CN114514787A - 信道占用测量的灵活配置 - Google Patents
信道占用测量的灵活配置 Download PDFInfo
- Publication number
- CN114514787A CN114514787A CN202080072045.3A CN202080072045A CN114514787A CN 114514787 A CN114514787 A CN 114514787A CN 202080072045 A CN202080072045 A CN 202080072045A CN 114514787 A CN114514787 A CN 114514787A
- Authority
- CN
- China
- Prior art keywords
- measurement
- channel occupancy
- network node
- configuration
- configuration parameter
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W24/00—Supervisory, monitoring or testing arrangements
- H04W24/10—Scheduling measurement reports ; Arrangements for measurement reports
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/04—Wireless resource allocation
- H04W72/044—Wireless resource allocation based on the type of the allocated resource
- H04W72/0446—Resources in time domain, e.g. slots or frames
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/04—Wireless resource allocation
- H04W72/044—Wireless resource allocation based on the type of the allocated resource
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/04—Wireless resource allocation
- H04W72/044—Wireless resource allocation based on the type of the allocated resource
- H04W72/0453—Resources in frequency domain, e.g. a carrier in FDMA
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W74/00—Wireless channel access
- H04W74/08—Non-scheduled access, e.g. ALOHA
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W74/00—Wireless channel access
- H04W74/08—Non-scheduled access, e.g. ALOHA
- H04W74/0808—Non-scheduled access, e.g. ALOHA using carrier sensing, e.g. carrier sense multiple access [CSMA]
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W16/00—Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
- H04W16/14—Spectrum sharing arrangements between different networks
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
公开一种用于新空口(NR)中的信道占用测量的灵活配置的方法、网络节点(16)和无线装置(22)。根据一个方面,提供一种被配置为与网络节点(16)通信的无线装置(22)。无线装置(22)包括处理电路(84),处理电路(84)被配置为:基于至少一个配置参数来确定用于信道占用测量的时域配置,其中所述时域配置独立于对其执行信道占用测量的至少一个载波的子载波间隔;并且可选地至少基于确定的时域配置来执行信道占用测量。
Description
技术领域
本公开涉及无线通信,并且特别地,涉及用于例如也被称为第五代(5G)的新空口(NR)中的信道占用测量的灵活配置的方法。
背景技术
NR-U(新空口未许可或未许可频谱中的NR)
无线电频谱的一些部分已变为潜在地可用于对未许可操作的许可辅助接入(LAA)。这个频谱能够由运营商使用以通过在免许可体系或工业、科学和医疗(ISM)无线电频带下操作来增强它们在许可频带中的服务提供,但必须与已有移动服务和其它现有(incumbent)服务共享这个频谱。在第三代合作伙伴计划(3GPP)中的NR-U研究项目期间,不同未许可频带或共享频带已被进一步讨论,诸如2.4GHz频带、3.5GHz频带、5GHz频带和6GHz频带。
对于长期演进(LTE)-LAA中的信道接入,先听后讲(LBT)机制被用作5GHz频带的基线,并且被用作6GHz频带的设计的起点。至少对于其中不能保证没有Wi-Fi(例如,通过调节(by regulation))的频带,能够按照20MHz为单位执行LBT。
在LBT期间,传送节点确定是否不存在其它传送(通过执行某些测量并且与阈值进行比较),并且如果传送节点确定不存在其它传送,则传送节点开始COT(信道占用时间),COT不超过MCOT(最大COT能够随区域而变化)。否则,传送节点在某段时间期间夺取(seize)它的传送,并且可在稍后再次重试。然而,与LTE中不同,在NR中存在更多LBT种类,并且对于一些种类(Cat2),取决于上行链路(UL)和下行链路(DL)之间的切换时间,还存在16µs Cat2和25µs Cat2 LBT类型(16µs Cat2意指切换长于16µs但短于25µs,并且25µs Cat2意指25或更长)。另外,还存在下面的概念:在基站(BS)发起的COT(共享COT)期间无线装置(WD)基于LBT过程来传送。
类似于LTE,NR-U被预期具有DRS(发现参考信号)或类似物,例如,以能够实现初始接入和测量。LTE DRS仅包含主同步信号(PSS)/辅同步信号(SSS)/小区特定参考信号(CRS),而NR DRS可包括更多信号和/或信道。
信道接入方案
图1是示出LTE LBT和COT的示例的图,其中“s”是感测时间段。在图1中,如果信道被确定为繁忙,则在某个延迟时间之后,WD可再次尝试在信道上感测以便确定信道是否可用,并且如果信道可用,则在某个确定性回退时间之后,WD可开始传送上行链路(UL)突发(在WD的信道占用时间期间),但不长于最大信道占用时间(MCOT),取决于区域,最大信道占用时间(MCOT)能够是例如高达10ms。
用于未许可频谱的基于NR的接入的信道接入方案能够被分类为下面的种类:
a)种类1(Cat 1):在短切换空隙之后的立即传送;
b)种类2(Cat 2):像LTE中一样,没有随机回退的LBT;
c)种类3(Cat 3):具有带固定大小的竞争窗口的随机回退的LBT;和
d)种类4(Cat 4):具有带可变大小的竞争窗口的随机回退的LBT。
对于COT中的不同传送以及将要被传送的不同信道和/或信号,能够使用不同种类的信道接入方案。例如,在3GPP技术发布(TR)38.889中描述信道接入方案的适用性。
用于波束成形的传送的信道接入机制已被研究。已确定:全向LBT应该被支持。将定向LBT用于波束成形的传送,即沿传送的波束的方向执行的LBT,也已被研究。考虑到规章和与其它技术的公平共存,当将要开发规范时,关于定向LBT及其对于波束成形的传送的益处的进一步考虑悬而未决。
LTE LAA中的RSSI测量
在LTE中,演进通用移动电信系统(UMTS)地面无线电接入(E-UTRA)接收信号强度指示器(RSSI)测量被引入以用于LAA,并且被定义为由WD从所有源(包括同信道服务和非服务小区、相邻信道干扰、热噪声等)仅在配置的正交频分复用(OFDM)符号中并且在测量带宽中在预定义数量的(6个)资源块上观察到的总接收功率(以瓦特为单位)的线性平均值。
更高的开放系统互连(OSI)层指示测量持续时间以及哪个OFDM符号(或哪些OFDM符号)应该由WD测量。也就是,RSSI(例如,根据3GPP技术标准(TS)36.331)通过MeasObjectEUTRA中的下面的信息元素(IE)而被配置:rmtc-Period、rmtc-SubframeOffset和measDuration,因此WD仅在周期性RSSI测量定时配置(RMTC)时机内在measDuration期间执行RSSI测量。RSSI测量被配置用于服务小区频率或邻居小区频率。
UE将rssi-Result报告为reportInterval中的由较低层提供的(一个或多个)样本值的平均值。
LTE LAA中的信道占用
WD根据RSSI配置基于由物理层提供的RSSI样本来估计由较高层指示的一个或多个载波频率上的信道占用。通过将RSSI样本与配置的channelOccupancyThreshold进行比较来评估信道占用。
信道占用测量时间段对应于max(reportInterval, rmtc-Period)。
UE将channelOccupancy报告为reportInterval中的所有样本值内的超过channelOccupancyThreshold的样本值的四舍五入百分比。
由于确定NR物理层配置的许多参数(例如,参数集(numerology)等,参数集被假设为在LAA中是固定的),LTE中的RSSI测量配置可能不直接适于NR。
发明内容
一些实施例有利地为用于新空口中的信道占用测量的灵活配置的方法提供方法、网络节点和无线装置。
本文中公开用于配置NR中的信道占用测量的方法和装置。一些实施例可具有下面的优点中的一个或多个:
a)灵活地配置NR中的信道占用测量的可能性;和
b)根据新配置来执行信道占用测量的可能性。
根据本公开的一个方面,提供一种被配置为与网络节点通信的无线装置。无线装置包括处理电路,处理电路被配置为:基于至少一个配置参数来确定用于信道占用测量的时域配置,其中时域配置独立于对其执行信道占用测量的至少一个载波的子载波间隔;并且可选地至少基于确定的时域配置来执行信道占用测量。
根据这个方面的一个或多个实施例,处理电路还被配置为基于至少一个配置参数来确定用于信道占用测量的频域配置,其中频域配置独立于对其执行信道占用测量的至少一个载波的子载波间隔。至少基于确定的频域配置来执行信道占用测量。根据这个方面的一个或多个实施例,频域配置指示信道占用测量的测量带宽中的频率。根据这个方面的一个或多个实施例,指示的测量带宽中的频率对应于测量带宽的中心频率。
根据这个方面的一个或多个实施例,时域配置指示用于信道占用测量的测量持续时间。根据这个方面的一个或多个实施例,至少一个配置参数包括参考参数集,基于参考参数集根据符号的数量来指示时域配置。根据这个方面的一个或多个实施例,时域配置提供用于信道占用测量的测量粒度。
根据这个方面的一个或多个实施例,处理电路还被配置为从网络节点接收至少一个配置参数。根据这个方面的一个或多个实施例,处理电路还被配置为报告信道占用测量,信道测量是接收信号强度指示器RSSI测量。根据这个方面的一个或多个实施例,RSSI测量利用第一带宽而被缩放。根据这个方面的一个或多个实施例,至少一个配置参数被配置为被应用于多个子带和带宽部分BWP中的至少一个。
根据本公开的另一方面,提供一种被配置为与无线装置通信的网络节点。网络节点包括处理电路,处理电路被配置为:引起至少一个配置参数的传送,至少一个配置参数被配置为指示用于信道占用测量的时域配置,其中时域配置独立于对其执行信道占用测量的至少一个载波的子载波间隔;并且可选地接收与至少一个配置参数关联的信道占用测量。
根据这个方面的一个或多个实施例,至少一个配置参数还被配置为指示用于信道占用测量的频域配置,其中频域配置独立于对其执行信道占用测量的至少一个载波的子载波间隔。根据这个方面的一个或多个实施例,频域配置被配置为指示信道占用测量的测量带宽中的频率。
根据这个方面的一个或多个实施例,指示的测量带宽中的频率对应于测量带宽的中心频率。根据这个方面的一个或多个实施例,时域配置被配置为指示用于信道占用测量的测量持续时间。根据这个方面的一个或多个实施例,至少一个配置参数包括参考参数集,基于参考参数集根据符号的数量来指示时域配置。
根据这个方面的一个或多个实施例,时域配置被配置为提供用于信道占用测量的测量粒度。根据这个方面的一个或多个实施例,信道测量是接收信号强度指示器RSSI测量。根据这个方面的一个或多个实施例,RSSI测量利用第一带宽而被缩放。根据这个方面的一个或多个实施例,至少一个配置参数被配置为被应用于多个子带和带宽部分BWP中的至少一个。根据这个方面的一个或多个实施例,处理电路被配置为:从另一网络节点接收邻居信道占用测量;并且基于邻居信道占用测量来调整与无线装置关联的调度。
根据本公开的另一方面,提供一种由被配置为与网络节点通信的无线装置实现的方法。基于至少一个配置参数来确定用于信道占用测量的时域配置,其中时域配置独立于对其执行信道占用测量的至少一个载波的子载波间隔。可选地至少基于确定的时域配置来执行信道占用测量。
根据这个方面的一个或多个实施例,基于至少一个配置参数来确定用于信道占用测量的频域配置,其中频域配置独立于对其执行信道占用测量的至少一个载波的子载波间隔。至少基于确定的频域配置来执行信道占用测量。根据这个方面的一个或多个实施例,频域配置指示信道占用测量的测量带宽中的频率。根据这个方面的一个或多个实施例,指示的测量带宽中的频率对应于测量带宽的中心频率。
根据这个方面的一个或多个实施例,时域配置指示用于信道占用测量的测量持续时间。根据这个方面的一个或多个实施例,至少一个配置参数包括参考参数集,其中基于参考参数集根据符号的数量来指示时域配置。根据这个方面的一个或多个实施例,时域配置提供用于信道占用测量的测量粒度。
根据这个方面的一个或多个实施例,从网络节点接收至少一个配置参数。根据这个方面的一个或多个实施例,报告信道占用测量,其中信道测量是接收信号强度指示器RSSI测量。根据这个方面的一个或多个实施例,RSSI测量利用第一带宽而被缩放。根据这个方面的一个或多个实施例,至少一个配置参数被配置为被应用于多个子带和带宽部分BWP中的至少一个。
根据本公开的另一方面,提供一种由被配置为与无线装置通信的网络节点实现的方法。引起至少一个配置参数的传送,至少一个配置参数被配置为指示用于信道占用测量的时域配置,其中时域配置独立于对其执行信道占用测量的至少一个载波的子载波间隔。可选地接收与至少一个配置参数关联的信道占用测量。
根据这个方面的一个或多个实施例,至少一个配置参数还被配置为指示用于信道占用测量的频域配置,频域配置独立于对其执行信道占用测量的至少一个载波的子载波间隔。根据这个方面的一个或多个实施例,频域配置被配置为指示信道占用测量的测量带宽中的频率。根据这个方面的一个或多个实施例,指示的测量带宽中的频率对应于测量带宽的中心频率。
根据这个方面的一个或多个实施例,时域配置被配置为指示用于信道占用测量的测量持续时间。根据这个方面的一个或多个实施例,至少一个配置参数包括参考参数集,基于参考参数集根据符号的数量来指示时域配置。根据这个方面的一个或多个实施例,时域配置被配置为提供用于信道占用测量的测量粒度。
根据这个方面的一个或多个实施例,信道测量是接收信号强度指示器RSSI测量。根据这个方面的一个或多个实施例,RSSI测量利用第一带宽而被缩放。根据这个方面的一个或多个实施例,至少一个配置参数被配置为被应用于多个子带和带宽部分BWP中的至少一个。根据这个方面的一个或多个实施例,从另一网络节点接收邻居信道占用测量,并且基于邻居信道占用测量来调整与无线装置关联的调度。
附图说明
当结合附图考虑时,通过参考下面的详细描述,将会更容易地理解本公开的实施例的更完整的理解及其伴随的优点和特征,其中:
图1是LTE LBT和COT的示例的图;
图2是图示根据本公开中的原理的通信系统经由中间网络连接到主机计算机的示例性网络架构的示意图;
图3是根据本公开的一些实施例的主机计算机通过至少部分无线连接经由网络节点与无线装置通信的方框图;
图4是图示根据本公开的一些实施例的实现在通信系统中的示例性方法的流程图,所述通信系统包括主机计算机、网络节点和无线装置,所述示例性方法用于在无线装置执行客户端应用;
图5是图示根据本公开的一些实施例的实现在通信系统中的示例性方法的流程图,所述通信系统包括主机计算机、网络节点和无线装置,所述示例性方法用于在无线装置接收用户数据;
图6是图示根据本公开的一些实施例的实现在通信系统中的示例性方法的流程图,所述通信系统包括主机计算机、网络节点和无线装置,所述示例性方法用于在主机计算机从无线装置接收用户数据;
图7是图示根据本公开的一些实施例的实现在通信系统中的示例性方法的流程图,所述通信系统包括主机计算机、网络节点和无线装置,所述示例性方法用于在主机计算机接收用户数据;
图8是根据本公开的一些实施例的网络节点中的示例性过程的流程图;
图9是根据本公开的一些实施例的网络节点中的另一示例性过程的流程图;
图10是根据本公开的一些实施例的无线装置中的示例性过程的流程图;和
图11是根据本公开的一些实施例的无线装置中的另一示例性过程的流程图。
具体实施方式
在详细地描述示例性实施例之前,注意,实施例主要在于与用于新空口中的信道占用测量的灵活配置的方法相关的设备组件和处理步骤的组合。因此,组件已在合适的情况下由附图中的传统符号表示,仅示出与理解实施例相关的那些特定细节以免用获益于本文中的描述的本领域普通技术人员将会容易明白的细节来使本公开晦涩难懂。相同的数字在整个描述中指代相同的元件。
如本文中所使用的,关系术语(诸如,“第一”和“第二”、“顶”和“底”和诸如此类)可仅被用于区分一个实体或元件与另一实体或元件,而不必要求或暗示这种实体或元件之间的任何物理或逻辑关系或次序。本文中使用的术语仅用于描述特定实施例的目的,并且不旨在限制本文中描述的概念。如本文中所使用的,除非上下文清楚地另外指示,否则单数形式“一”、“一个”和“该”也旨在包括复数形式。还将会理解,当在本文中使用时,术语“包括(comprises,comprising)”和/或“包含(includes,including)”指定存在所陈述的特征、整数、步骤、操作、元件和/或组件,但不排除存在或添加一个或多个其它特征、整数、步骤、操作、元件、组件和/或它们的组。
在本文中描述的实施例中,连接术语“与……通信”和诸如此类可被用于指示电或数据通信,其可通过例如物理接触、感应、电磁辐射、无线电信令、红外信令或光信令来完成。本领域普通技术人员将会理解,多个组件可互操作,并且实现电和数据通信的修改和变化是可能的。
在本文中描述的一些实施例中,术语“耦合”、“连接”和诸如此类可在本文中被用于指示连接(尽管未必是直接连接),并且可包括有线和/或无线连接。
本文中使用的术语“网络节点”能够是无线电网络中所包括的任何种类的网络节点,其还可包括以下各项中的任何项:基站(BS)、无线电基站、基站收发信台(BTS)、基站控制器(BSC)、无线电网络控制器(RNC)、g节点B(gNB)、演进节点B(eNB或eNodeB)、节点B、多标准无线电(MSR)无线电节点(诸如,MSR BS)、多小区/多播协调实体(MCE)、集成接入和回程(IAB)节点、中继节点、集成接入和回程(IAB)节点、控制中继的施主节点、无线电接入点(AP)、传送点、传送节点、远程无线电单元(RRU)远程无线电头(RRH)、核心网络节点(例如,移动管理实体(MME)、自组织网络(SON)节点、协调节点、定位节点、MDT节点等)、外部节点(例如,第三方节点、当前网络外部的节点)、分布式天线系统(DAS)中的节点、频谱接入系统(SAS)节点、元件管理系统(EMS)等。网络节点还可包括测试设备。本文中使用的术语“无线电节点”还可被用于表示诸如无线装置(WD)的无线装置(WD)或无线电网络节点。
在一些实施例中,非限制性术语无线装置(WD)或用户设备(UE)被可互换地使用。本文中的WD能够是任何类型的、能够通过无线电信号与网络节点或另一WD通信的无线装置,诸如无线装置(WD)。WD还可以是无线电通信装置、目标装置、装置对装置(D2D)WD、机器类型WD或能够执行机器对机器通信(M2M)的WD、低成本和/或低复杂性WD、配备有WD的传感器、平板计算机、移动终端、智能电话、膝上型嵌入式设备(laptop embedded equipped,LEE)、膝上型安装式设备(LME)、USB电子狗、客户驻地设备(CPE)、物联网(IoT)装置或窄带IoT(NB-IOT)装置等。
此外,在一些实施例中,使用通用术语“无线电网络节点”。它能够是任何种类的无线电网络节点,其可包括以下各项中的任何项:基站、无线电基站、基站收发信台、基站控制器、网络控制器、RNC、演进节点B(eNB)、节点B、gNB、多小区/多播协调实体(MCE)、IAB节点、中继节点、接入点、无线电接入点、远程无线电单元(RRU)远程无线电头(RRH)。
注意,尽管来自一个特定无线系统(诸如例如,3GPP LTE和/或新空口(NR))的术语可被用在本公开中,但是这不应该被视为将本公开的范围仅限制于前述系统。其它无线系统(包括但不限于宽带码分多址(WCDMA)、全球微波接入互操作性(WiMax)、超移动宽带(UMB)和全球移动通信系统(GSM))也可受益于利用在本公开内涵盖的想法。
其它术语
在一些实施例中,使用更一般的术语“网络节点”,并且它能够对应于任何类型的无线电网络节点或任何网络节点,所述任何类型的无线电网络节点或任何网络节点与WD通信和/或与另一网络节点通信。网络节点的示例是无线电网络节点、gNodeB(gNB)、ng-eNB、基站(BS)、NR基站、TRP(传送接收点)、多标准无线电(MSR)无线电节点(诸如,MSR BS)、网络控制器、无线电网络控制器(RNC)、基站控制器(BSC)、中继器、接入点(AP)、传送点、传送节点、RRU、RRH、分布式天线系统(DAS)中的节点、核心网络节点(例如,MSC、MME等)、O&M、OSS、SON、定位节点或位置服务器(例如,E-SMLC)、MDT、测试设备(物理节点或软件)等。无线电网络节点是能够传送无线电信号的网络节点,例如基站、gNB等。
在一些实施例中,使用非限制性术语用户设备(UE)或无线装置(WD),并且它指代在蜂窝或移动通信系统中与网络节点通信和/或与另一WD通信的任何类型的无线装置。WD的示例是支持NR的无线装置、目标装置、装置对装置(D2D)WD、机器类型WD或能够执行机器对机器(M2M)通信的WD、PDA、PAD、平板计算机、移动终端、智能电话、膝上型嵌入式设备(LEE)、膝上型安装式设备(LME)、无人机、USB电子狗、ProSe WD、V2V WD、V2X WD等。
术语“无线电节点”可指代能够传送无线电信号或接收无线电信号或既传送无线电信号又接收无线电信号的无线电网络节点或WD。
本文中使用的术语时间资源可对应于根据时间长度或时间间隔或持续时间表达的任何类型的物理资源或无线电资源。时间资源的示例包括:符号、迷你时隙、时隙、子帧、无线电帧、TTI、交织时间等。
本文中使用的术语传送时间间隔(TTI)可对应于物理信道能够被编码并且交织以用于传送的任何时间段。物理信道由接收器在物理信道被编码的相同时间段(T0)上解码。TTI还可被可互换地称为短TTI(sTTI)、传送时间、时隙、子时隙、迷你时隙、短子帧(SSF)、迷你子帧等。
除非明确说明,否则本文中使用的术语LBT可包括DL LBT、UL LBT或二者。DL LBT可由无线电网络节点执行,而UL LBT可由WD执行。因此,一般而言,LBT可由无线电节点执行。术语“LBT种类”或“LBT类型”指代表征LBT过程的一组参数,包括但不限于:LBT种类、在UL和DL之间具有不同切换延迟(例如,高达16µs、长于16但短于25、或者25µs和以上)的LBT、基于波束的LBT(在特定方向上的LBT)或全向LBT、频域中的不同LBT方案(例如,子带特定、多个连续子带上的宽带LBT、多个非连续子带上的宽带LBT等)、具有或没有共享COT的LBT(共享COT是例如当COT由gNB发起并且传送在COT内而不执行LBT时)、单子带或多子带或宽带LBT。
术语“COT配置”可包括表征COT的开始、COT的长度、COT的结束、COT适用的载波频率、共享或不共享的COT、固定长度COT或可变长度COT等的一个或多个参数。
术语DRS在本文中被用于指代由无线电网络节点传送的一个或多个信号。DRS可包括例如SSB(在TS 38.133中定义)、PSS/SSS、PBCH、CSI-RS、(一个或多个)RMSI-CORESET、(一个或多个)RMSI-PDSCH、OSI、寻呼等。
本文中使用的术语信道占用测量可包括指示关联的资源的占用的测量或评估结果。信道占用测量的一些非限制性示例是RSSI测量或类似的测量、基于RSSI样本与配置的阈值的信道占用评估结果、满足某个条件(例如,高于阈值)的RSSI样本的百分比或比率、信道占用率、基于RSSI样本的其它测量或度量等。
针对NR-U描述实施例。然而,实施例适用于任何其它无线电接入技术(RAT)或多RAT系统,其中WD接收和/或传送信号(例如,数据),例如NR、LTE频分双工(FDD)/时分双工(TDD)、LTE LAA及其增强、WCDMA/HSPA、WiFi、WLAN、LTE、5G、任何NR(独立或非独立)等。实施例可适用于其中符号长度和/或子载波间隔不固定的其它RAT。
还注意,本文中描述为由无线装置或网络节点执行的功能可分布在多个无线装置和/或网络节点上。换句话说,设想的是,本文中描述的网络节点和无线装置的功能不限于由单个物理装置执行并且事实上能够分布在若干物理装置之中。
除非另外定义,否则本文中使用的所有术语(包括技术和科学术语)具有与本公开所属于的领域的普通技术人员通常所理解的含义相同的含义。还将会理解,本文中使用的术语应该被解释为具有与它们在相关领域和本说明书的上下文中的含义一致的含义并且除非在本文中明确地这样定义,否则将不会在理想化或过度正式的意义上来解释它们。
公开一种用于新空口(NR)中的信道占用测量的灵活配置的方法、网络节点和无线装置。根据一个方面,一种实现在无线装置(WD)中的方法可包括:确定用于信道占用测量的独立于参数集的测量参数;并且基于确定的独立于参数集的测量参数来确定信道占用测量配置。将在以下更详细地描述这个方面和其它方面。
现在回到其中相同的元件由相同的参考指示符指代的附图,图2中示出根据实施例的通信系统10(诸如可支持诸如LTE和/或NR(5G)的标准的3GPP类型蜂窝网络)的示意图,通信系统10包括接入网络12(诸如,无线电接入网络)和核心网络14。接入网络12包括多个网络节点16a、16b、16c(统称为网络节点16),诸如NB、eNB、gNB或其它类型的无线接入点,每个网络节点定义对应覆盖区域18a、18b、18c(统称为覆盖区域18)。每个网络节点16a、16b、16c通过有线或无线连接20可连接到核心网络14。位于覆盖区域18a中的第一无线装置(WD)22a被配置为以无线方式连接到对应网络节点16c或由对应网络节点16c寻呼。覆盖区域18b中的第二WD 22b以无线方式可连接到对应网络节点16a。尽管在这个示例中图示多个WD22a、22b(统称为无线装置22),但是公开的实施例同样地适用于其中唯一WD位于覆盖区域中或者其中唯一WD正连接到对应网络节点16的情况。注意,尽管为了方便而仅示出两个WD22和三个网络节点16,但是通信系统可包括多得多的WD 22和网络节点16。
此外,设想的是,WD 22能够与超过一个网络节点16和超过一个类型的网络节点16同时通信,和/或被配置为与超过一个网络节点16和超过一个类型的网络节点16分开地通信。例如,WD 22能够具有与支持LTE的网络节点16和支持NR的相同或不同的网络节点16的双连接。作为示例,WD 22能够与用于LTE/E-UTRAN的eNB和用于NR/NG-RAN的gNB通信。
通信系统10可本身连接到主机计算机24,主机计算机24可被实施在独立服务器、云实现的服务器、分布式服务器的硬件和/或软件中或者被实施为服务器农场(farm)中的处理资源。主机计算机24可由服务提供商所有或控制,或者可由服务提供商操作或代表服务提供商而被操作。通信系统10和主机计算机24之间的连接26、28可直接从核心网络14延伸到主机计算机24,或者可经由可选的中间网络30延伸。中间网络30可以是公共、私有或托管网络之一或者它们中的超过一个的组合。如果存在任何中间网络30,则中间网络30可以是骨干网或互联网。在一些实施例中,中间网络30可包括两个或更多个子网络(未示出)。
图2的通信系统整体上能够实现连接的WD 22a、22b之一和主机计算机24之间的连接。该连接可被描述为过顶(OTT)连接。主机计算机24和连接的WD 22a、22b被配置为使用接入网络12、核心网络14、任何中间网络30和可能的另外的基础设施(未示出)作为中介经由OTT连接来传输数据和/或信令。在OTT连接所经过的参与通信装置中的至少一些不知道上行链路和下行链路通信的路由的意义上,OTT连接可以是透明的。例如,网络节点16可能未被通知或不需要被通知传入下行链路通信的过去的路由,传入下行链路通信具有源于主机计算机24的将要被转发(例如,移交)给连接的WD 22a的数据。类似地,网络节点16不需要知道源于WD 22a的朝着主机计算机24的传出上行链路通信的未来的路由。
网络节点16被配置为包括配置单元32,配置单元32被配置为配置WD 22以用于信道占用测量,所述配置包括配置用于信道占用测量的时间和/或频率资源。无线装置22被配置为包括参数确定器单元34,参数确定器单元34被配置为确定用于信道占用测量的独立于参数集的测量参数。
现在将参考图3描述在前面段落中讨论的WD 22、网络节点16和主机计算机24的根据实施例的示例性实现。在通信系统10中,主机计算机24包括硬件(HW)38,硬件(HW)38包括通信接口40,通信接口40被配置为建立并且保持与通信系统10的不同通信装置的接口的有线或无线连接。主机计算机24还包括处理电路42,处理电路42可具有存储和/或处理能力。处理电路42可包括处理器44和存储器46。特别地,除了处理器(诸如,中央处理单元)和存储器之外或者替代于处理器(诸如,中央处理单元)和存储器,处理电路42可包括用于处理和/或控制的集成电路,例如,适于执行指令的一个或多个处理器和/或处理器核和/或FPGA(现场可编程门阵列)和/或ASIC(专用集成电路)。处理器44可被配置为访问(例如,写到和/或读自)存储器46,存储器46可包括任何种类的易失性和/或非易失性存储器,例如,高速缓存和/或缓冲存储器和/或RAM(随机存取存储器)和/或ROM(只读存储器)和/或光存储器和/或EPROM(可擦除可编程只读存储器)。
处理电路42可被配置为控制本文中描述的方法和/或过程中的任何方法和/或过程和/或使这种方法和/或过程例如由主机计算机24执行。处理器44对应于用于执行本文中描述的主机计算机24功能的一个或多个处理器44。主机计算机24包括存储器46,存储器46被配置为存储本文中描述的数据、程序软件代码和/或其它信息。在一些实施例中,软件48和/或主机应用50可包括指令,当所述指令由处理器44和/或处理电路42执行时,所述指令使处理器44和/或处理电路42执行本文中关于主机计算机24描述的过程。所述指令可以是与主机计算机24关联的软件。
软件48可以是可由处理电路42执行。软件48包括主机应用50。主机应用50可以是可操作以向远程用户(诸如,经由终止于WD 22和主机计算机24的OTT连接52而连接的WD22)提供服务。在向远程用户提供服务中,主机应用50可提供使用OTT连接52传送的用户数据。“用户数据”可以是本文中描述为实现描述的功能性的数据和信息。在一个实施例中,主机计算机24可被配置用于向服务提供商提供控制和功能性,并且可由服务提供商操作或代表服务提供商而被操作。主机计算机24的处理电路42可使主机计算机24能够观察、监测、控制网络节点16和或无线装置22、向网络节点16和或无线装置22传送和/或从网络节点16和或无线装置22接收。
通信系统10还包括网络节点16,网络节点16被提供在通信系统10中并且包括硬件58,硬件58使网络节点16能够与主机计算机24通信并且与WD 22通信。硬件58可包括:通信接口60,用于建立并且保持与通信系统10的不同通信装置的接口的有线或无线连接;以及无线电接口62,用于建立并且保持与位于由网络节点16服务的覆盖区域18中的WD 22的至少无线连接64。无线电接口62可被形成为例如一个或多个RF传送器、一个或多个RF接收器和/或一个或多个RF收发器,或者可包括例如一个或多个RF传送器、一个或多个RF接收器和/或一个或多个RF收发器。通信接口60可被配置为促进到主机计算机24的连接66。连接66可以是直接连接,或者它可经过通信系统10的核心网络14和/或经过在通信系统10之外的一个或多个中间网络30。
在示出的实施例中,网络节点16的硬件58还包括处理电路68。处理电路68可包括处理器70和存储器72。特别地,除了处理器(诸如,中央处理单元)和存储器之外或者替代于处理器(诸如,中央处理单元)和存储器,处理电路68可包括用于处理和/或控制的集成电路,例如,适于执行指令的一个或多个处理器和/或处理器核和/或FPGA(现场可编程门阵列)和/或ASIC(专用集成电路)。处理器70可被配置为访问(例如,写到和/或读自)存储器72,存储器72可包括任何种类的易失性和/或非易失性存储器,例如,高速缓存和/或缓冲存储器和/或RAM(随机存取存储器)和/或ROM(只读存储器)和/或光存储器和/或EPROM(可擦除可编程只读存储器)。
因此,网络节点16还具有软件74,软件74内部存储在例如存储器72中或者存储在可由网络节点16经由外部连接访问的外部存储器(例如,数据库、存储阵列、网络存储装置等)中。软件74可以是可由处理电路68执行。处理电路68可被配置为控制本文中描述的方法和/或过程中的任何方法和/或过程和/或使这种方法和/或过程例如由网络节点16执行。处理器70对应于用于执行本文中描述的网络节点16功能的一个或多个处理器70。存储器72被配置为存储本文中描述的数据、程序软件代码和/或其它信息。在一些实施例中,软件74可包括指令,当所述指令由处理器70和/或处理电路68执行时,所述指令使处理器70和/或处理电路68执行本文中关于网络节点16描述的过程。例如,网络节点16的处理电路68可包括配置单元32,配置单元32被配置为配置WD 22以用于信道占用测量,所述配置包括配置用于信道占用测量的时间和/或频率资源。
通信系统10还包括已经提及的WD 22。WD 22可具有硬件80,硬件80可包括无线电接口82,无线电接口82被配置为建立并且保持与网络节点16的无线连接64,网络节点16为WD 22当前位于其中的覆盖区域18服务。无线电接口82可被形成为例如一个或多个RF传送器、一个或多个RF接收器和/或一个或多个RF收发器,或者可包括例如一个或多个RF传送器、一个或多个RF接收器和/或一个或多个RF收发器。
WD 22的硬件80还包括处理电路84。处理电路84可包括处理器86和存储器88。特别地,除了处理器(诸如,中央处理单元)和存储器之外或者替代于处理器(诸如,中央处理单元)和存储器,处理电路84可包括用于处理和/或控制的集成电路,例如,适于执行指令的一个或多个处理器和/或处理器核和/或FPGA(现场可编程门阵列)和/或ASIC(专用集成电路)。处理器86可被配置为访问(例如,写到和/或读自)存储器88,存储器88可包括任何种类的易失性和/或非易失性存储器,例如,高速缓存和/或缓冲存储器和/或RAM(随机存取存储器)和/或ROM(只读存储器)和/或光存储器和/或EPROM(可擦除可编程只读存储器)。
因此,WD 22还可包括软件90,软件90被存储在例如在WD 22的存储器88中或者存储在可由WD 22访问的外部存储器(例如,数据库、存储阵列、网络存储装置等)中。软件90可以是可由处理电路84执行。软件90可包括客户端应用92。客户端应用92可以是可操作以在主机计算机24的支持下经由WD 22向人类或非人类用户提供服务。在主机计算机24中,执行的主机应用50可经由终止于WD 22和主机计算机24的OTT连接52与执行的客户端应用92通信。在向用户提供服务中,客户端应用92可从主机应用50接收请求数据并且响应于请求数据而提供用户数据。OTT连接52可既传递请求数据又传递用户数据。客户端应用92可与用户交互以生成它提供的用户数据。
处理电路84可被配置为控制本文中描述的方法和/或过程中的任何方法和/或过程和/或使这种方法和/或过程例如由WD 22执行。处理器86对应于用于执行本文中描述的WD 22功能的一个或多个处理器86。WD 22包括存储器88,存储器88被配置为存储本文中描述的数据、程序软件代码和/或其它信息。在一些实施例中,软件90和/或客户端应用92可包括指令,当所述指令由处理器86和/或处理电路84执行时,所述指令使处理器86和/或处理电路84执行本文中关于WD 22描述的过程。例如,无线装置22的处理电路84可包括参数确定器单元34,参数确定器单元34被配置为确定用于信道占用测量的独立于参数集的测量参数。
在一些实施例中,网络节点16、WD 22和主机计算机24的内部工作可如图3中所示,并且独立地,周围的网络拓扑可以是图2的网络拓扑。
在图3中,OTT连接52已被抽象地绘制以图示主机计算机24和无线装置22之间的经由网络节点16的通信,而未明确地提及任何中介装置和经由这些装置的消息的精确路由。网络基础设施可确定路由,网络基础设施可被配置为向WD 22隐藏该路由或向操作主机计算机24的服务提供商隐藏该路由或向二者隐藏该路由。在OTT连接52活动的同时,网络基础设施可进一步做出决定,通过这些决定,网络基础设施动态地改变路由(例如,基于网络的负载均衡考虑或重新配置)。
WD 22和网络节点16之间的无线连接64是根据在整个本公开中描述的实施例的教导。各种实施例中的一个或多个实施例改进使用OTT连接52提供给WD 22的OTT服务的性能,其中无线连接64可形成最后一段。更精确地,这些实施例中的一些实施例的教导可改进数据速率、延时和/或功耗,并且由此提供益处,诸如减少的用户等待时间、放松的对文件大小的限制、更好的响应性、延长的电池寿命等。
在一些实施例中,可为了监测所述一个或多个实施例对其改进的数据速率、延时和其它因素的目的而提供测量过程。还可存在用于响应于测量结果的变化而重新配置主机计算机24和WD 22之间的OTT连接52的可选网络功能性。测量过程和/或用于重新配置OTT连接52的网络功能性可被实现在主机计算机24的软件48中或实现在WD 22的软件90中或实现在二者中。在实施例中,传感器(未示出)可被部署在OTT连接52经过的通信装置中或与OTT连接52经过的通信装置关联地部署;传感器可通过供应以上例示的被监测量的值或供应其它物理量的值来参与测量过程,从所述其它物理量,软件48、90可计算或估计被监测量。OTT连接52的重新配置可包括消息格式、重新传送设置、优选路由等;所述重新配置不需要影响网络节点16,并且它可对于网络节点16而言是未知的或不能感知的。一些这种过程和功能性可在本领域中是已知的并且被实施。在某些实施例中,测量可涉及专有WD信令,所述专有WD信令促进主机计算机24对吞吐量、传播时间、延时和诸如此类的测量。在一些实施例中,测量可被实现,因为在软件48、90监测传播时间、错误等的同时软件48、90使消息(特别地,空消息或“伪”消息)使用OTT连接52而被传送。
因此,在一些实施例中,主机计算机24包括:处理电路42,被配置为提供用户数据;和通信接口40,被配置为向蜂窝网络转发用户数据以传送给WD 22。在一些实施例中,蜂窝网络还包括具有无线电接口62的网络节点16。在一些实施例中,网络节点16被配置为执行本文中描述的用于准备/发起/保持/支持/结束到WD 22的传送和/或准备/终止/保持/支持/结束于来自WD 22的传送的接收的功能和/或方法,和/或网络节点16的处理电路68被配置为执行本文中描述的用于准备/发起/保持/支持/结束到WD 22的传送和/或准备/终止/保持/支持/结束于来自WD 22的传送的接收的功能和/或方法。
在一些实施例中,主机计算机24包括:处理电路42;和通信接口40,被配置为,通信接口40被配置为接收源于从WD 22到网络节点16的传送的用户数据。在一些实施例中,WD22被配置为执行本文中描述的用于准备/发起/保持/支持/结束到网络节点16的传送和/或准备/终止/保持/支持/结束于来自网络节点16的传送的接收的功能和/或方法,和/或WD22包括无线电接口82和/或处理电路84,无线电接口82和/或处理电路84被配置为执行本文中描述的用于准备/发起/保持/支持/结束到网络节点16的传送和/或准备/终止/保持/支持/结束于来自网络节点16的传送的接收的功能和/或方法。
尽管图2和3将各种“单元”(诸如,配置单元32和参数确定器单元34)示出为在相应处理器内,但是设想的是,这些单元可被实现,以使得单元的一部分被存储在处理电路内的对应存储器中。换句话说,所述单元可在处理电路内用硬件或用硬件和软件的组合来实现。
图4是图示根据一个实施例的实现在通信系统(诸如例如,图2和3的通信系统)中的示范性方法的流程图。通信系统可包括主机计算机24、网络节点16和WD 22,主机计算机24、网络节点16和WD 22可以是参考图3描述的主机计算机24、网络节点16和WD 22。在该方法的第一步骤中,主机计算机24提供用户数据(方框S100)。在第一步骤的可选的子步骤中,主机计算机24通过执行主机应用(诸如例如,主机应用50)来提供用户数据(方框S102)。在第二步骤中,主机计算机24发起到WD 22的携带用户数据的传送(方框S104)。在可选的第三步骤中,根据在整个本公开中描述的实施例的教导,网络节点16向WD 22传送在主机计算机24发起的传送中携带的用户数据(方框S106)。在可选的第四步骤中,WD 22执行客户端应用,诸如例如与由主机计算机24执行的主机应用50关联的客户端应用92(方框S108)。
图5是图示根据一个实施例的实现在通信系统(诸如例如,图2的通信系统)中的示范性方法的流程图。通信系统可包括主机计算机24、网络节点16和WD 22,主机计算机24、网络节点16和WD 22可以是参考图2和3描述的主机计算机24、网络节点16和WD 22。在该方法的第一步骤中,主机计算机24提供用户数据(方框S110)。在可选的子步骤(未示出)中,主机计算机24通过执行主机应用(诸如例如,主机应用50)来提供用户数据。在第二步骤中,主机计算机24发起到WD 22的携带用户数据的传送(方框S112)。根据在整个本公开中描述的实施例的教导,该传送可经过网络节点16。在可选的第三步骤中,WD 22接收在该传送中携带的用户数据(方框S114)。
图6是图示根据一个实施例的实现在通信系统(诸如例如,图2的通信系统)中的示范性方法的流程图。通信系统可包括主机计算机24、网络节点16和WD 22,主机计算机24、网络节点16和WD 22可以是参考图2和3描述的主机计算机24、网络节点16和WD 22。在该方法的可选的第一步骤中,WD 22接收由主机计算机24提供的输入数据(方框S116)。在第一步骤的可选的子步骤中,WD 22执行客户端应用92,客户端应用92反应于接收的由主机计算机24提供的输入数据而提供用户数据(方框S118)。另外或者备选地,在可选的第二步骤中,WD22提供用户数据(方框S120)。在第二步骤的可选的子步骤中,WD通过执行客户端应用(诸如例如,客户端应用92)来提供用户数据(方框S122)。在提供用户数据中,执行的客户端应用92可进一步考虑从用户接收的用户输入。不管提供用户数据所用的特定方式如何,WD 22可在可选的第三子步骤中发起到主机计算机24的用户数据的传送(方框S124)。在该方法的第四步骤中,根据在整个本公开中描述的实施例的教导,主机计算机24接收从WD 22传送的用户数据(方框S126)。
图7是图示根据一个实施例的实现在通信系统(诸如例如,图2的通信系统)中的示范性方法的流程图。通信系统可包括主机计算机24、网络节点16和WD 22,主机计算机24、网络节点16和WD 22可以是参考图2和3描述的主机计算机24、网络节点16和WD 22。在该方法的可选的第一步骤中,根据在整个本公开中描述的实施例的教导,网络节点16从WD 22接收用户数据(方框S128)。在可选的第二步骤中,网络节点16发起到主机计算机24的接收的用户数据的传送(方框S130)。在第三步骤中,主机计算机24接收在由网络节点16发起的传送中携带的用户数据(方框S132)。
图8是根据本公开的一些实施例的网络节点16中的示范性过程的流程图。本文中描述的一个或多个方框可由网络节点16的一个或多个元件执行,诸如由处理电路68(包括配置单元32)、处理器70、无线电接口62和/或通信接口60中的一个或多个执行。诸如经由处理电路68和/或处理器70和/或无线电接口62和/或通信接口60,网络节点16被配置为配置WD以用于信道占用测量,所述配置包括配置用于信道占用测量的时间和/或频率资源(方框S134)。
图9是根据本公开的一些实施例的网络节点16中的示范性过程的流程图。本文中描述的一个或多个方框可由网络节点16的一个或多个元件执行,诸如由处理电路68(包括配置单元32)、处理器70、无线电接口62和/或通信接口60中的一个或多个执行。诸如经由处理电路68和/或处理器70和/或无线电接口62和/或通信接口60,网络节点16被配置为引起(方框S136)至少一个配置参数的传送,所述至少一个配置参数被配置为指示用于信道占用测量的时域配置,其中所述时域配置独立于对其执行信道占用测量的至少一个载波的子载波间隔,如本文中所述的。诸如经由处理电路68和/或处理器70和/或无线电接口62和/或通信接口60,网络节点16被配置为可选地接收(方框S138)与所述至少一个配置参数关联的信道占用测量,如本文中所述的。
根据一个或多个实施例,所述至少一个配置参数还被配置为指示用于信道占用测量的频域配置,其中所述频域配置独立于对其执行信道占用测量的至少一个载波的子载波间隔。根据一个或多个实施例,所述频域配置被配置为指示信道占用测量的测量带宽中的频率。根据一个或多个实施例,所述指示的测量带宽中的频率对应于测量带宽的中心频率。
根据一个或多个实施例,所述时域配置被配置为指示用于信道占用测量的测量持续时间。根据一个或多个实施例,所述至少一个配置参数包括参考参数集,基于参考参数集根据符号的数量来指示时域配置。根据一个或多个实施例,所述时域配置被配置为提供用于信道占用测量的测量粒度。
根据一个或多个实施例,所述信道测量是接收信号强度指示器RSSI测量。根据一个或多个实施例,所述RSSI测量利用第一带宽而被缩放。根据一个或多个实施例,所述至少一个配置参数被配置为被应用于多个子带和带宽部分BWP中的至少一个。根据一个或多个实施例,处理电路68被配置为:从另一网络节点接收邻居信道占用测量;并且基于邻居信道占用测量来调整与无线装置关联的调度。
图10是根据本公开的一些实施例的无线装置22中的示范性过程的流程图。本文中描述的一个或多个方框可由无线装置22的一个或多个元件执行,诸如由处理电路84(包括参数确定器单元34)、处理器86、无线电接口82和/或通信接口60中的一个或多个执行。诸如经由处理电路84和/或处理器86和/或无线电接口82,无线装置22被配置为确定(方框S140)用于信道占用测量的独立于参数集的测量参数。该过程还包括:基于确定的独立于参数集的测量参数来确定(方框S142)信道占用测量配置。
图11是根据本公开的一些实施例的无线装置22中的示范性过程的流程图。本文中描述的一个或多个方框可由无线装置22的一个或多个元件执行,诸如由处理电路84(包括参数确定器单元34)、处理器86、无线电接口82和/或通信接口60中的一个或多个执行。诸如经由处理电路84和/或处理器86和/或无线电接口82,无线装置22被配置为基于至少一个配置参数来确定(方框S144)用于信道占用测量的时域配置,其中所述时域配置独立于对其执行信道占用测量的至少一个载波的子载波间隔,如本文中所述的。诸如经由处理电路84和/或处理器86和/或无线电接口82,无线装置22被配置为可选地至少基于确定的时域配置来执行(方框S146)信道占用测量,如本文中所述的。
根据一个或多个实施例,处理电路84还被配置为基于所述至少一个配置参数来确定用于信道占用测量的频域配置,其中所述频域配置独立于对其执行信道占用测量的至少一个载波的子载波间隔。至少基于确定的频域配置来执行信道占用测量。根据一个或多个实施例,所述频域配置指示信道占用测量的测量带宽中的频率。根据一个或多个实施例,所述指示的测量带宽中的频率对应于测量带宽的中心频率。
根据一个或多个实施例,所述时域配置指示用于信道占用测量的测量持续时间。根据一个或多个实施例,所述至少一个配置参数包括参考参数集,基于参考参数集根据符号的数量来指示时域配置。根据一个或多个实施例,所述时域配置提供用于信道占用测量的测量粒度。
根据一个或多个实施例,处理电路84还被配置为从网络节点接收所述至少一个配置参数。根据一个或多个实施例,处理电路84还被配置为报告信道占用测量,所述信道测量是接收信号强度指示器RSSI测量。根据一个或多个实施例,所述RSSI测量利用第一带宽而被缩放。根据一个或多个实施例,所述至少一个配置参数被配置为被应用于多个子带和带宽部分BWP中的至少一个。
已描述本公开的布置的一般过程流程并且已提供用于实现本公开的过程和功能的硬件和软件布置的示例,以下的部分为用于新空口中的信道占用测量的灵活配置的方法提供布置的细节和示例。
本文中描述的实施例还可按照任何组合来实现。
根据一个实现:
• 由WD 22诸如经由处理电路84、处理器86、无线电接口82、参数确定器单元34等中的一个或多个(例如,基于网络配置和/或触发)来确定执行信道占用测量(例如,RSSI测量)的需要;
• 在确定需要时,根据本文中描述的实施例的一个实施例或任何组合,诸如经由处理电路84、处理器86、无线电接口82、参数确定器单元34等中的一个或多个,WD 22进一步确定(例如,基于预定义规则和/或基于来自网络节点16的配置)用于信道占用测量的时间和/或频率资源;
• 在本文中描述的一些实施例中,诸如经由处理电路84、处理器86、无线电接口82、参数确定器单元34等中的一个或多个,WD 22还可确定(例如,基于预定义规则和/或基于来自网络节点16的配置)用于执行信道占用测量的阈值(例如,channelOccupancyThreshold);
• 诸如经由处理电路84、处理器86、无线电接口82、参数确定器单元34等中的一个或多个,WD 22基于确定的时间和/或频率资源中的信道占用测量来获得一个或多个结果(诸如经由处理电路84、处理器86、无线电接口82、参数确定器单元34等中的一个或多个,WD22还可使用确定的阈值);和
• 诸如经由处理电路84、处理器86、无线电接口82、参数确定器单元34等中的一个或多个,WD 22将执行的信道占用测量的结果用于一个或多个操作任务和/或将其报告给网络节点16(以传统方式或根据以下的实施例)。
WD 22操作任务的一些示例包括:
• 执行LBT过程或辅助另一节点在未许可或共享频谱中执行LBT过程;
• 确定LBT配置或种类,确定COT配置;
• 基于信道占用结果来选择和/或改变到或者辅助网络节点16选择和/或改变到用于WD 22操作的时间和/或频率资源(例如,改变到时域和/或频域模式、载波频率、小区、子带、带宽部分(BWP)等)(例如,选择最少占用的载波频率来配置服务小区或活动BWP或子带);和/或
• 最小化路测(MDT)、自组织网络(SON)、在一定时间段(诸如,一天的一部分)期间收集信道占用的统计数据等。
实施例#1:独立于参数集的时域配置
在第一实施例中,例如,基于预定义规则和/或从网络节点16接收的消息或至少一个配置参数,WD 22确定用于信道占用测量的独立于参数集(例如,独立于子载波间隔(SCS);如独立于信道占用测量中将要被测量的一个或多个载波上的活动SCS)的测量持续时间。更一般地说,时域配置(例如,测量持续时间)独立于被配置为由无线装置22用于信道占用测量的载波的活动/当前参数集的参数集(例如,SCS、BWP)。时域配置可以是例如按照载波频率、按照服务小区带宽或BWP内的频率、按照BWP、按照子带等。如以下所讨论的,时域配置可基于参考参数集,诸如参考SCS。参考SCS可不同于测量资源的SCS,也就是,对其执行信道占用测量的使用的载波的SCS。
在一个示例中,子帧内的信道占用测量持续时间和/或偏移可包括固定长度时间单位的分数和/或倍数,诸如1ms的分数、1个子帧的分数等。例如,WD 22可配置有下面的任何项:2、1、½、¼、1/8、1/14等。WD 22不需要为了能够执行测量而知道例如NR时隙中的正被测量的载波的SCS(该SCS可甚至随时隙而变化)。
实施例#2:独立于参数集的频域配置
在第二实施例中,例如,基于预定义规则和/或从网络节点16接收的消息或至少一个配置参数,WD 22确定用于信道占用测量的独立于参数集(例如,独立于SCS)的测量带宽。所述配置可以是例如按照载波频率、按照服务小区带宽或BWP内的频率、按照BWP、按照子带等。更一般地说,频域配置(例如,测量带宽)独立于被配置为由无线装置22用于信道占用测量的载波的活动/当前参数集的参数集(例如,SCS、BWP)。如以下所讨论的,频域配置可基于参考参数集,诸如参考SCS。参考SCS可不同于测量资源的SCS,也就是,对其执行信道占用测量的使用的载波的SCS。
在一个示例中,信道占用测量带宽可包括N MHz的显式配置,例如N=5MHz、10MHz、20MHz、40MHz或80MHz等。也就是,在一个或多个实施例中,配置参数配置测量带宽。可配置值还可由参考带宽的倍数配置,例如10MHz、2x10MHz、4x10MHz等,其中10MHz是参考带宽。
实施例#3:信道占用测量配置参考
在第三实施例中,WD 22通过参考来确定信道占用测量配置,其中所述参考可被预定义,基于预定义规则来确定,或基于从网络节点16接收的消息或至少一个配置参数来配置。通过参考来进行配置的优点是降低的开销(例如,如果没有不同于所述参考,则不需要用信号传送配置)和降低的复杂性(例如,对于参考配置,WD 22已经知道或仅确定一次配置,然后将这个配置应用于信道占用测量配置)。更一般地说,所述参考可独立于被配置为由无线装置22用于信道占用测量的载波的活动/当前参数集,以使得它提供用于确定信道占用测量的参考。所述配置可以是例如按照载波频率、按照服务小区带宽或BWP内的频率、按照BWP、按照子带等。
在一个示例中,所述参考是可用于配置信道占用测量时间和/或频率资源的参数集参考(例如,作为参考的30kHz,即,用于信道测量占用测量的30kHz SCS(参考SCS)可被预定义或用信号传送)。在另一示例中,所述参考是被配置用于信道占用测量的载波频率上的参考小区、参考BWP或参考子带中的参考信道或信号的参数集,例如同步信号块(SSB)或信道状态信息参考信号(CSI-RS)或传送参考信号(TRS),尽管可在不同于包括参考信道/信号的资源的时间和/或频率资源中(例如,在不包括SSB的子帧中或者在没有SSB的载波频率或BWP或子带上)执行信道占用测量。另外,所述参考可被配置为提供和/或指示和/或定义独立于将要被测量的载波的实际/当前/活动SCS的测量粒度。
在另一示例中,用于信道占用测量配置参数的参考可以是参考(例如,当前活动参考或由网络节点16指示的参考)BWP和/或子带中的对应信道占用测量配置参数。例如,可仅在信道占用配置参数不同于所述参考中的信道占用配置参数时将信道占用配置参数用信号传送给WD 22,否则不将信道占用配置参数用信号传送。
在另一示例中,用于时域中的信道占用测量配置参数T的参考是已知(对于WD 22而言)或预定义的时间参考T0,例如:
• 服务或参考小区的T0=SFNX (X=0)(例如,T=SFNX+delta_number of_subframes+[delta_number_of slots]+[delta_number_of_symbols]);或
• T0=参考频率上的DRS窗口的开始(例如,T=T0+偏移);和/或
• T0=参考频率上的信道占用测量持续时间的开始。
实施例#3a:基于参考参数集的频域配置
作为实施例#3的子实施例,当提供参考参数集时,频域配置能够根据物理资源块(PRB)。例如,如果参考参数集是30kHz(SCS),则51个PRB将会对应于18.26MHz(从N_RB和参考SCS计算绝对测量带宽)。参考参数集还能够被用于确定(确定用于信道占用测量的配置的带宽的)PRB(例如配置的带宽的起始PRB和最后一个PRB)的频率位置。在一个或多个实施例中,参考参数集可被配置为提供和/或指示和/或定义独立于将要被测量的载波的实际/当前/活动参数集(例如,SCS)的测量粒度。
当在一个或多个子带上配置信道占用测量时,假设参考SCS,子带能够被定义为某个PRB范围,每个PRB范围由第一个PRB和PRB的数量确定或者由该范围的第一个PRB和最后一个PRB确定(例如,用于子带1的PRB1:PRB6、用于子带2的PRB7:PRB12、用于子带3的PRB13:PRB16等)。
实施例#3b:基于参考参数集的时域配置
作为#3的子实施例,当提供参考参数集时,能够基于这个参考参数集根据符号来完成时域配置。在一个或多个实施例中,至少一个配置参数可指示用于信道占用测量配置的符号的数量和参考参数集。换句话说,WD能够从配置的参考参数集和配置的符号的数量确定时域配置(例如,测量持续时间)。
实施例#4:在存在多个子带和/或BWP的情况下的信道占用测量配置
在第四实施例中,信道占用测量配置可基于预定义规则而被配置用于多个子带和/或BWP,例如,相同的(例如,参考)信道占用测量配置适用于所有子带。
在另一示例中,信道占用测量配置与指示对应子带的关联的配置参数(例如,子带索引或子带的频率(诸如,测量带宽的中心频率)的指针或相对于参考频率(例如,服务载波频率、活动BWP的频率、参考子带的频率等)的偏移或子带的资源块(RB)(诸如,子带带宽的第一个RB)的指针)一起被用信号传送给WD 22/由WD 22接收。
实施例#5:与ssbFrequency和refFreqCSI-RS分开地配置信道占用测量的频率
根据这个实施例,RSSI和信道占用测量的频率与ssbFrequency和refFreqCSI-RS信息元素分开,例如,以允许没有SSB以及没有CSI的载波频率、频率、子带、BWP等上的信道占用测量。信道占用测量的频率被用于确定信道占用测量的频率位置。在一个示例中,所述频率是信道占用测量带宽的中心频率。在另一示例中,所述频率是信道占用测量带宽内的资源块(例如,第一个RB)的频率或信道占用测量带宽内的最低频率。
在这个实施例的另一示例中,用于没有SSB以及没有CSI的载波频率、频率、子带、BWP等的信道占用测量的SCS和/或带宽或其它配置参数可通过参考例如与ssbFrequency或refFreCSI-RS关联的对应参数而被配置,而所述频率不同于ssbFrequency和refFreCSI- RS。
在这个实施例的另一示例中,信道占用测量的频率是ssbFrequency或refFreCSI- RS的函数,例如,ssbFrequency+delta*k,其中k能够是整数(k=1是频率被配置为ssbFrequency+delta的特殊情况)并且可以是可由网络节点16配置的。
实施例#6:参考频率点和PRB范围
替代于如实施例#5中一样提供中心频率,与Rel-15点A类似的另一参考点被提供给WD 22。另外,PRB范围被提供给WD 22。基于这个参考点和PRB频率范围,WD 22确定用于RSSI和信道占用测量的频率范围。
实施例#7:带宽缩放的报告量
为了保持独立于测量带宽的恒定报告范围,RSSI能够利用固定或配置的带宽(例如,1MHz或最小允许带宽)而被缩放地报告,并且被报告为例如dBm/MHz或dBm/X MHz。接收网络节点16可如此使用报告的值,或者可在假设缩放因子对于WD 22而言和对于网络节点16而言已知的情况下转换成原始值。所述缩放可基于预定义规则,或由网络节点16配置。
实施例#8:基于下面各项的一项或任何组合的信道占用阈值:测量带宽、参考参数集和用于报告的量的缩放因子
在这个实施例中,信道占用阈值(例如诸如,channelOccupancyThreshold)可基于下面各项的一项或任何组合而被确定(由WD 22或然后配置WD 22的网络节点16确定):测量带宽、参考参数集和用于报告的量的缩放因子,例如,第一阈值可被配置用于第一参考参数集,并且第二阈值可被配置用于第二参考参数集。
在一个示例中,更高的信道占用阈值被配置用于更小的SCS。在另一示例中,更高的阈值可被配置用于更小数量的X MHz或者用于更小数量的子载波或更大的SCS(例如,当缩放的结果是每SCS或每MHz的dBm时)。在又一示例中,更高的阈值被配置用于更大的信道占用测量带宽。
在另一示例中,相同的缩放因子被应用于报告的量和所述阈值。
无线电网络节点16中的方法
还提供网络节点16实施例。网络节点16实施例如以上的WD 22实施例描述中所建议的。
例如,根据一个或多个实施例,网络节点16可经由单播/专用信令、多播或广播(例如,在系统信息中)配置WD 22以用于信道占用测量(所述配置可包括配置用于所述测量的时间和/或频率资源(所述时间和/或频率资源包括频率和带宽)、可用于获得信道占用测量的阈值、测量报告量或可用于确定这些项中的任何项的规则等)。
例如,经由X2/Xn接口或在切换时或经由核心网络节点和无线电网络节点之间的接口(例如,当基站节点获得从核心网络节点(诸如,SON或MDT节点)配置的测量时),基于描述的实施例确定的信道占用测量配置还可被发送给另一网络节点16。所述另一网络节点16可被配置为基于接收的RSSI调整调度和/或执行另一网络节点16动作。也就是,可在一个或多个网络节点16之中交换RSSI以由相应网络节点16使用。
诸如例如经由处理电路68,网络节点16还可确定由WD 22用于配置和/或报告信道占用测量的一个或多个预定义规则,并且相应地处理测量。当共同地使用来自不同WD或基于不同测量配置的信道占用测量时,网络节点16还可将所述测量变换成可比较的基础,例如通过基于相同SCS、带宽等确定的量来转换它们和/或对它们进行分组。
根据一个方面,网络节点16被配置为与无线装置(WD 22)通信。网络节点16包括无线电接口62和/或处理电路68,被配置为:配置WD 22以用于信道占用测量,所述配置包括配置用于信道占用测量的时间和/或频率资源。
根据这个方面,在一些实施例中,WD 22的配置还包括配置可用于获得信道占用测量的阈值。
根据另一方面,一种实现在网络节点16中的方法包括:经由配置单元32配置无线装置WD 22以用于信道占用测量,所述配置包括配置用于信道占用测量的时间和/或频率资源。
根据这个方面,在一些实施例中,WD 22的配置还包括配置可用于获得信道占用测量的阈值。
根据又一方面,提供一种被配置为与网络节点16通信的无线装置(WD 22)。WD 22包括无线电接口82和/或处理电路84,被配置为:确定用于信道占用测量的独立于参数集的测量参数;并且基于确定的独立于参数集的测量参数来确定信道占用测量配置。
根据这个方面,在一些实施例中,独立于参数集的测量参数是持续时间和带宽之一。在一些实施例中,信道占用测量配置基于预定义规则,并且包括用于多个子带的配置。在一些实施例中,接收信号强度指示器RSSI和信道占用测量的频率与ssbFrequency和refFreqCSI-RS信息元素分开。
根据另一方面,一种实现在无线装置(WD 22)中的方法包括:经由参数确定器单元34确定用于信道占用测量的独立于参数集的测量参数;并且基于确定的独立于参数集的测量参数来确定信道占用测量配置。
根据这个方面,在一些实施例中,独立于参数集的测量参数是持续时间和带宽之一。在一些实施例中,信道占用测量配置基于预定义规则,并且包括用于多个子带的配置。在一些实施例中,接收信号强度指示器RSSI和信道占用测量的频率与ssbFrequency和refFreqCSI-RS信息元素分开。
一些示例
示例A1. 一种被配置为与无线装置22(WD 22)通信的网络节点16,网络节点16被配置为执行下面的操作和/或包括无线电接口62和/或包括处理电路68,处理电路68被配置为执行下面的操作:
配置WD 22以用于信道占用测量,所述配置包括配置用于信道占用测量的时间和/或频率资源。
示例A2. 如示例A1所述的网络节点16,其中WD 22的配置还包括配置可用于获得信道占用测量的阈值。
示例B1. 一种实现在网络节点16中的方法,所述方法包括:
配置无线装置22 WD 22以用于信道占用测量,所述配置包括配置用于信道占用测量的时间和/或频率资源。
示例B2. 如示例B1所述的方法,其中WD 22的配置还包括配置可用于获得信道占用测量的阈值。
示例C1. 一种被配置为与网络节点16通信的无线装置22(WD 22),WD 22被配置为执行下面的操作和/或包括无线电接口82和/或处理电路84,处理电路84被配置为执行下面的操作:
确定用于信道占用测量的独立于参数集的测量参数;并且
基于确定的独立于参数集的测量参数来确定信道占用测量配置。
示例C2. 如示例C1所述的WD 22,其中独立于参数集的测量参数是持续时间和带宽之一。
示例C3. 如示例C1所述的WD 22,其中信道占用测量配置基于预定义规则,并且包括用于多个子带的配置。
示例C4. 如示例C1所述的WD 22,其中接收信号强度指示器RSSI和信道占用测量的频率与ssbFrequency和refFreqCSI-RS信息元素分开。
示例D1. 一种实现在无线装置22(WD 22)中的方法,所述方法包括:
确定用于信道占用测量的独立于参数集的测量参数;并且
基于确定的独立于参数集的测量参数来确定信道占用测量配置。
示例D2. 如示例D1所述的方法,其中独立于参数集的测量参数是持续时间和带宽之一
示例D3. 如示例D1所述的方法,其中信道占用测量配置基于预定义规则,并且包括用于多个子带的配置。
示例D4. 如示例D1所述的方法,其中接收信号强度指示器RSSI和信道占用测量的频率与ssbFrequency和refFreqCSI-RS信息元素分开。
还提供如下一些另外的信息以说明如何可将本公开的实施例并入到3GPP标准中。描述的变化旨在说明如何能够在特定标准中实现本公开的实施例的某些方面。然而,还能够在3GPP规范中以及在其它规范或标准中按照其它合适的方式实现本公开的实施例。
介绍
在RAN4#91中,在[1]中同意关于NR-U RRM的前进之路。
在这个文献中,我们讨论用于NR-U的RSSI和信道占用测量。以下列出其它组中的相关协议。
RAN1#96:
• 至少应该支持作为基线的Rel-13 LTE-LAA RSSI和信道占用报告的功能性
RAN2#106:
在这个发布中,在“空闲”或“不活动”的情况下不使用RSSI CO测量
如LAA中一样,能够利用已有触发来报告RSSI和CO测量量
如LTE LAA中一样,用于NR-U的RSSI和信道占用(CO)的报告是可选的UE能力
RAN2#015-Bis:
RSSI和信道占用配置以及报告(特别地,在一定间隔上(至少在CO期间)的测量和周期性报告)被用作NR-U的基线
LAA与NR-U中的UE RSSI和信道占用测量
在LTE中,E-UTRA接收信号强度指示器(RSSI)测量被引入以用于LAA,并且被定义为由UE从所有源(包括同信道服务和非服务小区、相邻信道干扰、热噪声等)仅在配置的OFDM符号中并且在测量带宽中在N个资源块上观察到的总接收功率(以瓦特为单位)的线性平均值。
也就是,RSSI(根据TS 36.331)通过MeasObjectEUTRA中的下面的IE而被配置:rmtc-Period、rmtc-SubframeOffset和measDuration,如以下所示,因此UE仅在RMTC时机内在measDuration期间执行RSSI测量。
RSSI和信道占用的一个潜在问题是:如果带宽未被清楚地定义(优选地,由网络配置)以允许一些灵活性,则能够存在基于不同带宽来报告测量的不同UE实现。
• 观察1:UE需要知道RSSI和信道占用带宽,所述RSSI和信道占用带宽应该优选地是可配置的。
按照RB的数量来配置带宽需要UE也知道SCS,所述SCS可随时隙并且在相同载波频率上的小区之中变化。对于测量持续时间而言存在类似的问题,在LTE中按照符号的数量来定义所述测量持续时间,但符号长度取决于SCS。因此,用于RSSI和信道占用测量的参考SCS需要被预定义或由网络配置。备选地,测量持续时间值可被定义为例如子帧的分数和倍数,而带宽值可以是5MHz、10MHz、20MHz等。还应该注意的是,RSSI测量本身是能量测量,它不应该被严格地链接(link)到任何特定SCS配置。
• 观察2:配置测量持续时间和带宽应独立于在测量资源中使用的SCS,例如分别作为子帧的分数或倍数和按照MHz,或者关于参考SCS而被配置,参考SCS可不同于测量资源的SCS。
能够存在未配置SSB的频谱的部分或载波频率。另外,针对在时域中在哪里配置RSSI和信道占用测量,也应该存在灵活性,以能够在整个系统中实现更加高效的资源利用。
• 观察3:RSSI和信道占用测量资源不应局限于SSB时间资源或SSB频率。
出现的另一问题是:什么是RSSI测量和信道占用的报告量。存在不同的选项,例如,
- 选项1:UE例如按照dBm报告测量值(像LTE中一样)
- 选项2:UE报告独立于SCS的规范化(normalized)测量值,例如每MHz的dBm
- 选项3:UE报告基于SCS的规范化测量值,例如每SCS或每RB的dBm
选项1和2不需要知道或配置用于RSSI和信道占用测量的SCS,而选项3具有这种依赖性。
• 观察4:在以下的选项中,假如测量的带宽对于网络而言是已知的,可使用选项1(在LTE中相同):
o 选项1:UE例如按照dBm报告测量值(像LTE中一样),
o 选项2:UE报告独立于SCS的规范化测量值,例如每MHz的dBm,
o 选项3:UE报告基于SCS的规范化测量值,例如每SCS或每RB的dBm。
总结
下面的情况已被观察到:
• 观察1:UE需要知道RSSI和信道占用带宽,所述RSSI和信道占用带宽应该优选地是可配置的。
• 观察2:配置测量持续时间和带宽应独立于在测量资源中使用的SCS,例如分别作为子帧的分数或倍数和按照MHz,或者相对于参考SCS而被配置,参考SCS可不同于测量资源的SCS。
• 观察3:RSSI和信道占用测量资源不应局限于SSB时间资源或SSB频率。
• 观察4:在以下的选项中,假如测量的带宽对于网络而言是已知的,可使用选项1(在LTE中相同):
o 选项1:UE例如按照dBm报告测量值(像LTE中一样),
o 选项2:UE报告独立于SCS的规范化测量值,例如每MHz的dBm,
o 选项3:UE报告基于SCS的规范化测量值,例如每SCS或每RB的dBm。
基于以上的观察,在R4-190xxxx中提供RAN1/RAN2的草案LS,关于NR-U中的RSSI和信道占用测量的草案LS(Ericsson, Aug. 2019)。
其它观察包括:
RAN4已开始关于NR-U中的RSSI和信道占用测量的讨论,并且已同意下面的观察:
• 观察1A:UE需要知道RSSI和信道占用带宽,所述RSSI和信道占用带宽应该优选地是可配置的。
• 观察2A:配置测量持续时间和带宽应独立于在测量资源中使用的SCS,例如分别作为子帧的分数或倍数和按照MHz,或者相对于参考SCS而被配置,参考SCS可不同于测量资源的SCS。
• 观察3A:RSSI和信道占用测量资源不应局限于SSB时间资源或SSB频率。
• 观察4A:在以下的选项中,假如测量的带宽对于网络而言是已知的,可使用选项1(在LTE中相同):
o 选项1:UE例如按照dBm报告测量值(像LTE中一样),
o 选项2:UE报告独立于SCS的规范化测量值,例如每MHz的dBm,
o 选项3:UE报告基于SCS的规范化测量值,例如每SCS或每RB的dBm。
如本领域技术人员将会理解的,本文中描述的概念可被实现为方法、数据处理系统、计算机程序产品和/或存储可执行计算机程序的计算机存储介质。因此,本文中描述的概念可采用全部在本文中统称为“电路”或“模块”的完全硬件实施例、完全软件实施例或组合软件和硬件方面的实施例的形式。本文中描述的任何过程、步骤、动作和/或功能性可由对应模块执行和/或与对应模块关联,所述对应模块可采用软件和/或固件和/或硬件来实现。另外,本公开可采用有形计算机可用存储介质上的计算机程序产品的形式,所述有形计算机可用存储介质具有实现在该介质中的能够由计算机执行的计算机程序代码。可利用任何合适的有形计算机可读介质,包括硬盘、CD-ROM、电子存储装置、光存储装置或磁存储装置。
本文中参考方法、系统和计算机程序产品的流程图图示和/或方框图描述一些实施例。将会理解,流程图图示和/或方框图的每个方框以及流程图图示和/或方框图中的方框的组合能够由计算机程序指令来实现。这些计算机程序指令可被提供给通用计算机的处理器(以由此创建专用计算机)、专用计算机或其它可编程数据处理设备的处理器,以产生一种机器,从而经由计算机或其它可编程数据处理设备的处理器执行的指令创建用于实现流程图和/或方框图的一个或多个方框中指定的功能/动作的部件。
这些计算机程序指令也可被存储在计算机可读存储器或存储介质中,所述计算机程序指令能够指示计算机或其它可编程数据处理设备按照特定方式工作,从而存储在计算机可读存储器中的指令产生一种制造产品,所述制造产品包括指令部件,所述指令部件实现流程图和/或方框图的一个或多个方框中指定的功能/动作。
计算机程序指令也可被加载到计算机或其它可编程数据处理设备上,以使得在计算机或其它可编程设备上执行一系列的操作步骤以产生计算机实现的过程,从而在计算机或其它可编程设备上执行的指令提供用于实现流程图和/或方框图的一个或多个方框中指定的功能/动作的步骤。
应该理解,方框中标注的功能/动作可不按照操作图示中标注的次序发生。例如,取决于涉及的功能性/动作,连续示出的两个方框可事实上基本上同时执行,或者这些方框可有时按照相反的次序发生。虽然图中的一些图包括通信路径上的箭头以示出主要的通信的方向,但应该理解,通信可沿与描绘的箭头相反的方向发生。
可以用面向对象的编程语言(诸如,Java®或C++)来编写用于执行本文中描述的概念的操作的计算机程序代码。然而,还可以用传统的过程式编程语言(诸如,“C”编程语言)来编写用于执行本公开的操作的计算机程序代码。程序代码可完全在用户的计算机上执行、部分在用户的计算机上执行、作为独立软件包执行、部分在用户的计算机上并且部分在远程计算机上执行或者完全在远程计算机上执行。在后面的场景中,远程计算机可通过局域网(LAN)或广域网(WAN)连接到用户的计算机,或者可(例如,使用互联网服务提供商通过互联网)连接到外部计算机。
结合以上描述和附图,许多不同实施例已在本文中被公开。将会理解,完全描述和图示这些实施例的每个组合和子组合将会是过度重复且令人困惑的。因此,能够按照任何方式和/或组合来组合所有实施例,并且本说明书(包括附图)应被解释为构成本文中描述的实施例的所有组合和子组合以及制造和使用它们的方式和过程的完整书面描述,并且应支持针对任何这种组合或子组合的权利要求。
可被用在前面的描述中的缩写包括:
缩写 解释
ACK 确认
BS 基站
BWP 带宽部分
CE 控制元件
CORESET 控制资源集
COT 信道占用时间
CRS 小区特定参考信号
CSI 信道状态信息
CSI-RS 信道状态信息参考信号
DCI 下行链路控制信息
DL 下行链路
DRS 发现参考信号
eLAA 增强LAA
FBE 基于帧的设备
FDD 频分双工
FR1 频率范围1
FR2 频率范围2
GC-PDCCH 组公共PDCCH
gNB 下一代节点B
HARQ 混合自动重复请求
HSPA 高速分组接入
LAA 许可辅助接入
LBE 基于负载的设备
LBT 先听后讲
LTE 长期演进
MAC 介质访问控制
MCOT 最大COT
NACK 未确认
NR 新空口
NR-U NR未许可
OSI 其它系统信息
PBCH 物理广播信道
PDCCH 物理下行链路控制信道
PDSCH 物理下行链路共享信道
PSS 主同步信号
PUCCH 物理上行链路控制信道
PUSCH 物理上行链路共享信道
QCI 准共址
RACH 随机接入信道
RAT 无线电接入技术
RMSI 剩余最小系统信息
RRC 无线电资源控制
SCH 共享信道
SNR 信噪比
SRS 探测参考信号
SSS 辅同步信号
TCI 传送配置指示器
TDD 时分双工
UCI 上行链路控制信息
UE 用户设备
UL 上行链路
WCDMA 宽带码分多址
WD 无线装置
本领域技术人员将会理解,本文中描述的实施例不限于以上在本文中已特别地示出和描述的内容。另外,除非以上提及相反的情况,否则应该注意的是,所有附图不是都按照比例绘制。在不脱离下面的权利要求的范围的情况下,考虑到以上教导,各种修改和变化是可能的。
Claims (42)
1.一种无线装置(22),被配置为与网络节点(16)通信,所述无线装置(22)包括:
处理电路(84),被配置为使所述无线装置:
从所述网络节点接收用于信道占用测量的至少一个配置参数;
基于所述至少一个配置参数来确定用于所述信道占用测量的测量持续时间,所述测量持续时间独立于其中执行所述信道占用测量的时频资源的子载波间隔;并且
至少基于确定的测量持续时间来执行所述信道占用测量。
2.如权利要求1所述的无线装置(22),其中,所述处理电路(84)还被配置为使无线装置基于所述至少一个配置参数来确定用于所述信道占用测量的频域配置,所述频域配置独立于其中执行所述信道占用测量的时频资源的所述子载波间隔;
其中,另外至少基于确定的频域配置来执行所述信道占用测量。
3.如权利要求2所述的无线装置,其中,所述频域配置是所述信道占用测量的测量带宽。
4.如权利要求2或3所述的无线装置(22),其中,所述至少一个配置参数包括所述测量带宽的中心频率。
5.如权利要求1-4中任何一项所述的无线装置(22),其中,所述至少一个配置参数包括参考子载波间隔和符号的数量。
6.如权利要求1-5中任何一项所述的无线装置(22),其中,所述处理电路(84)还被配置为报告所述信道占用测量。
7.如权利要求1至6中任一项所述的无线装置,其中,所述信道占用测量是接收信号强度指示器(RSSI)测量。
8.如权利要求7所述的无线装置(22),其中,所述RSSI测量利用第一带宽而被缩放。
9.如权利要求1-8中任何一项所述的无线装置(22),其中,所述至少一个配置参数被配置为被应用于由所述网络节点提供的服务小区的多个子带和带宽部分BWP中的至少一个。
10.如任一前面权利要求所述的无线装置(22),其中,与同步信号块(SSB)频率信息元素ssbFrequency和信道状态信息参考信号(CSI-RS)频率信息元素refFreqCSI-RS分开地接收所述至少一个配置参数。
11.一种网络节点(16),被配置为与无线装置(22)通信,所述网络节点(16)包括:
处理电路(84),被配置为:
引起用于信道占用测量的至少一个配置参数的传送,所述至少一个配置参数被配置为指示用于所述信道占用测量的测量持续时间,所述测量持续时间独立于其中执行所述信道占用测量的时频资源的子载波间隔。
12.如权利要求11所述的网络节点(16),其中,所述处理电路还被配置为使所述网络节点接收与所述至少一个配置参数关联的所述信道占用测量。
13.如权利要求11或12所述的网络节点(16),其中,所述至少一个配置参数还被配置为指示用于所述信道占用测量的频域配置,所述频域配置独立于其中执行所述信道占用测量的时频资源的所述子载波间隔。
14.如权利要求13所述的网络节点(16),其中,所述频域配置是所述信道占用测量的测量带宽。
15.如权利要求14所述的网络节点(16),其中,所述至少一个配置参数包括所述测量带宽的中心频率。
16.如权利要求11-15中任何一项所述的网络节点(16),其中,所述至少一个配置参数包括用于所述测量持续时间的参考子载波间隔和符号的数量。
17.如权利要求11-16中任何一项所述的网络节点(16),其中,所述信道占用测量是接收信号强度指示器RSSI测量。
18.如权利要求17所述的网络节点(16),其中,所述RSSI测量利用第一带宽而被缩放。
19.如权利要求11-18中任何一项所述的网络节点(16),其中,所述至少一个配置参数应用于由所述网络节点提供的服务小区的多个子带和带宽部分BWP中的至少一个。
20.如权利要求11至19中任一项所述的网络节点(16),其中,所述处理电路被配置为使所述网络节点与同步信号块(SSB)频率信息元素ssbFrequency和信道状态信息参考信号(CSI-RS)频率信息元素refFreqCSI-RS分开地传送所述至少一个配置参数。
21.如权利要求11-20中任何一项所述的网络节点(16),其中,所述处理电路(68)被配置为:
从另一网络节点(16)接收邻居信道占用测量;并且
基于所述邻居信道占用测量来调整与所述无线装置(22)关联的调度。
22.一种由无线装置(22)实现的方法,所述无线装置(22)被配置为与网络节点(16)通信,所述方法包括:
从所述网络节点接收用于信道占用测量的至少一个配置参数;
基于至少一个配置参数来确定(S144)用于所述信道占用测量的测量持续时间,所述测量持续时间独立于其中执行所述信道占用测量的时频资源的子载波间隔;并且
至少基于确定的测量持续时间来执行(S146)所述信道占用测量。
23.如权利要求22所述的方法,还包括:基于所述至少一个配置参数来确定用于所述信道占用测量的频域配置,所述频域配置独立于其中执行所述信道占用测量的时频资源的子载波间隔;并且
另外至少基于确定的频域配置来执行所述信道占用测量。
24.如权利要求23所述的方法,其中,所述频域配置是所述信道占用测量的测量带宽。
25.如权利要求23或24所述的方法,其中,所述至少一个配置参数包括所述测量带宽的中心频率。
26.如权利要求22-25中任何一项所述的方法,其中,所述至少一个配置参数包括参考子载波间隔和符号的数量。
27.如权利要求22-26中任一项所述的方法,还包括:报告所述信道占用测量。
28.如权利要求22至27中任一项所述的方法,其中,所述信道占用测量是接收信号强度指示器(RSSI)测量。
29.如权利要求28所述的方法,其中,所述RSSI测量利用第一带宽而被缩放。
30.如权利要求22-29中任何一项所述的方法,其中,所述至少一个配置参数被配置为被应用于由所述网络节点提供的服务小区的多个子带和带宽部分BWP中的至少一个。
31.如权利要求22-30中任一项所述的方法,其中,与同步信号块(SSB)频率信息元素ssbFrequency和信道状态信息参考信号(CSI-RS)频率信息元素refFreqCSI-RS分开地接收所述至少一个配置参数。
32.一种由网络节点(16)实现的方法,所述网络节点(16)被配置为与无线装置(22)通信,所述方法包括:
引起(S136)用于信道占用测量的至少一个配置参数的传送,所述至少一个配置参数被配置为指示用于所述信道占用测量的测量持续时间,所述测量持续时间独立于其中执行所述信道占用测量的时频资源的子载波间隔。
33.如权利要求32所述的方法,还包括:接收(S138)与所述至少一个配置参数关联的所述信道占用测量。
34.如权利要求32或33所述的方法,其中,所述至少一个配置参数还被配置为指示用于所述信道占用测量的频域配置,所述频域配置独立于其中执行所述信道占用测量的时频资源的子载波间隔。
35.如权利要求34所述的方法,其中,所述频域配置是所述信道占用测量的测量带宽。
36.如权利要求35所述的方法,其中,所述至少一个配置参数包括所述测量带宽的中心频率。
37.如权利要求32-36中任何一项所述的方法,其中,所述至少一个配置参数包括用于所述测量持续时间的参考子载波间隔和符号的数量。
38.如权利要求32-37中任何一项所述的方法,其中,所述信道测量是接收信号强度指示器RSSI测量。
39.如权利要求38所述的方法,其中,所述RSSI测量利用第一带宽而被缩放。
40.如权利要求32-39中任何一项所述的方法,其中,所述至少一个配置参数应用于由所述网络节点提供的服务小区的多个子带和带宽部分BWP中的至少一个。
41.如权利要求32至40中任一项所述的方法,其中,与同步信号块(SSB)频率信息元素ssbFrequency和信道状态信息参考信号(CSI-RS)频率信息元素refFreqCSI-RS分开地传送所述至少一个配置参数。
42.如权利要求32-41中任何一项所述的方法,还包括:
从另一网络节点(16)接收邻居信道占用测量;并且
基于所述邻居信道占用测量来调整与所述无线装置(22)关联的调度。
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201962888200P | 2019-08-16 | 2019-08-16 | |
US62/888200 | 2019-08-16 | ||
PCT/EP2020/072936 WO2021032649A1 (en) | 2019-08-16 | 2020-08-14 | Flexible configurations of channel occupancy measurements |
Publications (1)
Publication Number | Publication Date |
---|---|
CN114514787A true CN114514787A (zh) | 2022-05-17 |
Family
ID=72139601
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202080072045.3A Pending CN114514787A (zh) | 2019-08-16 | 2020-08-14 | 信道占用测量的灵活配置 |
Country Status (4)
Country | Link |
---|---|
US (1) | US12167376B2 (zh) |
EP (1) | EP4014535A1 (zh) |
CN (1) | CN114514787A (zh) |
WO (1) | WO2021032649A1 (zh) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20230084911A1 (en) * | 2020-02-14 | 2023-03-16 | Nokia Technologies Oy | Time-Domain Positions of Synchronization Signals |
US11418965B2 (en) * | 2020-05-04 | 2022-08-16 | T-Mobile Usa, Inc. | Hybrid mesh of licensed and unlicensed wireless frequency bands |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104735789A (zh) * | 2013-12-19 | 2015-06-24 | 中国移动通信集团公司 | 一种小区间干扰消除方法、装置及系统 |
CN106165323A (zh) * | 2014-03-04 | 2016-11-23 | Lg电子株式会社 | 接收用于接收发现参考信号的控制信息的方法及其装置 |
CN106465173A (zh) * | 2014-05-27 | 2017-02-22 | Lg电子株式会社 | 在无线通信系统中使用发现参考信号(drs)来执行测量的方法和设备 |
US20170094547A1 (en) * | 2015-09-24 | 2017-03-30 | Lg Electronics Inc. | Method of transmitting channel state information and apparatus therefor |
CN109075879A (zh) * | 2018-06-25 | 2018-12-21 | 北京小米移动软件有限公司 | 信道测量的方法、装置、终端和基站以及存储介质 |
US20190149252A1 (en) * | 2016-02-08 | 2019-05-16 | Telefonaktiebolaget Lm Ericsson (Publ) | Controlling the channel occupancy measurement quality |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20160302230A1 (en) * | 2015-04-10 | 2016-10-13 | Samsung Electronics Co., Ltd | Methods and apparatus for rrm measurement on unlicensed spectrum |
US10231165B2 (en) * | 2015-05-13 | 2019-03-12 | Qualcomm Incorporated | RRM measurement and reporting for license assisted access |
US10511941B2 (en) * | 2016-08-11 | 2019-12-17 | Kt Corporation | Method for receiving multicast data and apparatus thereof |
CN118764971A (zh) * | 2018-01-12 | 2024-10-11 | 创新技术实验室株式会社 | 在无线通信系统中执行随机接入的装置和方法 |
US11071000B2 (en) * | 2018-07-19 | 2021-07-20 | Samsung Electronics Co., Ltd. | Method and apparatus for RRM measurement enhancement for NR unlicensed |
US11425597B2 (en) * | 2019-05-02 | 2022-08-23 | Comcast Cable Communications, Llc | Sidelink congestion control |
US11818773B2 (en) * | 2019-08-05 | 2023-11-14 | Intel Corporation | Channel access mechanisms for DRS transmission and PDCCH monitoring for NR-U networks |
EP4186309A2 (en) * | 2020-08-06 | 2023-05-31 | Huawei Technologies Co., Ltd. | Method and apparatus for receiver assisted transmission in shared spectrum |
-
2020
- 2020-08-14 WO PCT/EP2020/072936 patent/WO2021032649A1/en unknown
- 2020-08-14 EP EP20757577.0A patent/EP4014535A1/en active Pending
- 2020-08-14 US US17/635,630 patent/US12167376B2/en active Active
- 2020-08-14 CN CN202080072045.3A patent/CN114514787A/zh active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104735789A (zh) * | 2013-12-19 | 2015-06-24 | 中国移动通信集团公司 | 一种小区间干扰消除方法、装置及系统 |
CN106165323A (zh) * | 2014-03-04 | 2016-11-23 | Lg电子株式会社 | 接收用于接收发现参考信号的控制信息的方法及其装置 |
CN106465173A (zh) * | 2014-05-27 | 2017-02-22 | Lg电子株式会社 | 在无线通信系统中使用发现参考信号(drs)来执行测量的方法和设备 |
US20170094547A1 (en) * | 2015-09-24 | 2017-03-30 | Lg Electronics Inc. | Method of transmitting channel state information and apparatus therefor |
US20190149252A1 (en) * | 2016-02-08 | 2019-05-16 | Telefonaktiebolaget Lm Ericsson (Publ) | Controlling the channel occupancy measurement quality |
CN109075879A (zh) * | 2018-06-25 | 2018-12-21 | 北京小米移动软件有限公司 | 信道测量的方法、装置、终端和基站以及存储介质 |
Also Published As
Publication number | Publication date |
---|---|
US20220295465A1 (en) | 2022-09-15 |
EP4014535A1 (en) | 2022-06-22 |
WO2021032649A1 (en) | 2021-02-25 |
US12167376B2 (en) | 2024-12-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7453985B2 (ja) | 新無線設定されたアップリンク(ul)のための時間リソース | |
CN113016207B (zh) | 用户终端以及无线通信方法 | |
WO2020125121A1 (en) | Method and device operating in unlicensed spectrum | |
CN112586028B (zh) | 终端、基站、系统以及无线通信方法 | |
EP4055946B1 (en) | Method for switching control channel monitoring of search space set group | |
US11271704B2 (en) | Radio network node, wireless device and methods performed therein | |
JP7431158B2 (ja) | 端末、無線通信方法、基地局及びシステム | |
TWI762839B (zh) | 用於共享通訊通道之方法及設備 | |
CN111971994B (zh) | 用户终端以及无线通信方法 | |
US11716739B2 (en) | Method and apparatus for uplink transmission | |
CN114514771B (zh) | 用于早期测量报告的增强过程 | |
CN113039843A (zh) | 基于独立定时管理组的数目的带内多载波操作的最大操作定时差的适配 | |
CN115004745B (zh) | 终端以及无线通信方法 | |
CN115552959A (zh) | 基于空间关系来调适周期性配置 | |
CN114651469A (zh) | 具有上行链路空闲信道评估的半持久信道状态信息报告过程 | |
CN112219444B (zh) | 用于双连接的通信资源配置 | |
US12167376B2 (en) | Flexible configurations of channel occupancy measurements | |
WO2021230806A1 (en) | Uplink polling for new radio operation in mm-wave frequency bands | |
US12143934B2 (en) | Radio network node, user equipment (UE) and methods performed in a wireless communication network | |
JP2017520137A (ja) | 高速セル・オン/オフ機能のためのアクティブ化コマンド | |
CN116195287A (zh) | 终端、无线通信方法以及基站 | |
EP4316031A1 (en) | Radio network node and method performed in a communication network | |
EP4278553A1 (en) | Time and frequency relation for uplink (ul) transmission |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |