CN114534906B - Beneficiation method for molybdenum-containing high-zinc complex magnesium silicate-modified silicon-stuck-rock copper ore - Google Patents
Beneficiation method for molybdenum-containing high-zinc complex magnesium silicate-modified silicon-stuck-rock copper ore Download PDFInfo
- Publication number
- CN114534906B CN114534906B CN202210218295.4A CN202210218295A CN114534906B CN 114534906 B CN114534906 B CN 114534906B CN 202210218295 A CN202210218295 A CN 202210218295A CN 114534906 B CN114534906 B CN 114534906B
- Authority
- CN
- China
- Prior art keywords
- selection
- stage
- zinc
- molybdenum
- copper
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000010949 copper Substances 0.000 title claims abstract description 68
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 title claims abstract description 63
- 229910052802 copper Inorganic materials 0.000 title claims abstract description 63
- 239000011701 zinc Substances 0.000 title claims abstract description 58
- 229910052725 zinc Inorganic materials 0.000 title claims abstract description 54
- 238000000034 method Methods 0.000 title claims abstract description 46
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 title claims abstract description 37
- 229910052750 molybdenum Inorganic materials 0.000 title claims abstract description 37
- 239000011733 molybdenum Substances 0.000 title claims abstract description 37
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 title description 3
- 239000011777 magnesium Substances 0.000 title description 3
- 229910052749 magnesium Inorganic materials 0.000 title description 3
- 239000011435 rock Substances 0.000 title 1
- 239000000454 talc Substances 0.000 claims abstract description 118
- 229910052623 talc Inorganic materials 0.000 claims abstract description 118
- 230000005484 gravity Effects 0.000 claims abstract description 82
- 238000000926 separation method Methods 0.000 claims abstract description 80
- GNLAUORVNFRYHS-UHFFFAOYSA-N copper molybdenum zinc Chemical compound [Cu][Zn][Mo] GNLAUORVNFRYHS-UHFFFAOYSA-N 0.000 claims abstract description 75
- 239000003112 inhibitor Substances 0.000 claims abstract description 62
- 238000000227 grinding Methods 0.000 claims abstract description 42
- WJPZDRIJJYYRAH-UHFFFAOYSA-N [Zn].[Mo] Chemical compound [Zn].[Mo] WJPZDRIJJYYRAH-UHFFFAOYSA-N 0.000 claims abstract description 34
- 238000005188 flotation Methods 0.000 claims abstract description 33
- 239000000391 magnesium silicate Substances 0.000 claims abstract description 21
- 229910052919 magnesium silicate Inorganic materials 0.000 claims abstract description 21
- 235000019792 magnesium silicate Nutrition 0.000 claims abstract description 21
- 238000002156 mixing Methods 0.000 claims abstract description 4
- HCWCAKKEBCNQJP-UHFFFAOYSA-N magnesium orthosilicate Chemical compound [Mg+2].[Mg+2].[O-][Si]([O-])([O-])[O-] HCWCAKKEBCNQJP-UHFFFAOYSA-N 0.000 claims abstract 9
- 239000012141 concentrate Substances 0.000 claims description 102
- 239000006260 foam Substances 0.000 claims description 94
- 238000003756 stirring Methods 0.000 claims description 75
- 238000010408 sweeping Methods 0.000 claims description 62
- 239000004088 foaming agent Substances 0.000 claims description 44
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 claims description 42
- HQABUPZFAYXKJW-UHFFFAOYSA-O butylazanium Chemical compound CCCC[NH3+] HQABUPZFAYXKJW-UHFFFAOYSA-O 0.000 claims description 30
- 150000003384 small molecules Chemical class 0.000 claims description 26
- 150000002500 ions Chemical class 0.000 claims description 24
- CWERGRDVMFNCDR-UHFFFAOYSA-N thioglycolic acid Chemical compound OC(=O)CS CWERGRDVMFNCDR-UHFFFAOYSA-N 0.000 claims description 20
- 239000002002 slurry Substances 0.000 claims description 16
- -1 isopropyl ethyl Chemical group 0.000 claims description 15
- 239000002283 diesel fuel Substances 0.000 claims description 14
- 238000005201 scrubbing Methods 0.000 claims description 14
- GEHJYWRUCIMESM-UHFFFAOYSA-L sodium sulfite Chemical compound [Na+].[Na+].[O-]S([O-])=O GEHJYWRUCIMESM-UHFFFAOYSA-L 0.000 claims description 14
- 125000003903 2-propenyl group Chemical group [H]C([*])([H])C([H])=C([H])[H] 0.000 claims description 13
- 229910052979 sodium sulfide Inorganic materials 0.000 claims description 13
- GRVFOGOEDUUMBP-UHFFFAOYSA-N sodium sulfide (anhydrous) Chemical compound [Na+].[Na+].[S-2] GRVFOGOEDUUMBP-UHFFFAOYSA-N 0.000 claims description 13
- BRPQOXSCLDDYGP-UHFFFAOYSA-N calcium oxide Chemical group [O-2].[Ca+2] BRPQOXSCLDDYGP-UHFFFAOYSA-N 0.000 claims description 12
- 239000000292 calcium oxide Substances 0.000 claims description 12
- ODINCKMPIJJUCX-UHFFFAOYSA-N calcium oxide Inorganic materials [Ca]=O ODINCKMPIJJUCX-UHFFFAOYSA-N 0.000 claims description 12
- 239000000463 material Substances 0.000 claims description 12
- NWONKYPBYAMBJT-UHFFFAOYSA-L zinc sulfate Chemical compound [Zn+2].[O-]S([O-])(=O)=O NWONKYPBYAMBJT-UHFFFAOYSA-L 0.000 claims description 11
- 229960001763 zinc sulfate Drugs 0.000 claims description 11
- 229910000368 zinc sulfate Inorganic materials 0.000 claims description 11
- 239000003795 chemical substances by application Substances 0.000 claims description 10
- 239000000843 powder Substances 0.000 claims description 10
- GNBVPFITFYNRCN-UHFFFAOYSA-M sodium thioglycolate Chemical group [Na+].[O-]C(=O)CS GNBVPFITFYNRCN-UHFFFAOYSA-M 0.000 claims description 10
- 229940046307 sodium thioglycolate Drugs 0.000 claims description 10
- 239000003350 kerosene Substances 0.000 claims description 9
- TUZCOAQWCRRVIP-UHFFFAOYSA-N butoxymethanedithioic acid Chemical compound CCCCOC(S)=S TUZCOAQWCRRVIP-UHFFFAOYSA-N 0.000 claims description 8
- 229910052683 pyrite Inorganic materials 0.000 claims description 8
- NIFIFKQPDTWWGU-UHFFFAOYSA-N pyrite Chemical compound [Fe+2].[S-][S-] NIFIFKQPDTWWGU-UHFFFAOYSA-N 0.000 claims description 8
- 239000011028 pyrite Substances 0.000 claims description 8
- CONMNFZLRNYHIQ-UHFFFAOYSA-N 3-methylbutoxymethanedithioic acid Chemical compound CC(C)CCOC(S)=S CONMNFZLRNYHIQ-UHFFFAOYSA-N 0.000 claims description 7
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 claims description 7
- 235000010265 sodium sulphite Nutrition 0.000 claims description 7
- 239000011593 sulfur Substances 0.000 claims description 7
- 229910052717 sulfur Inorganic materials 0.000 claims description 7
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 6
- 235000008331 Pinus X rigitaeda Nutrition 0.000 claims description 6
- 235000011613 Pinus brutia Nutrition 0.000 claims description 6
- 241000018646 Pinus brutia Species 0.000 claims description 6
- 239000003814 drug Substances 0.000 claims description 6
- 229940079593 drug Drugs 0.000 claims description 5
- 239000000203 mixture Substances 0.000 claims description 5
- 238000004140 cleaning Methods 0.000 claims description 3
- ZOOODBUHSVUZEM-UHFFFAOYSA-N ethoxymethanedithioic acid Chemical compound CCOC(S)=S ZOOODBUHSVUZEM-UHFFFAOYSA-N 0.000 claims description 3
- ODNFLEOISPUTFE-UHFFFAOYSA-N o-(3-methylbutan-2-yl) carbamothioate Chemical compound CC(C)C(C)OC(N)=S ODNFLEOISPUTFE-UHFFFAOYSA-N 0.000 claims description 3
- 239000012991 xanthate Substances 0.000 claims description 3
- NZUQQADVSXWVNW-UHFFFAOYSA-N 2-ethylsulfanylpropane Chemical compound CCSC(C)C NZUQQADVSXWVNW-UHFFFAOYSA-N 0.000 claims 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 claims 1
- 239000011575 calcium Substances 0.000 claims 1
- 229910052791 calcium Inorganic materials 0.000 claims 1
- 125000001972 isopentyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])C([H])([H])* 0.000 claims 1
- 230000003647 oxidation Effects 0.000 claims 1
- 238000007254 oxidation reaction Methods 0.000 claims 1
- 229910052500 inorganic mineral Inorganic materials 0.000 abstract description 38
- 239000011707 mineral Substances 0.000 abstract description 38
- 230000008569 process Effects 0.000 abstract description 32
- 238000011084 recovery Methods 0.000 abstract description 11
- 229910052751 metal Inorganic materials 0.000 abstract description 9
- 239000002184 metal Substances 0.000 abstract description 9
- 238000007667 floating Methods 0.000 abstract description 5
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 abstract description 3
- 230000005764 inhibitory process Effects 0.000 abstract description 3
- 238000001914 filtration Methods 0.000 abstract description 2
- 229910052950 sphalerite Inorganic materials 0.000 description 21
- ZADYMNAVLSWLEQ-UHFFFAOYSA-N magnesium;oxygen(2-);silicon(4+) Chemical compound [O-2].[O-2].[O-2].[Mg+2].[Si+4] ZADYMNAVLSWLEQ-UHFFFAOYSA-N 0.000 description 12
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 8
- 229910052961 molybdenite Inorganic materials 0.000 description 7
- CWQXQMHSOZUFJS-UHFFFAOYSA-N molybdenum disulfide Chemical compound S=[Mo]=S CWQXQMHSOZUFJS-UHFFFAOYSA-N 0.000 description 7
- 229910001779 copper mineral Inorganic materials 0.000 description 6
- 229910052951 chalcopyrite Inorganic materials 0.000 description 5
- DVRDHUBQLOKMHZ-UHFFFAOYSA-N chalcopyrite Chemical compound [S-2].[S-2].[Fe+2].[Cu+2] DVRDHUBQLOKMHZ-UHFFFAOYSA-N 0.000 description 5
- 239000000919 ceramic Substances 0.000 description 4
- 229910052947 chalcocite Inorganic materials 0.000 description 4
- 230000002401 inhibitory effect Effects 0.000 description 4
- 239000003921 oil Substances 0.000 description 4
- 229910001656 zinc mineral Inorganic materials 0.000 description 4
- WYTGDNHDOZPMIW-RCBQFDQVSA-N alstonine Natural products C1=CC2=C3C=CC=CC3=NC2=C2N1C[C@H]1[C@H](C)OC=C(C(=O)OC)[C@H]1C2 WYTGDNHDOZPMIW-RCBQFDQVSA-N 0.000 description 3
- 230000004075 alteration Effects 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 238000011049 filling Methods 0.000 description 3
- 241000196324 Embryophyta Species 0.000 description 2
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 238000005119 centrifugation Methods 0.000 description 2
- 239000003153 chemical reaction reagent Substances 0.000 description 2
- 229910017052 cobalt Inorganic materials 0.000 description 2
- 239000010941 cobalt Substances 0.000 description 2
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 2
- ZWWAJMUJXCLKDI-UHFFFAOYSA-N ethylsulfanyl carbamate Chemical compound C(N)(=O)OSCC ZWWAJMUJXCLKDI-UHFFFAOYSA-N 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- KIACEOHPIRTHMI-UHFFFAOYSA-N o-propan-2-yl n-ethylcarbamothioate Chemical compound CCNC(=S)OC(C)C KIACEOHPIRTHMI-UHFFFAOYSA-N 0.000 description 2
- 239000011734 sodium Substances 0.000 description 2
- 229910052708 sodium Inorganic materials 0.000 description 2
- 229910052569 sulfide mineral Inorganic materials 0.000 description 2
- 230000001629 suppression Effects 0.000 description 2
- KXDHJXZQYSOELW-UHFFFAOYSA-M Carbamate Chemical compound NC([O-])=O KXDHJXZQYSOELW-UHFFFAOYSA-M 0.000 description 1
- UOJYYXATTMQQNA-UHFFFAOYSA-N Proxan Chemical compound CC(C)OC(S)=S UOJYYXATTMQQNA-UHFFFAOYSA-N 0.000 description 1
- GNVMUORYQLCPJZ-UHFFFAOYSA-M Thiocarbamate Chemical compound NC([S-])=O GNVMUORYQLCPJZ-UHFFFAOYSA-M 0.000 description 1
- MKPXGEVFQSIKGE-UHFFFAOYSA-N [Mg].[Si] Chemical compound [Mg].[Si] MKPXGEVFQSIKGE-UHFFFAOYSA-N 0.000 description 1
- 229910052891 actinolite Inorganic materials 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 230000033558 biomineral tissue development Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910001919 chlorite Inorganic materials 0.000 description 1
- 229910052619 chlorite group Inorganic materials 0.000 description 1
- QBWCMBCROVPCKQ-UHFFFAOYSA-N chlorous acid Chemical compound OCl=O QBWCMBCROVPCKQ-UHFFFAOYSA-N 0.000 description 1
- 229910052963 cobaltite Inorganic materials 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 229910052955 covellite Inorganic materials 0.000 description 1
- 230000018044 dehydration Effects 0.000 description 1
- 238000006297 dehydration reaction Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000010494 dissociation reaction Methods 0.000 description 1
- 230000005593 dissociations Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 229910052892 hornblende Inorganic materials 0.000 description 1
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 1
- NLYAJNPCOHFWQQ-UHFFFAOYSA-N kaolin Chemical compound O.O.O=[Al]O[Si](=O)O[Si](=O)O[Al]=O NLYAJNPCOHFWQQ-UHFFFAOYSA-N 0.000 description 1
- 229910052622 kaolinite Inorganic materials 0.000 description 1
- 125000000740 n-pentyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 229910052889 tremolite Inorganic materials 0.000 description 1
- 238000004383 yellowing Methods 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B03—SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
- B03B—SEPARATING SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS
- B03B7/00—Combinations of wet processes or apparatus with other processes or apparatus, e.g. for dressing ores or garbage
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B03—SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
- B03B—SEPARATING SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS
- B03B9/00—General arrangement of separating plant, e.g. flow sheets
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B03—SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
- B03D—FLOTATION; DIFFERENTIAL SEDIMENTATION
- B03D1/00—Flotation
- B03D1/001—Flotation agents
- B03D1/018—Mixtures of inorganic and organic compounds
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B03—SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
- B03D—FLOTATION; DIFFERENTIAL SEDIMENTATION
- B03D2201/00—Specified effects produced by the flotation agents
- B03D2201/02—Collectors
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B03—SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
- B03D—FLOTATION; DIFFERENTIAL SEDIMENTATION
- B03D2201/00—Specified effects produced by the flotation agents
- B03D2201/04—Frothers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B03—SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
- B03D—FLOTATION; DIFFERENTIAL SEDIMENTATION
- B03D2201/00—Specified effects produced by the flotation agents
- B03D2201/06—Depressants
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B03—SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
- B03D—FLOTATION; DIFFERENTIAL SEDIMENTATION
- B03D2203/00—Specified materials treated by the flotation agents; Specified applications
- B03D2203/02—Ores
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W30/00—Technologies for solid waste management
- Y02W30/50—Reuse, recycling or recovery technologies
- Y02W30/52—Mechanical processing of waste for the recovery of materials, e.g. crushing, shredding, separation or disassembly
Landscapes
- Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Manufacture And Refinement Of Metals (AREA)
Abstract
本发明公开了一种含钼高锌复杂镁硅酸盐蚀变矽卡岩型铜矿的选矿方法,包括一段磨矿、铜钼锌滑石混合粗选、二段磨矿、铜钼锌滑石混合精选、铜‑钼锌滑石浮选分离、钼锌‑滑石重选分离、钼‑锌柱式分离步骤。本发明全浮选过程不对滑石等易浮镁硅酸盐矿物进行抑制,转而利用离心重选脱除,避免了传统选矿中大分子抑制剂抑制易浮脉石时造成的目的硫化金属矿物抑制,及尾矿过滤等难题,最大程度提高目的硫化多金属矿物回收率。
The invention discloses a beneficiation method for molybdenum-containing high-zinc complex magnesium silicate altered skarn-type copper ore, which includes one-stage grinding, copper-molybdenum-zinc talc mixed roughing, two-stage grinding, and copper-molybdenum-zinc talc mixing. Selection, copper-molybdenum-zinc talc flotation separation, molybdenum-zinc-talc gravity separation, and molybdenum-zinc column separation steps. The full flotation process of the present invention does not inhibit easily floating magnesium silicate minerals such as talc, but instead utilizes centrifugal gravity separation to remove them, thus avoiding the inhibition of the target sulfide metal minerals caused by macromolecular inhibitors in traditional mineral processing that inhibit easily floating gangue. , and tailings filtration and other problems, to maximize the recovery rate of the target sulfide polymetallic minerals.
Description
技术领域Technical field
本发明属于矿物加工技术领域,具体涉及一种含钼高锌复杂镁硅酸盐蚀变矽卡岩型铜矿的选矿方法。The invention belongs to the field of mineral processing technology, and specifically relates to an ore dressing method for complex magnesium silicate altered skarn-type copper ores containing molybdenum and high zinc.
背景技术Background technique
铜被广泛应用于电力、电子工业、建筑交通、航天军事业、轻工业及日用品方面,具有重大的战略性地位;易选斑岩型铜约贡献了世界70%以上的铜,前期研究较多,但易选铜资源随着不断开发面临枯竭,矽卡岩型复杂铜资源越来越受选矿工作者重视。Copper is widely used in electric power, electronic industry, construction and transportation, aerospace military industry, light industry and daily necessities, and has an important strategic position. Easy-selected porphyry copper contributes more than 70% of the world's copper, and there are many preliminary studies. However, easy-to-select copper resources are facing depletion with continuous development, and skarn-type complex copper resources are increasingly valued by mineral processing workers.
含钼高锌复杂镁硅酸盐蚀变矽卡岩型铜矿石中铜矿物主要为黄铜矿与部分辉铜矿及铜蓝,锌矿物主要为闪锌矿,钼矿物主要为辉钼矿,脉石矿物主要为滑石、蛇纹石、透闪石、绿泥石、角闪石及高岭石等。该类复杂镁硅酸盐蚀变多金属矿往往具备如下难点:首先,滑石等层状镁硅酸盐矿物与辉钼矿一样具有天然表面疏水性,可浮性较好,常规抑制滑石难以实现有效分离;其次,复杂蚀变矿石矿浆中往往存在大量难免离子,如次生铜形成过程中带来的Cu2+会对闪锌矿产生较强的活化作用,使闪锌矿可浮性极佳,若不能有效消除难免离子影响及对闪锌矿进行表面预处理,闪锌矿势必难以抑制;再者,为实现矿物解离及表面预处理,势必会减小矿物颗粒尺寸,部分矿物不可避免面临微细粒浮选分离难题;综上所述,因矿石性质的特殊性,铜钼锌矿物及部分镁硅酸盐矿物具有“无差异”可浮性,对多金属矿物分离与回收形成巨大挑战。目前矿山对该类矿石的处理主要有部分优先浮选及混合浮选两种工艺,部分优先浮选工艺在流程前端抑制闪锌矿时,取决于闪锌矿的可浮性及矿浆难免离子强度,当难免离子较多、闪锌矿可浮性较好时,闪锌矿抑制效果并不理想,且对铜矿物产生抑制;混合浮选虽避免了流程前端抑制闪锌矿造成的铜矿物损失,但多金属分离时铜钼锌矿物“无差异”可浮性难题难以解决,强行抑制分离对其他目的金属伤害较大,产品品质较差;另外,目前矿山对滑石等易浮镁硅酸盐通常采用浮选预脱除或高分子抑制剂抑制 ,视脉石可浮性差异,两者均不同程度会造成目的矿物的损失。现有流程对该类复杂镁硅酸盐蚀变多金属矿选别并不适应。The copper minerals in the molybdenum-containing high-zinc complex magnesium silicate altered skarn-type copper ores are mainly chalcopyrite and some chalcocite and cobalt blue, the zinc minerals are mainly sphalerite, and the molybdenum minerals are mainly molybdenum. The main gangue minerals are talc, serpentine, tremolite, chlorite, hornblende and kaolinite. This type of complex magnesium silicate altered polymetallic minerals often has the following difficulties: First, layered magnesium silicate minerals such as talc have natural surface hydrophobicity and good floatability like molybdenite. Conventional inhibition of talc is difficult to achieve. Effective separation; secondly, there are often a large number of unavoidable ions in complex altered ore slurries. For example, Cu 2+ brought during the formation of secondary copper will have a strong activation effect on sphalerite, making sphalerite extremely floatable. Well, if the unavoidable ion influence cannot be effectively eliminated and the surface pretreatment of sphalerite cannot be effectively eliminated, sphalerite will be difficult to suppress; furthermore, in order to achieve mineral dissociation and surface pretreatment, the mineral particle size will inevitably be reduced, and some minerals cannot Avoid facing the problem of fine particle flotation separation; in summary, due to the particularity of ore properties, copper-molybdenum-zinc minerals and some magnesium silicate minerals have "indifferent" floatability, which poses a huge problem to the separation and recovery of polymetallic minerals. challenge. At present, mines mainly deal with this type of ore by partial priority flotation and mixed flotation. When the partial priority flotation process inhibits sphalerite at the front end of the process, it depends on the flotability of sphalerite and the unavoidable ionic strength of the slurry. , when there are inevitably more ions and the flotability of sphalerite is better, the inhibitory effect of sphalerite is not ideal and inhibits copper minerals; although mixed flotation avoids the suppression of copper minerals caused by sphalerite at the front end of the process However, it is difficult to solve the problem of "no difference" floatability of copper, molybdenum and zinc minerals during multi-metal separation. Forcibly inhibiting separation will cause greater harm to other target metals, and the product quality will be poor; in addition, the current mines are prone to floating magnesium silicon such as talc. Acid salts are usually pre-removed by flotation or inhibited by polymer inhibitors. Depending on the floatability of gangue, both will cause the loss of the target mineral to varying degrees. The existing process is not suitable for the separation of this type of complex magnesium silicate alteration polymetallic ores.
发明内容Contents of the invention
针对滑石、蛇纹石、阳起石、角页岩复杂蚀变高锌含钼难选铜矿“无差异”可浮性的黄铜矿、闪锌矿及辉钼矿,本发明提供了一种含钼高锌复杂镁硅酸盐蚀变矽卡岩型铜矿的选矿工艺及方法。Aiming at the "no difference" floatability of chalcopyrite, sphalerite and molybdenite from the complex alteration of talc, serpentine, actinolite and angular shale, high zinc-containing molybdenum refractory copper ores, the present invention provides a Ore dressing technology and method for a molybdenum- and high-zinc complex magnesium silicate alteration skarn-type copper deposit.
本发明的目的是这样实现的,包括一段磨矿、铜钼锌滑石混合粗选、二段磨矿、铜钼锌滑石混合精选、铜-钼锌滑石浮选分离、钼锌-滑石重选分离、钼-锌柱式分离步骤,具体包括:The object of the present invention is achieved in this way, including one-stage grinding, copper-molybdenum-zinc talc mixed rough separation, two-stage grinding, copper-molybdenum-zinc talc mixed selection, copper-molybdenum-zinc talc flotation separation, and molybdenum-zinc-talc gravity separation. Separation and molybdenum-zinc column separation steps include:
A、一段磨矿:将破碎好的铜矿石进行一段磨矿得到物料a,磨矿细度为-74μm占55~65%;A. One-stage grinding: Grind the crushed copper ore in one stage to obtain material a. The grinding fineness is -74μm accounting for 55~65%;
B、铜钼锌滑石混合粗选:将物料a中依次加入黄铁矿抑制剂、捕收剂和起泡剂,经一次粗选得到铜钼锌滑石混合粗精矿b和粗选尾矿c;粗选尾矿c中依次加入捕收剂和起泡剂进行一次扫选得到扫选泡沫d和尾矿e;扫选泡沫返回一次粗选步骤;B. Copper-molybdenum-zinc talc mixed roughing: add pyrite inhibitor, collector and foaming agent to material a in sequence, and obtain copper-molybdenum-zinc talc mixed coarse concentrate b and roughing tailings c after one rough separation. ; Add collector and foaming agent to the roughing tailings c in sequence to perform a sweep to obtain the sweeping foam d and tailings e; the sweeping foam returns to the roughing step;
C、二段磨矿:将铜钼锌滑石混合粗精矿b中加入硫抑制剂进行二段磨矿得到物料f,磨矿细度为-74μm占80~85%;C. Second-stage grinding: Add sulfur inhibitors to the copper-molybdenum-zinc talc mixed coarse concentrate b and perform second-stage grinding to obtain material f. The grinding fineness is -74 μm accounting for 80~85%;
D、铜钼锌滑石混合精选:将物料f中依次加入捕收剂和起泡剂,经一段精选得到一段精选、二段精选和三段精选得到铜钼锌滑石混合精矿g和尾矿h;一段精选泡沫进入二段精选,二段精选泡沫进入三段精选,三段精选泡沫为铜钼锌滑石精矿,精选尾矿依次返回上一级精选;一段精选尾矿依次加入捕收剂、起泡剂进行一段精扫选,一段精扫泡沫返回一段精选,一段精扫选尾矿依次加入捕收剂、起泡剂进入二段精扫选,二段精扫选泡沫返回一段精扫选,二段精扫选尾矿即为尾矿h;D. Mixed selection of copper-molybdenum-zinc talc: Add collector and foaming agent to material f in sequence, and obtain first-stage selection, second-stage selection and third-stage selection to obtain copper-molybdenum-zinc talc mixed concentrate. g and tailings h; the foam selected in the first stage goes to the second stage, and the foam selected in the second stage goes to the third stage. The foam in the third stage is copper-molybdenum-zinc talc concentrate, and the selected tailings return to the upper level of concentrate in turn. Selecting; a collector and a foaming agent are added to the selected tailings in sequence for a stage of fine sweeping and selection. The foam in one stage of fine sweeping and selection returns to the first stage of fine selection. The collectors and foaming agents are added to the tailings of a stage of fine sweeping and selection in sequence and enter the second stage of fine cleaning. Sweeping and sorting, the foam in the second stage of fine sweeping and sorting returns to the first stage of fine sweeping and sorting, and the tailings in the second stage of fine sweeping and sorting are tailings h;
E、铜-钼锌滑石浮选分离:将铜钼锌滑石混合精矿g中依次加入铜抑制剂、捕收剂和起泡剂进入粗选,粗选泡沫依次添加铜抑制剂、捕收剂进行一段精选,一段精选泡沫添加铜抑制剂进行二段精选,二段精选泡沫为钼锌滑石混合精矿i,二段精选尾矿返回一段精选,一段精选尾矿返回粗选,粗选尾矿依次加入捕收剂、起泡剂进行扫选,扫选泡沫返回粗选,扫选尾矿为最终铜精矿j;E. Copper-molybdenum-zinc talc flotation separation: Add copper inhibitors, collectors and foaming agents to the copper-molybdenum-zinc talc mixed concentrate in sequence and enter rough selection. Add copper inhibitors and collectors to the foam in rough selection. The first stage of selection is carried out, and the copper inhibitor is added to the foam of the first stage of selection for the second stage of selection. The foam of the second stage of selection is molybdenum zinc talc mixed concentrate i, the tailings of the second stage of selection are returned to the first stage of selection, and the tailings of the first stage of selection are returned to Rough selection, the rough selection tailings are sequentially added with collectors and foaming agents for sweeping, the foam is returned to rough selection, and the sweeping tailings are the final copper concentrate j;
F、钼锌-滑石重选分离:将钼锌滑石混合精矿i进行浓缩脱水,进入离心重选粗选,离心重选粗选轻产物进入离心重选精选,离心重选精选轻产物为最终滑石产品,离心重选精选重产物返回离心重选粗选,离心重选粗选重产物进入离心重选扫选,离心重选扫选轻产物返回离心重选粗选,离心重选扫选重产物为钼锌混合精矿k;F. Molybdenum-zinc-talc gravity separation: The molybdenum-zinc-talc mixed concentrate i is concentrated and dehydrated, and then enters the centrifugal gravity selection for rough selection. The centrifugal gravity selection rough selection of the light products enters the centrifugal gravity selection for selection, and the centrifugal gravity selection selects the light products. For the final talc product, centrifugal gravity selection selects heavy products, returns to centrifugal gravity selection for rough selection, centrifugal gravity selection for rough selection, and centrifugal gravity selection for rough selection. The heavy product of sweeping is molybdenum-zinc mixed concentrate k;
G、钼-锌柱式分离:将钼锌混合精矿k进行浓缩脱水,加入难免离子预处理剂进行擦洗得到矿浆l,矿浆l中依次加入锌抑制剂和捕收剂进行粗选,粗选泡沫依次添加锌抑制剂、捕收剂进行一段精选,一段精选泡沫依次添加锌抑制剂、捕收剂进行二段精选,二段精选泡沫添加锌抑制剂进行三段精选,三段精选泡沫为最终钼精矿产品m,三段精选尾矿返回二段精选,二段精选尾矿返回一段精选,一段精选尾矿返回粗选,粗选尾矿添加捕收剂进行扫选,扫选精矿返回粗选,扫选尾矿为最终锌精矿产品n。G. Molybdenum-zinc column separation: Concentrate and dehydrate the molybdenum-zinc mixed concentrate k, add unavoidable ion pretreatment agent for scrubbing to obtain slurry l, add zinc inhibitors and collectors to the slurry l in sequence for rough selection, rough selection The foam is sequentially added with zinc inhibitors and collectors for one-stage selection, the first-stage selection foam is added with zinc inhibitors and collectors for the second-stage selection, the second-stage selection foam is added with zinc inhibitors for the third-stage selection, and the third-stage selection foam is The foam of the first-stage selection is the final molybdenum concentrate product m. The tailings of the third-stage selection return to the second-stage selection, the tailings of the second-stage selection return to the first-stage selection, the tailings of the first-stage selection return to the rough selection, and the tailings of the rough selection return to the rough selection. The collector is scavenged, the scavenged concentrate is returned to roughing, and the scavenged tailings are the final zinc concentrate product n.
具体操作如下:The specific operations are as follows:
A、一段磨矿:将破碎好的铜矿石进行一段磨矿,磨矿细度为-74μm占55~65%。A. One-stage grinding: Grind the crushed copper ore in one stage. The grinding fineness is -74μm accounting for 55~65%.
B、铜钼锌滑石混合粗选:一段磨矿产品添加一定量黄铁矿抑制剂,依次添加捕收剂及起泡剂,经一次粗选,粗选精矿为铜钼锌滑石混合粗精矿,粗选尾矿依次添加捕收剂、起泡剂进行一次扫选,扫选的泡沫返回粗选,扫选尾矿为尾矿1。B. Copper-molybdenum-zinc talc mixed rough selection: A certain amount of pyrite inhibitor is added to the grinding product in one stage, and a collector and foaming agent are added in sequence. After one rough selection, the rough concentrate is a copper-molybdenum-zinc talc mixed rough concentrate. Mine, roughing tailings are sequentially added with collectors and foaming agents for a sweep. The swept foam is returned to roughing, and the swept tailings are tailings 1.
C、二段磨矿:将B步骤得到的铜钼锌滑石混合粗精矿加入硫抑制剂进行二段磨矿,磨矿细度为-74μm占80~85%。C. Second-stage grinding: Add sulfur inhibitors to the copper-molybdenum-zinc talc mixed coarse concentrate obtained in step B for second-stage grinding. The grinding fineness is -74 μm accounting for 80~85%.
D、铜钼锌滑石混合精选:将C步骤磨好的矿浆依次添加捕收剂、起泡剂,经一段精选,一段精选泡沫进入二段精选,二段精选泡沫进入三段精选,三段精选泡沫为铜钼锌滑石混合精矿,精选尾矿依次返回上一级精选。一段精选尾矿依次加入捕收剂、起泡剂进行一段精扫选,一段精扫泡沫返回一段精选,一段精扫选尾矿依次加入捕收剂、起泡剂进入二段精扫选选,二段精扫选泡沫返回一段精扫选,二段精扫选尾矿为尾矿2。D. Copper-molybdenum-zinc talc mixed selection: add collector and foaming agent to the pulp ground in step C in sequence, and after one stage of selection, the foam selected in the first stage enters the second stage of selection, and the foam selected in the second stage enters the third stage Selected, the three-stage selected foam is copper-molybdenum-zinc talc mixed concentrate, and the selected tailings are returned to the previous level of selection in turn. A collector and a foaming agent are added to the first stage of fine selection tailings in turn to carry out the first stage of fine sweep and selection. The foam in the first stage of fine sweep and selection returns to the first stage of fine sweep and selection. The collector and foaming agent are added to the first stage of fine sweep and selection tailings in order to enter the second stage of fine sweep and selection. The foam is returned to the first stage of fine sweeping and sorting, and the tailings of the second stage of fine sweeping and sorting are tailings 2.
E、铜—钼锌滑石浮选分离:将步骤D三段精选产生的铜钼锌滑石混合精矿依次加入铜抑制剂、捕收剂、起泡剂进入粗选,粗选泡沫依次添加铜抑制剂、捕收剂进行一段精选,一段精选泡沫添加铜抑制剂进行二段精选,二段精选泡沫为钼锌滑石混合精矿,二段精选尾矿返回一段精选,一段精选尾矿返回粗选,粗选尾矿依次加入捕收剂、起泡剂进行扫选,扫选泡沫返回粗选,扫选尾矿为最终铜精矿。E. Copper-molybdenum-zinc talc flotation separation: Add copper inhibitor, collector, and foaming agent to the copper-molybdenum-zinc talc mixed concentrate produced in the three stages of step D in sequence to enter roughing, and add copper to the roughing foam in sequence. Inhibitors and collectors are used for one-stage selection, and copper inhibitors are added to the foam for the first-stage selection for the second-stage selection. The second-stage selection foam is molybdenum-zinc talc mixed concentrate, and the tailings from the second-stage selection are returned to the first-stage selection. The selected tailings are returned to roughing, and collectors and foaming agents are added to the roughing tailings in turn for sweeping. The foamed tailings are swept back to roughing. The sweeping tailings are the final copper concentrate.
F、钼锌—滑石重选分离:将步骤E二段精选泡沫进行浓缩脱水,把部分难免离子随水脱除,浓缩到既定浓度的产品进入离心重选粗选,离心重选粗选轻产物进入离心重选精选,离心重选精选轻产物为最终滑石产品,离心重选精选重产物返回离心重选粗选,离心重选粗选重产物进入离心重选扫选,离心重选扫选轻产物返回离心重选粗选,离心重选扫选重产物为钼锌混合精矿。F. Molybdenum zinc-talc gravity separation: Concentrate and dehydrate the foam selected in the second stage of step E, remove some unavoidable ions with water, and concentrate the product to a given concentration into centrifugal gravity selection for rough selection, and centrifuge gravity selection for rough selection. The product enters the centrifugal gravity selection and the light product is selected as the final talc product. The centrifugal gravity selection selects the heavy product and returns to the centrifugal gravity selection for rough selection. The centrifugal gravity selection rough selection heavy product enters the centrifugal gravity selection and sweeps. The centrifugal gravity selection The light products are returned to the centrifugal gravity separation for rough selection, and the heavy products are the molybdenum-zinc mixed concentrate.
G、钼—锌柱式分离:将步骤F中钼锌混合精矿进行浓缩脱水,把部分难免离子随水脱除,既定浓度浓缩产品加入难免离子预处理剂进入搅拌磨进行既定条件擦洗,进一步消除矿浆中的难免离子,搅拌磨擦洗后的矿浆依次添加锌抑制剂、捕收剂进入浮选柱进行粗选,粗选泡沫依次添加锌抑制剂、捕收剂进行一段精选。一段精选泡沫依次添加锌抑制剂、捕收剂进行二段精选,二段精选泡沫添加锌抑制剂进行三段精选,三段精选泡沫为最终钼精矿产品,三段精选尾矿返回二段精选,二段精选尾矿返回一段精选,一段精选尾矿返回粗选,粗选尾矿添加捕收剂进行扫选,扫选精矿返回粗选,扫选尾矿为最终锌精矿产品。G. Molybdenum-Zinc Column Separation: Concentrate and dehydrate the molybdenum-zinc mixed concentrate in step F, remove some unavoidable ions with water, add the unavoidable ion pretreatment agent to the concentrated product with a certain concentration, and enter the stirring mill for scrubbing under established conditions. To eliminate unavoidable ions in the slurry, the slurry after stirring, friction and scrubbing is sequentially added with zinc inhibitors and collectors and enters the flotation column for rough selection. The rough separation foam is sequentially added with zinc inhibitors and collectors for a stage of selection. The first-stage selection foam is sequentially added with zinc inhibitors and collectors for the second-stage selection. The second-stage selection foam is added with zinc inhibitors for the third-stage selection. The third-stage selection foam is the final molybdenum concentrate product. The third-stage selection is The tailings are returned to the second stage of beneficiation, the second stage beneficiation tailings are returned to the first stage of beneficiation, the first stage beneficiation tailings are returned to roughing, the roughing tailings are added with collectors for sweeping, and the sweeping concentrates are returned to roughing and sweeping. The tailings are the final zinc concentrate product.
进一步的,步骤B中所述的铜钼锌滑石混合粗选的工艺条件为加入黄铁矿抑制剂2000~3000克/吨,搅拌3~5分钟,加入捕收剂40~60克/吨,起泡剂30~40克/吨,搅拌3~4分钟;铜钼锌滑石混合扫选的工艺条件为加入捕收剂20~30克/吨,起泡剂15~20克/吨,搅拌3~4分钟;Further, the process conditions for the mixed coarse selection of copper-molybdenum-zinc talc described in step B are to add pyrite inhibitor 2000~3000 g/ton, stir for 3~5 minutes, add collector 40~60 g/ton, Foaming agent 30~40g/ton, stir for 3~4 minutes; the process conditions for copper-molybdenum-zinc talc mixing and sweeping are to add collector 20~30g/ton, foaming agent 15~20g/ton, stir for 3 ~4 minutes;
进一步的,步骤D中所述的铜钼锌滑石混合精选1的工艺条件为加入捕收剂20~30克/吨,起泡剂10~20克/吨,搅拌3~4分钟;铜钼锌滑石混合精扫选1的工艺条件为加入捕收剂10~15克/吨,起泡剂5~10克/吨,搅拌3~4分钟;铜钼锌滑石混合精扫选2的工艺条件为加入捕收剂5~7.5克/吨,起泡剂2.5~5克/吨,搅拌3~4分钟;Further, the process conditions for the copper-molybdenum-zinc talc mixed selection 1 described in step D are to add a collector of 20 to 30 g/ton, a foaming agent of 10 to 20 g/ton, and stir for 3 to 4 minutes; The process conditions of zinc talc mixed concentrate sweeping 1 are to add collector 10~15g/ton, foaming agent 5~10g/ton, stir for 3~4 minutes; the process conditions of copper molybdenum zinc talc mixed concentrate sweeping 2 To add collector 5~7.5g/ton, foaming agent 2.5~5g/ton, stir for 3~4 minutes;
进一步的,步骤E中所述的铜—钼锌滑石浮选分离粗选工艺条件为加入铜抑制剂200~300克/吨,搅拌3~5分钟,加入捕收剂20~30克/吨,起泡剂10~20克/吨,搅拌3~4分钟;铜—钼锌滑石浮选分离精选1工艺条件为加入铜抑制剂50~100克/吨,搅拌3~5分钟,加入捕收剂5~15克/吨,搅拌3~4分钟;铜—钼锌滑石浮选分离精选2工艺条件为加入铜抑制剂30~50克/吨,搅拌3~5分钟;铜—钼锌滑石浮选分离扫选工艺条件为加入捕收剂10~15克/吨,起泡剂5~10克/吨,搅拌3~4分钟;Further, the copper-molybdenum-zinc talc flotation separation and roughing process conditions described in step E are to add 200~300 g/ton of copper inhibitor, stir for 3~5 minutes, add 20~30 g/ton of collector, 10~20g/ton of foaming agent, stir for 3~4 minutes; copper-molybdenum-zinc talc flotation separation and selection 1 process conditions are to add 50~100g/ton of copper inhibitor, stir for 3~5 minutes, add capture Agent 5~15g/ton, stir for 3~4 minutes; copper-molybdenum-zinc talc flotation separation and selection 2 process conditions are to add copper inhibitor 30~50g/ton, stir for 3-5 minutes; copper-molybdenum-zinc talc The flotation separation and sweeping process conditions include adding collector 10~15g/ton, foaming agent 5~10g/ton, and stirring for 3~4 minutes;
进一步的,步骤F中所述的钼锌—滑石重选分离前浓缩浓度为40%~60%,离心重选粗选转速600~800r/min,离心重选精选转速700~900r/min,离心重选扫选转速600~800r/min;Further, the concentration concentration of molybdenum zinc-talc before gravity separation and separation described in step F is 40%~60%, the rough selection speed of centrifugal gravity selection is 600~800r/min, and the selection speed of centrifugal gravity selection is 700~900r/min. Centrifugal gravity selection sweep speed 600~800r/min;
进一步的,步骤G钼—锌柱式分离前浓缩搅拌磨擦洗工艺条件为:浓缩产物浓度为50%~60%,搅拌磨加入难免离子预处理剂100~200克/吨,擦洗时间2~3分钟,搅拌磨采用陶瓷球,陶瓷球直径为6~12mm,充填率为40~55%,搅拌转速约90~120r/min;钼—锌柱式分离粗选工艺条件为加入锌抑制剂1000~1500克/吨,搅拌3~5分钟,捕收剂30~60克/吨,搅拌3~4分钟;钼—锌柱式分离精选1工艺条件为加入锌抑制剂300~500克/吨,搅拌3~5分钟,捕收剂10~20克/吨,搅拌3~4分钟;钼—锌柱式分离精选2工艺条件为加入锌抑制剂200~300克/吨,搅拌3~5分钟,捕收剂5~10克/吨,搅拌3~4分钟;钼—锌柱式分离精选3工艺条件为加入锌抑制剂100~200克/吨,搅拌3~5分钟;钼—锌柱式分离扫选工艺条件为加入捕收剂15~30克/吨,搅拌3~4分钟;Further, the process conditions of step G for concentration and stirring mill scrubbing before molybdenum-zinc column separation are: the concentration of the concentrated product is 50%~60%, 100~200 g/ton of unavoidable ion pretreatment agent is added to the stirring mill, and the scrubbing time is 2~3 minutes, the stirring mill uses ceramic balls, the diameter of the ceramic balls is 6~12mm, the filling rate is 40~55%, and the stirring speed is about 90~120r/min; the molybdenum-zinc column separation roughing process conditions are to add zinc inhibitor 1000~ 1500 g/ton, stir for 3 to 5 minutes, collector 30 to 60 g/ton, stir for 3 to 4 minutes; molybdenum-zinc column separation and selection 1 process conditions are to add zinc inhibitor 300 to 500 g/ton, Stir for 3 to 5 minutes, collect agent 10 to 20 g/ton, stir for 3 to 4 minutes; molybdenum-zinc column separation and selection 2 process conditions are to add zinc inhibitor 200 to 300 g/ton, stir for 3 to 5 minutes , collector 5~10g/ton, stir for 3~4 minutes; molybdenum-zinc column separation and selection 3 process conditions are to add zinc inhibitor 100~200g/ton, stir for 3~5 minutes; molybdenum-zinc column The process conditions for separation and sweeping are to add 15 to 30 grams/ton of collector and stir for 3 to 4 minutes;
进一步的,步骤B中所述的黄铁矿抑制剂为氧化钙。捕收剂为异丙基乙基硫代氨基甲酸酯、戊黄酸烯丙酯中的一种或两种与异戊基黄药、丁基黄药、丁铵黑药中的一种或几种搭配使用,异丙基乙基硫代氨基甲酸酯、戊黄酸烯丙酯中的一种或两种占40%~60%,异戊基黄药、丁基黄药、丁铵黑药中的一种或几种占40%~60%。起泡剂为松醇油或24K。Further, the pyrite inhibitor described in step B is calcium oxide. The collector is one or two of isopropyl ethyl thiocarbamate and allyl pentoxanate and one or two of isopentyl xanthate, butyl xanthate, and butylammonium xanthate. Several combinations are used, one or two of isopropyl ethyl thiocarbamate and allyl penxanthate account for 40% to 60%, isopentyl xanthate, butyl xanthate, butylammonium One or several types of black medicine account for 40% to 60%. The foaming agent is pine alcohol oil or 24K.
进一步的,步骤C中所述的硫抑制剂为氧化钙,用量为500~1000克/吨;Further, the sulfur inhibitor described in step C is calcium oxide, and the dosage is 500~1000 g/ton;
进一步的,步骤D中所述的捕收剂为异丙基乙基硫代氨基甲酸酯、戊黄酸烯丙酯中的一种或两种与丁铵黑药搭配使用,异丙基乙基硫代氨基甲酸酯、戊黄酸烯丙酯中的一种或两种占60%~80%,丁铵黑药占20%~40%。起泡剂为松醇油或24K。Further, the collector described in step D is one or two of isopropyl ethyl thiocarbamate and allyl pentoxylate used in combination with butylammonium black liquor. One or both of thiocarbamate and allyl pentoxanate account for 60% to 80%, and butylammonium black drug accounts for 20% to 40%. The foaming agent is pine alcohol oil or 24K.
进一步的,步骤E中所述的铜抑制剂为巯基乙酸钠改性小分子产物与巯基乙酸的改性小分子产物的混合物,巯基乙酸钠改性小分子产物占40%~60%,巯基乙酸改性小分子产物占40%~60%,捕收剂为乳化柴油、乳化煤油的一种或两种与丁铵黑药搭配使用,捕收剂为乳化柴油、乳化煤油的一种或两种占30%~50%,丁铵黑药占50%~70%。起泡剂为24K。Further, the copper inhibitor described in step E is a mixture of sodium thioglycolate modified small molecule product and thioglycolic acid modified small molecule product, the sodium thioglycolate modified small molecule product accounts for 40% to 60%, and the thioglycolic acid modified small molecule product accounts for 40% to 60%. Modified small molecule products account for 40% to 60%. The collector is one or two of emulsified diesel and emulsified kerosene used in combination with butylammonium black powder. The collector is one or two of emulsified diesel and emulsified kerosene. Accounting for 30% to 50%, butylammonium black drug accounts for 50% to 70%. The foaming agent is 24K.
进一步的,步骤G中所述的难免离子预处理剂为硫化钠或氧化钙中的一种或两种,锌抑制剂为硫酸锌、亚硫酸钠与硫化钠中的两种或三种,捕收剂为乳化柴油或乳化煤油中的一种或两种。Further, the unavoidable ion pretreatment agent described in step G is one or two of sodium sulfide or calcium oxide, the zinc inhibitor is two or three of zinc sulfate, sodium sulfite and sodium sulfide, and the collector is It is one or both of emulsified diesel or emulsified kerosene.
与现有技术相比,本发明的优势在于:Compared with the existing technology, the advantages of the present invention are:
1、本发明全浮选过程不对滑石等易浮镁硅酸盐矿物进行抑制,转而利用离心重选脱除,避免了传统选矿中大分子抑制剂抑制易浮脉石时造成的目的硫化金属矿物抑制,及尾矿过滤等难题,最大程度提高目的硫化多金属矿物回收率。1. The total flotation process of the present invention does not inhibit easily floating magnesium silicate minerals such as talc, but uses centrifugal gravity separation to remove them, avoiding the target sulfide metals caused when macromolecular inhibitors inhibit easily floating gangue in traditional mineral processing. Mineral suppression, tailings filtration and other problems can maximize the recovery rate of target sulfide polymetallic minerals.
2、本发明在产出铜精矿产品前,顺应被难免离子活化闪锌矿的强可浮性,全过程不抑制闪锌矿,避免高浓度难免离子环境下强行抑制闪锌矿造成的黄铜矿、辉铜矿等目的金属矿物的损失,简化药剂同时,最大程度保障铜矿物回收率。2. Before producing the copper concentrate product, the present invention adapts to the strong floatability of sphalerite activated by unavoidable ions, does not inhibit sphalerite in the whole process, and avoids the yellowing caused by forcibly inhibiting sphalerite in a high-concentration unavoidable ion environment. The loss of target metal minerals such as copper ore and chalcocite is simplified while ensuring the recovery rate of copper minerals to the greatest extent.
3、本发明二段磨矿产品设置多次精选作业,利用矿物的疏水性差异,筛查脉石矿物可浮性,进一步脱除可浮性相对较差的镁硅酸盐脉石矿物,避免该部分脉石矿物因机械夹带、水流夹带等因素进入铜—钼锌滑石浮选分离作业,避免最终铜精矿产品受该部分可浮性差的脉石矿物污染,保障铜精矿产品的高纯品质。3. The second-stage grinding product of the present invention is equipped with multiple selection operations, using the hydrophobicity differences of minerals to screen the floatability of gangue minerals and further remove the magnesium silicate gangue minerals with relatively poor floatability. Prevent this part of gangue minerals from entering the copper-molybdenum-zinc talc flotation separation operation due to mechanical entrainment, water flow entrainment and other factors, avoid the final copper concentrate product from being contaminated by this part of gangue minerals with poor floatability, and ensure the high quality of copper concentrate products. Pure quality.
4、本发明在铜—钼锌滑石浮选分离作业采用有机小分子铜抑制剂D402,避免了传统铜抑制剂硫化钠等抑制黄铜矿、辉铜矿等铜矿物时对闪锌矿同时造成的抑制,较好的实现铜矿物与锌矿物的分离。4. The present invention uses the organic small molecule copper inhibitor D402 in the copper-molybdenum-zinc talc flotation separation operation, which avoids the simultaneous use of the traditional copper inhibitor sodium sulfide and other copper inhibitors on sphalerite when inhibiting copper minerals such as chalcopyrite and chalcocite. The inhibition caused by this process can better achieve the separation of copper minerals and zinc minerals.
5、本发明采用离心重选脱除滑石,既简化药剂体系,同时强化了细粒级辉钼矿及闪锌矿的回收,更加贴合后端柱式分离选别优势。5. The present invention uses centrifugal gravity separation to remove talc, which not only simplifies the pharmaceutical system, but also strengthens the recovery of fine-grained molybdenite and sphalerite, and is more in line with the advantages of back-end column separation and sorting.
6、本发明在浮选到重选、重选再到浮选间隔设置浓缩脱水作业,满足作业浓度要求同时,还将矿浆中的部分难免离子随浓缩溢流水脱除,加之搅拌磨中预处理药剂擦洗,对难免离子干预较为充分,进一步降低闪锌矿在下段作业中的可浮性,提高钼锌分离效率。6. The present invention sets up concentration and dehydration operations from flotation to gravity separation, gravity separation and then to flotation to meet the concentration requirements of the operation. At the same time, some unavoidable ions in the slurry are removed with the concentration overflow water, plus pretreatment in the stirring mill. Chemical scrubbing can fully interfere with unavoidable ions, further reduce the floatability of sphalerite in the lower stage of operation, and improve the molybdenum and zinc separation efficiency.
7、经搅拌磨擦洗后的矿浆采用射流式浮选柱选别,矿化区及矿化强度更大,气泡分散度高、微细泡多、湍流程度低、高富集比等特点更加适应可浮性差异小的矿物分离,能获得互含更低的钼精矿产品及锌精矿产品。7. The slurry after stirring and friction is separated by a jet flotation column. The mineralized area and mineralization intensity are greater, and the characteristics of high bubble dispersion, many fine bubbles, low turbulence, and high enrichment ratio are more suitable for the industry. The separation of minerals with small buoyancy differences can produce molybdenum concentrate products and zinc concentrate products with lower mutual content.
8、本发明使用的药剂均为常规浮选药剂,对环境友好。8. The reagents used in the present invention are all conventional flotation reagents and are environmentally friendly.
附图说明Description of the drawings
图1为本发明的工艺流程示意图。Figure 1 is a schematic diagram of the process flow of the present invention.
具体实施方式Detailed ways
下面结合实施例和附图对本发明作进一步的说明,但不以任何方式对本发明加以限制,基于本发明教导所作的任何变换或替换,均属于本发明的保护范围。The present invention will be further described below with reference to the examples and drawings, but the present invention is not limited in any way. Any transformation or replacement based on the teachings of the present invention falls within the protection scope of the present invention.
本发明含钼高锌复杂镁硅酸盐蚀变矽卡岩型铜矿的选矿方法,其特征在于,包括一段磨矿、铜钼锌滑石混合粗选、二段磨矿、铜钼锌滑石混合精选、铜-钼锌滑石浮选分离、钼锌-滑石重选分离、钼-锌柱式分离步骤,具体包括:The mineral processing method of the molybdenum-containing high-zinc complex magnesium silicate altered skarn-type copper ore of the present invention is characterized by comprising one stage of grinding, rough separation of copper-molybdenum-zinc talc mixture, two-stage grinding, and mixing of copper-molybdenum-zinc talc. The steps of selection, copper-molybdenum-zinc talc flotation separation, molybdenum-zinc-talc gravity separation, and molybdenum-zinc column separation include:
A、一段磨矿:将破碎好的铜矿石进行一段磨矿得到物料a,磨矿细度为-74μm占55~65%;A. One-stage grinding: Grind the crushed copper ore in one stage to obtain material a. The grinding fineness is -74μm accounting for 55~65%;
B、铜钼锌滑石混合粗选:将物料a中依次加入黄铁矿抑制剂、捕收剂和起泡剂,经一次粗选得到铜钼锌滑石混合粗精矿b和粗选尾矿c;粗选尾矿c中依次加入捕收剂和起泡剂进行一次扫选得到扫选泡沫d和尾矿e;扫选泡沫返回一次粗选步骤;B. Copper-molybdenum-zinc talc mixed roughing: add pyrite inhibitor, collector and foaming agent to material a in sequence, and obtain copper-molybdenum-zinc talc mixed coarse concentrate b and roughing tailings c after one rough separation. ; Add collector and foaming agent to the roughing tailings c in sequence to perform a sweep to obtain the sweeping foam d and tailings e; the sweeping foam returns to the roughing step;
C、二段磨矿:将铜钼锌滑石混合粗精矿b中加入硫抑制剂进行二段磨矿得到物料f,磨矿细度为-74μm占80~85%;C. Second-stage grinding: Add sulfur inhibitors to the copper-molybdenum-zinc talc mixed coarse concentrate b and perform second-stage grinding to obtain material f. The grinding fineness is -74 μm accounting for 80~85%;
D、铜钼锌滑石混合精选:将物料f中依次加入捕收剂和起泡剂,经一段精选得到一段精选、二段精选和三段精选得到铜钼锌滑石混合精矿g和尾矿h;一段精选泡沫进入二段精选,二段精选泡沫进入三段精选,三段精选泡沫为铜钼锌滑石精矿,精选尾矿依次返回上一级精选;一段精选尾矿依次加入捕收剂、起泡剂进行一段精扫选,一段精扫泡沫返回一段精选,一段精扫选尾矿依次加入捕收剂、起泡剂进入二段精扫选,二段精扫选泡沫返回一段精扫选,二段精扫选尾矿即为尾矿h;D. Mixed selection of copper-molybdenum-zinc talc: Add collector and foaming agent to material f in sequence, and obtain first-stage selection, second-stage selection and third-stage selection to obtain copper-molybdenum-zinc talc mixed concentrate. g and tailings h; the foam selected in the first stage goes to the second stage, and the foam selected in the second stage goes to the third stage. The foam in the third stage is copper-molybdenum-zinc talc concentrate, and the selected tailings return to the upper level of concentrate in turn. Selecting; a collector and a foaming agent are added to the selected tailings in sequence for a stage of fine sweeping and selection. The foam in one stage of fine sweeping and selection returns to the first stage of fine selection. The collectors and foaming agents are added to the tailings of a stage of fine sweeping and selection in sequence and enter the second stage of fine cleaning. Sweeping and sorting, the foam in the second stage of fine sweeping and sorting returns to the first stage of fine sweeping and sorting, and the tailings in the second stage of fine sweeping and sorting are tailings h;
E、铜-钼锌滑石浮选分离:将铜钼锌滑石混合精矿g中依次加入铜抑制剂、捕收剂和起泡剂进入粗选,粗选泡沫依次添加铜抑制剂、捕收剂进行一段精选,一段精选泡沫添加铜抑制剂进行二段精选,二段精选泡沫为钼锌滑石混合精矿i,二段精选尾矿返回一段精选,一段精选尾矿返回粗选,粗选尾矿依次加入捕收剂、起泡剂进行扫选,扫选泡沫返回粗选,扫选尾矿为最终铜精矿j;E. Copper-molybdenum-zinc talc flotation separation: Add copper inhibitors, collectors and foaming agents to the copper-molybdenum-zinc talc mixed concentrate in sequence and enter rough selection. Add copper inhibitors and collectors to the foam in rough selection. The first stage of selection is carried out, and the copper inhibitor is added to the foam of the first stage of selection for the second stage of selection. The foam of the second stage of selection is molybdenum zinc talc mixed concentrate i, the tailings of the second stage of selection are returned to the first stage of selection, and the tailings of the first stage of selection are returned to Rough selection, the rough selection tailings are sequentially added with collectors and foaming agents for sweeping, the foam is returned to rough selection, and the sweeping tailings are the final copper concentrate j;
F、钼锌-滑石重选分离:将钼锌滑石混合精矿i进行浓缩脱水,进入离心重选粗选,离心重选粗选轻产物进入离心重选精选,离心重选精选轻产物为最终滑石产品,离心重选精选重产物返回离心重选粗选,离心重选粗选重产物进入离心重选扫选,离心重选扫选轻产物返回离心重选粗选,离心重选扫选重产物为钼锌混合精矿k;F. Molybdenum-zinc-talc gravity separation: The molybdenum-zinc-talc mixed concentrate i is concentrated and dehydrated, and then enters the centrifugal gravity selection for rough selection. The centrifugal gravity selection rough selection of the light products enters the centrifugal gravity selection for selection, and the centrifugal gravity selection selects the light products. For the final talc product, centrifugal gravity selection selects heavy products, returns to centrifugal gravity selection for rough selection, centrifugal gravity selection for rough selection, and centrifugal gravity selection for rough selection. The heavy product of sweeping is molybdenum-zinc mixed concentrate k;
G、钼-锌柱式分离:将钼锌混合精矿k进行浓缩脱水,加入难免离子预处理剂进行擦洗得到矿浆l,矿浆l中依次加入锌抑制剂和捕收剂进行粗选,粗选泡沫依次添加锌抑制剂、捕收剂进行一段精选,一段精选泡沫依次添加锌抑制剂、捕收剂进行二段精选,二段精选泡沫添加锌抑制剂进行三段精选,三段精选泡沫为最终钼精矿产品m,三段精选尾矿返回二段精选,二段精选尾矿返回一段精选,一段精选尾矿返回粗选,粗选尾矿添加捕收剂进行扫选,扫选精矿返回粗选,扫选尾矿为最终锌精矿产品n。G. Molybdenum-zinc column separation: Concentrate and dehydrate the molybdenum-zinc mixed concentrate k, add unavoidable ion pretreatment agent for scrubbing to obtain slurry l, add zinc inhibitors and collectors to the slurry l in sequence for rough selection, rough selection The foam is sequentially added with zinc inhibitors and collectors for one-stage selection, the first-stage selection foam is added with zinc inhibitors and collectors for the second-stage selection, the second-stage selection foam is added with zinc inhibitors for the third-stage selection, and the third-stage selection foam is The foam of the first-stage selection is the final molybdenum concentrate product m. The tailings of the third-stage selection return to the second-stage selection, the tailings of the second-stage selection return to the first-stage selection, the tailings of the first-stage selection return to the rough selection, and the tailings of the rough selection return to the rough selection. The collector is scavenged, the scavenged concentrate is returned to roughing, and the scavenged tailings are the final zinc concentrate product n.
B步骤中所述的黄铁矿抑制剂为氧化钙,用量为2000~3000克/吨,搅拌时间为3~5min;所述的捕收剂为异丙基乙基硫代氨基甲酸酯、戊黄酸烯丙酯中的一种或两种与异戊基黄药、丁基黄药、丁铵黑药中的一种或几种搭配使用,用量为40~60克/吨,异丙基乙基硫代氨基甲酸酯、戊黄酸烯丙酯中的一种或两种占40%~60%,异戊基黄药、丁基黄药、丁铵黑药中的一种或几种占40%~60%;所述的起泡剂为松醇油或24K,用量30~40克/吨。The pyrite inhibitor described in step B is calcium oxide, the dosage is 2000~3000 g/ton, and the stirring time is 3~5 min; the collector is isopropylethyl thiocarbamate, One or two types of allyl pentoxylate are used in combination with one or more types of isopentyl xanthate, butyl xanthate, and butylammonium xanthate. The dosage is 40~60 g/ton. Isopropyl xanthate One or two of ethylthiocarbamate and allyl penxanthate account for 40% to 60%, and one or two of isopentyl xanthate, butyl xanthate, and butylammonium black Several types account for 40% to 60%; the foaming agent is pine alcohol oil or 24K, and the dosage is 30 to 40 grams/ton.
C步骤中所述的硫抑制剂为氧化钙,用量为500~1000克/吨。The sulfur inhibitor described in step C is calcium oxide, and the dosage is 500 to 1000 grams/ton.
D步骤中所述的捕收剂为异丙基乙基硫代氨基甲酸酯、戊黄酸烯丙酯中的一种或两种与丁铵黑药搭配使用,异丙基乙基硫代氨基甲酸酯、戊黄酸烯丙酯中的一种或两种占60%~80%,丁铵黑药占20%~40%。所述的起泡剂为松醇油或24K。The collector described in step D is one or two of isopropylethylthiocarbamate and allyl pentoxylate used in combination with butylammonium black liquor. Isopropylethylthiocarbamate One or two types of carbamate and allyl pentoxanthate account for 60% to 80%, and butylammonium black drug accounts for 20% to 40%. The foaming agent is pine alcohol oil or 24K.
E步骤中铜抑制剂为巯基乙酸钠改性小分子产物与巯基乙酸的改性小分子产物的混合物,巯基乙酸钠改性小分子产物占40%~60%,巯基乙酸改性小分子产物占40%~60%;所述的捕收剂为乳化柴油、乳化煤油的一种或两种与丁铵黑药搭配使用,捕收剂为乳化柴油、乳化煤油的一种或两种占30%~50%,丁铵黑药占50%~70%;所述的起泡剂为24K。In step E, the copper inhibitor is a mixture of sodium thioglycolate-modified small molecule products and thioglycolic acid-modified small molecule products. The sodium thioglycolate-modified small molecule products account for 40% to 60%, and the thioglycolic acid-modified small molecule products account for 40% to 60%. 40% to 60%; the collector is one or both of emulsified diesel and emulsified kerosene used together with butylammonium black powder, and the collector is one or both of emulsified diesel and emulsified kerosene accounting for 30% ~50%, and butylammonium black drug accounts for 50%~70%; the foaming agent is 24K.
F步骤中所述的离心重选粗选转速600~800r/min,离心重选精选转速700~900r/min,离心重选扫选转速600~800r/min。The centrifugal gravity selection roughing speed described in step F is 600~800r/min, the centrifugal gravity selection selection speed is 700~900r/min, and the centrifugal gravity selection sweeping speed is 600~800r/min.
G步骤中所述的难免离子预处理剂为硫化钠或氧化钙中的一种或两种;所述的锌抑制剂为硫酸锌、亚硫酸钠与硫化钠中的两种或三种,所述的捕收剂为乳化柴油或乳化煤油中的一种或两种。The unavoidable ion pretreatment agent described in step G is one or both of sodium sulfide or calcium oxide; the zinc inhibitor is two or three of zinc sulfate, sodium sulfite and sodium sulfide, and the The collector is one or both of emulsified diesel or emulsified kerosene.
下面以具体实施案例对本发明做进一步说明:The present invention will be further described below with specific implementation examples:
实施例1Example 1
西藏念青某选厂,含铜0.59%,含钼0.015%,含锌0.39%,含镁16.35%,主要金属矿物为硫化矿物(黄铜矿、辉铜矿、铜蓝、辉钼矿和闪锌矿),易镁硅酸盐矿物主要为滑石及蛇纹石,滑石与辉钼矿具有较好的天然可浮性,受矿浆难免离子影响闪锌矿可浮性极好,滑石与各金属矿物间可浮性差异极小,难以分离,将上述矿样经过下列工艺步骤处理:A dressing plant in Nianqing, Tibet, contains 0.59% copper, 0.015% molybdenum, 0.39% zinc, and 16.35% magnesium. The main metal minerals are sulfide minerals (chalcopyrite, chalcocite, covellite, molybdenite and sphalerite). Zinc ore), easy magnesium silicate minerals are mainly talc and serpentine. Talc and molybdenite have good natural floatability. Affected by the unavoidable ions of the ore slurry, sphalerite has excellent floatability. Talc and various metals The difference in floatability between minerals is very small and difficult to separate. The above mineral samples are processed through the following process steps:
A、一段磨矿:将破碎好的铜矿石进行一段磨矿,磨矿细度为-74μm占65%。A. One-stage grinding: Grind the crushed copper ore in one stage, and the grinding fineness is -74μm accounting for 65%.
B、铜钼锌滑石混合粗选:一段磨矿产品进行铜钼锌滑石混合粗选,铜钼锌滑石混合粗选的工艺条件为添加氧化钙3000克/吨,搅拌5分钟,依次添加异丙基乙基硫代氨基甲酸酯30克/吨,丁基黄药20克/吨及24K30克/吨,搅拌3分钟,经一次粗选,粗选精矿为铜钼锌滑石混合粗精矿,粗选尾矿依次添加异丙基乙基硫代氨基甲酸酯15克/吨,丁基黄药10克/吨及24K15克/吨,搅拌3分钟,进行一次扫选,扫选的泡沫返回粗选,扫选尾矿为尾矿1。B. Copper-molybdenum-zinc talc mixed rough selection: The first-stage grinding product is used for copper-molybdenum-zinc talc mixed rough selection. The process conditions for copper-molybdenum-zinc talc mixed rough selection are to add 3000 g/ton of calcium oxide, stir for 5 minutes, and add isopropyl in turn. 30 g/ton of ethylthiocarbamate, 20 g/ton of butyl xanthate and 30 g/ton of 24K, stir for 3 minutes, and after a rough separation, the rough concentrate is a copper-molybdenum-zinc talc mixed coarse concentrate. , add 15 g/ton of isopropyl ethyl thiocarbamate, 10 g/ton butyl xanthate and 15 g/ton 24K to the roughing tailings in sequence, stir for 3 minutes, and perform a sweep to remove the foam. Return to roughing and sweep the tailings into tailings 1.
C、二段磨矿:将B步骤得到的铜钼锌滑石混合粗精矿加入氧化钙800克/吨,进行二段磨矿,磨矿细度为-74μm占85%。C. Second-stage grinding: Add 800 g/ton of calcium oxide to the copper-molybdenum-zinc talc mixed coarse concentrate obtained in step B, and perform second-stage grinding. The grinding fineness is -74 μm accounting for 85%.
D、铜钼锌滑石混合精选:铜钼锌滑石混合精选工艺为将C步骤磨好的矿浆依次加入异丙基乙基硫代氨基甲酸酯20克/吨,丁铵黑药10克/吨,24K10克/吨,搅拌3分钟,经一段精选,一段精选泡沫进入二段精选,二段精选泡沫进入三段精选,三段精选泡沫为铜钼锌滑石混合精矿,精选尾矿依次返回上一级精选。一段精选尾矿依次加入异丙基乙基硫代氨基甲酸酯10克/吨,丁铵黑药5克/吨,24K5克/吨,搅拌3分钟,进行一段精扫选,一段精扫泡沫返回一段精选,一段精扫选尾矿依次加入异丙基乙基硫代氨基甲酸酯5克/吨,丁铵黑药2.5克/吨,24K2.5克/吨,搅拌3分钟,进入二段精扫选选,二段精扫选泡沫返回一段精扫选,二段精扫选尾矿为尾矿2。D. Copper-molybdenum-zinc talc mixed selection: The copper-molybdenum-zinc talc mixed selection process is to add 20 g/ton of isopropyl ethyl thiocarbamate and 10 g of butylammonium black powder to the pulp ground in step C. / ton, 24K10 g/ton, stir for 3 minutes, after one stage of selection, the foam selected in the first stage enters the second stage selection, the foam selected in the second stage enters the third stage selection, the foam selected in the third stage is a mixture of copper, molybdenum and zinc talc Mine, the selected tailings are returned to the previous level of selection in turn. To a section of selected tailings, add 10 g/ton of isopropyl ethyl thiocarbamate, 5 g/ton of butylammonium black liquor, and 5 g/ton of 24K in sequence, stir for 3 minutes, and perform one stage of fine sweeping and one stage of fine sweeping. The foam returns to a section of fine selection, and a section of fine sweep tailings is added in sequence with 5 g/ton of isopropyl ethyl thiocarbamate, 2.5 g/ton of butylammonium black powder, and 2.5 g/ton of 24K, and stir for 3 minutes. Entering the second stage of fine sweeping and sorting, the foam in the second stage of fine sweeping and sorting returns to the first stage of fine sweeping and sorting, and the tailings of the second stage of fine sweeping and sorting are tailings 2.
E、铜—钼锌滑石浮选分离:铜—钼锌滑石浮选分离工艺条件为:将步骤D三段精选产生的铜钼锌滑石混合精矿依次加入巯基乙酸钠改性小分子产物150克/吨,巯基乙酸改性小分子产物120克/吨,搅拌4分钟,依次加入乳化柴油8克/吨,丁铵黑药12克/吨,24K10克/吨,搅拌3分钟,进入粗选,粗选泡沫依次添加巯基乙酸钠改性小分子产物50克/吨,巯基乙酸改性小分子产物30克/吨,搅拌4分钟,乳化柴油4克/吨,丁铵黑药6克/吨,搅拌3分钟,进行一段精选,一段精选泡沫添加巯基乙酸钠改性小分子产物30克/吨,巯基乙酸改性小分子产物20克/吨,搅拌4分钟,进行二段精选,二段精选泡沫为钼锌滑石混合精矿,二段精选尾矿返回一段精选,一段精选尾矿返回粗选,粗选尾矿依次加入乳化柴油4克/吨,丁铵黑药6克/吨,24K5克/吨,搅拌3分钟,进行扫选,扫选泡沫返回粗选,扫选尾矿为最终铜精矿。E. Copper-molybdenum-zinc talc flotation separation: The copper-molybdenum-zinc talc flotation separation process conditions are: add the copper-molybdenum-zinc talc mixed concentrate produced in the three stages of step D in sequence and add sodium thioglycolate modified small molecule product 150 g/ton, thioglycolic acid modified small molecule product 120 g/ton, stir for 4 minutes, add emulsified diesel oil 8 g/ton, butylammonium black powder 12 g/ton, 24K 10 g/ton, stir for 3 minutes, enter rough selection , coarsely select the foam and add 50 g/ton of sodium thioglycolate modified small molecule product, 30 g/ton of thioglycolic acid modified small molecule product, stir for 4 minutes, 4 g/ton of emulsified diesel oil, and 6 g/ton of butylammonium black liquor. , stir for 3 minutes, perform one stage of selection, add 30 g/ton of sodium thioglycolate modified small molecule product to the foam in the first stage, and 20 g/ton of thioglycolic acid modified small molecule product, stir for 4 minutes, perform the second stage of selection, The second-stage selection foam is a mixed concentrate of molybdenum-zinc talc. The second-stage selection tailings are returned to the first-stage selection, and the first-stage selection tailings are returned to the rough selection. The rough selection tailings are sequentially added with 4 g/ton of emulsified diesel oil and butylammonium black liquor. 6g/ton, 24K5g/ton, stir for 3 minutes, sweep, sweep the foam back to roughing, and sweep the tailings into the final copper concentrate.
F、钼锌—滑石重选分离:钼锌—滑石重选分离工艺条件为将步骤E二段精选泡沫进行浓缩脱水,把部分难免离子随水脱除,浓缩到50%的浓度产品进入转速700 r/min离心重选粗选,离心重选粗选轻产物进入转速800 r/min离心重选精选,离心重选精选轻产物为最终滑石产品,离心重选精选重产物返回离心重选粗选,离心重选粗选重产物进入转速700r/min离心重选扫选,离心重选扫选轻产物返回离心重选粗选,离心重选扫选重产物为钼锌混合精矿。F. Molybdenum zinc-talc gravity separation: The molybdenum zinc-talc gravity separation process conditions are to concentrate and dehydrate the selected foam in the second stage of step E, remove some unavoidable ions with water, and concentrate the product to a concentration of 50% into the rotating speed Centrifugal gravity selection at 700 r/min for rough selection, centrifugal gravity selection for rough selection, the light products enter the centrifuge gravity selection at 800 r/min for selection, the centrifugal gravity selection selects the light products as the final talc product, and the centrifugal gravity selection selects the heavy products and returns to centrifugation Gravity selection and rough selection, centrifugal gravity selection and rough selection. The heavy products enter the centrifugal gravity selection and sweep at a speed of 700r/min. The centrifugal gravity selection sweeps and sweeps the light products and returns to the centrifugal gravity selection and rough selection. The heavy products of centrifugal gravity selection and sweep are molybdenum and zinc mixed concentrates. .
G、钼—锌柱式分离:钼—锌柱式分离工艺条件为将步骤F中钼锌混合精矿进行浓缩脱水,把部分难免离子随水脱除,60%浓度浓缩产品加入硫化钠150克/吨,进入搅拌磨擦洗,擦洗采用直径8mm陶瓷球,充填率为40%,搅拌转速为100 r/min,搅拌磨擦洗后的矿浆依次添加硫酸锌800克/吨、亚硫酸钠400克/吨,搅拌4分钟,乳化柴油40克/吨,搅拌3分钟,进入浮选柱进行粗选,粗选泡沫依次添加硫酸锌200克/吨、亚硫酸钠100克/吨,搅拌4分钟,乳化柴油15克/吨,搅拌3分钟,进行一段精选。一段精选泡沫依次添加硫酸锌150克/吨、亚硫酸钠75克/吨,搅拌4分钟,乳化柴油10克/吨,搅拌3分钟,进行二段精选,二段精选泡沫添加硫酸锌100克/吨、亚硫酸钠50克/吨,搅拌4分钟,进行三段精选,三段精选泡沫为最终钼精矿产品,三段精选尾矿返回二段精选,二段精选尾矿返回一段精选,一段精选尾矿返回粗选,粗选尾矿添加乳化柴油20克/吨,搅拌3分钟,进行扫选,扫选精矿返回粗选,扫选尾矿为最终锌精矿产品。G. Molybdenum-Zinc Column Separation: The molybdenum-zinc column separation process conditions are to concentrate and dehydrate the molybdenum-zinc mixed concentrate in step F, remove some unavoidable ions with water, and add 150 grams of sodium sulfide to the 60% concentrated product. / ton, enter the stirring friction scrubbing, use 8mm diameter ceramic balls for scrubbing, the filling rate is 40%, the stirring speed is 100 r/min, the slurry after stirring friction scrubbing is sequentially added with 800g/ton of zinc sulfate and 400g/ton of sodium sulfite. Stir for 4 minutes, emulsified diesel oil 40g/ton, stir for 3 minutes, enter the flotation column for rough separation, add 200g/ton of zinc sulfate and 100g/ton of sodium sulfite to the coarse separation foam, stir for 4 minutes, and add 15g/ton of emulsified diesel oil. tons, stir for 3 minutes, and perform a selection. Add 150 g/ton of zinc sulfate and 75 g/ton of sodium sulfite to the first stage of foam selection, stir for 4 minutes, stir for 3 minutes, and stir for 3 minutes to carry out the second stage of foam selection. Add 100 g of zinc sulfate to the second stage of foam selection. / ton, 50 g/ton of sodium sulfite, stir for 4 minutes, perform three-stage selection, the foam of the third-stage selection is the final molybdenum concentrate product, the tailings of the third-stage selection return to the second-stage selection, and the tailings of the second-stage selection return There is a section of fine selection, and the tailings of a section of fine selection are returned to rough selection. 20 g/ton of emulsified diesel oil is added to the coarse tailings, stirred for 3 minutes, and then swept. The sweep concentrate is returned to rough selection. The sweep tailings are the final zinc concentrate. product.
采用以上工艺流程处理该矿石,可获得铜精矿Cu品位25.29%,Cu回收率86.20%;钼精矿Mo品位32.62%,Mo回收率67.95%;锌精矿Zn品位41.02%,Zn回收率71.33%的技术指标。提高了矿产资源的综合利用率。Using the above process to process the ore, the copper concentrate can be obtained with a Cu grade of 25.29% and a Cu recovery rate of 86.20%; the molybdenum concentrate has a Mo grade of 32.62% and a Mo recovery rate of 67.95%; the zinc concentrate has a Zn grade of 41.02% and a Zn recovery rate of 71.33 % technical indicators. Improved the comprehensive utilization rate of mineral resources.
实施例2Example 2
内蒙古某选厂,含铜0.51%,含钼0.017%,含锌0.31%,含镁15.19%,主要金属矿物为硫化矿物(黄铜矿、硫砷铜矿、铜蓝、辉钼矿和闪锌矿),易镁硅酸盐矿物主要为滑石,滑石与辉钼矿具有较好的天然可浮性,受矿浆难免离子影响闪锌矿可浮性极好,滑石与各金属矿物间可浮性差异极小,难以分离,将上述矿样经过下列工艺步骤处理:A dressing plant in Inner Mongolia contains 0.51% copper, 0.017% molybdenum, 0.31% zinc, and 15.19% magnesium. The main metal minerals are sulfide minerals (chalcopyrite, cobaltite, cobalt blue, molybdenite, and sphalerite. ore), easy magnesium silicate minerals are mainly talc. Talc and molybdenite have good natural floatability. Affected by unavoidable ions in the ore slurry, sphalerite has excellent floatability. The floatability between talc and various metal minerals The difference is extremely small and difficult to separate. The above mineral samples are processed through the following process steps:
A、一段磨矿:将破碎好的铜矿石进行一段磨矿,磨矿细度为-74μm占60%。A. One-stage grinding: Grind the crushed copper ore in one stage, and the grinding fineness is -74μm accounting for 60%.
B、铜钼锌滑石混合粗选:一段磨矿产品进行铜钼锌滑石混合粗选,铜钼锌滑石混合粗选的工艺条件为添加氧化钙2500克/吨,搅拌5分钟,依次添加戊黄酸烯丙酯30克/吨,异戊基黄药20克/吨及24K30克/吨,搅拌3分钟,经一次粗选,粗选精矿为铜钼锌滑石混合粗精矿,粗选尾矿依次添加戊黄酸烯丙酯13克/吨,异戊基黄药9克/吨及24K20克/吨,搅拌3分钟,进行一次扫选,扫选的泡沫返回粗选,扫选尾矿为尾矿1。B. Copper-molybdenum-zinc talc mixed rough selection: The first-stage grinding product is used for copper-molybdenum-zinc talc mixed rough selection. The process conditions for copper-molybdenum-zinc talc mixed rough selection are to add 2500 g/ton of calcium oxide, stir for 5 minutes, and add amyl yellow in sequence. Acid allyl ester 30 g/ton, isopentyl xanthate 20 g/ton and 24K 30 g/ton, stir for 3 minutes, and undergo a rough selection. The rough concentrate is a copper-molybdenum-zinc talc mixed coarse concentrate, and the rough separation tail The ore is sequentially added with 13 g/ton of allyl pentoxylate, 9 g/ton of isopentyl xanthate and 20 g/ton of 24K, stir for 3 minutes, and perform a sweep. The swept foam is returned to roughing and the tailings are swept. For tailings 1.
C、二段磨矿:将B步骤得到的铜钼锌滑石混合粗精矿加入氧化钙700克/吨进行二段磨矿,磨矿细度为-74μm占80%。C. Second-stage grinding: Add 700 g/ton of calcium oxide to the copper-molybdenum-zinc talc mixed coarse concentrate obtained in step B for second-stage grinding. The grinding fineness is -74 μm accounting for 80%.
D、铜钼锌滑石混合精选:铜钼锌滑石混合精选工艺为将C步骤磨好的矿浆依次加入戊黄酸烯丙酯18克/吨,丁铵黑药8克/吨,24K10克/吨,搅拌3分钟,经一段精选,一段精选泡沫进入二段精选,二段精选泡沫进入三段精选,三段精选泡沫为铜钼锌滑石混合精矿,精选尾矿依次返回上一级精选。一段精选尾矿依次加入戊黄酸烯丙酯8克/吨,丁铵黑药3克/吨,24K5克/吨,搅拌3分钟,进行一段精扫选,一段精扫泡沫返回一段精选,一段精扫选尾矿依次加入戊黄酸烯丙酯4克/吨,丁铵黑药2克/吨,24K2.5克/吨,搅拌3分钟,进入二段精扫选选,二段精扫选泡沫返回一段精扫选,二段精扫选尾矿为尾矿2。D. Copper-molybdenum-zinc talc mixed selection: The copper-molybdenum-zinc talc mixed selection process is to add 18 g/ton of allyl pentaxate, 8 g/ton of butylammonium black powder, and 10 g of 24K to the pulp ground in step C. / ton, stir for 3 minutes, after one stage of selection, the foam selected in the first stage enters the second stage of selection, and the foam selected in the second stage enters the third stage of selection. The foam selected in the third stage is a copper-molybdenum-zinc talc mixed concentrate, and the selected tail The mines return to the previous level of selection in turn. To a section of selected tailings, add 8 g/ton of allyl pentaxanoate, 3 g/ton of butylammonium black liquor, and 5 g/ton of 24K in sequence. Stir for 3 minutes. Perform a section of fine sweeping and selection, and a section of fine sweeping of foam to return to the first section of selection. , add 4 g/ton of allyl pentoxanate, 2 g/ton of butylammonium black liquor, and 2.5 g/ton of 24K to the tailings in the first stage of fine sweeping and sorting. Stir for 3 minutes and enter the second stage of fine sweeping and sorting. The fine sweeping and sorting foam returns to the first stage of fine sweeping and sorting, and the tailings of the second stage of fine sweeping and sorting are tailings 2.
E、铜—钼锌滑石浮选分离:铜—钼锌滑石浮选分离工艺条件为:将步骤D三段精选产生的铜钼锌滑石混合精矿依次加入巯基乙酸钠改性小分子产物150克/吨,巯基乙酸改性小分子产物120克/吨,搅拌4分钟,依次加入乳化柴油8克/吨,丁铵黑药12克/吨,24K10克/吨,搅拌3分钟,进入粗选,粗选泡沫依次添加巯基乙酸钠改性小分子产物50克/吨,巯基乙酸改性小分子产物30克/吨,搅拌4分钟,乳化柴油4克/吨,丁铵黑药6克/吨,搅拌3分钟,进行一段精选,一段精选泡沫添加巯基乙酸钠改性小分子产物25克/吨,巯基乙酸改性小分子产物20克/吨,搅拌4分钟,进行二段精选,二段精选泡沫为钼锌滑石混合精矿,二段精选尾矿返回一段精选,一段精选尾矿返回粗选,粗选尾矿依次加入乳化柴油4克/吨,丁铵黑药6克/吨,24K5克/吨,搅拌3分钟,进行扫选,扫选泡沫返回粗选,扫选尾矿为最终铜精矿。E. Copper-molybdenum-zinc talc flotation separation: The copper-molybdenum-zinc talc flotation separation process conditions are: add the copper-molybdenum-zinc talc mixed concentrate produced in the three stages of step D in sequence and add sodium thioglycolate modified small molecule product 150 g/ton, thioglycolic acid modified small molecule product 120 g/ton, stir for 4 minutes, add emulsified diesel oil 8 g/ton, butylammonium black powder 12 g/ton, 24K 10 g/ton, stir for 3 minutes, enter rough selection , coarsely select the foam and add 50 g/ton of sodium thioglycolate modified small molecule product, 30 g/ton of thioglycolic acid modified small molecule product, stir for 4 minutes, 4 g/ton of emulsified diesel oil, and 6 g/ton of butylammonium black liquor. , stir for 3 minutes, perform one stage of selection, add 25 g/ton of sodium thioglycolate modified small molecule product to the foam in the first stage, and 20 g/ton of thioglycolic acid modified small molecule product, stir for 4 minutes, perform the second stage of selection, The second-stage selection foam is a mixed concentrate of molybdenum-zinc talc. The second-stage selection tailings are returned to the first-stage selection, and the first-stage selection tailings are returned to the rough selection. The rough selection tailings are sequentially added with 4 g/ton of emulsified diesel oil and butylammonium black liquor. 6g/ton, 24K5g/ton, stir for 3 minutes, sweep, sweep the foam back to roughing, and sweep the tailings into the final copper concentrate.
F、钼锌—滑石重选分离:钼锌—滑石重选分离工艺条件为将步骤E二段精选泡沫进行浓缩脱水,把部分难免离子随水脱除,浓缩到45%的浓度产品进入转速600 r/min离心重选粗选,离心重选粗选轻产物进入转速700 r/min离心重选精选,离心重选精选轻产物为最终滑石产品,离心重选精选重产物返回离心重选粗选,离心重选粗选重产物进入转速600r/min离心重选扫选,离心重选扫选轻产物返回离心重选粗选,离心重选扫选重产物为钼锌混合精矿。F. Molybdenum zinc-talc gravity separation: The molybdenum zinc-talc gravity separation process conditions are to concentrate and dehydrate the selected foam in the second stage of step E, remove some unavoidable ions with water, and concentrate the product to a concentration of 45% into the rotating speed 600 r/min centrifugal gravity selection for rough selection, centrifugal gravity selection for rough selection, light products enter the centrifugal gravity selection at 700 r/min for selection, centrifugal gravity selection selects light products as the final talc product, centrifugal gravity selection selects heavy products and returns to centrifugation Gravity selection and rough selection, centrifugal gravity selection and rough selection. The heavy products enter the centrifugal gravity selection and sweep at a speed of 600r/min. The centrifugal gravity selection sweeps and sweeps the light products and returns to the centrifugal gravity selection and rough selection. The heavy product of centrifugal gravity selection and sweep is molybdenum and zinc mixed concentrate. .
G、钼—锌柱式分离:钼—锌柱式分离工艺条件为将步骤F中钼锌混合精矿进行浓缩脱水,把部分难免离子随水脱除,55%浓度浓缩产品加入硫化钠170克/吨,进入搅拌磨擦洗,擦洗采用直径6mm陶瓷球,充填率为45%,搅拌转速为90 r/min,搅拌磨擦洗后的矿浆依次添加硫酸锌800克/吨、硫化钠300克/吨,搅拌4分钟,乳化柴油40克/吨,搅拌3分钟,进入浮选柱进行粗选,粗选泡沫依次添加硫酸锌200克/吨、硫化钠80克/吨,搅拌4分钟,乳化柴油15克/吨,搅拌3分钟,进行一段精选。一段精选泡沫依次添加硫酸锌150克/吨、硫化钠60克/吨,搅拌4分钟,乳化柴油10克/吨,搅拌3分钟,进行二段精选,二段精选泡沫添加硫酸锌100克/吨、硫化钠40克/吨,搅拌4分钟,进行三段精选,三段精选泡沫为最终钼精矿产品,三段精选尾矿返回二段精选,二段精选尾矿返回一段精选,一段精选尾矿返回粗选,粗选尾矿添加乳化柴油20克/吨,搅拌3分钟,进行扫选,扫选精矿返回粗选,扫选尾矿为最终锌精矿产品。G. Molybdenum-Zinc Column Separation: The molybdenum-zinc column separation process conditions are to concentrate and dehydrate the molybdenum-zinc mixed concentrate in step F, remove some unavoidable ions with water, and add 170 grams of sodium sulfide to the 55% concentrated product. / ton, enter the stirring friction scrubbing, use 6mm diameter ceramic balls for scrubbing, the filling rate is 45%, the stirring speed is 90 r/min, and the slurry after stirring friction scrubbing is sequentially added with 800g/ton of zinc sulfate and 300g/ton of sodium sulfide. , stir for 4 minutes, emulsified diesel oil 40g/ton, stir for 3 minutes, enter the flotation column for rough separation, add 200g/ton of zinc sulfate and 80g/ton of sodium sulfide to the coarse separation foam, stir for 4 minutes, emulsified diesel oil 15 g/ton, stir for 3 minutes, and carry out a section of selection. In the first stage of foam selection, add 150 g/ton of zinc sulfate and 60 g/ton of sodium sulfide in sequence, stir for 4 minutes, and stir for 3 minutes of emulsified diesel oil. Then proceed to the second stage of foam selection. In the second stage of foam selection, add 100 g of zinc sulfate. g/ton, sodium sulfide 40 g/ton, stir for 4 minutes, perform three-stage selection, the foam of the third-stage selection is the final molybdenum concentrate product, the tailings of the third-stage selection return to the second-stage selection, and the tailings of the second-stage selection The ore is returned to a section of fine selection, and the tailings of a section of fine selection are returned to rough selection. 20 g/ton of emulsified diesel oil is added to the rough selection tailings, stirred for 3 minutes, and then swept. The sweep concentrate is returned to rough selection, and the sweep tailings are the final zinc. Concentrate products.
采用以上工艺流程处理该矿石,可获得铜精矿Cu品位24.77%,Cu回收率85.35%;钼精矿Mo品位34.17%,Mo回收率71.21%;锌精矿Zn品位40.76%,Zn回收率68.71%的技术指标。提高了矿产资源的综合利用率。Using the above process to process the ore, the copper concentrate can be obtained with a Cu grade of 24.77% and a Cu recovery rate of 85.35%; the molybdenum concentrate has a Mo grade of 34.17% and a Mo recovery rate of 71.21%; the zinc concentrate has a Zn grade of 40.76% and a Zn recovery rate of 68.71 % technical indicators. Improved the comprehensive utilization rate of mineral resources.
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210218295.4A CN114534906B (en) | 2022-03-08 | 2022-03-08 | Beneficiation method for molybdenum-containing high-zinc complex magnesium silicate-modified silicon-stuck-rock copper ore |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210218295.4A CN114534906B (en) | 2022-03-08 | 2022-03-08 | Beneficiation method for molybdenum-containing high-zinc complex magnesium silicate-modified silicon-stuck-rock copper ore |
Publications (2)
Publication Number | Publication Date |
---|---|
CN114534906A CN114534906A (en) | 2022-05-27 |
CN114534906B true CN114534906B (en) | 2023-11-17 |
Family
ID=81664187
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210218295.4A Active CN114534906B (en) | 2022-03-08 | 2022-03-08 | Beneficiation method for molybdenum-containing high-zinc complex magnesium silicate-modified silicon-stuck-rock copper ore |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114534906B (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116871061A (en) * | 2023-06-08 | 2023-10-13 | 昆明冶金研究院有限公司 | A mineral processing method for improving the grade of magnesium-containing copper-sulfur ore concentrate |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05255773A (en) * | 1992-03-11 | 1993-10-05 | Sumitomo Metal Mining Co Ltd | Ore dressing method for intricate sulfide ore |
AU2005203753A1 (en) * | 2005-02-04 | 2006-08-24 | Jilin Jien Nickel Industry Co. Ltd. | A recovery method for nickel sulfide and copper mining tailings |
RU2398635C1 (en) * | 2009-07-15 | 2010-09-10 | Совместное предприятие в форме закрытого акционерного общества "Изготовление, внедрение, сервис" | Method of flotation enrichment of sulphide ores |
CN104162480A (en) * | 2014-07-24 | 2014-11-26 | 江西理工大学 | Method for separating copper ore, molybdenum ore, bismuth ore and sulfur ore |
CN105435953A (en) * | 2015-11-18 | 2016-03-30 | 西北矿冶研究院 | Beneficiation method for molybdenum-containing low-grade mixed copper ore |
CN107362899A (en) * | 2016-05-11 | 2017-11-21 | 北京有色金属研究总院 | A kind of heavy ore flotation group technology for handling complicated tungsten Cu-Pb seperation |
CN110433955A (en) * | 2019-07-18 | 2019-11-12 | 中国地质科学院郑州矿产综合利用研究所 | Magnetic suspension combined separation and sorting method for copper-molybdenum bulk concentrates |
CN110841796A (en) * | 2019-11-25 | 2020-02-28 | 昆明冶金研究院有限公司 | Process for recovering chalcopyrite and chalcocite with non-uniform embedded particle size from high-yellow-iron mineralized skarnite copper ore |
CN112156884A (en) * | 2020-08-07 | 2021-01-01 | 核工业北京化工冶金研究院 | Pretreatment method for high-acid-consumption difficult-leaching volcanic-type uranium ore |
WO2021212595A1 (en) * | 2020-04-22 | 2021-10-28 | 广东省科学院资源综合利用研究所 | Beneficiation method for stepwise classification and comprehensive recovery of valuable elements in primary vein platinum mine tailings |
-
2022
- 2022-03-08 CN CN202210218295.4A patent/CN114534906B/en active Active
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05255773A (en) * | 1992-03-11 | 1993-10-05 | Sumitomo Metal Mining Co Ltd | Ore dressing method for intricate sulfide ore |
AU2005203753A1 (en) * | 2005-02-04 | 2006-08-24 | Jilin Jien Nickel Industry Co. Ltd. | A recovery method for nickel sulfide and copper mining tailings |
RU2398635C1 (en) * | 2009-07-15 | 2010-09-10 | Совместное предприятие в форме закрытого акционерного общества "Изготовление, внедрение, сервис" | Method of flotation enrichment of sulphide ores |
CN104162480A (en) * | 2014-07-24 | 2014-11-26 | 江西理工大学 | Method for separating copper ore, molybdenum ore, bismuth ore and sulfur ore |
CN105435953A (en) * | 2015-11-18 | 2016-03-30 | 西北矿冶研究院 | Beneficiation method for molybdenum-containing low-grade mixed copper ore |
CN107362899A (en) * | 2016-05-11 | 2017-11-21 | 北京有色金属研究总院 | A kind of heavy ore flotation group technology for handling complicated tungsten Cu-Pb seperation |
CN110433955A (en) * | 2019-07-18 | 2019-11-12 | 中国地质科学院郑州矿产综合利用研究所 | Magnetic suspension combined separation and sorting method for copper-molybdenum bulk concentrates |
CN110841796A (en) * | 2019-11-25 | 2020-02-28 | 昆明冶金研究院有限公司 | Process for recovering chalcopyrite and chalcocite with non-uniform embedded particle size from high-yellow-iron mineralized skarnite copper ore |
WO2021212595A1 (en) * | 2020-04-22 | 2021-10-28 | 广东省科学院资源综合利用研究所 | Beneficiation method for stepwise classification and comprehensive recovery of valuable elements in primary vein platinum mine tailings |
CN112156884A (en) * | 2020-08-07 | 2021-01-01 | 核工业北京化工冶金研究院 | Pretreatment method for high-acid-consumption difficult-leaching volcanic-type uranium ore |
Non-Patent Citations (1)
Title |
---|
某复杂难选铜钼矿石浮选试验;赵冠飞;朱冬梅;伍红强;艾光华;丁声强;;矿山机械(第02期);全文 * |
Also Published As
Publication number | Publication date |
---|---|
CN114534906A (en) | 2022-05-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107999267B (en) | A flotation separation process of high-sulfur lead-zinc ore in a high-concentration environment | |
CN106540800B (en) | A method of gold and microfine antimony mineral in recycling flotation tailing containing Sb-Au ore | |
CN102029220B (en) | Separating flotation method of low-grade complex lead-antimony-zinc | |
CN104073645B (en) | A kind of method reclaiming valuable metal in ultra-fine cyanidation tailings with high cyanogen backwater to float | |
CN106669964B (en) | A kind of beneficiation method recycling wolframite from tailing | |
CN106733202A (en) | Flotation method for fine-grained embedded copper sulfide ore | |
CN104148163B (en) | A kind of beneficiation method processing low-grade tin-lead-zinc multi-metal oxygen ore deposit | |
CN109127115B (en) | Method for recovering lead-zinc mineral from high-sulfur lead-zinc ore tailings | |
CN106622641B (en) | The method that rich indium marmatite is recycled in association polymetallic ore is total under low alkali from copper zinc indium | |
CN101585017A (en) | Ore-selecting method of difficultly-selected copper zinc sulphur ore | |
CN103143447B (en) | Beneficiation method of high-oxygenation-efficiency complicated copper ore containing co-associated metal | |
CN103381389A (en) | Production technology for improving secondary recovery rate of tailings | |
CN109092563A (en) | A kind of method of high sulfur-lead-zinc ore efficient flotation separation | |
CN110773313A (en) | An environmentally friendly and efficient separation process of high-sulfur lead-zinc ore | |
CN107234006A (en) | A kind of method for floating of high cupro-nickel than mineral | |
CN105363561A (en) | Flotation technique for high-sulfur polymetallic sulphide ore containing gold, silver, lead and zinc | |
CN106378260B (en) | A kind of beneficiation method of low-grade phyllite type Pb-Zn deposits | |
CN110787911A (en) | Flotation method for low-grade copper ore and associated gold and silver | |
CN105013616A (en) | Method for separating molybdenum concentrate and lead-sulfur concentrate from molybdenum-lead-sulfur mixed concentrate | |
CN107138284B (en) | A kind of beneficiation method improving micro-fine particle white tungsten ore floatation indicators | |
CN114534906B (en) | Beneficiation method for molybdenum-containing high-zinc complex magnesium silicate-modified silicon-stuck-rock copper ore | |
CN111659530A (en) | Method for dressing, smelting, recovering and separating continuous growth type copper-lead-zinc sulfide ore | |
CN112844818B (en) | Beneficiation separation method for copper-zinc sulfide ore | |
CN109954577A (en) | Titanomagnetite ilmenite ore-dressing technique | |
CN208526959U (en) | A kind of Zinc Ore with High Copper Content separation system of high-sulfur containing zinc oxide |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |