CN114511666A - A model generation method, image reconstruction method, apparatus, device and medium - Google Patents
A model generation method, image reconstruction method, apparatus, device and medium Download PDFInfo
- Publication number
- CN114511666A CN114511666A CN202011278737.1A CN202011278737A CN114511666A CN 114511666 A CN114511666 A CN 114511666A CN 202011278737 A CN202011278737 A CN 202011278737A CN 114511666 A CN114511666 A CN 114511666A
- Authority
- CN
- China
- Prior art keywords
- image reconstruction
- image
- breast
- model
- module
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims abstract description 94
- 210000000481 breast Anatomy 0.000 claims abstract description 150
- 238000003384 imaging method Methods 0.000 claims abstract description 73
- 238000004422 calculation algorithm Methods 0.000 claims abstract description 48
- 230000009467 reduction Effects 0.000 claims abstract description 40
- 238000013527 convolutional neural network Methods 0.000 claims abstract description 34
- 238000000605 extraction Methods 0.000 claims abstract description 16
- 238000004364 calculation method Methods 0.000 claims description 29
- 230000008569 process Effects 0.000 claims description 29
- 238000004088 simulation Methods 0.000 claims description 11
- 238000004590 computer program Methods 0.000 claims description 4
- 238000012937 correction Methods 0.000 claims description 4
- 238000009607 mammography Methods 0.000 claims 1
- 238000005457 optimization Methods 0.000 abstract description 11
- 230000006870 function Effects 0.000 description 15
- 238000010586 diagram Methods 0.000 description 11
- 238000013528 artificial neural network Methods 0.000 description 7
- 230000003287 optical effect Effects 0.000 description 6
- 238000012545 processing Methods 0.000 description 6
- 238000003325 tomography Methods 0.000 description 5
- 210000001519 tissue Anatomy 0.000 description 4
- 238000012549 training Methods 0.000 description 4
- 230000009466 transformation Effects 0.000 description 3
- 206010006187 Breast cancer Diseases 0.000 description 2
- 208000026310 Breast neoplasm Diseases 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000012804 iterative process Methods 0.000 description 2
- 210000005075 mammary gland Anatomy 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 239000013307 optical fiber Substances 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- 230000000644 propagated effect Effects 0.000 description 2
- 230000001133 acceleration Effects 0.000 description 1
- 238000003491 array Methods 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 238000002591 computed tomography Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000000968 medical method and process Methods 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 230000008439 repair process Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 238000012216 screening Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T17/00—Three dimensional [3D] modelling, e.g. data description of 3D objects
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/045—Combinations of networks
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T5/00—Image enhancement or restoration
- G06T5/70—Denoising; Smoothing
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/10—Image acquisition modality
- G06T2207/10072—Tomographic images
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/20—Special algorithmic details
- G06T2207/20081—Training; Learning
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/20—Special algorithmic details
- G06T2207/20084—Artificial neural networks [ANN]
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/30—Subject of image; Context of image processing
- G06T2207/30004—Biomedical image processing
- G06T2207/30068—Mammography; Breast
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2210/00—Indexing scheme for image generation or computer graphics
- G06T2210/41—Medical
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Software Systems (AREA)
- General Health & Medical Sciences (AREA)
- Computing Systems (AREA)
- Computational Linguistics (AREA)
- Data Mining & Analysis (AREA)
- Evolutionary Computation (AREA)
- Biomedical Technology (AREA)
- Molecular Biology (AREA)
- Biophysics (AREA)
- General Engineering & Computer Science (AREA)
- Artificial Intelligence (AREA)
- Mathematical Physics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Computer Graphics (AREA)
- Geometry (AREA)
- Apparatus For Radiation Diagnosis (AREA)
Abstract
本发明实施例公开了一种模型生成方法、图像重建方法、装置、设备和介质,其中,模型生成方法包括:获取预设数量的乳腺成像数据;将乳腺成像数据输入至基于预设图像重建算法建立的初始图像重建模型中,初始图像重建模型包括图像重建模块、正则降噪模块和算子更新模块,正则降噪模块基于预设卷积神经网络实现图像特征提取并实现图像降噪;直到输出的重建图像与期望重建图像间的差值满足预设损失函数时,生成最终的图像重建模型。本发明实施例的技术方案实现了利用迭代算法的成熟数学理论支撑及图像优化能力的同时,通过卷积神经网络的参数优化和特征提取来确定迭代参数、优化迭代算法,使三维乳腺图像重建更加高效。
Embodiments of the present invention disclose a model generation method, an image reconstruction method, a device, a device and a medium, wherein the model generation method includes: acquiring a preset amount of breast imaging data; inputting the breast imaging data into a reconstruction algorithm based on a preset image In the established initial image reconstruction model, the initial image reconstruction model includes an image reconstruction module, a regular noise reduction module and an operator update module. The regular noise reduction module realizes image feature extraction and image noise reduction based on a preset convolutional neural network; until the output When the difference between the reconstructed image and the expected reconstructed image satisfies the preset loss function, the final image reconstruction model is generated. The technical solution of the embodiment of the present invention realizes the use of the mature mathematical theory support of the iterative algorithm and the image optimization capability, and at the same time, the iterative parameters are determined and the iterative algorithm is optimized through the parameter optimization and feature extraction of the convolutional neural network, so that the three-dimensional breast image reconstruction is more accurate. Efficient.
Description
技术领域technical field
本发明实施例涉及医学图像处理技术领域,尤其涉及一种模型生成方法、图像重建方法、装置、设备和介质。Embodiments of the present invention relate to the technical field of medical image processing, and in particular, to a model generation method, an image reconstruction method, an apparatus, a device, and a medium.
背景技术Background technique
目前,三维数字乳腺断层摄影重建技术是乳腺癌临床筛查最常用的医学手段,有效的解决了二维医学影像中乳腺组织重叠的问题,并且有着成像空间分辨率高,对微小的肿块和钙化点敏感,辐射剂量低等优点。At present, three-dimensional digital breast tomography reconstruction technology is the most commonly used medical method for breast cancer clinical screening. It effectively solves the problem of overlapping breast tissue in two-dimensional medical images, and has high imaging spatial resolution. Point sensitivity, low radiation dose and other advantages.
三维数字乳腺断层摄影重建方法大多都是基于迭代算法开发的,将三维乳腺断层重建问题建模成一个数学优化模型,通过求解这个优化问题达到降低重建图像噪声、伪影的目的。或者,利用卷积神经网络的方法进行三维数字乳腺断层摄影重建,直接搭建神经网络替代三维乳腺重建过程,输入为投影数据,输出为重建图像。Most of the 3D digital breast tomography reconstruction methods are developed based on iterative algorithms. The 3D breast tomography reconstruction problem is modeled as a mathematical optimization model, and the purpose of reducing the noise and artifacts of the reconstructed image is achieved by solving this optimization problem. Or, use the method of convolutional neural network to reconstruct 3D digital breast tomography, directly build a neural network to replace the 3D breast reconstruction process, the input is projection data, and the output is a reconstructed image.
但是,利用迭代算法进行图像重建,重建速度慢、重建时间长,无法实现实时重建;基于卷积神经网络重建方法重建速度快,参数优化能力强,但是缺乏数学严谨性和解释性的问题,而且对数据的依耐性大。However, using iterative algorithm for image reconstruction, the reconstruction speed is slow and the reconstruction time is long, and real-time reconstruction cannot be achieved; the reconstruction method based on convolutional neural network has fast reconstruction speed and strong parameter optimization ability, but lacks mathematical rigor and interpretability. Dependency on data is high.
发明内容SUMMARY OF THE INVENTION
本发明实施例提供一种模型生成方法、图像重建方法、装置、设备和介质,以实现提高三维数字乳腺断层图像重建的速度以及提高重建图像的质量。Embodiments of the present invention provide a model generation method, an image reconstruction method, an apparatus, a device, and a medium, so as to improve the reconstruction speed of a three-dimensional digital breast tomography image and improve the quality of the reconstructed image.
第一方面,本发明实施例提供了一种模型生成方法,该方法包括:In a first aspect, an embodiment of the present invention provides a model generation method, which includes:
获取预设数量的乳腺成像数据;Acquire a preset amount of breast imaging data;
将所述乳腺成像数据输入至基于预设图像重建算法建立的初始图像重建模型中,其中,所述初始图像重建模型包括图像重建模块、正则降噪模块和算子更新模块,所述正则降噪模块基于预设卷积神经网络实现图像特征提取并实现图像降噪;Inputting the breast imaging data into an initial image reconstruction model established based on a preset image reconstruction algorithm, wherein the initial image reconstruction model includes an image reconstruction module, a regular noise reduction module and an operator update module, the regular noise reduction module The module realizes image feature extraction and image noise reduction based on preset convolutional neural network;
在所述初始图像重建模型进行图像重建计算的过程中更新模型参数,直到输出的重建图像与期望重建图像间的差值满足预设损失函数时,生成最终的图像重建模型。The model parameters are updated in the process of image reconstruction calculation performed by the initial image reconstruction model, and the final image reconstruction model is generated until the difference between the output reconstructed image and the expected reconstructed image satisfies the preset loss function.
可选的,所述根据乳腺成像系统几何特征仿真预设数量的乳腺成像数据,包括:Optionally, simulating a preset amount of breast imaging data according to the geometric features of the breast imaging system includes:
在预设投影角度范围内,每间隔预设角度采集一个投影数据,得到所述乳腺成像数据。Within a preset projection angle range, one piece of projection data is collected at every preset angle to obtain the breast imaging data.
可选的,所述预设图像重建算法包括交替方向乘子算法。Optionally, the preset image reconstruction algorithm includes an alternating direction multiplier algorithm.
可选的,所述图像重建模块具体用于在当前图像重建迭代计算中,对当前图像重建迭代计算的上一次迭代计算的数值进行迭代计算,以修正输出结果与正投影乳腺成像数据的差异。Optionally, the image reconstruction module is specifically configured to iteratively calculate the value of the previous iterative calculation of the current image reconstruction iterative calculation in the current image reconstruction iterative calculation, so as to correct the difference between the output result and the orthographic breast imaging data.
可选的,所述预设卷积神经网络为四层卷积运算网络,所述预设卷积神经网络的卷积核为三维卷积核。Optionally, the preset convolutional neural network is a four-layer convolutional operation network, and the convolution kernel of the preset convolutional neural network is a three-dimensional convolution kernel.
第二方面,本发明实施例还提供了一种三维乳腺图像重建方法,该方法包括:In a second aspect, an embodiment of the present invention further provides a three-dimensional breast image reconstruction method, the method comprising:
获取待重建的乳腺成像数据,并按照任一模型生成实施例中的模型生成方法生成三维乳腺图像重建模型;Acquire the breast imaging data to be reconstructed, and generate a three-dimensional breast image reconstruction model according to the model generation method in any model generation embodiment;
将所述待重建的乳腺成像数据输入到所述三维乳腺图像重建模型,得到所述待重建的乳腺成像数据对应的三维乳腺重建图像。Inputting the breast imaging data to be reconstructed into the three-dimensional breast image reconstruction model to obtain a three-dimensional breast reconstruction image corresponding to the breast imaging data to be reconstructed.
第三方面,本发明实施例还提供了一种模型生成装置,该装置包括:In a third aspect, an embodiment of the present invention further provides a model generation device, the device comprising:
样本数据仿真模块,用于获取预设数量的乳腺成像数据;A sample data simulation module for acquiring a preset amount of breast imaging data;
模型修正模块,用于将所述乳腺成像数据输入至基于预设图像重建算法建立的初始图像重建模型中,其中,所述初始图像重建模型包括图像重建模块、正则降噪模块和算子更新模块,所述正则降噪模块基于预设卷积神经网络实现图像特征提取并实现图像降噪;A model correction module for inputting the breast imaging data into an initial image reconstruction model established based on a preset image reconstruction algorithm, wherein the initial image reconstruction model includes an image reconstruction module, a regular noise reduction module and an operator update module , the regular noise reduction module realizes image feature extraction and image noise reduction based on a preset convolutional neural network;
模型确定模块,用于在所述初始图像重建模型进行图像重建计算的过程中更新模型参数,直到输出的重建图像与期望重建图像间的差值满足预设损失函数时,生成最终的图像重建模型。The model determination module is used to update the model parameters in the process of image reconstruction calculation performed by the initial image reconstruction model, until the difference between the output reconstructed image and the expected reconstructed image satisfies the preset loss function, and generate the final image reconstruction model .
可选的,所述样本数据仿真模块具体用于:Optionally, the sample data simulation module is specifically used for:
在预设投影角度范围内,每间隔预设角度采集一个投影数据,得到所述乳腺成像数据。Within a preset projection angle range, one piece of projection data is collected at every preset angle to obtain the breast imaging data.
可选的,所述预设图像重建算法包括交替方向乘子算法。Optionally, the preset image reconstruction algorithm includes an alternating direction multiplier algorithm.
可选的,所述图像重建模块具体用于在当前图像重建迭代计算中,对当前图像重建迭代计算的上一次迭代计算的数值进行迭代计算,以修正输出结果与正投影乳腺成像数据的差异。Optionally, the image reconstruction module is specifically configured to iteratively calculate the value of the previous iterative calculation of the current image reconstruction iterative calculation in the current image reconstruction iterative calculation, so as to correct the difference between the output result and the orthographic breast imaging data.
可选的,所述预设卷积神经网络为四层卷积运算网络,所述预设卷积神经网络的卷积核为三维卷积核。Optionally, the preset convolutional neural network is a four-layer convolutional operation network, and the convolution kernel of the preset convolutional neural network is a three-dimensional convolution kernel.
第四方面,本发明实施例还提供了一种三维乳腺图像重建装置,该装置包括:In a fourth aspect, an embodiment of the present invention further provides a three-dimensional breast image reconstruction device, the device comprising:
数据和模型获取模块,用于获取待重建的乳腺成像数据,并按照任一模型生成实施例中的模型生成方法生成三维乳腺图像重建模型;a data and model acquisition module, configured to acquire breast imaging data to be reconstructed, and generate a three-dimensional breast image reconstruction model according to the model generation method in any of the model generation embodiments;
图像重建模块,用于将所述待重建的乳腺成像数据输入到所述三维乳腺图像重建模型,得到所述待重建的乳腺成像数据对应的三维乳腺重建图像。The image reconstruction module is configured to input the breast imaging data to be reconstructed into the three-dimensional breast image reconstruction model to obtain a three-dimensional breast reconstruction image corresponding to the breast imaging data to be reconstructed.
第五方面,本发明实施例还提供了一种计算机设备,该计算机设备包括:In a fifth aspect, an embodiment of the present invention further provides a computer device, the computer device comprising:
一个或多个处理器;one or more processors;
存储装置,用于存储一个或多个程序;a storage device for storing one or more programs;
当所述一个或多个程序被所述一个或多个处理器执行,使得所述一个或多个处理器实现本发明实施例中任一所述的模型生成方法或三维乳腺图像重建方法。When the one or more programs are executed by the one or more processors, the one or more processors implement the model generation method or the three-dimensional breast image reconstruction method described in any one of the embodiments of the present invention.
第六方面,本发明实施例还提供了一种计算机可读存储介质,其上存储有计算机程序,该程序被处理器执行时实现如发明实施例中任一所述的模型生成方法或三维乳腺图像重建方法。In a sixth aspect, an embodiment of the present invention further provides a computer-readable storage medium on which a computer program is stored, and when the program is executed by a processor, implements the model generation method or the three-dimensional breast cancer described in any of the embodiments of the present invention Image reconstruction method.
本发明实施例,通过将仿真的乳腺成像数据输入至基于预设图像重建算法建立的初始图像重建模型中,进而在初始图像重建模型进行图像重建计算的过程中更新模型参数,直到输出的重建图像与期望重建图像间的差值满足预设损失函数时,生成最终的图像重建模型。解决了只利用迭代算法进行图像重建,重建速度慢、重建时间长,无法实现实时重建,而基于卷积神经网络重建方法缺乏数学严谨性和解释性的问题。在图像重建的过程中,利用初始图像重建模型中的图像重建模块、正则降噪模块和算子更新模块实现图像的重建,而且,正则降噪模块基于预设卷积神经网络实现图像特征提取并实现图像降噪。实现了利用迭代算法的成熟数学理论支撑及图像优化能力的同时,通过卷积神经网络的参数优化和特征提取来确定迭代参数、优化迭代算法,使三维乳腺图像重建更加高效。In the embodiment of the present invention, the simulated breast imaging data is input into the initial image reconstruction model established based on the preset image reconstruction algorithm, and then the model parameters are updated in the process of image reconstruction calculation performed by the initial image reconstruction model, until the output reconstructed image When the difference from the expected reconstructed image satisfies the preset loss function, the final image reconstruction model is generated. It solves the problem that only the iterative algorithm is used for image reconstruction, the reconstruction speed is slow, the reconstruction time is long, and real-time reconstruction cannot be achieved, and the reconstruction method based on convolutional neural network lacks mathematical rigor and interpretability. In the process of image reconstruction, the image reconstruction module, the regular noise reduction module and the operator update module in the initial image reconstruction model are used to reconstruct the image. Moreover, the regular noise reduction module realizes image feature extraction based on the preset convolutional neural network. Implement image noise reduction. While realizing the mature mathematical theory support and image optimization capability of iterative algorithm, the iterative parameters are determined and the iterative algorithm is optimized through the parameter optimization and feature extraction of the convolutional neural network, so that the reconstruction of 3D breast images is more efficient.
附图说明Description of drawings
图1是本发明实施例一中的模型生成方法的流程图;1 is a flowchart of a model generation method in
图2是本发明实施例一中的乳腺成像数据采集系统的示意图;2 is a schematic diagram of a breast imaging data acquisition system in
图3是本发明实施例一中的基于交替方向乘子算法深度神经网络结构图;3 is a structural diagram of a deep neural network based on the alternating direction multiplier algorithm in
图4是本发明实施例一中的基于交替方向乘子算法深度神经网络的三个子模块的网络结构图;4 is a network structure diagram of three sub-modules of a deep neural network based on the alternating direction multiplier algorithm in
图5是本发明实施例二中的三维乳腺图像重建方法的流程图;5 is a flowchart of a three-dimensional breast image reconstruction method in
图6是本发明实施例三中的模型生成装置的结构示意图;6 is a schematic structural diagram of a model generation device in Embodiment 3 of the present invention;
图7是本发明实施例四中的三维乳腺图像重建装置的结构示意图;7 is a schematic structural diagram of a three-dimensional breast image reconstruction device in
图8是本发明实施例五中的计算机设备的结构示意图。FIG. 8 is a schematic structural diagram of a computer device in Embodiment 5 of the present invention.
具体实施方式Detailed ways
为使本发明的目的、技术方案和优点更加清楚,以下将参照本发明实施例中的附图,通过实施方式清楚、完整地描述本发明的技术方案,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。下述各实施例中,每个实施例中同时提供了可选特征和示例,实施例中记载的各个特征可进行组合,形成多个可选方案,不应将每个编号的实施例仅视为一个技术方案。In order to make the objectives, technical solutions and advantages of the present invention clearer, the following will refer to the accompanying drawings in the embodiments of the present invention, and describe the technical solutions of the present invention clearly and completely through the implementation manner. Obviously, the described embodiments are the present invention. Some examples, but not all examples. Based on the embodiments of the present invention, all other embodiments obtained by those of ordinary skill in the art without creative efforts shall fall within the protection scope of the present invention. In the following embodiments, optional features and examples are provided in each embodiment at the same time, and the various features described in the embodiments can be combined to form multiple optional solutions, and each numbered embodiment should not be regarded as only for a technical solution.
实施例一Example 1
图1为本发明实施例一提供的模型生成方法的流程图,本实施例可适用于生成图像重建模型的情况,该方法可以由模型生成装置实现,该装置配置于计算机设备中,具体可通过设备中的软件和/或硬件来实施。FIG. 1 is a flowchart of a model generation method provided by
如图1所示,模型生成方法具体包括:As shown in Figure 1, the model generation method specifically includes:
S110、获取预设数量的乳腺成像数据。S110. Acquire a preset amount of breast imaging data.
由于仿真数据的尺寸大小、噪声分布可以人为制定,大大增加了数据样本的多样性,仿真数据没有实验系统误差造成伪影,图像的分辨率较高,更适合科研研究。因此,在本实施例中采取仿真乳腺成像数据作为模型训练数据。在获取训练数据的过程中,为了更接近临床,本专利模拟了真实乳腺成像系统的几何,可参考图2所示的数据采集系统几何示意图。在图2中,X射线扫描的目标物体(Object)是被压迫板(Compression board)压迫的仿真乳腺体膜。X射线发射管(X-ray tube)在采样的过程中与探测器(Detector)检测中心位置(黑色原点处)间的距离保持不变。其中,图2中左侧图像为数据采集系统的正视图(FrontView),图2中右侧图像为数据采集系统的侧视图(Side View)Since the size and noise distribution of the simulation data can be artificially determined, the diversity of data samples is greatly increased, the simulation data has no artifacts caused by experimental system errors, and the image resolution is higher, which is more suitable for scientific research. Therefore, in this embodiment, simulated breast imaging data is taken as model training data. In the process of acquiring training data, in order to be closer to the clinic, this patent simulates the geometry of a real breast imaging system. Please refer to the geometric schematic diagram of the data acquisition system shown in FIG. 2 . In FIG. 2 , the target object (Object) of X-ray scanning is a simulated mammary gland membrane compressed by a compression board. During the sampling process, the distance between the X-ray tube and the detection center position of the detector (the black origin) remains unchanged. Among them, the left image in Figure 2 is the front view (Front View) of the data acquisition system, and the right image in Figure 2 is the side view (Side View) of the data acquisition system
在一个具体的实施例中,重建的三维乳腺图片像素尺寸可设置为1024x512x30。X射线投影角度为40°,投影角度数为21(每隔2度采集一幅乳腺投影图像),投影像素个数为1024x512x21。可利用MATLAB软件,仿真了预设数量(如3000)个乳腺成像数据作为训练样本。In a specific embodiment, the pixel size of the reconstructed 3D breast image may be set to 1024x512x30. The X-ray projection angle is 40 ° , the number of projection angles is 21 (one breast projection image is collected every 2 degrees), and the number of projection pixels is 1024x512x21. MATLAB software can be used to simulate a preset number (eg 3000) breast imaging data as training samples.
在预设投影角度范围内,每间隔预设角度采集一个投影数据,得到所述乳腺成像数据。Within a preset projection angle range, one piece of projection data is collected at every preset angle to obtain the breast imaging data.
S120、将所述乳腺成像数据输入至基于预设图像重建算法建立的初始图像重建模型中,其中,所述初始图像重建模型包括图像重建模块、正则降噪模块和算子更新模块,所述正则降噪模块基于预设卷积神经网络实现图像特征提取并实现图像降噪。S120. Input the breast imaging data into an initial image reconstruction model established based on a preset image reconstruction algorithm, where the initial image reconstruction model includes an image reconstruction module, a regular noise reduction module, and an operator update module, and the regular The noise reduction module implements image feature extraction and image noise reduction based on a preset convolutional neural network.
其中,预设图像重建算法可以是迭代算法,如代数重建算法或交替方向乘子算法(the alternating direction method of multipliers,ADMM)。可以在建立初始图像重建模型的过程中,根据不同算法的模型特征,将初始图像重建模型包括图像重建模块、正则降噪模块和算子更新模块,对各模块进行求解,确定最终的全局参数,从而得到最终图像重建模型。其中,图像重建模块具体用于在当前图像重建迭代计算中,对当前图像重建迭代计算的上一次迭代计算的数值进行迭代计算,以修正输出结果与正投影乳腺成像数据的差异。正则降噪模块一般用于防止重建过程出现过拟合以及优化图像质量。算子更新模块用于在每一次迭代过程中更新参数值。即将交替方向乘子算法分解为三个子问题。The preset image reconstruction algorithm may be an iterative algorithm, such as an algebraic reconstruction algorithm or an alternating direction method of multipliers (the alternating direction method of multipliers, ADMM). In the process of establishing the initial image reconstruction model, according to the model characteristics of different algorithms, the initial image reconstruction model includes an image reconstruction module, a regular noise reduction module and an operator update module, and each module is solved to determine the final global parameters. Thus, the final image reconstruction model is obtained. The image reconstruction module is specifically configured to iteratively calculate the value of the previous iterative calculation of the current image reconstruction iterative calculation in the current image reconstruction iterative calculation, so as to correct the difference between the output result and the orthographic breast imaging data. Regular noise reduction modules are generally used to prevent overfitting in the reconstruction process and to optimize image quality. The operator update module is used to update parameter values during each iteration. That is, the alternating direction multiplier algorithm is decomposed into three subproblems.
在一个具体的实例中,预设图像重建算法为交替方向乘子算法。基于交替方向乘子算法建立的初始图像重建模型的网络结构可参考图3所示的基于交替方向乘子算法深度神经网络结构图。其中,乳腺组织投影图即为仿真得到的三维乳腺成像数据,数据的像素数是1024*512*21,乳腺组织重建图像即为初始图像重建模型输出的重建图像,像素数为512*1024*30,Iter1-IterN为迭代次数,表示相应迭代次数的迭代内容。示例性的,在第n次迭代(Iter n)中,输入为xn-1、zn-1、λn-1及b。In a specific example, the preset image reconstruction algorithm is an alternating direction multiplier algorithm. For the network structure of the initial image reconstruction model established based on the alternating direction multiplier algorithm, please refer to the deep neural network structure diagram based on the alternating direction multiplier algorithm shown in FIG. 3 . Among them, the breast tissue projection image is the 3D breast imaging data obtained by simulation, the number of pixels of the data is 1024*512*21, and the reconstructed image of breast tissue is the reconstructed image output by the initial image reconstruction model, and the number of pixels is 512*1024*30 , Iter1-IterN is the number of iterations, indicating the iterative content of the corresponding number of iterations. Exemplarily, in the nth iteration (Iter n), the inputs are x n-1 , z n-1 , λ n-1 and b.
具体的,X模块对应的是图像重建模块,X模块的网络架构如图4(a)所示。其中,b为三维乳腺的正投影,λn-1,zn-1为λ和z对应的初始值,上标n,k为迭代次数;通过结合λn-1和zn -1,对xn-1进行k次迭代,不断地修复xn-1和b之间的差异,进而减小与原图的误差。其数学公式为:Xn:xn,k=μ1xn,k-1+μ2(zn-1-λn-1)-τ(ATAxn,k-1-ATb),其中,x是需要重建乳腺成像数据,参数μ1,μ2,τ为迭代步长,A为系统矩阵,AT为系统矩阵的转置,与A和AT相乘相当于对图像进行投影和反投影。Specifically, the X module corresponds to the image reconstruction module, and the network architecture of the X module is shown in Figure 4(a). Among them, b is the orthographic projection of the three-dimensional breast, λ n-1 , z n-1 are the initial values corresponding to λ and z, and the superscripts n and k are the number of iterations; by combining λ n-1 and z n -1 , for x n-1 performs k iterations, and constantly repairs the difference between x n-1 and b, thereby reducing the error with the original image. Its mathematical formula is: X n : x n,k =μ 1 x n,k-1 +μ 2 (z n-1 -λ n-1 )-τ(A T Ax n,k-1 -A T b ), where x is the breast imaging data that needs to be reconstructed, parameters μ 1 , μ 2 , τ are the iterative step size, A is the system matrix, AT is the transpose of the system matrix, and the multiplication with A and AT is equivalent to the image Do projection and backprojection.
Z模块对应正则降噪模块,Z模块的网络架构如图4(b)所示。一般用于防止重建过程出现过拟合以及优化图像质量。本模块引入卷积神经网络,将输入的zn-1输入到4层卷积神经网络中,对应网络层数分别为1、16、16和1。由于乳腺组织在空间三个维度上都有信息分布,所以本实施例中采用3维卷积核,卷积核的大小为3x3x3,通过卷积神经网络,提取出图像的重要特征。R(z)为非线性变换。其数学表达式为:Zn:zn=R(z)+αS(z);R(z)=μ3zn-1+μ4(xn+λn-1),其中,z可以理解为x的去噪数据。在令x=z的前提下,μ3、μ4为迭代步长,S(z)为卷积变换,上标n为迭代次数,α为迭代步长。λ对应的是算子更新模块,λ模块的网络架构如图4(c)所示。具体为拉普拉斯算子更新,在每一次迭代过程中都会更新参数值。数学公式为:其中,为迭代步长,n为迭代次数。The Z module corresponds to the regular noise reduction module, and the network architecture of the Z module is shown in Figure 4(b). Typically used to prevent overfitting during reconstruction and to optimize image quality. This module introduces a convolutional neural network, and inputs the input z n-1 into a 4-layer convolutional neural network, and the corresponding network layers are 1, 16, 16, and 1, respectively. Since breast tissue has information distribution in three spatial dimensions, a 3-dimensional convolution kernel is used in this embodiment, and the size of the convolution kernel is 3x3x3, and the important features of the image are extracted through the convolutional neural network. R(z) is a nonlinear transformation. Its mathematical expression is: Z n :z n =R(z)+αS(z); R(z)=μ 3 z n-1 +μ 4 (x n +λ n-1 ), where z can be It is understood as the denoised data of x. Under the premise that x=z, μ 3 and μ 4 are the iterative step size, S(z) is the convolution transformation, the superscript n is the number of iterations, and α is the iterative step size. λ corresponds to the operator update module, and the network architecture of the λ module is shown in Figure 4(c). Specifically, the Laplacian operator is updated, and the parameter values are updated in each iteration process. The mathematical formula is: in, is the iteration step size, and n is the number of iterations.
S130、在所述初始图像重建模型进行图像重建计算的过程中更新模型参数,直到输出的重建图像与期望重建图像间的差值满足预设损失函数时,生成最终的图像重建模型。S130: Update model parameters during the image reconstruction calculation process performed by the initial image reconstruction model, until the difference between the output reconstructed image and the expected reconstructed image satisfies a preset loss function, and generate a final image reconstruction model.
具体的,在上述的神经网络中不断进行迭代计算,依次更新X、Z及Λ(λ)模块数据,直到输出的重建图像与期望重建图像间的差值满足预设损失函数时,生成最终的图像重建模型,从而结束模型生成的过程。Specifically, iterative calculation is continuously performed in the above-mentioned neural network, and the X, Z, and Λ(λ) module data are updated in turn, until the difference between the output reconstructed image and the expected reconstructed image satisfies the preset loss function, and the final output is generated. The image reconstructs the model, thus ending the model generation process.
在一种优选的实施方式中,采用GPU的CUDA(Compute Unified DeviceArchitecture,统一计算架构)加速的乳腺重建算法(解析反投影过程)直接嵌入到神经网络中,可以在网络训练的过程快速实现投影域和反投影域的并行变换,实现图像重建的过程,可以提高图像重建的速度。In a preferred embodiment, the mammary gland reconstruction algorithm (analytic back-projection process) accelerated by CUDA (Compute Unified Device Architecture) of GPU is directly embedded in the neural network, which can quickly realize the projection domain in the process of network training And the parallel transformation of the back-projection domain to realize the process of image reconstruction, which can improve the speed of image reconstruction.
这里需要说明的是,模型输入输出的像素数、采样数以及神经网络中的卷积核的大小均可以根据实际的模型生成需求进行设定,本实施例中的数据仅作为示例性的说明,并不对其进行限定。It should be noted here that the number of pixels input and output of the model, the number of samples, and the size of the convolution kernel in the neural network can all be set according to the actual model generation requirements. It is not limited.
本实施例的技术方案,通过将仿真的乳腺成像数据输入至基于预设图像重建算法建立的初始图像重建模型中,进而在初始图像重建模型进行图像重建计算的过程中更新模型参数,直到输出的重建图像与期望重建图像间的差值满足预设损失函数时,生成最终的图像重建模型。解决了只利用迭代算法进行图像重建,重建速度慢、重建时间长,无法实现实时重建,而基于卷积神经网络重建方法缺乏数学严谨性和解释性的问题。在图像重建的过程中,利用初始图像重建模型中的图像重建模块、正则降噪模块和算子更新模块实现图像的重建,而且,正则降噪模块基于预设卷积神经网络实现图像特征提取并实现图像降噪。实现了利用迭代算法的成熟数学理论支撑及图像优化能力的同时,通过卷积神经网络的参数优化和特征提取来确定迭代参数、优化迭代算法,使三维乳腺图像重建更加高效。The technical solution of this embodiment is to input the simulated breast imaging data into the initial image reconstruction model established based on the preset image reconstruction algorithm, and then update the model parameters in the process of image reconstruction calculation performed by the initial image reconstruction model, until the output When the difference between the reconstructed image and the expected reconstructed image satisfies the preset loss function, the final image reconstruction model is generated. It solves the problem that only the iterative algorithm is used for image reconstruction, the reconstruction speed is slow, the reconstruction time is long, and real-time reconstruction cannot be achieved, and the reconstruction method based on convolutional neural network lacks mathematical rigor and interpretability. In the process of image reconstruction, the image reconstruction module, the regular noise reduction module and the operator update module in the initial image reconstruction model are used to reconstruct the image. Moreover, the regular noise reduction module realizes image feature extraction based on the preset convolutional neural network. Implement image noise reduction. While realizing the mature mathematical theory support and image optimization capability of iterative algorithm, the iterative parameters are determined and the iterative algorithm is optimized through the parameter optimization and feature extraction of the convolutional neural network, so that the reconstruction of 3D breast images is more efficient.
实施例二
图5为本发明实施例二提供的一种三维乳腺图像重建方法的流程图,本发明实施例可适用于重建三维乳房图像的情况,该方法可以由三维乳腺图像重建装置实现,该装置配置于计算机设备中,具体可通过设备中的软件和/或硬件来实施。5 is a flowchart of a method for reconstructing a 3D breast image according to
如图5所示,三维乳腺图像重建方法具体包括:As shown in Figure 5, the three-dimensional breast image reconstruction method specifically includes:
S210、获取待重建的乳腺成像数据,并按照任一模型生成实施例中的模型生成方法生成三维乳腺图像重建模型。S210: Acquire the breast imaging data to be reconstructed, and generate a three-dimensional breast image reconstruction model according to the model generation method in any model generation embodiment.
具体的,待重建的乳腺成像数据可以是从临床对患者进行检查时获取的计算机断层扫描数据,或者是通过乳腺成像数据仿真系统进行仿真获得的成像数据。待重建的乳腺成像数据与三维乳腺图像重建模型的输入数据的格式是一致的。Specifically, the breast imaging data to be reconstructed may be computed tomography scan data obtained from a clinical examination of a patient, or imaging data obtained through simulation by a breast imaging data simulation system. The format of the breast imaging data to be reconstructed is the same as that of the input data of the three-dimensional breast image reconstruction model.
三维乳腺图像重建模型则是按照本发明任一模型生成实施例中的模型生成方法生成的一个图像重建模型。三维乳腺图像重建模型用于直接代替整个迭代重建过程,实现端到端重建。以ADMM迭代算法为例,将三维乳腺断层重建这个大规模问题分为Xn、Zn、Λn三个易于求解的子问题,通过依次求解出三个子问题,最终得到原问题全局解。其中,X模块对应的是图像重建功能,Z模块对应正则项降噪功能,Λ对应的是拉普拉斯算子更新,在每一次迭代过程中都会更新参数值。The three-dimensional breast image reconstruction model is an image reconstruction model generated according to the model generation method in any model generation embodiment of the present invention. The 3D breast image reconstruction model is used to directly replace the entire iterative reconstruction process, enabling end-to-end reconstruction. Taking the ADMM iterative algorithm as an example, the large-scale problem of 3D breast tomographic reconstruction is divided into three easy-to-solve sub-problems, X n , Z n , and Λ n . Among them, the X module corresponds to the image reconstruction function, the Z module corresponds to the regular term noise reduction function, and the Λ corresponds to the Laplace operator update, and the parameter values are updated in each iteration process.
S220、将所述待重建的乳腺成像数据输入到所述三维乳腺图像重建模型,得到所述待重建的乳腺成像数据对应的三维乳腺重建图像。S220. Input the breast imaging data to be reconstructed into the three-dimensional breast image reconstruction model to obtain a three-dimensional breast reconstruction image corresponding to the breast imaging data to be reconstructed.
将采集的乳腺模体投影数据或是患者乳腺数据输入三维乳腺图像重建模型中,得到最终的三维乳腺重建图像。Input the collected breast phantom projection data or patient breast data into the three-dimensional breast image reconstruction model to obtain the final three-dimensional breast reconstruction image.
优选的,本实施例通过用GPU执行重建过程,可进一步的提高图像重建的速度,从而可以更快地获取低噪声、少伪影、高图像分辨率的三维乳腺图像。Preferably, by using the GPU to perform the reconstruction process in this embodiment, the speed of image reconstruction can be further improved, so that a three-dimensional breast image with low noise, few artifacts and high image resolution can be obtained more quickly.
本实施例的技术方案,通过将待重建的图像数据,输入至预先训练好的三维乳腺图像重建模型,得到重建后的三维乳腺图像,且该三维乳腺图像重建模型利用深度卷积神经网络自动去学习、更新迭代过程的参数,解决了传统迭代算法中繁琐的参数选择过程,提高了乳腺三维图像的分辨率,且有较好的去除伪影的效果,能够提高重建三维乳腺图像的质量。In the technical solution of this embodiment, a reconstructed 3D breast image is obtained by inputting the image data to be reconstructed into a pre-trained 3D breast image reconstruction model, and the 3D breast image reconstruction model uses a deep convolutional neural network to automatically Learning and updating the parameters of the iterative process solves the tedious parameter selection process in the traditional iterative algorithm, improves the resolution of the three-dimensional breast image, has a better effect of removing artifacts, and can improve the quality of the reconstructed three-dimensional breast image.
实施例三Embodiment 3
图6为本发明实施例三提供的模型生成装置的结构示意图,本实施例可适用于生成图像重建模型的情况,该装置可以配置于计算机设备中,具体可通过设备中的软件和/或硬件来实施。6 is a schematic structural diagram of an apparatus for generating a model according to Embodiment 3 of the present invention. This embodiment is applicable to the case of generating an image reconstruction model. The apparatus may be configured in a computer device, and may be configured by software and/or hardware in the device. to implement.
如图6所示,本发明实施例中模型生成装置,包括:样本数据仿真模块310、模型修正模块320和模型确定模块330。As shown in FIG. 6 , the model generation apparatus in the embodiment of the present invention includes: a sample
其中,样本数据仿真模块310,用于获取预设数量的乳腺成像数据;模型修正模块320,用于将所述乳腺成像数据输入至基于预设图像重建算法建立的初始图像重建模型中,其中,所述初始图像重建模型包括图像重建模块、正则降噪模块和算子更新模块,所述正则降噪模块基于预设卷积神经网络实现图像特征提取并实现图像降噪;模型确定模块330,用于在所述初始图像重建模型进行图像重建计算的过程中更新模型参数,直到输出的重建图像与期望重建图像间的差值满足预设损失函数时,生成最终的图像重建模型。The sample
本实施例的技术方案,通过将仿真的乳腺成像数据输入至基于预设图像重建算法建立的初始图像重建模型中,进而在初始图像重建模型进行图像重建计算的过程中更新模型参数,直到输出的重建图像与期望重建图像间的差值满足预设损失函数时,生成最终的图像重建模型。解决了只利用迭代算法进行图像重建,重建速度慢、重建时间长,无法实现实时重建,而基于卷积神经网络重建方法缺乏数学严谨性和解释性的问题。在图像重建的过程中,利用初始图像重建模型中的图像重建模块、正则降噪模块和算子更新模块实现图像的重建,而且,正则降噪模块基于预设卷积神经网络实现图像特征提取并实现图像降噪。实现了利用迭代算法的成熟数学理论支撑及图像优化能力的同时,通过卷积神经网络的参数优化和特征提取来确定迭代参数、优化迭代算法,使三维乳腺图像重建更加高效。The technical solution of this embodiment is to input the simulated breast imaging data into the initial image reconstruction model established based on the preset image reconstruction algorithm, and then update the model parameters in the process of image reconstruction calculation performed by the initial image reconstruction model, until the output When the difference between the reconstructed image and the expected reconstructed image satisfies the preset loss function, the final image reconstruction model is generated. It solves the problem that only the iterative algorithm is used for image reconstruction, the reconstruction speed is slow, the reconstruction time is long, and real-time reconstruction cannot be achieved, and the reconstruction method based on convolutional neural network lacks mathematical rigor and interpretability. In the process of image reconstruction, the image reconstruction module, the regular noise reduction module and the operator update module in the initial image reconstruction model are used to reconstruct the image. Moreover, the regular noise reduction module realizes image feature extraction based on the preset convolutional neural network. Implement image noise reduction. While realizing the mature mathematical theory support and image optimization capability of iterative algorithm, the iterative parameters are determined and the iterative algorithm is optimized through the parameter optimization and feature extraction of the convolutional neural network, so that the reconstruction of 3D breast images is more efficient.
可选的,所述样本数据仿真模块310具体用于:Optionally, the sample
在预设投影角度范围内,每间隔预设角度采集一个投影数据,得到所述乳腺成像数据。Within a preset projection angle range, one piece of projection data is collected at every preset angle to obtain the breast imaging data.
可选的,所述预设图像重建算法包括交替方向乘子算法。Optionally, the preset image reconstruction algorithm includes an alternating direction multiplier algorithm.
可选的,所述图像重建模块具体用于在当前图像重建迭代计算中,对当前图像重建迭代计算的上一次迭代计算的数值进行迭代计算,以修正输出结果与正投影乳腺成像数据的差异。Optionally, the image reconstruction module is specifically configured to iteratively calculate the value of the previous iterative calculation of the current image reconstruction iterative calculation in the current image reconstruction iterative calculation, so as to correct the difference between the output result and the orthographic breast imaging data.
可选的,所述预设卷积神经网络为四层卷积运算网络,所述预设卷积神经网络的卷积核为三维卷积核。本发明实施例所提供的模型生成装置可执行本发明任意实施例所提供的模型生成方法,具备执行方法相应的功能模块和有益效果。Optionally, the preset convolutional neural network is a four-layer convolutional operation network, and the convolution kernel of the preset convolutional neural network is a three-dimensional convolution kernel. The model generation apparatus provided by the embodiment of the present invention can execute the model generation method provided by any embodiment of the present invention, and has functional modules and beneficial effects corresponding to the execution method.
实施例四
图7为本发明实施例四提供的一种三维乳腺图像重建装置,可适用于重建三维乳房图像的情况,该装置可以由三维乳腺图像重建装置实现,该装置配置于计算机设备中,具体可通过设备中的软件和/或硬件来实施。FIG. 7 is a three-dimensional breast image reconstruction device provided in
如图7所示,该装置包括:数据和模型获取模块410和图像重建模块420。As shown in FIG. 7 , the apparatus includes: a data and
其中,数据和模型获取模块410,用于获取待重建的乳腺成像数据,并按照任一模型生成实施例中的模型生成方法生成三维乳腺图像重建模型;图像重建模块420,用于将所述待重建的乳腺成像数据输入到所述三维乳腺图像重建模型,得到所述待重建的乳腺成像数据对应的三维乳腺重建图像。Among them, the data and
本实施例的技术方案,通过将待重建的图像数据,输入至预先训练好的三维乳腺图像重建模型,得到重建后的三维乳腺图像,且该三维乳腺图像重建模型利用深度卷积神经网络自动去学习、更新迭代过程的参数,解决了传统迭代算法中繁琐的参数选择过程,提高了乳腺三维图像的分辨率,且有较好的去除伪影的效果,能够提高重建三维乳腺图像的质量。In the technical solution of this embodiment, a reconstructed 3D breast image is obtained by inputting the image data to be reconstructed into a pre-trained 3D breast image reconstruction model, and the 3D breast image reconstruction model uses a deep convolutional neural network to automatically Learning and updating the parameters of the iterative process solves the tedious parameter selection process in the traditional iterative algorithm, improves the resolution of the three-dimensional breast image, has a better effect of removing artifacts, and can improve the quality of the reconstructed three-dimensional breast image.
本发明实施例所提供的三维乳腺图像重建装置可执行本发明任意实施例所提供的三维乳腺图像重建方法,具备执行方法相应的功能模块和有益效果。The three-dimensional breast image reconstruction apparatus provided by the embodiment of the present invention can execute the three-dimensional breast image reconstruction method provided by any embodiment of the present invention, and has functional modules and beneficial effects corresponding to the execution method.
实施例五Embodiment 5
图8是本发明实施例三中的计算机设备的结构示意图,该计算机设备与成像设备(例如Mammo乳房成像设备)相连接,用于对成像设备进行控制,并接收成像设备采集的信号。图8示出了适于用来实现本发明实施方式的示例性计算机设备812的框图。图8显示的计算机设备812仅仅是一个示例,不应对本发明实施例的功能和使用范围带来任何限制。8 is a schematic structural diagram of a computer device in Embodiment 3 of the present invention. The computer device is connected to an imaging device (eg, a Mammo breast imaging device) for controlling the imaging device and receiving signals collected by the imaging device. Figure 8 shows a block diagram of an
如图8所示,计算机设备812以通用计算设备的形式表现。计算机设备812的组件可以包括但不限于:一个或者多个处理器或者处理单元814,系统存储器828,连接不同系统组件(包括系统存储器828和处理单元814)的总线818。As shown in FIG. 8,
总线818表示几类总线结构中的一种或多种,包括存储器总线或者存储器控制器,外围总线,图形加速端口,处理器或者使用多种总线结构中的任意总线结构的局域总线。举例来说,这些体系结构包括但不限于工业标准体系结构(ISA)总线,微通道体系结构(MAC)总线,增强型ISA总线、视频电子标准协会(VESA)局域总线以及外围组件互连(PCI)总线。
计算机设备812典型地包括多种计算机系统可读介质。这些介质可以是任何能够被计算机设备812访问的可用介质,包括易失性和非易失性介质,可移动的和不可移动的介质。
系统存储器828可以包括易失性存储器形式的计算机系统可读介质,例如随机存取存储器(RAM)830和/或高速缓存存储器832。计算机设备812可以进一步包括其它可移动/不可移动的、易失性/非易失性计算机系统存储介质。仅作为举例,存储系统834可以用于读写不可移动的、非易失性磁介质(图8未显示,通常称为“硬盘驱动器”)。尽管图8中未示出,可以提供用于对可移动非易失性磁盘(例如“软盘”)读写的磁盘驱动器,以及对可移动非易失性光盘(例如CD-ROM,DVD-ROM或者其它光介质)读写的光盘驱动器。在这些情况下,每个驱动器可以通过一个或者多个数据介质接口与总线818相连。存储器828可以包括至少一个程序产品,该程序产品具有一组(例如至少一个)程序模块,这些程序模块被配置以执行本发明各实施例的功能。
具有一组(至少一个)程序模块842的程序/实用工具840,可以存储在例如存储器828中,这样的程序模块842包括但不限于操作系统、一个或者多个应用程序、其它程序模块以及程序数据,这些示例中的每一个或某种组合中可能包括网络环境的实现。程序模块842通常执行本发明所描述的实施例中的功能和/或方法。A program/
计算机设备812也可以与一个或多个外部设备814(例如键盘、指向设备、显示器824等)通信,还可与一个或者多个使得用户能与该计算机设备812交互的设备通信,和/或与使得该计算机设备812能与一个或多个其它计算设备进行通信的任何设备(例如网卡,调制解调器等等)通信。这种通信可以通过输入/输出(I/O)接口822进行。并且,计算机设备812还可以通过网络适配器820与一个或者多个网络(例如局域网(LAN),广域网(WAN)和/或公共网络,例如因特网)通信。如图所示,网络适配器820通过总线818与计算机设备812的其它模块通信。应当明白,尽管图8中未示出,可以结合计算机设备812使用其它硬件和/或软件模块,包括但不限于:微代码、设备驱动器、冗余处理单元、外部磁盘驱动阵列、RAID系统、磁带驱动器以及数据备份存储系统等。
处理单元816通过运行存储在系统存储器828中的程序,从而执行各种功能应用以及数据处理,例如实现本发明实施例所提供的模型生成方法或三维乳腺图像重建方法。The
其中,模型生成方法包括:Among them, the model generation method includes:
获取预设数量的乳腺成像数据;Acquire a preset amount of breast imaging data;
将所述乳腺成像数据输入至基于预设图像重建算法建立的初始图像重建模型中,其中,所述初始图像重建模型包括图像重建模块、正则降噪模块和算子更新模块,所述正则降噪模块基于预设卷积神经网络实现图像特征提取并实现图像降噪;Inputting the breast imaging data into an initial image reconstruction model established based on a preset image reconstruction algorithm, wherein the initial image reconstruction model includes an image reconstruction module, a regular noise reduction module and an operator update module, the regular noise reduction module The module realizes image feature extraction and image noise reduction based on preset convolutional neural network;
在所述初始图像重建模型进行图像重建计算的过程中更新模型参数,直到输出的重建图像与期望重建图像间的差值满足预设损失函数时,生成最终的图像重建模型。The model parameters are updated in the process of image reconstruction calculation performed by the initial image reconstruction model, and the final image reconstruction model is generated until the difference between the output reconstructed image and the expected reconstructed image satisfies the preset loss function.
三维乳腺图像重建方法包括:Three-dimensional breast image reconstruction methods include:
获取待重建的乳腺成像数据,并按照上述任一项方法生成三维乳腺图像重建模型;Acquire the breast imaging data to be reconstructed, and generate a three-dimensional breast image reconstruction model according to any of the above methods;
将所述待重建的乳腺成像数据输入到所述三维乳腺图像重建模型,得到所述待重建的乳腺成像数据对应的三维乳腺重建图像。Inputting the breast imaging data to be reconstructed into the three-dimensional breast image reconstruction model to obtain a three-dimensional breast reconstruction image corresponding to the breast imaging data to be reconstructed.
实施例六Embodiment 6
本发明实施例六还提供了一种计算机可读存储介质,其上存储有计算机程序,该程序被处理器执行时实现如本发明实施例所提供的模型生成方法或三维乳腺图像重建方法。Embodiment 6 of the present invention further provides a computer-readable storage medium on which a computer program is stored, and when the program is executed by a processor, implements the model generation method or the three-dimensional breast image reconstruction method provided by the embodiment of the present invention.
其中,模型生成方法包括:Among them, the model generation method includes:
获取预设数量的乳腺成像数据;Acquire a preset amount of breast imaging data;
将所述乳腺成像数据输入至基于预设图像重建算法建立的初始图像重建模型中,其中,所述初始图像重建模型包括图像重建模块、正则降噪模块和算子更新模块,所述正则降噪模块基于预设卷积神经网络实现图像特征提取并实现图像降噪;Inputting the breast imaging data into an initial image reconstruction model established based on a preset image reconstruction algorithm, wherein the initial image reconstruction model includes an image reconstruction module, a regular noise reduction module and an operator update module, the regular noise reduction module The module realizes image feature extraction and image noise reduction based on preset convolutional neural network;
在所述初始图像重建模型进行图像重建计算的过程中更新模型参数,直到输出的重建图像与期望重建图像间的差值满足预设损失函数时,生成最终的图像重建模型。The model parameters are updated in the process of image reconstruction calculation performed by the initial image reconstruction model, and the final image reconstruction model is generated until the difference between the output reconstructed image and the expected reconstructed image satisfies the preset loss function.
三维乳腺图像重建方法包括:Three-dimensional breast image reconstruction methods include:
获取待重建的乳腺成像数据,并按照上述任一项方法生成三维乳腺图像重建模型;Acquire the breast imaging data to be reconstructed, and generate a three-dimensional breast image reconstruction model according to any of the above methods;
将所述待重建的乳腺成像数据输入到所述三维乳腺图像重建模型,得到所述待重建的乳腺成像数据对应的三维乳腺重建图像。Inputting the breast imaging data to be reconstructed into the three-dimensional breast image reconstruction model to obtain a three-dimensional breast reconstruction image corresponding to the breast imaging data to be reconstructed.
本发明实施例的计算机存储介质,可以采用一个或多个计算机可读的介质的任意组合。计算机可读介质可以是计算机可读信号介质或者计算机可读存储介质。计算机可读存储介质例如可以是,但不限于电、磁、光、电磁、红外线、或半导体的系统、装置或器件,或者任意以上的组合。计算机可读存储介质的更具体的例子(非穷举的列表)包括:具有一个或多个导线的电连接、便携式计算机磁盘、硬盘、随机存取存储器(RAM)、只读存储器(ROM)、可擦式可编程只读存储器(EPROM或闪存)、光纤、便携式紧凑磁盘只读存储器(CD-ROM)、光存储器件、磁存储器件、或者上述的任意合适的组合。在本文件中,计算机可读存储介质可以是任何包含或存储程序的有形介质,该程序可以被指令执行系统、装置或者器件使用或者与其结合使用。The computer storage medium in the embodiments of the present invention may adopt any combination of one or more computer-readable mediums. The computer-readable medium may be a computer-readable signal medium or a computer-readable storage medium. The computer readable storage medium may be, for example, but not limited to, an electrical, magnetic, optical, electromagnetic, infrared, or semiconductor system, apparatus or device, or a combination of any of the above. More specific examples (a non-exhaustive list) of computer readable storage media include: electrical connections having one or more wires, portable computer disks, hard disks, random access memory (RAM), read only memory (ROM), Erasable programmable read only memory (EPROM or flash memory), optical fiber, portable compact disk read only memory (CD-ROM), optical storage devices, magnetic storage devices, or any suitable combination of the above. In this document, a computer-readable storage medium can be any tangible medium that contains or stores a program that can be used by or in conjunction with an instruction execution system, apparatus, or device.
计算机可读的信号介质可以包括在基带中或者作为载波一部分传播的数据信号,其中承载了计算机可读的程序代码。这种传播的数据信号可以采用多种形式,包括但不限于电磁信号、光信号或上述的任意合适的组合。计算机可读的信号介质还可以是计算机可读存储介质以外的任何计算机可读介质,该计算机可读介质可以发送、传播或者传输用于由指令执行系统、装置或者器件使用或者与其结合使用的程序。A computer-readable signal medium may include a propagated data signal in baseband or as part of a carrier wave, with computer-readable program code embodied thereon. Such propagated data signals may take a variety of forms, including but not limited to electromagnetic signals, optical signals, or any suitable combination of the foregoing. A computer-readable signal medium can also be any computer-readable medium other than a computer-readable storage medium that can transmit, propagate, or transport the program for use by or in connection with the instruction execution system, apparatus, or device .
计算机可读介质上包含的程序代码可以用任何适当的介质传输,包括但不限于无线、电线、光缆、RF等等,或者上述的任意合适的组合。Program code embodied on a computer readable medium may be transmitted using any suitable medium, including but not limited to wireless, wireline, optical fiber cable, RF, etc., or any suitable combination of the foregoing.
可以以一种或多种程序设计语言或其组合来编写用于执行本发明操作的计算机程序代码,所述程序设计语言包括面向对象的程序设计语言诸如Java、Smalltalk、C++,还包括常规的过程式程序设计语言诸如“C”语言或类似的程序设计语言。程序代码可以完全地在用户计算机上执行、部分地在用户计算机上执行、作为一个独立的软件包执行、部分在用户计算机上部分在远程计算机上执行、或者完全在远程计算机或服务器上执行。在涉及远程计算机的情形中,远程计算机可以通过任意种类的网络,包括局域网(LAN)或广域网(WAN),连接到用户计算机,或者,可以连接到外部计算机(例如利用因特网服务提供商来通过因特网连接)。Computer program code for carrying out operations of the present invention may be written in one or more programming languages, including object-oriented programming languages such as Java, Smalltalk, C++, and also conventional procedures, or a combination thereof programming languages such as "C" or similar programming languages. The program code may execute entirely on the user's computer, partly on the user's computer, as a stand-alone software package, partly on the user's computer and partly on a remote computer, or entirely on the remote computer or server. In the case of a remote computer, the remote computer may be connected to the user's computer through any kind of network, including a local area network (LAN) or wide area network (WAN), or may be connected to an external computer (eg, through the Internet using an Internet service provider) connect).
注意,上述仅为本发明的较佳实施例及所运用技术原理。本领域技术人员会理解,本发明不限于这里所述的特定实施例,对本领域技术人员来说能够进行各种明显的变化、重新调整和替代而不会脱离本发明的保护范围。因此,虽然通过以上实施例对本发明进行了较为详细的说明,但是本发明不仅仅限于以上实施例,在不脱离本发明构思的情况下,还可以包括更多其他等效实施例,而本发明的范围由所附的权利要求范围决定。Note that the above are only preferred embodiments of the present invention and applied technical principles. Those skilled in the art will understand that the present invention is not limited to the specific embodiments described herein, and various obvious changes, readjustments and substitutions can be made by those skilled in the art without departing from the protection scope of the present invention. Therefore, although the present invention has been described in detail through the above embodiments, the present invention is not limited to the above embodiments, and can also include more other equivalent embodiments without departing from the concept of the present invention. The scope is determined by the scope of the appended claims.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011278737.1A CN114511666A (en) | 2020-11-16 | 2020-11-16 | A model generation method, image reconstruction method, apparatus, device and medium |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011278737.1A CN114511666A (en) | 2020-11-16 | 2020-11-16 | A model generation method, image reconstruction method, apparatus, device and medium |
Publications (1)
Publication Number | Publication Date |
---|---|
CN114511666A true CN114511666A (en) | 2022-05-17 |
Family
ID=81547199
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202011278737.1A Pending CN114511666A (en) | 2020-11-16 | 2020-11-16 | A model generation method, image reconstruction method, apparatus, device and medium |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114511666A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114663544A (en) * | 2022-05-26 | 2022-06-24 | 中国科学技术大学 | An Electric Impedance Image Reconstruction Method Based on Depth Image Prior |
CN115148338A (en) * | 2022-06-28 | 2022-10-04 | 上海域圆信息科技有限公司 | Remote consultation system and method |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101292269A (en) * | 2005-09-26 | 2008-10-22 | 皇家飞利浦电子股份有限公司 | Iterative reconstruction with enhanced noise control filtering |
US20180018757A1 (en) * | 2016-07-13 | 2018-01-18 | Kenji Suzuki | Transforming projection data in tomography by means of machine learning |
CN111862255A (en) * | 2020-07-17 | 2020-10-30 | 上海联影医疗科技有限公司 | Regularization image reconstruction method, system, readable storage medium and device |
-
2020
- 2020-11-16 CN CN202011278737.1A patent/CN114511666A/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101292269A (en) * | 2005-09-26 | 2008-10-22 | 皇家飞利浦电子股份有限公司 | Iterative reconstruction with enhanced noise control filtering |
US20180018757A1 (en) * | 2016-07-13 | 2018-01-18 | Kenji Suzuki | Transforming projection data in tomography by means of machine learning |
CN111862255A (en) * | 2020-07-17 | 2020-10-30 | 上海联影医疗科技有限公司 | Regularization image reconstruction method, system, readable storage medium and device |
Non-Patent Citations (1)
Title |
---|
JING CHENG 等: "Model-based Deep Medical Imaging: the roadmap of generalizing iterative reconstruction model using deep learning", ARXIV:1906.08143 [CS.CV], 5 September 2019 (2019-09-05), pages 1 - 21 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114663544A (en) * | 2022-05-26 | 2022-06-24 | 中国科学技术大学 | An Electric Impedance Image Reconstruction Method Based on Depth Image Prior |
CN115148338A (en) * | 2022-06-28 | 2022-10-04 | 上海域圆信息科技有限公司 | Remote consultation system and method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
AU2019238323B2 (en) | Deep encoder-decoder models for reconstructing biomedical images | |
CN110766769B (en) | A magnetic resonance image reconstruction method, device, equipment and medium | |
Dong et al. | X-ray CT image reconstruction via wavelet frame based regularization and Radon domain inpainting | |
CN110766768B (en) | Magnetic resonance image reconstruction method, device, equipment and medium | |
CN111540025B (en) | Predicting images for image processing | |
CN104821002A (en) | Iterative reconstruction of image data in ct | |
CN111325675B (en) | Image processing method, device, equipment and storage medium | |
Hämäläinen et al. | Total variation regularization for large-scale X-ray tomography | |
US12100075B2 (en) | Image reconstruction by modeling image formation as one or more neural networks | |
CN114511666A (en) | A model generation method, image reconstruction method, apparatus, device and medium | |
CN112150600B (en) | Volume reconstruction image generation method, device and system and storage medium | |
CN109959669B (en) | Method and apparatus for decomposing base material and computer readable storage medium | |
CN115115723A (en) | Image reconstruction model generation method, image reconstruction device, image reconstruction equipment and medium | |
CN115115736A (en) | Image artifact removing method, device and equipment and storage medium | |
CN111627081B (en) | CT image reconstruction method, device, equipment and medium | |
CN111062882A (en) | Energy spectrum projection data processing method and device, electronic equipment and storage medium | |
EP3493163B1 (en) | Compressive sensing of light transport matrix | |
CN113689353A (en) | Three-dimensional image enhancement method, image enhancement model training method and device | |
CN113592968A (en) | Method and device for reducing metal artifacts in tomographic images | |
Abdellah et al. | Accelerating DRR generation using Fourier slice theorem on the GPU | |
US20240202943A1 (en) | Cbct simulation for ct-to-cbct registration and cbct segmentation | |
CN112580680B (en) | Training sample generation method and device, storage medium and electronic equipment | |
Farag et al. | Level set techniques for structural inversion in medical imaging | |
Tao et al. | Sparse-view phase-contrast and attenuation-based CT reconstruction utilizing model-driven deep learning | |
CN114581545A (en) | Medical image reconstruction method and device, computer equipment and storage medium |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |