CN114519668A - Estimation method for just noticeable distortion threshold of top-down natural image - Google Patents
Estimation method for just noticeable distortion threshold of top-down natural image Download PDFInfo
- Publication number
- CN114519668A CN114519668A CN202210025549.0A CN202210025549A CN114519668A CN 114519668 A CN114519668 A CN 114519668A CN 202210025549 A CN202210025549 A CN 202210025549A CN 114519668 A CN114519668 A CN 114519668A
- Authority
- CN
- China
- Prior art keywords
- image
- klt
- coefficient
- dimension
- num
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T3/00—Geometric image transformations in the plane of the image
- G06T3/40—Scaling of whole images or parts thereof, e.g. expanding or contracting
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T3/00—Geometric image transformations in the plane of the image
- G06T3/40—Scaling of whole images or parts thereof, e.g. expanding or contracting
- G06T3/4038—Image mosaicing, e.g. composing plane images from plane sub-images
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/90—Determination of colour characteristics
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Image Processing (AREA)
- Image Analysis (AREA)
Abstract
本发明公开了一种自顶向下的自然图像恰可察觉失真阈值估计方法,其对源图像的灰度图像进行分块并向量化得到向量化矩阵;获取向量化矩阵的协方差矩阵及协方差矩阵的特征值与特征向量,将特征向量按特征值从大到小排列起来得到KLT核;计算KLT系数矩阵、KLT系数能量、归一化KLT系数能量、累积归一化KLT系数能量,并根据推导的感知无失真临界点计算方程计算感知无失真临界点;构建感知无失真系数重建矩阵,重建得到感知无失真系数矩阵;将感知无失真系数矩阵中的每维向量转换成图像块并重新拼接起来,得到感知无失真临界图像,进而得到恰可察觉失真阈值图;优点是能很好地反映人类视觉系统的视觉掩蔽特性,并能很好地刻画自然图像的视觉感知冗余度。
The invention discloses a top-down natural image perceptible distortion threshold estimation method, which divides and quantizes a grayscale image of a source image to obtain a vectorized matrix; obtains a covariance matrix and a covariance matrix of the vectorized matrix. The eigenvalues and eigenvectors of the variance matrix, arrange the eigenvectors in descending order of eigenvalues to obtain the KLT kernel; calculate the KLT coefficient matrix, the KLT coefficient energy, the normalized KLT coefficient energy, the cumulative normalized KLT coefficient energy, and Calculate the perceptual distortion-free critical point according to the derived perceptual distortion-free critical point calculation equation; construct the perceptual distortion-free coefficient reconstruction matrix, and reconstruct the perceptual distortion-free coefficient matrix; convert each dimension vector in the perceptual distortion-free coefficient matrix into an image block and recreate it By splicing together, the perceptual distortion-free critical image is obtained, and then the perceptible distortion threshold map is obtained; the advantage is that it can well reflect the visual masking characteristics of the human visual system, and can well describe the visual perception redundancy of natural images.
Description
技术领域technical field
本发明涉及一种自然图像恰可察觉失真(Just Noticeable Distortion,JND)阈值估计技术,尤其是涉及一种自顶向下的自然图像恰可察觉失真阈值估计方法,其基于自顶向下的设计思路,并利用KLT(Karhunen-Loéve Transform)变换技术,实现自然图像的恰可察觉失真阈值估计。The invention relates to a natural image just noticeable distortion (Just Noticeable Distortion, JND) threshold estimation technology, in particular to a top-down natural image just noticeable distortion threshold estimation method, which is based on a top-down design The idea is to use the KLT (Karhunen-Loéve Transform) transform technology to realize the estimation of the perceptible distortion threshold of natural images.
背景技术Background technique
恰可察觉失真(Just Noticeable Distortion,JND)是指人类视觉系统(HumanVisual System,HVS)所无法感知的视觉信号最大变化幅值。它反映了人类视觉系统(HVS)对于视觉信息变化的敏感性和视觉信号中潜在的感知冗余。这使得它在许多图像/视频感知处理等任务中都具有广泛的应用,包括图像/视频压缩、图像/视频增强、信息隐藏以及图像/视频评价等。正是由于它广泛的应用,因此自然图像的恰可察觉失真(JND)阈值估计得到了广泛关注与研究。Just Noticeable Distortion (JND) refers to the maximum change amplitude of the visual signal that cannot be perceived by the Human Visual System (HVS). It reflects the sensitivity of the human visual system (HVS) to changes in visual information and the potential perceptual redundancy in visual signals. This makes it widely used in many image/video perceptual processing tasks, including image/video compression, image/video enhancement, information hiding, and image/video evaluation, etc. Just because of its wide application, the Just Noticeable Distortion (JND) threshold estimation of natural images has received extensive attention and research.
现有的恰可察觉失真(JND)阈值估计模型可以分成两大类:基于像素域的恰可察觉失真(JND)阈值估计模型和基于变换域的恰可察觉失真(JND)阈值估计模型。基于像素域的恰可察觉失真(JND)阈值估计模型主要考虑亮度适应性(Luminance Adaption,LA)、对比度掩蔽(Contrast Masking,CM)和模式复杂度(Pattern Complexity,PC)等因素。基于变换域的恰可察觉失真(JND)阈值估计模型将图像转换至一个特定的变换域,并估计对于每一个子带的恰可察觉失真(JND)阈值,其主要考虑对比度敏感度函数(Contrast SensitivityFunction,CSF)等因素。从设计思路上来看,现有的基于像素域的恰可察觉失真(JND)阈值估计模型与基于变换域的恰可察觉失真(JND)阈值估计模型大体上是相同的,具体而言,首先对具有不同影响的视觉掩蔽效应(如LA、CM、PC、CSF)进行建模,然后将不同的视觉掩蔽效应模型进行融合得到最终的恰可察觉失真(JND)阈值估计模型。这样的设计思路可以被视为是一种自底向上的策略,即从底部有贡献的若干影响因素开始考虑推导得到最终的恰可察觉失真(JND)阈值估计模型。然而,这样的设计思路存在一些固有的局限:首先,由于缺乏对人类视觉系统(HVS)特性的深层次全面认知,因此很难将所有潜在相关的影响因素全部考虑进来;第二,被考虑进来的影响因素也往往很难准确地通过简单的数学模型进行刻画;第三,不同的影响因素之间的相互关系也很难进行建模。因此,现有的恰可察觉失真(JND)阈值估计模型往往难以取得令人满意的效果,尽管人们可以通过实验发掘更多的影响因素和与之对应的视觉掩蔽效应,同时以更准确的数学模型对它们进行建模,但是这样的工作是无止尽的。因此,如何同时克服以上这些缺点,设计一个更为先进的恰可察觉失真(JND)阈值估计模型具有十分重要的意义。Existing just perceptible distortion (JND) threshold estimation models can be divided into two categories: just perceptible distortion (JND) threshold estimation models based on pixel domain and just perceptible distortion (JND) threshold estimation models based on transform domain. The just-noticeable distortion (JND) threshold estimation model based on pixel domain mainly considers factors such as Luminance Adaption (LA), Contrast Masking (CM) and Pattern Complexity (PC). Transform Domain-Based Just Noticeable Distortion (JND) Threshold Estimation Model transforms the image to a specific transform domain and estimates the Just Noticeable Distortion (JND) threshold for each subband, which mainly considers the contrast sensitivity function (Contrast SensitivityFunction, CSF) and other factors. From the design point of view, the existing pixel domain-based just perceptible distortion (JND) threshold estimation model is roughly the same as the transform domain-based just perceptible distortion (JND) threshold estimation model. Visual masking effects with different influences (such as LA, CM, PC, CSF) are modeled, and then the different visual masking effect models are fused to obtain the final Just Noticeable Distortion (JND) threshold estimation model. Such a design idea can be regarded as a bottom-up strategy, that is, starting from several influencing factors that contribute to the bottom, and deriving the final Just Noticeable Distortion (JND) threshold estimation model. However, such a design approach has some inherent limitations: first, it is difficult to take into account all potentially relevant influencing factors due to the lack of a deep and comprehensive understanding of the properties of the human visual system (HVS); second, it is considered The incoming influencing factors are often difficult to be accurately characterized by simple mathematical models; third, the interrelationships between different influencing factors are also difficult to model. Therefore, the existing Just Noticeable Distortion (JND) threshold estimation models are often difficult to achieve satisfactory results, although one can explore more influencing factors and the corresponding visual masking effects through experiments, and at the same time use more accurate mathematical Models model them, but such work is endless. Therefore, how to overcome these shortcomings at the same time and design a more advanced just-detectable distortion (JND) threshold estimation model is of great significance.
发明内容SUMMARY OF THE INVENTION
本发明所要解决的技术问题是提供一种自顶向下的自然图像恰可察觉失真阈值估计方法,其能够很好地反映人类视觉系统的视觉掩蔽特性,并能够很好地刻画自然图像的视觉感知冗余度,进而能够为各种视觉信号感知处理任务提供有效指导。The technical problem to be solved by the present invention is to provide a top-down natural image perceptible distortion threshold estimation method, which can well reflect the visual masking characteristics of the human visual system and can well describe the visual appearance of natural images. Perceptual redundancy, which in turn can provide effective guidance for various visual signal perceptual processing tasks.
本发明解决上述技术问题所采用的技术方案为:一种自顶向下的自然图像恰可察觉失真阈值估计方法,其特征在于包括以下步骤:The technical solution adopted by the present invention to solve the above-mentioned technical problems is: a top-down natural image just perceptible distortion threshold estimation method, which is characterized by comprising the following steps:
步骤1:将待处理的一幅自然图像作为源图像;然后将源图像转换为灰度图像,记为IY;其中,源图像为RGB彩色图像,源图像和IY的宽度均为W且高度均为H;Step 1: take a natural image to be processed as the source image; then convert the source image into a grayscale image, denoted as I Y ; wherein, the source image is an RGB color image, and the widths of the source image and I Y are both W and height is H;
步骤2:将IY分割成Num个互不重叠的尺寸大小为的图像块;然后对IY中的每个图像块进行向量化处理,得到IY中的每个图像块对应的列向量,将IY中的第n个图像块对应的列向量记为xn;再将IY中的所有图像块对应的列向量拼接构成一个向量化矩阵,记为X,X=[x1,x2,…,xn,…,xNum];其中,设定W和H均能够被整除,K的取值为42或52或62或72或82或92或102,1≤n≤Num,x1表示IY中的第1个图像块对应的列向量,x2表示IY中的第2个图像块对应的列向量,xNum表示IY中的第Num个图像块对应的列向量,x1、x2、xn、xNum的维数均为K×1,X的维数为K×Num,符号“[]”为向量或矩阵的表示形式;Step 2: Divide I Y into Num non-overlapping sizes. Then, vectorize each image block in I Y to obtain the column vector corresponding to each image block in I Y , and denote the column vector corresponding to the nth image block in I Y as x n ; splicing the column vectors corresponding to all image blocks in I Y to form a vectorized matrix, denoted as X, X=[x 1 , x 2 ,...,x n ,...,x Num ]; wherein, Setting both W and H can be Divisible, the value of K is 4 2 or 5 2 or 6 2 or 7 2 or 8 2 or 9 2 or 10 2 , 1≤n≤Num, x 1 represents the column vector corresponding to the first image block in I Y , x 2 represents the column vector corresponding to the second image block in I Y , x Num represents the column vector corresponding to the Num th image block in I Y , and the dimensions of x 1 , x 2 , x n , and x Num are all is K×1, the dimension of X is K×Num, and the symbol “[]” is the representation of a vector or matrix;
步骤3:计算X的协方差矩阵,记为C;然后利用特征值分解技术对C进行处理,得到C的K个特征值和对应的K个特征向量;接着对C的K个特征向量按对应的K个特征值从大到小的降序方式进行排序,将C的K个特征向量按其排序结果构成的矩阵作为从X中提取到的先验信息;其中,C的维数为K×K,特征向量为列向量,特征向量的维数为K×1,从X中提取到的先验信息中的每一列为C的1个特征向量,从X中提取到的先验信息的维数为K×K;Step 3: Calculate the covariance matrix of X, denoted as C; then use the eigenvalue decomposition technology to process C to obtain the K eigenvalues of C and the corresponding K eigenvectors; then the K eigenvectors of C according to the corresponding The K eigenvalues of C are sorted in descending order from large to small, and the matrix formed by the K eigenvectors of C according to their sorting results is used as the prior information extracted from X; among them, the dimension of C is K×K , the feature vector is a column vector, the dimension of the feature vector is K×1, each column of the prior information extracted from X is a feature vector of C, and the dimension of the prior information extracted from X is K×K;
步骤4:将从X中提取到的先验信息作为IY的KLT核,记为P;然后根据P和X,计算IY的KLT系数矩阵,记为Q,Q=(P)TX;再将Q表示为Q=[q1,q2,…,qk,…,qK]T;其中,P的维数为K×K,Q的维数为K×Num,1≤k≤K,q1表示Q中的第1维KLT谱分量,q2表示Q中的第2维KLT谱分量,qk表示Q中的第k维KLT谱分量,qK表示Q中的第K维KLT谱分量,q1、q2、qk、qK的维数均为Num×1;Step 4: The prior information extracted from X is used as the KLT kernel of I Y , denoted as P; then according to P and X, the KLT coefficient matrix of I Y is calculated, denoted as Q, Q=(P) T X; Then Q is expressed as Q=[q 1 , q 2 ,...,q k ,...,q K ] T ; wherein, the dimension of P is K×K, the dimension of Q is K×Num, 1≤k≤ K, q 1 represents the 1st dimension KLT spectral component in Q, q 2 represents the 2nd dimension KLT spectral component in Q, q k represents the kth dimension KLT spectral component in Q, q K represents the Kth dimension in Q For KLT spectral components, the dimensions of q 1 , q 2 , q k , and q K are all Num×1;
步骤5:计算Q中的每一维KLT谱分量的KLT系数能量,将qk的KLT系数能量记为Ek,然后计算Q中的每一维KLT谱分量的归一化KLT系数能量,将qk的归一化KLT系数能量记为 再计算Q中的每一维KLT谱分量的累积归一化KLT系数能量,将qk的累积归一化KLT系数能量记为 最后将Q中的所有KLT谱分量的累积归一化KLT系数能量组成累积归一化KLT系数能量向量,记为Ecum,其中,qk(n)表示qk中的第n个元素的值,1≤ζ≤K,Eζ表示Q中的第ζ维KLT谱分量qζ的KLT系数能量,表示q1的归一化KLT系数能量,表示q2的归一化KLT系数能量,Ecum的维数为1×K,表示q1的累积归一化KLT系数能量,表示q2的累积归一化KLT系数能量,表示qK的累积归一化KLT系数能量;Step 5: Calculate the KLT coefficient energy of each dimension KLT spectral component in Q, and denote the KLT coefficient energy of q k as E k , Then calculate the normalized KLT coefficient energy of each dimension KLT spectral component in Q, and denote the normalized KLT coefficient energy of q k as Then calculate the cumulative normalized KLT coefficient energy of each dimension KLT spectral component in Q, and denote the cumulative normalized KLT coefficient energy of q k as Finally, the cumulative normalized KLT coefficient energy of all KLT spectral components in Q is composed of cumulative normalized KLT coefficient energy vector, denoted as E cum , Among them, q k (n) represents the value of the nth element in q k , 1≤ζ≤K, E ζ denotes the KLT coefficient energy of the ζth dimension KLT spectral component q ζ in Q, represents the normalized KLT coefficient energy of q1 , represents the normalized KLT coefficient energy of q 2 , E cum has a dimension of 1 × K, represents the cumulative normalized KLT coefficient energy of q1 , represents the cumulative normalized KLT coefficient energy of q2 , represents the cumulative normalized KLT coefficient energy of q K ;
步骤6:将Ecum作为输入代入感知无失真临界点计算模型中,计算得到IY的感知无失真临界点,记为L;然后根据L构建感知无失真系数重建矩阵,记为 接着采用重建得到感知无失真系数矩阵,记为 再将表示为其中,L为正整数,1≤L≤K,的维数为K×Num,中的“=”为赋值符号,qL表示Q中的第L维KLT谱分量,qL的维数为Num×1,至均为全0向量,的维数均为Num×1,的维数为K×Num,表示中的第1维感知无失真系数向量,表示中的第2维感知无失真系数向量,表示中的第n维感知无失真系数向量,表示中的第Num维感知无失真系数向量,的维数均为K×1;Step 6: Substitute E cum as the input into the perceptual distortion-free critical point calculation model, and calculate the perceptual distortion-free critical point of I Y , denoted as L; then construct the perceptual distortion-free coefficient reconstruction matrix according to L, denoted as Then use Reconstruction to get the perceptual distortion-free coefficient matrix, denoted as again Expressed as Among them, L is a positive integer, 1≤L≤K, The dimension of is K × Num, The "=" in is the assignment symbol, q L represents the L-th dimension KLT spectral component in Q, and the dimension of q L is Num×1, to are all 0 vectors, The dimensions of are all Num × 1, The dimension of is K × Num, express The 1st-dimensional perceptual distortion-free coefficient vector in , express The 2nd-dimensional perceptual distortion-free coefficient vector in , express The nth-dimensional perceptual distortion-free coefficient vector in , express The Num-th dimension perceptually undistorted coefficient vector in , The dimensions of are K × 1;
步骤7:按步骤2中的向量化处理的逆操作,将中的每一维感知无失真系数向量转换成尺寸大小为的图像块,将转换成的图像块作为第n个图像块;然后将中的所有感知无失真系数向量转换成的图像块拼接成图像作为感知无失真临界图像,记为IL;再根据IY和IL,计算恰可察觉失真阈值图,记为M,将M中坐标位置为(a,b)的像素点的像素值记为M(a,b),M(a,b)=|IY(a,b)-IL(a,b)|;其中,1≤a≤W,1≤b≤H,IY(a,b)表示IY中坐标位置为(a,b)的像素点的像素值,IL(a,b)表示IL中坐标位置为(a,b)的像素点的像素值,符号“| |”为取绝对值符号。Step 7: According to the inverse operation of the vectorization process in
所述的步骤2中,xn的获取过程为:按Z字型扫描方式将IY中的第n个图像块中的所有像素点的像素值排列成一列构成xn。In the
所述的步骤3中,C的计算公式为:其中,上标“T”表示向量或矩阵的转置,表示对X按行取均值得到的均值向量, 的维数为K×1。In the described
所述的步骤4中,P=[p1,p2,…,pK],其中,p1表示对C的K个特征向量按对应的K个特征值从大到小的降序方式进行排序后的第1个特征向量,p2表示对C的K个特征向量按对应的K个特征值从大到小的降序方式进行排序后的第2个特征向量,pK表示对C的K个特征向量按对应的K个特征值从大到小的降序方式进行排序后的第K个特征向量,p1、p2、pK的维数均为K×1。In the
所述的步骤6中,感知无失真临界点计算模型的获取过程为:In the described
步骤6_1:选取S幅高清图像,将每幅高清图像转换为灰度图像;然后按照步骤2至步骤4的过程,以相同的方式获取每幅高清图像的灰度图像的KLT系数矩阵,将第i幅高清图像的灰度图像的KLT系数矩阵记为Q'i,将Q'i表示为Q'i=[q'i,1,q'i,2,…,q'i,k,…,q'i,K]T;其中,S≥100,高清图像为RGB彩色图像,高清图像的宽度为W'且高度为H',W'和H'均能够被整除,高清图像的灰度图像分割的图像块的尺寸大小为1≤i≤S,Q'i的维数为K×Num',Num'表示高清图像的灰度图像分割的图像块的总个数,q'i,1表示Q'i中的第1维KLT谱分量,q'i,2表示Q'i中的第2维KLT谱分量,q'i,k表示Q'i中的第k维KLT谱分量,q'i,K表示Q'i中的第K维KLT谱分量,q'i,1、q'i,2、q'i,k、q'i,K的维数均为Num'×1;Step 6_1: Select S high-definition images, and convert each high-definition image into a grayscale image; then follow the process from
步骤6_2:构建每幅高清图像的灰度图像对应的K个感知系数重建矩阵,将第i幅高清图像的灰度图像对应的第k个感知系数重建矩阵记为 然后重建每幅高清图像的灰度图像对应的K个感知系数矩阵,将第i幅高清图像的灰度图像对应的第k个感知系数矩阵记为将表示为其中,的维数为K×Num', 中的“=”为赋值符号,至均为全0向量, 的维数均为Num'×1,的维数为K×Num',P'i表示第i幅高清图像的灰度图像的KLT核,P'i的维数为K×K,1≤n'≤Num',n'为正整数,表示中的第1维感知系数向量,表示中的第2维感知系数向量,表示中的第n'维感知系数向量,表示中的第Num'维感知系数向量,的维数均为K×1;Step 6_2: Construct K perceptual coefficient reconstruction matrices corresponding to the grayscale image of each high-definition image, and record the kth perceptual coefficient reconstruction matrix corresponding to the grayscale image of the ith high-definition image as Then the K perceptual coefficient matrices corresponding to the grayscale image of each high-definition image are reconstructed, and the kth perceptual coefficient matrix corresponding to the grayscale image of the ith high-definition image is recorded as Will Expressed as in, The dimension of is K × Num', The "=" in it is an assignment symbol, to are all 0 vectors, The dimensions of are all Num'×1, The dimension of P'i is K×Num', P'i represents the KLT kernel of the grayscale image of the ith high-definition image, the dimension of P'i is K×K, 1≤n'≤Num', n ' is a positive integer , express The 1st-dimensional perceptual coefficient vector in , express The 2nd-dimensional perceptual coefficient vector in , express The n'-dimensional perceptual coefficient vector in , express The Num'-dimensional perceptual coefficient vector in , The dimensions of are K × 1;
步骤6_3:按步骤2中的向量化处理的逆操作,将每幅高清图像的灰度图像对应的每个感知系数矩阵中的每一维感知系数向量转换成尺寸大小为的图像块;然后将每幅高清图像的灰度图像对应的每个感知系数矩阵中的所有感知系数向量转换成的图像块拼接成一幅图像,将第i幅高清图像的灰度图像对应的第k个感知系数矩阵中的所有感知系数向量转换成的图像块拼接成的图像作为第i幅高清图像的灰度图像对应的第k幅重建图像,记为其中,的宽度为W'且高度为H';Step 6_3: According to the inverse operation of the vectorization process in
步骤6_4:召集D位志愿者,每位志愿者以肉眼观察的方式依次对比每幅高清图像的灰度图像与其对应的各幅重建图像,每位志愿者从每幅高清图像的灰度图像对应的K幅重建图像中确定一幅重建图像作为该灰度图像对应的感知无失真临界图像,同时将确定的重建图像的序号作为该灰度图像对应的感知无失真临界点;对于第d位志愿者及第i幅高清图像的灰度图像,第d位志愿者以肉眼观察的方式依次对比第i幅高清图像的灰度图像与其对应的第1幅重建图像、第2幅重建图像、……、第K幅重建图像,一旦第d位志愿者无法区分第i幅高清图像的灰度图像与其对应的其中一幅重建图像时停止对比过程,假设该幅重建图像为第i幅高清图像的灰度图像对应的第k幅重建图像那么将作为第d位志愿者观察下第i幅高清图像的灰度图像对应的感知无失真临界图像,同时将数值k作为第d位志愿者观察下第i幅高清图像的灰度图像对应的感知无失真临界点,记为 然后将所有志愿者观察下第i幅高清图像的灰度图像对应的感知无失真临界点构成的向量记为Ji,其中,D>1,1≤d≤D,中的“=”为赋值符号,Ji的维数为1×D,表示第1位志愿者观察下第i幅高清图像的灰度图像对应的感知无失真临界点,表示第2位志愿者观察下第i幅高清图像的灰度图像对应的感知无失真临界点,表示第D位志愿者观察下第i幅高清图像的灰度图像对应的感知无失真临界点;Step 6_4: Summon D volunteers, each volunteer compares the grayscale image of each high-definition image and its corresponding reconstructed images in turn by visual observation, and each volunteer corresponds to the grayscale image of each high-definition image. Among the K reconstructed images, a reconstructed image is determined as the perceptual distortion-free critical image corresponding to the grayscale image, and the sequence number of the determined reconstructed image is taken as the perceptual distortion-free critical point corresponding to the grayscale image; and the grayscale image of the i-th high-definition image, the d-th volunteer compares the gray-scale image of the i-th high-definition image with its corresponding first reconstructed image, the second reconstructed image, ... , The K-th reconstructed image, once the d-th volunteer cannot distinguish the grayscale image of the i-th high-definition image from one of the corresponding reconstructed images, the comparison process is stopped, assuming that the reconstructed image is the gray-scale of the i-th high-definition image. The kth reconstructed image corresponding to the degree image then will As the perceptual distortion-free critical image corresponding to the grayscale image of the i-th high-definition image observed by the d-th volunteer, and taking the value k as the perceptually undistorted image corresponding to the gray-scale image of the i-th high-definition image observed by the d-th volunteer Distortion critical point, denoted as Then the vector formed by the perceptual distortion-free critical points corresponding to the grayscale image of the ith high-definition image observed by all volunteers is denoted as J i , Among them, D>1, 1≤d≤D, The "=" in is the assignment symbol, and the dimension of J i is 1×D, represents the perceptual distortion-free critical point corresponding to the grayscale image of the i-th high-definition image observed by the first volunteer, represents the perceptual distortion-free critical point corresponding to the grayscale image of the i-th high-definition image observed by the second volunteer, represents the perceptual distortion-free critical point corresponding to the grayscale image of the i-th high-definition image observed by the D-th volunteer;
步骤6_5:计算所有志愿者观察下每幅高清图像的灰度图像对应的感知无失真临界点构成的向量中的所有感知无失真临界点的均值和标准差,将Ji中的所有感知无失真临界点的均值和标准差对应记为和然后在所有志愿者观察下每幅高清图像的灰度图像对应的感知无失真临界点构成的向量中剔除离群值,对于Ji,若不满足则判定为离群值,将从Ji中剔除,将剔除离群值后得到的向量记为 Step 6_5: Calculate the mean and standard deviation of all perceptual distortion-free critical points in the vector formed by the perceptual distortion-free critical points corresponding to the grayscale images of each high-definition image observed by all volunteers, and calculate all perceptual distortion-free critical points in J i . The mean and standard deviation of the critical point are recorded as and Then, outliers are eliminated from the vector formed by the perceptual distortion-free critical points corresponding to the grayscale images of each high-definition image observed by all volunteers. For J i , if not satisfied then judge is an outlier, the Remove from J i , and record the vector obtained after removing outliers as
步骤6_6:计算所有志愿者观察下每幅高清图像的灰度图像对应的感知无失真临界点构成的向量剔除离群值后所有感知无失真临界点的均值,将中的所有感知无失真临界点的均值记为然后获取每幅高清图像的灰度图像对应的感知无失真临界点,将第i幅高清图像的灰度图像对应的感知无失真临界点记为Ji,其中,符号为向上取整运算符号;Step 6_6: Calculate the average value of all perceptual distortion-free critical points after removing outliers from the vector of the perceptual distortion-free critical points corresponding to the grayscale images of each high-definition image observed by all volunteers, and set the The mean of all perceptually distortion-free critical points in Then, the perceptual distortion-free critical point corresponding to the grayscale image of each high-definition image is obtained, and the perceptual distortion-free critical point corresponding to the grayscale image of the ith high-definition image is recorded as J i , Among them, the symbol to round up the operator symbol;
步骤6_7:计算每幅高清图像的灰度图像的KLT系数矩阵中的每一维KLT谱分量的KLT系数能量,将Q'i中的q'i,k的KLT系数能量记为Ui,k,然后计算每幅高清图像的灰度图像的KLT系数矩阵中的每一维KLT谱分量的归一化KLT系数能量,将Q'i中的q'i,k的归一化KLT系数能量记为 再计算每幅高清图像的灰度图像对应的感知无失真临界点处的累积归一化KLT系数能量,将第i幅高清图像的灰度图像对应的感知无失真临界点Ji处的累积归一化KLT系数能量记为 最后将所有高清图像的灰度图像对应的感知无失真临界点处的累积归一化KLT系数能量构成一个向量,记为Ucum,其中,q'i,k(n')表示q'i,k中的第n'个元素的值,1≤ζ≤K,Ui,ζ表示Q'i中的第ζ维KLT谱分量q'i,ζ的KLT系数能量,表示Q'i中的q'i,1的归一化KLT系数能量,表示Q'i中的q'i,2的归一化KLT系数能量,表示Q'i中的的归一化KLT系数能量,表示Q'i中的第Ji维KLT谱分量,Ucum的维数为1×S,表示第1幅高清图像的灰度图像对应的感知无失真临界点J1处的累积归一化KLT系数能量,表示第2幅高清图像的灰度图像对应的感知无失真临界点J2处的累积归一化KLT系数能量,表示第S幅高清图像的灰度图像对应的感知无失真临界点JS处的累积归一化KLT系数能量;Step 6-7: Calculate the KLT coefficient energy of each dimension KLT spectral component in the KLT coefficient matrix of the grayscale image of each high-definition image, and denote the KLT coefficient energy of q' i,k in Q' i as U i,k , Then calculate the normalized KLT coefficient energy of each dimension KLT spectral component in the KLT coefficient matrix of the grayscale image of each high-definition image, and denote the normalized KLT coefficient energy of q' i, k in Q' i as Then calculate the cumulative normalized KLT coefficient energy at the perceptual distortion-free critical point corresponding to the grayscale image of each high-definition image, and calculate the cumulative normalized KLT coefficient energy at the perceptual distortion-free critical point J i corresponding to the grayscale image of the ith high-definition image. The energy of the normalized KLT coefficient is recorded as Finally, the cumulative normalized KLT coefficient energy at the perceptual distortion-free critical point corresponding to the grayscale images of all high-definition images is formed into a vector, denoted as U cum , Among them, q' i,k (n') represents the value of the n'th element in q' i,k , 1≤ζ≤K, U i ,ζ denotes the ζth dimension KLT spectral component q in Q'i ' i, the KLT coefficient energy of ζ , represents the normalized KLT coefficient energy of q' i,1 in Q' i , represents the normalized KLT coefficient energy of q' i,2 in Q' i , means that in Q' i The normalized KLT coefficient energy of , represents the J i -th dimension KLT spectral component in Q' i , the dimension of U cum is 1×S, represents the cumulative normalized KLT coefficient energy at the perceptual distortion - free critical point J1 corresponding to the grayscale image of the first high-definition image, represents the cumulative normalized KLT coefficient energy at the perceptual distortion-free critical point J 2 corresponding to the grayscale image of the second high-definition image, represents the cumulative normalized KLT coefficient energy at the perceptual distortion-free critical point J S corresponding to the grayscale image of the S-th high-definition image;
步骤6_8:计算Ucum中的所有累积归一化KLT系数能量的均值和标准差,对应记为和然后根据和得到感知无失真临界点计算模型,描述为:其中,L表示IY的感知无失真临界点。Step 6_8: Calculate the mean and standard deviation of all cumulative normalized KLT coefficient energies in U cum , corresponding to and then according to and The perceptual distortion-free critical point calculation model is obtained, which is described as: where L represents the perceptual distortion-free critical point of I Y.
所述的步骤6_1中,Q'i的获取过程为:In the described step 6_1 , the acquisition process of Q'i is:
步骤6_1a:将第i幅高清图像的灰度图像记为I'Y,i;接着将I'Y,i分割成Num'个互不重叠的尺寸大小为的图像块;然后对I'Y,i中的每个图像块进行向量化处理,得到I'Y,i中的每个图像块对应的列向量,将I'Y,i中的第n'个图像块对应的列向量记为x'i,n';再将I'Y,i中的所有图像块对应的列向量拼接构成一个向量化矩阵,记为X'i,X'i=[x'i,1,x'i,2,…,x'i,n',…,x'i,Num'];其中,K的取值为42或52或62或72或82或92或102,1≤n'≤Num',x'i,1表示I'Y,i中的第1个图像块对应的列向量,x'i,2表示I'Y,i中的第2个图像块对应的列向量,x'i,Num'表示I'Y,i中的第Num'个图像块对应的列向量,x'i,1、x'i,2、x'i,n'、x'i,Num'的维数均为K×1,X'i的维数为K×Num';Step 6_1a: mark the grayscale image of the i-th high-definition image as I' Y, i ; then divide I' Y, i into Num' non-overlapping sizes as Then, vectorize each image block in I' Y, i to obtain the column vector corresponding to each image block in I' Y, i , and convert the The column vectors corresponding to the image blocks are denoted as x'i,n'; then the column vectors corresponding to all the image blocks in I' Y, i are spliced to form a vectorized matrix, denoted as X' i , X' i =[ x' i,1 ,x' i,2 ,…,x'i,n',…,x'i,Num']; where, The value of K is 4 2 or 5 2 or 6 2 or 7 2 or 8 2 or 9 2 or 10 2 , 1≤n'≤Num', x' i,1 means the first one in I' Y,i The column vector corresponding to the image block, x' i,2 represents the column vector corresponding to the second image block in I' Y,i , x'i,Num' represents the Num'th image block in I' Y,i Corresponding column vector, the dimensions of x' i,1 , x' i,2 , x'i,n' , x'i,Num' are all K×1, and the dimension of X' i is K×Num';
步骤6_1b:计算X'i的协方差矩阵,记为C'i;然后利用特征值分解技术对C'i进行处理,得到C'i的K个特征值和对应的K个特征向量;接着对C'i的K个特征向量按对应的K个特征值从大到小的降序方式进行排序,将C'i的K个特征向量按其排序结果构成的矩阵作为从X'i中提取到的先验信息;其中,C'i的维数为K×K,特征向量为列向量,特征向量的维数为K×1,从X'i中提取到的先验信息中的每一列为C'i的1个特征向量,从X'i中提取到的先验信息的维数为K×K;Step 6-1b: calculate the covariance matrix of X'i , denoted as C'i ; then utilize eigenvalue decomposition technology to process C'i , obtain K eigenvalues of C'i and corresponding K eigenvectors; The K eigenvectors of C'i are sorted in descending order of the corresponding K eigenvalues, and the matrix formed by the sorting results of the K eigenvectors of C'i is used as the matrix extracted from X'i Prior information; wherein, the dimension of C' i is K×K, the feature vector is a column vector, the dimension of the feature vector is K×1, and each column of the prior information extracted from X' i is
步骤6_1c:将从X'i中提取到的先验信息作为I'Y,i的KLT核,记为P'i;然后根据P'i和X'i,计算I'Y,i的KLT系数矩阵Q'i,Q'i=(P'i)TX'i;其中,P'i的维数为K×K,Q'i的维数为K×Num'。Step 6_1c: The prior information extracted from X' i is used as the KLT kernel of I' Y,i , denoted as P'i; then according to P' i and X' i , calculate the KLT coefficient of I' Y,i Matrix Q' i , Q' i =(P' i ) T X' i , wherein the dimension of P' i is K×K, and the dimension of Q' i is K×Num'.
与现有技术相比,本发明的优点在于:Compared with the prior art, the advantages of the present invention are:
1)本发明方法从恰可察觉失真的定义出发,将恰可察觉失真阈值估计问题转换成感知无失真临界图像的估计问题,感知无失真临界图像是指人类视觉系统恰好无法察觉失真的失真图像,感知无失真临界图像与源图像相比仍然是失真的,但从感知的层面上来讲其失真是不能被人眼察觉的,因此,可以将源图像减去感知无失真临界图像得到源图像对应的恰可察觉失真阈值图,这种方式可以有效避免传统的恰可察觉失真阈值估计模型复杂且不准确的HVS视觉掩蔽因素建模及其融合所带来的误差,从而能够更准确地反映人类视觉系统的视觉掩蔽特性和刻画自然图像的视觉感知冗余度,进而能够为各种视觉信号感知处理任务提供有效指导。利用本发明方法估计得到的恰可察觉失真阈值图进行引导图像加噪和JPEG压缩,在保持主观感知质量几乎完全一致的前提下,采用本发明方法可以隐藏更多的噪声和节省更多的比特率。1) The method of the present invention starts from the definition of just perceptible distortion, and converts the problem of threshold estimation of perceptible distortion into the estimation problem of perceptual distortion-free critical image, and the perceptual distortion-free critical image refers to a distorted image in which the human visual system just cannot detect the distortion. , the perceptual distortion-free critical image is still distorted compared with the source image, but its distortion cannot be perceived by the human eye from the perceptual level. Therefore, the source image can be subtracted from the perceptual distortion-free critical image to obtain the corresponding source image. This method can effectively avoid the errors caused by the complex and inaccurate HVS visual masking factor modeling and fusion of the traditional just-observable distortion threshold estimation model, so that it can more accurately reflect human The visual masking properties of the visual system and the visual perceptual redundancy that characterize natural images can provide effective guidance for various visual signal perceptual processing tasks. Using the threshold map of perceptible distortion estimated by the method of the present invention to guide image noise addition and JPEG compression, on the premise that the subjective perception quality is almost completely consistent, the method of the present invention can hide more noise and save more bits Rate.
2)本发明方法利用KLT变换技术估计源图像的感知无失真临界图像,不依赖于特定的图像处理任务,具有更好的普适性。首先对源图像进行KLT变换,根据累积归一化KLT系数能量的收敛特性找到源图像的感知无失真临界点,在感知无失真临界点的条件下,进行KLT逆变换即可重建得到源图像的感知无失真临界图像,以这种方式得到的感知无失真临界图像具有普遍性,可以很好地应用于不同的视觉信息感知处理任务中。2) The method of the present invention uses the KLT transform technology to estimate the perceptual distortion-free critical image of the source image, does not depend on a specific image processing task, and has better universality. Firstly, KLT transform is performed on the source image, and the perceptual distortion-free critical point of the source image is found according to the convergence characteristics of the accumulated normalized KLT coefficient energy. Perceptual distortion-free critical images, the perceptual distortion-free critical images obtained in this way are universal and can be well applied to different visual information perceptual processing tasks.
附图说明Description of drawings
图1为本发明方法的总体流程框图;Fig. 1 is the overall flow chart of the method of the present invention;
图2a为第1幅源图像img1;Figure 2a is the first source image img1;
图2b为第2幅源图像img2;Figure 2b is the second source image img2;
图2c为第3幅源图像img3;Figure 2c is the third source image img3;
图2d为第4幅源图像img4;Figure 2d is the fourth source image img4;
图2e为图2a、图2b、图2c、图2d各自对应的累积归一化KLT系数能量曲线;Fig. 2e is the respective cumulative normalized KLT coefficient energy curves corresponding to Fig. 2a, Fig. 2b, Fig. 2c, Fig. 2d;
图3a为源图像I03;Figure 3a is the source image I03;
图3b为采用本发明方法对图3a所示的源图像进行处理得到的恰可察觉失真阈值图;Figure 3b is a perceptible distortion threshold figure obtained by processing the source image shown in Figure 3a by the method of the present invention;
图3c为使用图3b引导生成的在PSNR=26dB条件下的加噪图像;Figure 3c is a noise-added image generated using the guidance of Figure 3b under the condition of PSNR=26dB;
图3d为图3c中框内部分的放大图;Figure 3d is an enlarged view of the portion inside the frame in Figure 3c;
图4a为源图像I01直接采用JEPG压缩的结果;Fig. 4a is the result that the source image I01 directly adopts JPEG compression;
图4b为源图像I01采用本发明方法得到的恰可察觉失真阈值图引导的JPEG压缩结果;Fig. 4b is the JPEG compression result that source image I01 adopts the method of the present invention to obtain just the JPEG compression result guided by the perceptible distortion threshold value map;
图4c为源图像I01采用Wu2017方法得到的恰可察觉失真阈值图引导的JPEG压缩结果;Figure 4c is the JPEG compression result guided by the perceptible distortion threshold map obtained by the Wu2017 method for the source image I01;
图5为本发明方法与Wu2017方法的增益Gain平均值随着质量因子QP的变化曲线。FIG. 5 is the variation curve of the average gain value of the method of the present invention and the method of Wu2017 with the quality factor QP.
具体实施方式Detailed ways
以下结合附图实施例对本发明作进一步详细描述。The present invention will be further described in detail below with reference to the embodiments of the accompanying drawings.
本发明提出的一种自顶向下的自然图像恰可察觉失真阈值估计方法,其总体流程框图如图1所示,其包括以下步骤:A top-down natural image perceptible distortion threshold estimation method proposed by the present invention, the overall flow diagram of which is shown in Figure 1, which includes the following steps:
步骤1:将待处理的一幅自然图像作为源图像;然后将源图像转换为灰度图像,记为IY;其中,源图像为RGB彩色图像,源图像和IY的宽度均为W且高度均为H,IY中坐标位置为(a,b)的像素点的像素值IY(a,b)的计算公式为:IY(a,b)=0.299IR(a,b)+0.587IG(a,b)+0.114IB(a,b),1≤a≤W,1≤b≤H,IR(a,b)表示源图像的红色通道中坐标位置为(a,b)的像素点的像素值,IG(a,b)表示源图像的绿色通道中坐标位置为(a,b)的像素点的像素值,IB(a,b)表示源图像的蓝色通道中坐标位置为(a,b)的像素点的像素值。Step 1: take a natural image to be processed as the source image; then convert the source image into a grayscale image, denoted as I Y ; wherein, the source image is an RGB color image, and the widths of the source image and I Y are both W and The height is H, and the calculation formula of the pixel value I Y (a, b) of the pixel point whose coordinate position is (a, b) in I Y is: I Y (a, b)=0.299I R (a, b) +0.587I G (a,b)+0.114I B (a,b), 1≤a≤W, 1≤b≤H , IR (a,b) indicates that the coordinate position in the red channel of the source image is (a , b), I G (a, b) represents the pixel value of the pixel whose coordinate position is (a, b) in the green channel of the source image, I B (a, b) represents the source image The pixel value of the pixel whose coordinate position is (a,b) in the blue channel.
步骤2:将IY分割成Num个互不重叠的尺寸大小为的图像块;然后对IY中的每个图像块进行向量化处理,得到IY中的每个图像块对应的列向量,将IY中的第n个图像块对应的列向量记为xn;再将IY中的所有图像块对应的列向量拼接构成一个向量化矩阵,记为X,X=[x1,x2,…,xn,…,xNum];其中,设定W和H均能够被整除,K的取值为42或52或62或72或82或92或102,一般情况下取82,1≤n≤Num,x1表示IY中的第1个图像块对应的列向量,x2表示IY中的第2个图像块对应的列向量,xNum表示IY中的第Num个图像块对应的列向量,x1、x2、xn、xNum的维数均为K×1,X的维数为K×Num,符号“[]”为向量或矩阵的表示形式。Step 2: Divide I Y into Num non-overlapping sizes. Then, vectorize each image block in I Y to obtain the column vector corresponding to each image block in I Y , and denote the column vector corresponding to the nth image block in I Y as x n ; splicing the column vectors corresponding to all image blocks in I Y to form a vectorized matrix, denoted as X, X=[x 1 , x 2 ,...,x n ,...,x Num ]; wherein, Setting both W and H can be Divisible, the value of K is 4 2 or 5 2 or 6 2 or 7 2 or 8 2 or 9 2 or 10 2 , in general, it is 8 2 , 1≤n≤Num, x 1 represents the first in I Y Column vector corresponding to each image block, x 2 represents the column vector corresponding to the second image block in I Y , x Num represents the column vector corresponding to the Num th image block in I Y , x 1 , x 2 , x n The dimensions of , x Num are both K×1, the dimension of X is K×Num, and the symbol “[]” is the representation of a vector or matrix.
在本实施例中,步骤2中,xn的获取过程为:按Z字型扫描方式将IY中的第n个图像块中的所有像素点的像素值排列成一列构成xn。In this embodiment, in
在图像处理领域中,对图像块进行向量化处理为常规技术手段,即将图像块中的所有像素点的像素值按一定的顺序(如按行扫描的顺序,先扫描第一行,再扫描第二行,依此类推,即Z字型扫描方式)排列构成一个列向量;多个列向量拼接成向量化矩阵时,可按图像块的先后顺序来拼接,如向量化矩阵的第1列为第1个图像块对应的列向量,向量化矩阵的最后一列为第Num个图像块对应的列向量。In the field of image processing, it is a conventional technical means to perform vectorization processing on image blocks, that is, the pixel values of all pixels in the image block are in a certain order (for example, in the order of line scanning, first scan the first line, and then scan the first line. Two rows, and so on, that is, zigzag scanning mode) are arranged to form a column vector; when multiple column vectors are spliced into a vectorized matrix, they can be spliced in the order of the image blocks, such as the first column of the vectorized matrix. The column vector corresponding to the first image block, and the last column of the vectorized matrix is the column vector corresponding to the Num-th image block.
步骤3:计算X的协方差矩阵,记为C;然后利用现有的特征值分解技术对C进行处理,得到C的K个特征值和对应的K个特征向量;接着对C的K个特征向量按对应的K个特征值从大到小的降序方式进行排序,将C的K个特征向量按其排序结果构成的矩阵作为从X中提取到的先验信息;其中,C的维数为K×K,特征向量为列向量,特征向量的维数为K×1,从X中提取到的先验信息中的每一列为C的1个特征向量,从X中提取到的先验信息的维数为K×K。Step 3: Calculate the covariance matrix of X, denoted as C; then use the existing eigenvalue decomposition technology to process C to obtain K eigenvalues and corresponding K eigenvectors of C; The vectors are sorted in descending order of the corresponding K eigenvalues, and the matrix formed by the K eigenvectors of C according to their sorting results is used as the prior information extracted from X; among them, the dimension of C is K×K, the feature vector is a column vector, the dimension of the feature vector is K×1, each column of the prior information extracted from X is a feature vector of C, the prior information extracted from X The dimension of is K×K.
在本实施例中,步骤3中,C的计算公式为:其中,上标“T”表示向量或矩阵的转置,表示对X按行取均值得到的均值向量, 的维数为K×1。In this embodiment, in
步骤4:将从X中提取到的先验信息作为IY的KLT(Karhunen-Loéve Transform)核,记为P;然后根据P和X,计算IY的KLT系数矩阵,记为Q,Q=(P)TX;再将Q表示为Q=[q1,q2,…,qk,…,qK]T;其中,P的维数为K×K,Q的维数为K×Num,1≤k≤K,q1表示Q中的第1维KLT谱分量,q2表示Q中的第2维KLT谱分量,qk表示Q中的第k维KLT谱分量,qK表示Q中的第K维KLT谱分量,q1、q2、qk、qK的维数均为Num×1。Step 4: Use the prior information extracted from X as the KLT (Karhunen-Loéve Transform) kernel of I Y , denoted as P; then calculate the KLT coefficient matrix of I Y according to P and X, denoted as Q, Q= (P) T X; then express Q as Q=[q 1 , q 2 ,...,q k ,...,q K ] T ; wherein, the dimension of P is K×K, and the dimension of Q is K× Num, 1≤k≤K, q 1 represents the 1st dimension KLT spectral component in Q, q 2 represents the 2nd dimension KLT spectral component in Q, q k represents the kth dimension KLT spectral component in Q, q K represents For the Kth dimension KLT spectral components in Q, the dimensions of q 1 , q 2 , q k , and q K are all Num×1.
在本实施例中,步骤4中,P=[p1,p2,…,pK],其中,p1表示对C的K个特征向量按对应的K个特征值从大到小的降序方式进行排序后的第1个特征向量,p2表示对C的K个特征向量按对应的K个特征值从大到小的降序方式进行排序后的第2个特征向量,pK表示对C的K个特征向量按对应的K个特征值从大到小的降序方式进行排序后的第K个特征向量,p1、p2、pK的维数均为K×1。In this embodiment, in step 4 , P = [p 1 , p 2 , . The first eigenvector after sorting by the way, p 2 represents the second eigenvector after sorting the K eigenvectors of C in descending order of the corresponding K eigenvalues, p K represents the The K eigenvectors of k are sorted in descending order of the corresponding K eigenvalues in descending order, and the dimensions of p 1 , p 2 , and p K are all K×1.
步骤5:计算Q中的每一维KLT谱分量的KLT系数能量,将qk的KLT系数能量记为Ek,然后计算Q中的每一维KLT谱分量的归一化KLT系数能量,将qk的归一化KLT系数能量记为 再计算Q中的每一维KLT谱分量的累积归一化KLT系数能量,将qk的累积归一化KLT系数能量记为 最后将Q中的所有KLT谱分量的累积归一化KLT系数能量组成累积归一化KLT系数能量向量,记为Ecum,其中,qk(n)表示qk中的第n个元素的值,1≤ζ≤K,Eζ表示Q中的第ζ维KLT谱分量qζ的KLT系数能量,表示q1的归一化KLT系数能量,表示q2的归一化KLT系数能量,Ecum的维数为1×K,表示q1的累积归一化KLT系数能量,表示q2的累积归一化KLT系数能量,表示qK的累积归一化KLT系数能量;图2a给出了第1幅源图像img1,图2b给出了第2幅源图像img2,图2c给出了第3幅源图像img3,图2d给出了第4幅源图像img4,图2e给出了图2a、图2b、图2c、图2d各自对应的累积归一化KLT系数能量曲线。从图2e中可以看见,第1维KLT谱分量的累积归一化KLT系数能量是最大的,并且累积归一化KLT系数能量随着KLT谱分量索引的增加而增加。随着KLT谱分量索引的增加,累积归一化KLT系数能量逐渐趋向于饱和,最终变成1。不同图像对应的累积归一化KLT系数能量曲线虽然有相同的趋势但并不完全一致。Step 5: Calculate the KLT coefficient energy of each dimension KLT spectral component in Q, and denote the KLT coefficient energy of q k as E k , Then calculate the normalized KLT coefficient energy of each dimension KLT spectral component in Q, and denote the normalized KLT coefficient energy of q k as Then calculate the cumulative normalized KLT coefficient energy of each dimension KLT spectral component in Q, and denote the cumulative normalized KLT coefficient energy of q k as Finally, the cumulative normalized KLT coefficient energy of all KLT spectral components in Q is composed of cumulative normalized KLT coefficient energy vector, denoted as E cum , Among them, q k (n) represents the value of the nth element in q k , 1≤ζ≤K, E ζ denotes the KLT coefficient energy of the ζth dimension KLT spectral component q ζ in Q, represents the normalized KLT coefficient energy of q1 , represents the normalized KLT coefficient energy of q 2 , E cum has a dimension of 1 × K, represents the cumulative normalized KLT coefficient energy of q1 , represents the cumulative normalized KLT coefficient energy of q2 , Represents the cumulative normalized KLT coefficient energy of q K ; Fig. 2a shows the 1st source image img1, Fig. 2b shows the 2nd source image img2, Fig. 2c shows the 3rd source image img3, Fig. 2d The fourth source image img4 is given, and Fig. 2e shows the corresponding cumulative normalized KLT coefficient energy curves of Fig. 2a, Fig. 2b, Fig. 2c, and Fig. 2d. It can be seen from Fig. 2e that the cumulative normalized KLT coefficient energy of the 1st dimension KLT spectral components is the largest, and the cumulative normalized KLT coefficient energy increases as the index of the KLT spectral components increases. As the KLT spectral component index increases, the cumulative normalized KLT coefficient energy gradually tends to saturate, eventually becoming 1. Although the cumulative normalized KLT coefficient energy curves corresponding to different images have the same trend, they are not completely consistent.
步骤6:将Ecum作为输入代入感知无失真临界点计算模型中,计算得到IY的感知无失真临界点,记为L;然后根据L构建感知无失真系数重建矩阵,记为 接着采用重建得到感知无失真系数矩阵,记为 再将表示为其中,L为正整数,1≤L≤K,的维数为K×Num,中的“=”为赋值符号,qL表示Q中的第L维KLT谱分量,qL的维数为Num×1,至均为全0向量,的维数均为Num×1,的维数为K×Num,表示中的第1维感知无失真系数向量,表示中的第2维感知无失真系数向量,表示中的第n维感知无失真系数向量,表示中的第Num维感知无失真系数向量,的维数均为K×1。Step 6: Substitute E cum as the input into the perceptual distortion-free critical point calculation model, and calculate the perceptual distortion-free critical point of I Y , denoted as L; then construct the perceptual distortion-free coefficient reconstruction matrix according to L, denoted as Then use Reconstruction to get the perceptual distortion-free coefficient matrix, denoted as again Expressed as Among them, L is a positive integer, 1≤L≤K, The dimension of is K × Num, The "=" in is the assignment symbol, q L represents the L-th dimension KLT spectral component in Q, and the dimension of q L is Num×1, to are all 0 vectors, The dimensions of are all Num×1, The dimension of is K × Num, express The 1st-dimensional perceptual distortion-free coefficient vector in , express The 2nd-dimensional perceptual distortion-free coefficient vector in , express The nth-dimensional perceptual distortion-free coefficient vector in , express The Num-th dimension perceptually undistorted coefficient vector in , The dimensions are all K × 1.
在本实施例中,步骤6中,感知无失真临界点计算模型的获取过程为:In this embodiment, in
步骤6_1:选取S幅高清图像,将每幅高清图像转换为灰度图像;然后按照步骤2至步骤4的过程,以相同的方式获取每幅高清图像的灰度图像的KLT系数矩阵,将第i幅高清图像的灰度图像的KLT系数矩阵记为Q'i,将Q'i表示为Q'i=[q'i,1,q'i,2,…,q'i,k,…,q'i,K]T;其中,S≥100,在实验中可取S=500,高清图像为RGB彩色图像,高清图像的宽度为W'且高度为H',W'和H'均能够被整除,高清图像的灰度图像分割的图像块的尺寸大小为1≤i≤S,Q'i的维数为K×Num',Num'表示高清图像的灰度图像分割的图像块的总个数,q'i,1表示Q'i中的第1维KLT谱分量,q'i,2表示Q'i中的第2维KLT谱分量,q'i,k表示Q'i中的第k维KLT谱分量,q'i,K表示Q'i中的第K维KLT谱分量,q'i,1、q'i,2、q'i,k、q'i,K的维数均为Num'×1。Step 6_1: Select S high-definition images, and convert each high-definition image into a grayscale image; then follow the process from steps 2 to 4 to obtain the KLT coefficient matrix of the grayscale image of each high-definition image in the same way, and convert the first The KLT coefficient matrix of the grayscale image of i high-definition images is denoted as Q' i , and Q' i is represented as Q' i =[q' i,1 ,q' i,2 ,...,q' i,k ,... ,q'i ,K ] T ; wherein, S≥100, in the experiment, S=500 is desirable, the high-definition image is an RGB color image, the width of the high-definition image is W' and the height is H', and both W' and H' can be quilt Divide evenly, the size of the image block divided by the grayscale image of the high-definition image is 1≤i≤S, the dimension of Q' i is K×Num', and Num' represents the total number of image blocks divided by the grayscale image of the high-definition image, q' i,1 represents the first dimension KLT spectral component in Q' i , q' i,2 represents the second dimension KLT spectral component in Q' i , q' i,k represents the kth dimension in Q' i KLT spectral components, q' i,K represents the K-th dimension KLT spectral components in Q' i , the dimensions of q' i,1 , q' i,2 , q' i,k , q' i,K are all Num'×1.
在本实施例中,步骤6_1中,Q'i的获取过程为:In this embodiment, in step 6_1, the acquisition process of Q' i is:
步骤6_1a:将第i幅高清图像的灰度图像记为I'Y,i;接着将I'Y,i分割成Num'个互不重叠的尺寸大小为的图像块;然后对I'Y,i中的每个图像块进行向量化处理,得到I'Y,i中的每个图像块对应的列向量,将I'Y,i中的第n'个图像块对应的列向量记为x'i,n';再将I'Y,i中的所有图像块对应的列向量拼接构成一个向量化矩阵,记为X'i,X'i=[x'i,1,x'i,2,…,x'i,n',…,x'i,Num'];其中,K的取值为42或52或62或72或82或92或102,一般情况下取82,1≤n'≤Num',x'i,1表示I'Y,i中的第1个图像块对应的列向量,x'i,2表示I'Y,i中的第2个图像块对应的列向量,x'i,Num'表示I'Y,i中的第Num'个图像块对应的列向量,x'i,1、x'i,2、x'i,n'、x'i,Num'的维数均为K×1,X'i的维数为K×Num'。Step 6_1a: mark the grayscale image of the i-th high-definition image as I' Y, i ; then divide I' Y, i into Num' non-overlapping sizes as Then, vectorize each image block in I' Y, i to obtain the column vector corresponding to each image block in I' Y, i , and convert the The column vectors corresponding to the image blocks are denoted as x'i,n'; then the column vectors corresponding to all the image blocks in I' Y, i are spliced to form a vectorized matrix, denoted as X' i , X' i =[ x' i,1 ,x' i,2 ,…,x'i,n',…,x'i,Num']; where, The value of K is 4 2 or 5 2 or 6 2 or 7 2 or 8 2 or 9 2 or 10 2 , generally 8 2 , 1≤n'≤Num', x' i,1 means I' Y , the column vector corresponding to the first image block in i, x' i, 2 represents the column vector corresponding to the second image block in I' Y, i , x' i, Num' represents I' Y, i The column vector corresponding to the Num'th image block, the dimensions of x' i,1 , x' i,2 , x'i,n' , x'i,Num' are all K×1, and the dimensions of X' i The dimension is K × Num'.
步骤6_1b:计算X'i的协方差矩阵,记为C'i;然后利用现有的特征值分解技术对C'i进行处理,得到C'i的K个特征值和对应的K个特征向量;接着对C'i的K个特征向量按对应的K个特征值从大到小的降序方式进行排序,将C'i的K个特征向量按其排序结果构成的矩阵作为从X'i中提取到的先验信息;其中,C'i的维数为K×K,特征向量为列向量,特征向量的维数为K×1,从X'i中提取到的先验信息中的每一列为C'i的1个特征向量,从X'i中提取到的先验信息的维数为K×K。Step 6_1b : Calculate the covariance matrix of X'i, denoted as C'i ; then utilize the existing eigenvalue decomposition technology to process C'i , and obtain K eigenvalues and corresponding K eigenvectors of C'i ; Then sort the K eigenvectors of C'i in descending order of the corresponding K eigenvalues, and take the matrix formed by the K eigenvectors of C'i according to their sorting results as the matrix from X'i The extracted prior information; among them, the dimension of C'i is K×K, the feature vector is a column vector, and the dimension of the feature vector is K×1, and each of the prior information extracted from X'i is One column is a feature vector of C' i , and the dimension of the prior information extracted from X' i is K×K.
步骤6_1c:将从X'i中提取到的先验信息作为I'Y,i的KLT核,记为P'i;然后根据P'i和X'i,计算I'Y,i的KLT系数矩阵Q'i,Q'i=(P'i)TX'i;其中,P'i的维数为K×K,Q'i的维数为K×Num'。Step 6_1c: The prior information extracted from X' i is used as the KLT kernel of I' Y,i , denoted as P'i; then according to P' i and X' i , calculate the KLT coefficient of I' Y,i Matrix Q' i , Q' i =(P' i ) T X' i , wherein the dimension of P' i is K×K, and the dimension of Q' i is K×Num'.
步骤6_2:构建每幅高清图像的灰度图像对应的K个感知系数重建矩阵,将第i幅高清图像的灰度图像对应的第k个感知系数重建矩阵记为 然后重建每幅高清图像的灰度图像对应的K个感知系数矩阵,将第i幅高清图像的灰度图像对应的第k个感知系数矩阵记为将表示为其中,的维数为K×Num', 中的“=”为赋值符号,至均为全0向量, 的维数均为Num'×1,的维数为K×Num',P'i表示第i幅高清图像的灰度图像的KLT核,P'i的维数为K×K,1≤n'≤Num',n'为正整数,表示中的第1维感知系数向量,表示中的第2维感知系数向量,表示中的第n'维感知系数向量,表示中的第Num'维感知系数向量,的维数均为K×1。Step 6_2: Construct K perceptual coefficient reconstruction matrices corresponding to the grayscale image of each high-definition image, and record the kth perceptual coefficient reconstruction matrix corresponding to the grayscale image of the ith high-definition image as Then the K perceptual coefficient matrices corresponding to the grayscale image of each high-definition image are reconstructed, and the kth perceptual coefficient matrix corresponding to the grayscale image of the ith high-definition image is recorded as Will Expressed as in, The dimension of is K × Num', The "=" in it is an assignment symbol, to are all 0 vectors, The dimensions of are all Num'×1, The dimension of P'i is K×Num', P'i represents the KLT kernel of the grayscale image of the ith high-definition image, the dimension of P'i is K×K, 1≤n'≤Num', n ' is a positive integer , express The 1st-dimensional perceptual coefficient vector in , express The 2nd-dimensional perceptual coefficient vector in , express The n'-dimensional perceptual coefficient vector in , express The Num'-dimensional perceptual coefficient vector in , The dimensions are all K × 1.
步骤6_3:按步骤2中的向量化处理的逆操作,将每幅高清图像的灰度图像对应的每个感知系数矩阵中的每一维感知系数向量转换成尺寸大小为的图像块;然后按步骤2中图像块分割时的先后顺序将每幅高清图像的灰度图像对应的每个感知系数矩阵中的所有感知系数向量转换成的图像块拼接成一幅图像,将第i幅高清图像的灰度图像对应的第k个感知系数矩阵中的所有感知系数向量转换成的图像块拼接成的图像作为第i幅高清图像的灰度图像对应的第k幅重建图像,记为其中,的宽度为W'且高度为H'。Step 6_3: According to the inverse operation of the vectorization process in
步骤6_4:召集D位志愿者,每位志愿者以肉眼观察的方式依次对比每幅高清图像的灰度图像与其对应的各幅重建图像,每位志愿者从每幅高清图像的灰度图像对应的K幅重建图像中确定一幅重建图像作为该灰度图像对应的感知无失真临界图像,同时将确定的重建图像的序号作为该灰度图像对应的感知无失真临界点;对于第d位志愿者及第i幅高清图像的灰度图像,第d位志愿者以肉眼观察的方式依次对比第i幅高清图像的灰度图像与其对应的第1幅重建图像、第2幅重建图像、……、第K幅重建图像,一旦第d位志愿者无法区分第i幅高清图像的灰度图像与其对应的其中一幅重建图像时停止对比过程,假设该幅重建图像为第i幅高清图像的灰度图像对应的第k幅重建图像那么将作为第d位志愿者观察下第i幅高清图像的灰度图像对应的感知无失真临界图像,同时将数值k作为第d位志愿者观察下第i幅高清图像的灰度图像对应的感知无失真临界点,记为 然后将所有志愿者观察下第i幅高清图像的灰度图像对应的感知无失真临界点构成的向量记为Ji,其中,D>1,在实验中可取D=30,1≤d≤D,中的“=”为赋值符号,Ji的维数为1×D,表示第1位志愿者观察下第i幅高清图像的灰度图像对应的感知无失真临界点,表示第2位志愿者观察下第i幅高清图像的灰度图像对应的感知无失真临界点,表示第D位志愿者观察下第i幅高清图像的灰度图像对应的感知无失真临界点。Step 6_4: Summon D volunteers, each volunteer compares the grayscale image of each high-definition image and its corresponding reconstructed images in turn by visual observation, and each volunteer corresponds to the grayscale image of each high-definition image. Among the K reconstructed images, a reconstructed image is determined as the perceptual distortion-free critical image corresponding to the grayscale image, and the sequence number of the determined reconstructed image is taken as the perceptual distortion-free critical point corresponding to the grayscale image; and the grayscale image of the i-th high-definition image, the d-th volunteer compares the gray-scale image of the i-th high-definition image with its corresponding first reconstructed image, the second reconstructed image, ... , The K-th reconstructed image, once the d-th volunteer cannot distinguish the grayscale image of the i-th high-definition image from one of the corresponding reconstructed images, the comparison process is stopped, assuming that the reconstructed image is the gray-scale of the i-th high-definition image. The kth reconstructed image corresponding to the degree image then will As the perceptual distortion-free critical image corresponding to the grayscale image of the i-th high-definition image observed by the d-th volunteer, and taking the value k as the perceptually undistorted image corresponding to the gray-scale image of the i-th high-definition image observed by the d-th volunteer Distortion critical point, denoted as Then the vector formed by the perceptual distortion-free critical points corresponding to the grayscale image of the ith high-definition image observed by all volunteers is denoted as J i , Among them, D>1, in the experiment, D=30, 1≤d≤D, The "=" in is the assignment symbol, and the dimension of J i is 1×D, represents the perceptual distortion-free critical point corresponding to the grayscale image of the i-th high-definition image observed by the first volunteer, represents the perceptual distortion-free critical point corresponding to the grayscale image of the i-th high-definition image observed by the second volunteer, Indicates the perceptual distortion-free critical point corresponding to the grayscale image of the i-th high-definition image observed by the D-th volunteer.
步骤6_5:计算所有志愿者观察下每幅高清图像的灰度图像对应的感知无失真临界点构成的向量中的所有感知无失真临界点的均值和标准差,将Ji中的所有感知无失真临界点的均值和标准差对应记为和然后在所有志愿者观察下每幅高清图像的灰度图像对应的感知无失真临界点构成的向量中剔除离群值,对于Ji,若不满足则判定为离群值,将从Ji中剔除,将剔除离群值后得到的向量记为 Step 6_5: Calculate the mean and standard deviation of all perceptual distortion-free critical points in the vector formed by the perceptual distortion-free critical points corresponding to the grayscale images of each high-definition image observed by all volunteers, and calculate all perceptual distortion-free critical points in J i . The mean and standard deviation of the critical point are recorded as and Then, outliers are eliminated from the vector formed by the perceptual distortion-free critical points corresponding to the grayscale images of each high-definition image observed by all volunteers. For J i , if not satisfied then judge is an outlier, the Remove from J i , and record the vector obtained after removing outliers as
步骤6_6:计算所有志愿者观察下每幅高清图像的灰度图像对应的感知无失真临界点构成的向量剔除离群值后所有感知无失真临界点的均值,将中的所有感知无失真临界点的均值记为然后获取每幅高清图像的灰度图像对应的感知无失真临界点,将第i幅高清图像的灰度图像对应的感知无失真临界点记为Ji,其中,符号为向上取整运算符号。Step 6_6: Calculate the average value of all perceptual distortion-free critical points after removing outliers from the vector of the perceptual distortion-free critical points corresponding to the grayscale images of each high-definition image observed by all volunteers, and set the The mean of all perceptually distortion-free critical points in Then, the perceptual distortion-free critical point corresponding to the grayscale image of each high-definition image is obtained, and the perceptual distortion-free critical point corresponding to the grayscale image of the ith high-definition image is recorded as J i , Among them, the symbol Operator symbol for round up.
步骤6_7:计算每幅高清图像的灰度图像的KLT系数矩阵中的每一维KLT谱分量的KLT系数能量,将Q'i中的q'i,k的KLT系数能量记为Ui,k,然后计算每幅高清图像的灰度图像的KLT系数矩阵中的每一维KLT谱分量的归一化KLT系数能量,将Q'i中的q'i,k的归一化KLT系数能量记为 再计算每幅高清图像的灰度图像对应的感知无失真临界点处的累积归一化KLT系数能量,将第i幅高清图像的灰度图像对应的感知无失真临界点Ji处的累积归一化KLT系数能量记为 最后将所有高清图像的灰度图像对应的感知无失真临界点处的累积归一化KLT系数能量构成一个向量,记为Ucum,其中,q'i,k(n')表示q'i,k中的第n'个元素的值,1≤ζ≤K,Ui,ζ表示Q'i中的第ζ维KLT谱分量q'i,ζ的KLT系数能量,表示Q'i中的q'i,1的归一化KLT系数能量,表示Q'i中的q'i,2的归一化KLT系数能量,表示Q'i中的的归一化KLT系数能量,表示Q'i中的第Ji维KLT谱分量,Ucum的维数为1×S,表示第1幅高清图像的灰度图像对应的感知无失真临界点J1处的累积归一化KLT系数能量,表示第2幅高清图像的灰度图像对应的感知无失真临界点J2处的累积归一化KLT系数能量,表示第S幅高清图像的灰度图像对应的感知无失真临界点JS处的累积归一化KLT系数能量;Step 6-7: Calculate the KLT coefficient energy of each dimension KLT spectral component in the KLT coefficient matrix of the grayscale image of each high-definition image, and denote the KLT coefficient energy of q' i,k in Q' i as U i,k , Then calculate the normalized KLT coefficient energy of each dimension KLT spectral component in the KLT coefficient matrix of the grayscale image of each high-definition image, and denote the normalized KLT coefficient energy of q' i, k in Q' i as Then calculate the cumulative normalized KLT coefficient energy at the perceptual distortion-free critical point corresponding to the grayscale image of each high-definition image, and calculate the cumulative normalized KLT coefficient energy at the perceptual distortion-free critical point J i corresponding to the grayscale image of the ith high-definition image. The energy of the normalized KLT coefficient is recorded as Finally, the cumulative normalized KLT coefficient energy at the perceptual distortion-free critical point corresponding to the grayscale images of all high-definition images is formed into a vector, denoted as U cum , Among them, q' i,k (n') represents the value of the n'th element in q' i,k , 1≤ζ≤K, U i ,ζ denotes the ζth dimension KLT spectral component q in Q'i ' i, the KLT coefficient energy of ζ , represents the normalized KLT coefficient energy of q' i,1 in Q' i , represents the normalized KLT coefficient energy of q' i,2 in Q' i , means that in Q' i The normalized KLT coefficient energy of , represents the J i -th dimension KLT spectral component in Q' i , the dimension of U cum is 1×S, represents the cumulative normalized KLT coefficient energy at the perceptual distortion - free critical point J1 corresponding to the grayscale image of the first high-definition image, represents the cumulative normalized KLT coefficient energy at the perceptual distortion-free critical point J 2 corresponding to the grayscale image of the second high-definition image, represents the cumulative normalized KLT coefficient energy at the perceptual distortion-free critical point J S corresponding to the grayscale image of the S-th high-definition image;
步骤6_8:计算Ucum中的所有累积归一化KLT系数能量的均值和标准差,对应记为和然后根据和得到感知无失真临界点计算模型,描述为:其中,L表示IY的感知无失真临界点。Step 6_8: Calculate the mean and standard deviation of all cumulative normalized KLT coefficient energies in U cum , corresponding to and then according to and The perceptual distortion-free critical point calculation model is obtained, which is described as: where L represents the perceptual distortion-free critical point of I Y.
步骤7:按步骤2中的向量化处理的逆操作,将中的每一维感知无失真系数向量转换成尺寸大小为的图像块,将转换成的图像块作为第n个图像块;然后按步骤2中图像块分割时的先后顺序将中的所有感知无失真系数向量转换成的图像块拼接成图像作为感知无失真临界图像,记为IL;再根据IY和IL,计算恰可察觉失真阈值图,记为M,将M中坐标位置为(a,b)的像素点的像素值记为M(a,b),M(a,b)=|IY(a,b)-IL(a,b)|;其中,1≤a≤W,1≤b≤H,IY(a,b)表示IY中坐标位置为(a,b)的像素点的像素值,IL(a,b)表示IL中坐标位置为(a,b)的像素点的像素值,符号“||”为取绝对值符号。Step 7: According to the inverse operation of the vectorization process in
为了进一步说明本发明方法的可行性和有效性,对本发明方法进行实验。In order to further illustrate the feasibility and effectiveness of the method of the present invention, experiments were carried out on the method of the present invention.
第一部分实验是恰可察觉失真阈值估计模型引导的加噪图像生成实验。输入一张源图像,利用本发明方法获得对应的恰可察觉失真阈值图,对源图像的红色通道、绿色通道、蓝色通道分别进行恰可察觉失真阈值图引导加噪,将源图像的红色通道对应的加噪图像记为将中坐标位置为(a,b)的像素点的像素值记为 将源图像的绿色通道对应的加噪图像记为将中坐标位置为(a,b)的像素点的像素值记为 将源图像的蓝色通道对应的加噪图像记为将中坐标位置为(a,b)的像素点的像素值记为 最终可以得到源图像的加噪图像;其中,1≤a≤W,1≤b≤H,IR(a,b)表示源图像的红色通道中坐标位置为(a,b)的像素点的像素值,M(a,b)表示恰可察觉失真阈值图中坐标位置为(a,b)的像素点的像素值,N(a,b)表示维数为W×H的随机二值矩阵中下标为(a,b)处的元素的值,N(a,b)为+1或-1,θ为噪声大小的调节参数,通过改变θ的值可以控制所注入的噪声量,IG(a,b)表示源图像的绿色通道中坐标位置为(a,b)的像素点的像素值,IB(a,b)表示源图像的蓝色通道中坐标位置为(a,b)的像素点的像素值。The first part of the experiment is the noised image generation experiment guided by the threshold estimation model of just perceptible distortion. Input a source image, use the method of the present invention to obtain a corresponding threshold value map of perceptible distortion, and conduct noise-guided noise addition to the red channel, green channel, and blue channel of the source image respectively, and add the red channel of the source image to the red channel, green channel, and blue channel of the source image. The noised image corresponding to the channel is denoted as Will The pixel value of the pixel with the middle coordinate position (a, b) is recorded as Denote the noised image corresponding to the green channel of the source image as Will The pixel value of the pixel with the middle coordinate position (a, b) is recorded as Denote the noised image corresponding to the blue channel of the source image as Will The pixel value of the pixel with the middle coordinate position (a, b) is recorded as Finally, the noise-added image of the source image can be obtained; among them, 1≤a≤W, 1≤b≤H , IR (a, b) represents the pixel point whose coordinate position is (a, b) in the red channel of the source image. Pixel value, M(a,b) represents the pixel value of the pixel whose coordinate position is (a,b) in the threshold map of perceptible distortion, and N(a,b) represents a random binary matrix with dimension W×H The subscript in the middle is the value of the element at (a,b), N(a,b) is +1 or -1, θ is the adjustment parameter of the noise size, the amount of injected noise can be controlled by changing the value of θ, I G (a, b) represents the pixel value of the pixel whose coordinate position is (a, b) in the green channel of the source image, and I B (a, b) represents the coordinate position (a, b) in the blue channel of the source image ) of the pixel value of the pixel point.
在此设置S=500、D=60、K=64,控制得到的源图像的加噪图像的PSNR在26dB左右。PSNR即峰值信噪比,是一种现有的图像质量评价指标。选取20幅源图像进行实验。用现有的6种JND阈值图生成方法进行对比研究,6种JND阈值图生成方法分别是:第1种,Yang2005(X.Yang,W.Lin,Z.Lu,E.Ong,and S.Yao,“Motion-compensated residue pre-processing in video coding based on just-noticeable-distortion profile,”IEEETransactions on Circuits and Systems for Video Technology,vol.15,no.6,pp.742–752,2005.(基于恰可察觉失真模型的视频编码运动补偿残差预处理));第2种,Zhang2005(X.Zhang,W.Lin,and P.Xue,“Improved estimation for just-noticeable visualdistortion,”Signal Processing,vol.85,no.4,pp.795–808,2005.(恰可察觉视觉失真的改进估计));第3种,Wu2013(J.Wu,G.Shi,W.Lin,A.Liu,and F.Qi,“Just noticeabledifference estimation for images with free-energy principle,”IEEETransactions on Multimedia,vol.15,no.7,pp.1705–1710,2013.(依据自由能量原则的图像恰可察觉失真估计));第4种,Wu2017(J.Wu,L.Li,W.Dong,G.Shi,W.Lin,and C.-C.J.Kuo,“Enhanced just noticeable difference model for images with patterncomplexity,”IEEE Transactions on Image Processing,vol.26,no.6,pp.2682–2693,2017.(依据模式复杂度的图像增强恰可察觉失真模型));第5种,Jakhetiya2018(V.Jakhetiya,W.Lin,S.Jaiswal,K.Gu,and S.C.Guntuku,“Just noticeable differencefor natural images using rms contrast and feed-back mechanism,”Neurocomputing,vol.275,pp.366–376,2018.(依据rms对比度和反馈机制的自然图像恰可察觉失真));第6种,Chen2020(Z.Chen and W.Wu,“Asymmetric foveated just-noticeable-difference model for images with visual field inhomogeneities,”IEEE Transactions on Circuits and Systems for Video Technology,vol.30,no.11,pp.4064–4074,2020.(依据视野不均匀性的图像非对称漏斗状的恰可察觉失真模型))。对于每幅源图像,利用本发明方法及现有的6种JND阈值图生成方法分别得到恰可察觉失真阈值图;然后获取每幅源图像的加噪图像,即针对每幅源图像可以得到峰值信噪比近似相同的7幅加噪图像。Here, S=500, D=60, and K=64 are set, and the PSNR of the noise-added image of the obtained source image is controlled to be about 26dB. PSNR, or peak signal-to-noise ratio, is an existing image quality evaluation index. 20 source images were selected for the experiment. The six existing JND threshold map generation methods are used for comparative research. The six JND threshold map generation methods are: the first, Yang2005 (X.Yang, W.Lin, Z.Lu, E.Ong, and S. Yao, "Motion-compensated residue pre-processing in video coding based on just-noticeable-distortion profile," IEEE Transactions on Circuits and Systems for Video Technology, vol.15, no.6, pp.742–752, 2005. (Based on Video coding motion compensation residual preprocessing for just-noticeable distortion model)); the second, Zhang2005 (X. Zhang, W. Lin, and P. Xue, "Improved estimation for just-noticeable visual distortion," Signal Processing, vol .85, no.4, pp.795–808, 2005. (Improved Estimation of Just Perceptible Visual Distortion); No. 3, Wu2013 (J.Wu,G.Shi,W.Lin,A.Liu,and F.Qi, "Just noticeabledifference estimation for images with free-energy principle," IEEE Transactions on Multimedia, vol.15, no.7, pp.1705–1710, 2013. ); No. 4, Wu2017 (J.Wu, L.Li, W.Dong, G.Shi, W.Lin, and C.-C.J.Kuo, "Enhanced just noticeable difference model for images with patterncomplexity," IEEE Transactions on Image Processing, vol. 26, no. 6, pp. 2682–2693, 2017. (Image Enhancement Perceptual Distortion Model Based on Pattern Complexity)); No. 5, Jakhetiya2018 (V.Jakhetiya,W.Lin,S .Jaiswal, K.Gu, and S.C. Guntuku, "Just noticeable difference for natur al images using rms contrast and feed-back mechanism,”Neurocomputing,vol.275,pp.366–376,2018.(Natural images according to rms contrast and feed-back mechanism are just perceptible distortion)); No. 6, Chen2020(Z .Chen and W.Wu, “Asymmetric foveated just-noticeable-difference model for images with visual field inhomogeneities,” IEEE Transactions on Circuits and Systems for Video Technology, vol.30, no.11, pp.4064–4074, 2020. (Model of just perceptible distortion of image asymmetric funnel in terms of field inhomogeneity)). For each source image, the method of the present invention and the existing 6 JND threshold map generation methods are used to obtain a threshold map of perceptible distortion; then the noise-added image of each source image is obtained, that is, the peak value can be obtained for each source image Seven noisy images with approximately the same signal-to-noise ratio.
表1利用本发明方法与现有的6种JND阈值图生成方法后得到的加噪图像的实验对比Table 1 Experimental comparison of the noise-added images obtained by using the method of the present invention and the existing 6 JND threshold map generation methods
召集30位志愿者,进行主观实验。要求每位志愿者比较每幅源图像及其相应的7幅加噪图像,并对加噪图像进行0到-1之间的评分,若评分为0,则表示加噪图像与源图像的视觉质量非常接近;若评分为-1,则表示加噪图像的视觉质量相比于源图像非常糟糕。每幅加噪图像均能收到30个评分,去除离群值后再取平均值即得到这幅加噪图像的主观评分,记为MOS值,MOS值越高代表加噪图像视觉质量越好。此外,运用已有的图像质量客观评价算法MS-SSIM(Z.Wang,E.P.Simoncelli,and A.C.Bovik,“Multiscale structural similarityfor image quality assessment,”in The Thrity-Seventh Asilomar Conference onSignals,Systems Computers,2003,vol.2,2003,pp.1398–1402Vol.2.(多尺度结构相似度用于图像质量评价))对加噪图像进行质量评价,MS-SSIM值越高代表加噪图像质量越好。对于每幅加噪图像的MOS值与MS-SSIM值列在表1中。30 volunteers were called to conduct subjective experiments. Each volunteer was asked to compare each source image and its corresponding 7 noised images, and rated the noised image between 0 and -1. If the score was 0, it indicated the visual difference between the noised image and the source image. The quality is very close; a score of -1 indicates that the visual quality of the noised image is very poor compared to the source image. Each noise-added image can receive 30 scores. After removing outliers, the average value is obtained to obtain the subjective score of the noise-added image, which is recorded as the MOS value. The higher the MOS value, the better the visual quality of the noise-added image. . In addition, using the existing image quality objective evaluation algorithm MS-SSIM (Z. Wang, E.P. Simoncelli, and A.C. Bovik, "Multiscale structural similarity for image quality assessment," in The Thrity-Seventh Asilomar Conference on Signals, Systems Computers, 2003, vol .2, 2003, pp.1398–1402Vol.2. (Multi-scale structural similarity is used for image quality evaluation)) to evaluate the quality of the noised image, the higher the MS-SSIM value, the better the quality of the noised image. The MOS and MS-SSIM values for each noised image are listed in Table 1.
在表1中,I01代表第1幅源图像,一共有20幅源图像参与实验,因此依次标记为I01至I20。图3a给出了源图像I03,图3b给出了采用本发明方法对图3a所示的源图像进行处理得到的恰可察觉失真阈值图,图3c给出了使用图3b引导生成的在PSNR=26dB条件下的加噪图像,图3d给出了图3c中框内部分的放大图,从图3d中可以看出几乎看不见噪声存在,视觉质量较好。如表1所示,采用本发明方法得到的恰可察觉失真阈值图引导生成的加噪图像无论在单幅加噪图像的MS-SSIM值上还是在MS-SSIM平均值上均超过了采用其它方法得到的恰可察觉失真阈值图引导生成的加噪图像。在I12这幅源图像对应的加噪图像上,采用本发明方法得到的恰可察觉失真阈值图引导生成的加噪图像的MOS值仅低于采用Chen2020方法得到的恰可察觉失真阈值图引导生成的加噪图像,但高于采用其它方法得到的恰可察觉失真阈值图引导生成的加噪图像。并且在其他源图像对应的加噪图像上,采用本发明方法得到的恰可察觉失真阈值图引导生成的加噪图像的MOS值与MOS平均值均高于其它方法。这个实验说明,在保持加噪量一致的前提下,采用本发明方法得到的恰可察觉失真阈值图引导生成的加噪图像拥有更好的视觉效果,能将噪声引导注入至视觉所不易察觉的地方。因此,本发明方法能够更准确地反映HVS视觉掩蔽特性,刻画其视觉感知冗余度。In Table 1, I01 represents the first source image, and a total of 20 source images participated in the experiment, so they are marked as I01 to I20 in turn. Fig. 3a shows the source image I03, Fig. 3b shows the perceptible distortion threshold map obtained by processing the source image shown in Fig. 3a using the method of the present invention, and Fig. 3c shows the PSNR generated using the guidance of Fig. 3b The noise-added image under the condition of = 26dB, Fig. 3d shows an enlarged view of the part inside the box in Fig. 3c, it can be seen from Fig. 3d that the noise is almost invisible, and the visual quality is good. As shown in Table 1, the noised image generated by the perceptible distortion threshold map obtained by the method of the present invention exceeds the MS-SSIM value of a single noised image or the MS-SSIM average value of other noised images. A threshold map of just perceptible distortion obtained by the method guides the generated noised image. On the noised image corresponding to the source image I12, the MOS value of the noised image generated by the just perceptible distortion threshold map obtained by the method of the present invention is only lower than that of the just perceptible distortion threshold map generated by the Chen2020 method. , but higher than the noised images guided by the threshold map of just perceptible distortion obtained by other methods. In addition, on the noised images corresponding to other source images, the MOS value and the MOS average value of the noised image generated under the guidance of the perceptible distortion threshold map obtained by the method of the present invention are higher than those of other methods. This experiment shows that, on the premise of keeping the amount of added noise consistent, the noise-added image generated by the perceptible distortion threshold map obtained by the method of the present invention has better visual effect, and can guide the injection of noise into the visually imperceptible image. place. Therefore, the method of the present invention can more accurately reflect the visual masking characteristics of HVS, and describe its visual perception redundancy.
第二部分实验是恰可察觉失真阈值图引导的JPEG压缩实验。The second part of the experiment is the JPEG compression experiment guided by the threshold of perceptible distortion.
依据JPEG压缩模型的要求,按照相同的顺序对源图像的红色通道、绿色通道、蓝色通道及利用本发明方法获得对应的恰可察觉失真阈值图进行图像块划分,将源图像的红色通道、绿色通道、蓝色通道及利用本发明方法获得对应的恰可察觉失真阈值图分别分割成个互不重叠的尺寸大小为8×8的图像块。According to the requirements of the JPEG compression model, the red channel, green channel, blue channel of the source image and the corresponding perceptible distortion threshold map obtained by the method of the present invention are divided into image blocks in the same order, and the red channel, The green channel, the blue channel and the corresponding perceptible distortion threshold map obtained by the method of the present invention are respectively divided into non-overlapping image blocks of
以图像块为单位,对源图像的红色通道、绿色通道、蓝色通道分别进行恰可察觉失真阈值图引导的平滑处理。The red channel, green channel, and blue channel of the source image are respectively subjected to the smoothing process guided by the perceptible distortion threshold map in the unit of image block.
以图像块为单位,对源图像的红色通道中的第j个图像块进行恰可察觉失真阈值图中的第j个图像块引导的平滑处理的计算公式为:以图像块为单位,对源图像的绿色通道中的第j个图像块进行恰可察觉失真阈值图中的第j个图像块引导的平滑处理的计算公式为:以图像块为单位,对源图像的蓝色通道中的第j个图像块进行恰可察觉失真阈值图中的第j个图像块引导的平滑处理的计算公式为:其中, 表示源图像的红色通道中的第j个图像块经平滑处理后得到的图像块中坐标位置为(a',b')的像素点的像素值,1≤a'≤8,1≤b'≤8,IR,j(a',b')表示源图像的红色通道中的第j个图像块中坐标位置为(a',b')的像素点的像素值,Mj(a',b')表示恰可察觉失真阈值图中的第j个图像块中坐标位置为(a',b')的像素点的像素值,表示源图像的红色通道中的第j个图像块中的所有像素点的像素值的平均值,表示源图像的绿色通道中的第j个图像块经平滑处理后得到的图像块中坐标位置为(a',b')的像素点的像素值,IG,j(a',b')表示源图像的绿色通道中的第j个图像块中坐标位置为(a',b')的像素点的像素值,表示源图像的绿色通道中的第j个图像块中的所有像素点的像素值的平均值,表示源图像的蓝色通道中的第j个图像块经平滑处理后得到的图像块中坐标位置为(a',b')的像素点的像素值,IB,j(a',b')表示源图像的蓝色通道中的第j个图像块中坐标位置为(a',b')的像素点的像素值,表示源图像的蓝色通道中的第j个图像块中的所有像素点的像素值的平均值。平滑处理完成后,将图像块按照图像块分割时的顺序重新拼接回去得到平滑处理完的红色通道、绿色通道、蓝色通道,最终得到经过平滑处理后的平滑图像。Taking the image block as the unit, the calculation formula of the jth image block in the red channel of the source image for the smoothing process guided by the jth image block in the perceptible distortion threshold map is: Taking the image block as the unit, the calculation formula of the smoothing process guided by the jth image block in the perceptible distortion threshold map for the jth image block in the green channel of the source image is: Taking the image block as the unit, the calculation formula of the smoothing process guided by the jth image block in the perceptible distortion threshold map for the jth image block in the blue channel of the source image is: in, Represents the pixel value of the pixel whose coordinate position is (a', b') in the image block obtained by smoothing the jth image block in the red channel of the source image, 1≤a'≤8,1≤b' ≤8, IR ,j (a',b') represents the pixel value of the pixel at the coordinate position (a',b') in the jth image block in the red channel of the source image, M j (a',b') represents the pixel value of the pixel whose coordinate position is (a', b') in the j-th image block in the perceptible distortion threshold map, represents the average value of the pixel values of all pixels in the jth image block in the red channel of the source image, Indicates the pixel value of the pixel whose coordinate position is (a',b') in the image block obtained after smoothing the jth image block in the green channel of the source image, IG,j (a',b') Represents the pixel value of the pixel whose coordinate position is (a', b') in the jth image block in the green channel of the source image, represents the average value of the pixel values of all pixels in the jth image block in the green channel of the source image, Represents the pixel value of the pixel whose coordinate position is (a',b') in the image block obtained by smoothing the jth image block in the blue channel of the source image, I B,j (a',b' ) represents the pixel value of the pixel whose coordinate position is (a', b') in the jth image block in the blue channel of the source image, Represents the average of the pixel values of all pixels in the jth image block in the blue channel of the source image. After the smoothing process is completed, the image blocks are spliced back together in the order in which the image blocks are divided to obtain the smoothed red channel, green channel, and blue channel, and finally a smoothed image after smoothing is obtained.
设置质量因子(编码量化参数)QP=1,进行JPEG压缩。对输入的源图像进行JPEG压缩,得到源图像的JPEG压缩图像,计算源图像的JPEG压缩图像的压缩比特率和PSNR值,对应记为Bitrate1和PSNR1;对源图像的平滑图像进行JPEG压缩,得到源图像的平滑图像的JPEG压缩图像,计算源图像的平滑图像的JPEG压缩图像的压缩比特率和PSNR值,对应记为Bitrate2和PSNR2。计算比特率节省百分比和PSNR损失百分比,对应记为ΔBitrate和ΔPSNR, 然后计算增益,记为Gain,ΔBitrate越大代表节省比特率越多,ΔPSNR越小代表PSNR损失越少。若增益Gain越大则代表损失尽可能少的PSNR,换取尽可能大的压缩比特率节省,代表恰可察觉失真阈值图引导的图像压缩性能越好。Set the quality factor (coding quantization parameter) QP=1, and perform JPEG compression. Perform JPEG compression on the input source image, obtain the JPEG compressed image of the source image, calculate the compressed bit rate and PSNR value of the JPEG compressed image of the source image, and denote Bitrate 1 and PSNR 1 correspondingly; perform JPEG compression on the smooth image of the source image , obtain the JPEG compressed image of the smoothed image of the source image, and calculate the compressed bit rate and PSNR value of the JPEG compressed image of the smoothed image of the source image, which are correspondingly recorded as Bitrate 2 and PSNR 2 . Calculate the bit rate saving percentage and PSNR loss percentage, corresponding to ΔBitrate and ΔPSNR, Then calculate the gain, denoted as Gain, A larger ΔBitrate represents more bit rate savings, and a smaller ΔPSNR represents less PSNR loss. If the gain is larger, it means that the loss of PSNR is as small as possible, in exchange for saving the compression bit rate as much as possible, which means that the image compression performance guided by the perceptible distortion threshold map is better.
表2采用本发明方法得到的恰可察觉失真阈值图引导的JPEG压缩与采用Wu2017方法得到的恰可察觉失真阈值图引导的JPEG压缩的实验对比Table 2 The experimental comparison between the JPEG compression guided by the just perceptible distortion threshold map obtained by the method of the present invention and the JPEG compression guided by the just perceptible distortion threshold map obtained by the Wu2017 method
在此设置S=500、D=60、K=64。选取在第一部分实验中所采用的20幅源图像进行实验,选取Wu2017方法作为对比方法。图4a给出了源图像I01直接采用JEPG压缩的结果,图4b给出了源图像I01采用本发明方法得到的恰可察觉失真阈值图引导的JPEG压缩结果,图4c给出了源图像I01采用Wu2017方法得到的恰可察觉失真阈值图引导的JPEG压缩结果。图4a、图4b、图4c各自中右边的框为对左边的框的局部放大。比较图4a、图4b、图4c中右边的框,可以看到源图像I01采用本发明方法得到的恰可察觉失真阈值图引导的JPEG压缩结果的视觉效果与源图像I01直接采用JEPG压缩的结果相近,其视觉质量几乎没有降低,但是源图像I01采用Wu2017方法得到的恰可察觉失真阈值图引导的JPEG压缩结果却出现了非常明显的模糊,其视觉质量相较于源图像I01直接采用JEPG压缩的结果相差较大。对于各源图像的实验数据如表2所示。可以看到采用本发明方法得到的恰可察觉失真阈值图引导的JPEG压缩尽管在比特率节省方面低于Wu2017方法,但是在PSNR损失方面却少于Wu2017方法。并且除了在I11源图像上,采用本发明方法得到的恰可察觉失真阈值图引导的JPEG压缩增益Gain稍弱于Wu2017方法,在其它所有源图像上的增益Gain以及增益Gain的平均值上均强于Wu2017方法。进一步地,改变质量因子QP值,并测试本发明方法与Wu2017方法在20幅源图像上的平均增益,画出折线图,如图5所示,可以看到在每一个QP值上,本发明方法的平均增益均高于Wu2017方法。这个实验说明,采用本发明方法得到的恰可察觉失真阈值图引导的JPEG压缩在尽可能降低压缩比特率的前提下,能够尽可能地保证压缩后图像的视觉质量。因此,本发明方法能够更准确地反映HVS视觉掩蔽特性,刻画其视觉感知冗余度。Here S=500, D=60, K=64 are set. The 20 source images used in the first part of the experiment were selected for the experiment, and the Wu2017 method was selected as the comparison method. Fig. 4a shows the result of JPEG compression of the source image I01 directly, Fig. 4b shows the JPEG compression result of the source image I01 obtained by the method of the present invention, and Fig. 4c shows the JPEG compression result of the source image I01 obtained by the method of the invention Figure-guided JPEG compression results obtained by Wu2017's method with just the perceptible distortion threshold. The boxes on the right in each of Figures 4a, 4b, and 4c are partial enlargements of the boxes on the left. Comparing the boxes on the right in Fig. 4a, Fig. 4b, Fig. 4c, we can see that the visual effect of the JPEG compression result guided by the perceptible distortion threshold map obtained by the method of the present invention and the source image I01 directly adopt the result of JPEG compression. Similar, the visual quality is almost not reduced, but the JPEG compression result of the source image I01 using the Wu2017 method to obtain just the perceptible distortion threshold map has a very obvious blur, and its visual quality is compared with the source image I01 directly uses JPEG compression. The results are quite different. The experimental data for each source image are shown in Table 2. It can be seen that the perceptible distortion threshold map-guided JPEG compression obtained by the method of the present invention is lower than the Wu2017 method in terms of bit rate saving, but is less than the Wu2017 method in terms of PSNR loss. And except on the I11 source image, the JPEG compression gain Gain guided by the perceptible distortion threshold map obtained by the method of the present invention is slightly weaker than that of the Wu2017 method, and the gain Gain on all other source images and the average value of the gain Gain are stronger. Method in Wu2017. Further, change the quality factor QP value, and test the average gain of the method of the present invention and the Wu2017 method on 20 source images, draw a line graph, as shown in Figure 5, it can be seen that on each QP value, the present invention The average gains of the methods are all higher than those of the Wu2017 method. This experiment shows that the JPEG compression guided by the perceptible distortion threshold map obtained by the method of the present invention can ensure the visual quality of the compressed image as much as possible under the premise of reducing the compression bit rate as much as possible. Therefore, the method of the present invention can more accurately reflect the visual masking characteristics of HVS and describe its visual perception redundancy.
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210025549.0A CN114519668B (en) | 2022-01-11 | 2022-01-11 | A top-down approach to estimating just-perceptible distortion threshold for natural images |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210025549.0A CN114519668B (en) | 2022-01-11 | 2022-01-11 | A top-down approach to estimating just-perceptible distortion threshold for natural images |
Publications (2)
Publication Number | Publication Date |
---|---|
CN114519668A true CN114519668A (en) | 2022-05-20 |
CN114519668B CN114519668B (en) | 2025-05-23 |
Family
ID=81596221
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210025549.0A Active CN114519668B (en) | 2022-01-11 | 2022-01-11 | A top-down approach to estimating just-perceptible distortion threshold for natural images |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114519668B (en) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20140169451A1 (en) * | 2012-12-13 | 2014-06-19 | Mitsubishi Electric Research Laboratories, Inc. | Perceptually Coding Images and Videos |
KR20190062284A (en) * | 2017-11-28 | 2019-06-05 | 한국전자통신연구원 | Method and apparatus for image processing based on perceptual characteristic |
CN109872302A (en) * | 2019-01-15 | 2019-06-11 | 宁波大学科学技术学院 | A kind of natural image JND threshold value estimation method based on rarefaction representation |
-
2022
- 2022-01-11 CN CN202210025549.0A patent/CN114519668B/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20140169451A1 (en) * | 2012-12-13 | 2014-06-19 | Mitsubishi Electric Research Laboratories, Inc. | Perceptually Coding Images and Videos |
KR20190062284A (en) * | 2017-11-28 | 2019-06-05 | 한국전자통신연구원 | Method and apparatus for image processing based on perceptual characteristic |
CN109872302A (en) * | 2019-01-15 | 2019-06-11 | 宁波大学科学技术学院 | A kind of natural image JND threshold value estimation method based on rarefaction representation |
Also Published As
Publication number | Publication date |
---|---|
CN114519668B (en) | 2025-05-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Wang et al. | An experimental-based review of image enhancement and image restoration methods for underwater imaging | |
CN108921800B (en) | A non-local mean denoising method based on shape-adaptive search window | |
Gao et al. | Image quality assessment based on multiscale geometric analysis | |
WO2018214671A1 (en) | Image distortion correction method and device and electronic device | |
CN107767363A (en) | It is a kind of based on natural scene without refer to high-dynamics image quality evaluation algorithm | |
Bhateja et al. | Fast SSIM index for color images employing reduced-reference evaluation | |
CN111105357B (en) | Method and device for removing distortion of distorted image and electronic equipment | |
CN101719268B (en) | Generalized Gaussian model graph denoising method based on improved Directionlet region | |
JP2020197915A (en) | Image processing device, image processing method, and program | |
CN111325720B (en) | Multi-visual feature integrated reference-free super-resolution image quality evaluation method | |
Feng et al. | Real-world non-homogeneous haze removal by sliding self-attention wavelet network | |
CN109754390B (en) | No-reference image quality evaluation method based on mixed visual features | |
CN102222327A (en) | Image denoising method based on Treelet transformation and minimum mean-square error estimation | |
CN108416756B (en) | A region-aware image denoising method based on machine learning | |
Krishnan et al. | A novel underwater image enhancement technique using ResNet | |
CN107295217B (en) | Video noise estimation method based on principal component analysis | |
CN104144339B (en) | A kind of matter based on Human Perception is fallen with reference to objective evaluation method for quality of stereo images | |
CN119991857A (en) | A pig image BDE reconstruction system and method based on differentiable image rate filtering | |
Wu et al. | Unsupervised deep learning for just noticeable difference estimation | |
CN109544477A (en) | Image denoising algorithm based on self-adapting dictionary study rarefaction representation | |
CN113888515A (en) | Dual-channel stereo image quality evaluation method based on deep learning and human visual characteristics | |
Dosselmann et al. | A formal assessment of the structural similarity index | |
CN114519668A (en) | Estimation method for just noticeable distortion threshold of top-down natural image | |
Parihar et al. | UndarkGAN: Low-light image enhancement with cycle-consistent adversarial networks | |
Ahmed et al. | Non-reference quality monitoring of digital images using gradient statistics and feedforward neural networks |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |