GB/T7962.16-2010.
在一些实施方式中,本发明的玻璃的热膨胀系数(α20-120℃)为110×10-7/K以下,优选为100×10-7/K以下,更优选为95×10-7/K以下。In some embodiments, the thermal expansion coefficient (α 20-120°C ) of the glass of the present invention is 110×10 -7 /K or less, preferably 100×10 -7 /K or less, more preferably 95×10 -7 /K Below K.
<硬度><hardness>
玻璃的硬度(Hv)采用以下方法测试:用相对面夹角为136°的金刚石四角锥压头在试验面上压入金字塔形状的凹陷时的负荷(N)除以通过凹陷的长度计算出的表面积(mm2)的值表示。使试验负荷为100(N)、保持时间为15(秒)进行。The hardness (H v ) of the glass is tested by the following method: the load (N) when a diamond square cone indenter with an angle of 136° is pressed into a pyramid-shaped depression on the test surface is calculated by dividing it by the length of the depression The value of the surface area (mm 2 ) is expressed. The test load was set to 100 (N), and the holding time was set to 15 (seconds).
在一些实施方式中,本发明的玻璃硬度(Hv)为380kgf/mm2以上,优选为390kgf/mm2以上,更优选为400kgf/mm2以上,进一步优选为410kgf/mm2以上。In some embodiments, the glass hardness (H v ) of the present invention is 380 kgf/mm 2 or more, preferably 390 kgf/mm 2 or more, more preferably 400 kgf/mm 2 or more, still more preferably 410 kgf/mm 2 or more.
<杨氏模量><Young's modulus>
玻璃的杨氏模量(E)采用超声波测试其纵波速度和横波速度,再按以下公式计算得出。The Young's modulus (E) of the glass is measured by ultrasonic wave velocity and transverse wave velocity, and then calculated according to the following formula.
其中,式中:Among them, in the formula:
E为杨氏模量,Pa;E is Young's modulus, Pa;
G为剪切模量,Pa;G is the shear modulus, Pa;
VT为横波速度,m/s;V T is the shear wave velocity, m/s;
VS为纵波速度,m/s;V S is the longitudinal wave velocity, m/s;
ρ为玻璃密度,g/cm3。ρ is the glass density, g/cm 3 .
在一些实施方式中,本发明的玻璃的杨氏模量(E)的下限为5500×107/Pa,优选下限为6000×107/Pa,更优选下限为6500×107/Pa,杨氏模量(E)的上限为8500×107/Pa,优选上限为8000×107/Pa,更优选上限为7500×107/Pa。In some embodiments, the lower limit of Young's modulus (E) of the glass of the present invention is 5500×10 7 /Pa, preferably 6000×10 7 /Pa, more preferably 6500×10 7 /Pa, Young The upper limit of the modulus (E) is 8500×10 7 /Pa, preferably 8000×10 7 /Pa, more preferably 7500×10 7 /Pa.
<光谱透过率><spectral transmittance>
本发明玻璃的光谱透过率是指通过分光光度计以所述方式得到的值:假定玻璃样品具有彼此平行并且光学抛光的两个平面,光从一个平行平面上垂直入射,从另外一个平行平面出射,该出射光的强度除以入射光的强度就是透过率,该透过率也称为外透过率。The spectral transmittance of the glass of the present invention refers to the value obtained in the described manner by a spectrophotometer: assuming that the glass sample has two planes parallel to each other and optically polished, the light is vertically incident from one parallel plane, and The intensity of the outgoing light divided by the intensity of the incident light is the transmittance, which is also called the external transmittance.
在一些实施方式中,当玻璃厚度为0.5mm以下时,光谱透过率具有下面显示的特性:In some embodiments, when the glass thickness is 0.5 mm or less, the spectral transmittance has the characteristics shown below:
在400nm波长的光谱透过率(τ400)为80.0%以上,优选为82.0%以上,更优选为84.0%以上。The spectral transmittance (τ 400 ) at a wavelength of 400 nm is 80.0% or more, preferably 82.0% or more, more preferably 84.0% or more.
在一些实施方式中,τ400可为80.0%、80.1%、80.2%、80.3%、80.4%、80.5%、80.6%、80.7%、80.8%、80.9%、81.0%、81.1%、81.2%、81.3%、81.4%、81.5%、81.6%、81.7%、81.8%、81.9%、82.0%、82.1%、82.2%、82.3%、82.4%、82.5%、82.6%、82.7%、82.8%、82.9%、83.0%、83.1%、83.2%、83.3%、83.4%、83.5%、83.6%、83.7%、83.8%、83.9%、84.0%、84.1%、84.2%、84.3%、84.4%、84.5%、84.6%、84.7%、84.8%、84.9%、85.0%、85.1%、85.2%、85.3%、85.4%、85.5%、85.6%、85.7%、85.8%、85.9%、86.0%、86.1%、86.2%、86.3%、86.4%、86.5%、86.6%、86.7%、86.8%、86.9%、87.0%、87.1%、87.2%、87.3%、87.4%、87.5%、87.6%、87.7%、87.8%、87.9%、88.0%、88.1%、88.2%、88.3%、88.4%、88.5%、88.6%、88.7%、88.8%、88.9%、89.0%、89.5%、90.0%、90.5%、91.0%、91.5%、92.0%。In some embodiments, τ 400 can be 80.0%, 80.1%, 80.2%, 80.3%, 80.4%, 80.5%, 80.6%, 80.7%, 80.8%, 80.9%, 81.0%, 81.1%, 81.2%, 81.3% %, 81.4%, 81.5%, 81.6%, 81.7%, 81.8%, 81.9%, 82.0%, 82.1%, 82.2%, 82.3%, 82.4%, 82.5%, 82.6%, 82.7%, 82.8%, 82.9%, 83.0%, 83.1%, 83.2%, 83.3%, 83.4%, 83.5%, 83.6%, 83.7%, 83.8%, 83.9%, 84.0%, 84.1%, 84.2%, 84.3%, 84.4%, 84.5%, 84.6% , 84.7%, 84.8%, 84.9%, 85.0%, 85.1%, 85.2%, 85.3%, 85.4%, 85.5%, 85.6%, 85.7%, 85.8%, 85.9%, 86.0%, 86.1%, 86.2%, 86.3 %, 86.4%, 86.5%, 86.6%, 86.7%, 86.8%, 86.9%, 87.0%, 87.1%, 87.2%, 87.3%, 87.4%, 87.5%, 87.6%, 87.7%, 87.8%, 87.9%, 88.0%, 88.1%, 88.2%, 88.3%, 88.4%, 88.5%, 88.6%, 88.7%, 88.8%, 88.9%, 89.0%, 89.5%, 90.0%, 90.5%, 91.0%, 91.5%, 92.0% .
在500nm波长的光谱透过率(τ500)为83.0%以上,优选为85.0%以上,更优选为88.0%以上The spectral transmittance (τ 500 ) at a wavelength of 500 nm is 83.0% or more, preferably 85.0% or more, more preferably 88.0% or more
在一些实施方式中,τ500可为83.0%、83.1%、83.2%、83.3%、83.4%、83.5%、83.6%、83.7%、83.8%、83.9%、84.0%、84.1%、84.2%、84.3%、84.4%、84.5%、84.6%、84.7%、84.8%、84.9%、85.0%、85.1%、85.2%、85.3%、85.4%、85.5%、85.6%、85.7%、85.8%、85.9%、86.0%、86.1%、86.2%、86.3%、86.4%、86.5%、86.6%、86.7%、86.8%、86.9%、87.0%、87.1%、87.2%、87.3%、87.4%、87.5%、87.6%、87.7%、87.8%、87.9%、88.0%、88.1%、88.2%、88.3%、88.4%、88.5%、88.6%、88.7%、88.8%、88.9%、89.0%、89.1%、89.2%、89.3%、89.4%、89.5%、89.6%、89.7%、89.8%、89.9%、90.0%、90.1%、90.2%、90.3%、90.4%、90.5%、90.6%、90.7%、90.8%、90.9%、91.0%、91.1%、91.2%、91.3%、91.4%、91.5%、91.6%、91.7%、91.8%、91.9%、92.0%、92.5%、93.0%、93.5%、94.0%、94.5%、95.0%。In some embodiments, τ 500 may be 83.0%, 83.1%, 83.2%, 83.3%, 83.4%, 83.5%, 83.6%, 83.7%, 83.8%, 83.9%, 84.0%, 84.1%, 84.2%, 84.3% %, 84.4%, 84.5%, 84.6%, 84.7%, 84.8%, 84.9%, 85.0%, 85.1%, 85.2%, 85.3%, 85.4%, 85.5%, 85.6%, 85.7%, 85.8%, 85.9%, 86.0%, 86.1%, 86.2%, 86.3%, 86.4%, 86.5%, 86.6%, 86.7%, 86.8%, 86.9%, 87.0%, 87.1%, 87.2%, 87.3%, 87.4%, 87.5%, 87.6% , 87.7%, 87.8%, 87.9%, 88.0%, 88.1%, 88.2%, 88.3%, 88.4%, 88.5%, 88.6%, 88.7%, 88.8%, 88.9%, 89.0%, 89.1%, 89.2%, 89.3 %, 89.4%, 89.5%, 89.6%, 89.7%, 89.8%, 89.9%, 90.0%, 90.1%, 90.2%, 90.3%, 90.4%, 90.5%, 90.6%, 90.7%, 90.8%, 90.9%, 91.0%, 91.1%, 91.2%, 91.3%, 91.4%, 91.5%, 91.6%, 91.7%, 91.8%, 91.9%, 92.0%, 92.5%, 93.0%, 93.5%, 94.0%, 94.5%, 95.0% .
在1100nm波长的光谱透过率(τ1100)为10.0%以下,优选为7.0%以下,更优选为5.0%以下,进一步优选为3.0%以下。The spectral transmittance (τ 1100 ) at a wavelength of 1100 nm is 10.0% or less, preferably 7.0% or less, more preferably 5.0% or less, still more preferably 3.0% or less.
在一些实施方式中,τ1100可为0.5%、0.6%、0.7%、0.8%、0.9%、1.0%、1.1%、1.2%、1.3%、1.4%、1.5%、1.6%、1.7%、1.8%、1.9%、2.0%、2.1%、2.2%、2.3%、2.4%、2.5%、2.6%、2.7%、2.8%、2.9%、3.0%、3.5%、4.0%、4.5%、5.0%、5.5%、6.0%、6.5%、7.0%、7.5%、8.0%、8.5%、9.0%、9.5%、10.0%。In some embodiments, τ 1100 can be 0.5%, 0.6%, 0.7%, 0.8%, 0.9%, 1.0%, 1.1%, 1.2%, 1.3%, 1.4%, 1.5%, 1.6%, 1.7%, 1.8 %, 1.9%, 2.0%, 2.1%, 2.2%, 2.3%, 2.4%, 2.5%, 2.6%, 2.7%, 2.8%, 2.9%, 3.0%, 3.5%, 4.0%, 4.5%, 5.0%, 5.5%, 6.0%, 6.5%, 7.0%, 7.5%, 8.0%, 8.5%, 9.0%, 9.5%, 10.0%.
在一些实施方式中,当玻璃厚度为0.5mm以下时,500~700nm的波长范围内的光谱透过率中,透过率达50%时对应的波长(λ50)为635nm以下,优选为600~630nm,更优选为610~625nm。In some embodiments, when the thickness of the glass is less than 0.5mm, among the spectral transmittance in the wavelength range of 500-700nm, the corresponding wavelength (λ 50 ) when the transmittance reaches 50% is less than 635nm, preferably 600nm ~630nm, more preferably 610~625nm.
在一些实施方式中,λ50为600nm、601nm、602nm、603nm、604nm、605nm、606nm、607nm、608nm、609nm、610nm、611nm、612nm、613nm、614nm、615nm、616nm、617nm、618nm、619nm、620nm、621nm、622nm、623nm、624nm、625nm、626nm、627nm、628nm、629nm、630nm、631nm、632nm、633nm、634nm、635nm。In some embodiments, λ50 is 600nm, 601nm, 602nm, 603nm, 604nm, 605nm, 606nm, 607nm, 608nm, 609nm, 610nm, 611nm, 612nm, 613nm, 614nm, 615nm, 616nm, 617nm, 618nm, 619nm, 620nm , 621nm, 622nm, 623nm, 624nm, 625nm, 626nm, 627nm, 628nm, 629nm, 630nm, 631nm, 632nm, 633nm, 634nm, 635nm.
上述光谱透过率测试中,玻璃的厚度优选为0.05~0.4mm,更优选为0.1~0.3mm,进一步优选为0.1mm或0.15mm或0.2mm或0.25mm。In the above spectral transmittance test, the thickness of the glass is preferably 0.05-0.4 mm, more preferably 0.1-0.3 mm, and even more preferably 0.1 mm or 0.15 mm or 0.2 mm or 0.25 mm.
[玻璃元件][glass element]
本发明所涉及到的玻璃元件含有上述的玻璃,可以例举出用于近红外光吸收滤光器中的薄板状的玻璃元件或透镜等,适用于固体摄像元件的色修正用途,具备上述玻璃的各种优异性能。而且,玻璃元件的厚度(透过光的入射面和射出面的间隔)由该元件的透过率特性决定,优选为0.05~0.4mm,更优选为0.1~0.3mm,进一步优选为0.1mm或0.15mm或0.2mm或0.25mm,500~700nm的波长范围内的光谱透过率中,透过率达50%时对应的波长(λ50)为635nm以下,优选为600~630nm,更优选为610~625nm。为了得到这样的玻璃元件,调整玻璃的组成,加工成具有上述光谱特性厚度的元件。The glass element related to the present invention contains the above-mentioned glass, and can be, for example, a thin plate-shaped glass element or lens used in a near-infrared light absorption filter, and is suitable for color correction of a solid-state imaging element. various excellent properties. Moreover, the thickness of the glass element (the distance between the incident surface and the outgoing surface of the transmitted light) is determined by the transmittance characteristics of the element, and is preferably 0.05 to 0.4 mm, more preferably 0.1 to 0.3 mm, and even more preferably 0.1 mm or 0.15mm or 0.2mm or 0.25mm, in the spectral transmittance in the wavelength range of 500-700nm, the corresponding wavelength (λ 50 ) when the transmittance reaches 50% is 635nm or less, preferably 600-630nm, more preferably 610~625nm. In order to obtain such a glass element, the composition of the glass is adjusted, and it is processed into an element having the thickness of the above-mentioned spectral characteristics.
[滤光器][filter]
本发明所涉及到的滤光器为近红外滤光器,是含有上述玻璃或含有上述的玻璃元件,具备两面被光学研磨的、近红外光吸收玻璃构成的近红外光吸收元件,通过这种元件赋予滤光器的色修正功能,同时也具备上述玻璃的各种优异性能。The optical filter related to the present invention is a near-infrared filter, which contains the above-mentioned glass or contains the above-mentioned glass element, and is equipped with a near-infrared light-absorbing element made of near-infrared light-absorbing glass whose two sides are optically polished. The element imparts the color correction function of the filter while also possessing various excellent properties of the glass mentioned above.
[设备][equipment]
本发明玻璃,或玻璃元件,或滤光器可通过众所周知的方法制作如便携式通讯设备(如手机)、智能穿戴设备、照相设备、摄像设备、显示设备和监控设备等设备。The glass of the present invention, or the glass element, or the optical filter can be produced by well-known methods such as portable communication equipment (such as mobile phones), smart wearable equipment, photographic equipment, camera equipment, display equipment and monitoring equipment.
实施例Example
<玻璃实施例><Glass Example>
为了进一步清楚地阐释和说明本发明的技术方案,提供以下的非限制性实施例。In order to further clearly illustrate and illustrate the technical solution of the present invention, the following non-limiting examples are provided.
本实施例采用上述玻璃的制造方法得到具有表1~表3所示的组成的玻璃。另外,通过本发明所述的测试方法测定各玻璃的特性,并将测定结果表示在表1~表3中。In this example, glass having the compositions shown in Tables 1 to 3 was obtained by using the above-mentioned glass manufacturing method. In addition, the properties of each glass were measured by the test method described in the present invention, and the measurement results are shown in Tables 1 to 3.
表1.Table 1.
表2.Table 2.
表3.table 3.
将上述表1~表3所述的实施例制成的玻璃加工成0.2mm厚的玻璃片材,并按照上文所述的测试方法测定各实施例玻璃的光谱透过率,结果如下表4~表6。The glass made in the examples described in the above Tables 1 to 3 was processed into a glass sheet with a thickness of 0.2 mm, and the spectral transmittance of the glass in each example was measured according to the test method described above. The results are shown in Table 4 ~ Table 6.
表4.Table 4.
表5.table 5.
表6.Table 6.
<玻璃元件实施例><Example of glass element>
将上述实施例1~24#的玻璃通过本领域公知的方法制成玻璃元件,可以例举出用于近红外光吸收滤光器中的薄板状的玻璃元件或透镜等,适用于固体摄像元件的色修正用途,具备上述玻璃的各种优异性能。The glass of the above-mentioned Examples 1 to 24# is made into a glass element by a method known in the art, for example, a thin plate-shaped glass element or lens used in a near-infrared light absorption filter, which is suitable for a solid-state imaging element It has various excellent properties of the above-mentioned glasses.
<滤光器实施例><Example of filter>
将上述实施例1~24#的玻璃和/或玻璃元件通过本领域公知的方法制成滤光器,本发明的滤光器具有色修正功能,同时也具备上述玻璃的各种优异性能。The glasses and/or glass elements of the above-mentioned Examples 1-24# are made into optical filters by methods known in the art. The optical filters of the present invention have a color correction function and also have various excellent properties of the above-mentioned glasses.
<设备实施例><device embodiment>
本发明玻璃和/或玻璃元件和/或滤光器可通过众所周知的方法制作如便携式通讯设备(如手机)、智能穿戴设备、照相设备、摄像设备、显示设备和监控设备等设备。还可用于例如成像设备、传感器、显微镜、医药技术、数字投影、光学通信技术/信息传输,或用于车载领域的摄像设备和装置。The glass and/or glass elements and/or optical filters of the present invention can be made into devices such as portable communication devices (such as mobile phones), smart wearable devices, photographic devices, camera devices, display devices, and monitoring devices by well-known methods. It can also be used, for example, in imaging devices, sensors, microscopes, medical technology, digital projection, optical communication technology/information transmission, or in camera devices and devices in the automotive sector.
Claims (84)
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210294645.5A CN114538772B (en) | 2022-03-24 | 2022-03-24 | Glass, glass element and optical filter |
PCT/CN2023/077372 WO2023179276A1 (en) | 2022-03-24 | 2023-02-21 | Glass, glass element and optical filter |
TW112106467A TWI839128B (en) | 2022-03-24 | 2023-02-22 | Glass, glass components and filters |
US18/888,613 US20250011221A1 (en) | 2022-03-24 | 2024-09-18 | Glass, glass element and optical filter |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210294645.5A CN114538772B (en) | 2022-03-24 | 2022-03-24 | Glass, glass element and optical filter |
Publications (2)
Publication Number | Publication Date |
---|---|
CN114538772A CN114538772A (en) | 2022-05-27 |
CN114538772B true CN114538772B (en) | 2022-12-02 |
Family
ID=81665247
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210294645.5A Active CN114538772B (en) | 2022-03-24 | 2022-03-24 | Glass, glass element and optical filter |
Country Status (4)
Country | Link |
---|---|
US (1) | US20250011221A1 (en) |
CN (1) | CN114538772B (en) |
TW (1) | TWI839128B (en) |
WO (1) | WO2023179276A1 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114538772B (en) * | 2022-03-24 | 2022-12-02 | 成都光明光电股份有限公司 | Glass, glass element and optical filter |
CN114702241B (en) * | 2022-03-24 | 2023-07-07 | 成都光明光电股份有限公司 | Near infrared light absorbing glass, element and filter |
Citations (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS57149845A (en) * | 1981-03-09 | 1982-09-16 | Ohara Inc | Filter glass for absorbing near infrared ray |
US6225244B1 (en) * | 1998-01-21 | 2001-05-01 | Hoya Corporation | Glass for near absorption filter and near infrared absorption filter to which the glass is applied |
JP2010052987A (en) * | 2008-08-28 | 2010-03-11 | Asahi Glass Co Ltd | Filter glass for cutting near-infrared ray |
WO2014103675A1 (en) * | 2012-12-27 | 2014-07-03 | 日本電気硝子株式会社 | Glass |
JP2015089855A (en) * | 2013-11-05 | 2015-05-11 | 日本電気硝子株式会社 | Near-infrared absorbing glass |
CN107531557A (en) * | 2015-04-24 | 2018-01-02 | 旭硝子株式会社 | Near infrared ray cut-off filter glass |
CN109562981A (en) * | 2016-07-29 | 2019-04-02 | Agc株式会社 | Optical glass and near infrared cut-off filters |
CN110156321A (en) * | 2019-06-25 | 2019-08-23 | 成都光明光电股份有限公司 | Glass suitable for chemical strengthening and chemically strengthened glass |
CN110194592A (en) * | 2019-06-25 | 2019-09-03 | 成都光明光电股份有限公司 | A kind of glass, glass elements and optical filter |
CN110194589A (en) * | 2019-06-25 | 2019-09-03 | 成都光明光电股份有限公司 | Near-infrared absorption glass, glassware, element and optical filter |
CN110255897A (en) * | 2019-06-25 | 2019-09-20 | 成都光明光电股份有限公司 | A kind of glass, glassware and its manufacturing method |
CN110255886A (en) * | 2019-06-25 | 2019-09-20 | 成都光明光电股份有限公司 | A kind of glass, glassware and its manufacturing method |
CN110612276A (en) * | 2017-08-29 | 2019-12-24 | 日本电气硝子株式会社 | Near infrared ray absorption glass |
CN110621627A (en) * | 2017-08-25 | 2019-12-27 | 日本电气硝子株式会社 | Near infrared ray absorption glass |
CN111051262A (en) * | 2017-08-31 | 2020-04-21 | Agc株式会社 | Glass |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3075908B2 (en) * | 1994-03-08 | 2000-08-14 | ホーヤ株式会社 | Optical glass filter and method for calibrating transmittance or absorbance in ultraviolet region using the same |
WO2012018026A1 (en) * | 2010-08-03 | 2012-02-09 | 旭硝子株式会社 | Near-infrared cut filter glass and process for manufacturing same |
CN106477880B (en) * | 2016-09-21 | 2019-03-08 | 中国科学院西安光学精密机械研究所 | Low-fluorine-containing phosphate double-frequency laser color separation glass and preparation method thereof |
JP2019055889A (en) * | 2017-09-20 | 2019-04-11 | 日本電気硝子株式会社 | Infrared absorbing glass plate, manufacturing method thereof, and solid-state imaging device |
CN114538772B (en) * | 2022-03-24 | 2022-12-02 | 成都光明光电股份有限公司 | Glass, glass element and optical filter |
CN114455836B (en) * | 2022-03-24 | 2023-07-18 | 成都光明光电股份有限公司 | Near infrared light absorbing glass, element and filter |
CN114702241B (en) * | 2022-03-24 | 2023-07-07 | 成都光明光电股份有限公司 | Near infrared light absorbing glass, element and filter |
-
2022
- 2022-03-24 CN CN202210294645.5A patent/CN114538772B/en active Active
-
2023
- 2023-02-21 WO PCT/CN2023/077372 patent/WO2023179276A1/en active Application Filing
- 2023-02-22 TW TW112106467A patent/TWI839128B/en active
-
2024
- 2024-09-18 US US18/888,613 patent/US20250011221A1/en active Pending
Patent Citations (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS57149845A (en) * | 1981-03-09 | 1982-09-16 | Ohara Inc | Filter glass for absorbing near infrared ray |
US6225244B1 (en) * | 1998-01-21 | 2001-05-01 | Hoya Corporation | Glass for near absorption filter and near infrared absorption filter to which the glass is applied |
JP2010052987A (en) * | 2008-08-28 | 2010-03-11 | Asahi Glass Co Ltd | Filter glass for cutting near-infrared ray |
WO2014103675A1 (en) * | 2012-12-27 | 2014-07-03 | 日本電気硝子株式会社 | Glass |
JP2015089855A (en) * | 2013-11-05 | 2015-05-11 | 日本電気硝子株式会社 | Near-infrared absorbing glass |
CN107531557A (en) * | 2015-04-24 | 2018-01-02 | 旭硝子株式会社 | Near infrared ray cut-off filter glass |
CN109562981A (en) * | 2016-07-29 | 2019-04-02 | Agc株式会社 | Optical glass and near infrared cut-off filters |
CN110621627A (en) * | 2017-08-25 | 2019-12-27 | 日本电气硝子株式会社 | Near infrared ray absorption glass |
CN110612276A (en) * | 2017-08-29 | 2019-12-24 | 日本电气硝子株式会社 | Near infrared ray absorption glass |
CN111051262A (en) * | 2017-08-31 | 2020-04-21 | Agc株式会社 | Glass |
CN110156321A (en) * | 2019-06-25 | 2019-08-23 | 成都光明光电股份有限公司 | Glass suitable for chemical strengthening and chemically strengthened glass |
CN110194592A (en) * | 2019-06-25 | 2019-09-03 | 成都光明光电股份有限公司 | A kind of glass, glass elements and optical filter |
CN110194589A (en) * | 2019-06-25 | 2019-09-03 | 成都光明光电股份有限公司 | Near-infrared absorption glass, glassware, element and optical filter |
CN110255897A (en) * | 2019-06-25 | 2019-09-20 | 成都光明光电股份有限公司 | A kind of glass, glassware and its manufacturing method |
CN110255886A (en) * | 2019-06-25 | 2019-09-20 | 成都光明光电股份有限公司 | A kind of glass, glassware and its manufacturing method |
Also Published As
Publication number | Publication date |
---|---|
TWI839128B (en) | 2024-04-11 |
US20250011221A1 (en) | 2025-01-09 |
CN114538772A (en) | 2022-05-27 |
TW202337851A (en) | 2023-10-01 |
WO2023179276A1 (en) | 2023-09-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4169545B2 (en) | Near-infrared light absorbing glass, near-infrared light absorbing element, near-infrared light absorbing filter, and method for producing near-infrared light absorbing glass molded body | |
CN114538772B (en) | Glass, glass element and optical filter | |
TWI729504B (en) | Optical glass, its preforms, optical components and optical instruments | |
CN109179982B (en) | Optical glass, glass preform, optical element and optical instrument | |
CN106145668A (en) | Optical glass, optical precast product and optical element | |
CN109205616B (en) | Optical glass, glass preform, optical element and optical instrument | |
JP6047226B2 (en) | Near infrared light absorbing glass, near infrared light absorbing element, and near infrared light absorbing optical filter | |
TW202012333A (en) | Fluorophosphate optical glass, optical preform, element and instrument with a refractive index (nd) of 1.42-1.45 and an Abbe number ([nu]d) of 93-96 | |
CN105859131B (en) | Crown optical glass | |
WO2015106650A1 (en) | Glass composition | |
JP6047227B2 (en) | Near infrared light absorbing glass, near infrared light absorbing element, and near infrared light absorbing optical filter | |
CN118619547A (en) | Glass suitable for chemical strengthening and chemically strengthened glass | |
CN110194592B (en) | Glass, glass element and optical filter | |
WO2017152656A1 (en) | Optical glass and optical element | |
TWI805187B (en) | Optical glass, glass preforms, optical components and optical instruments | |
CN114702241B (en) | Near infrared light absorbing glass, element and filter | |
CN114455836B (en) | Near infrared light absorbing glass, element and filter | |
CN107540214A (en) | Optical glass, optical precast product and optical element | |
JP2025509677A (en) | Glass, glass elements and filters | |
CN113880425A (en) | Near-infrared light absorbing glass, element and optical filter | |
JP4282340B2 (en) | Colored glass and blue filter | |
CN119707285A (en) | Near infrared light absorbing glass, element and filter | |
CN119707286A (en) | Near infrared light absorbing glass, element and filter | |
CN114163122B (en) | Optical glass, method for producing the same, and optical element | |
CN103359937B (en) | Near-infrared light absorbing glass, element and optical filter |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |