CN114499758B - Channel coding method, device, equipment and computer readable storage medium - Google Patents
Channel coding method, device, equipment and computer readable storage medium Download PDFInfo
- Publication number
- CN114499758B CN114499758B CN202210020690.1A CN202210020690A CN114499758B CN 114499758 B CN114499758 B CN 114499758B CN 202210020690 A CN202210020690 A CN 202210020690A CN 114499758 B CN114499758 B CN 114499758B
- Authority
- CN
- China
- Prior art keywords
- filling
- column
- coding
- base map
- columns
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims abstract description 70
- 230000005540 biological transmission Effects 0.000 claims abstract description 54
- 238000010586 diagram Methods 0.000 claims abstract description 48
- 238000004590 computer program Methods 0.000 claims description 21
- 239000000758 substrate Substances 0.000 claims 2
- 238000000638 solvent extraction Methods 0.000 claims 1
- 238000012545 processing Methods 0.000 abstract description 10
- 230000008569 process Effects 0.000 abstract description 5
- 239000011159 matrix material Substances 0.000 description 11
- 238000004088 simulation Methods 0.000 description 7
- 230000001360 synchronised effect Effects 0.000 description 7
- 230000006870 function Effects 0.000 description 5
- 230000006872 improvement Effects 0.000 description 5
- 238000004891 communication Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 230000006798 recombination Effects 0.000 description 3
- 238000005215 recombination Methods 0.000 description 3
- 230000000903 blocking effect Effects 0.000 description 2
- 125000004122 cyclic group Chemical group 0.000 description 2
- 230000003068 static effect Effects 0.000 description 2
- 230000003190 augmentative effect Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 235000019580 granularity Nutrition 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000010606 normalization Methods 0.000 description 1
- 238000010187 selection method Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L1/00—Arrangements for detecting or preventing errors in the information received
- H04L1/004—Arrangements for detecting or preventing errors in the information received by using forward error control
- H04L1/0056—Systems characterized by the type of code used
- H04L1/0057—Block codes
- H04L1/0058—Block-coded modulation
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L1/00—Arrangements for detecting or preventing errors in the information received
- H04L1/0001—Systems modifying transmission characteristics according to link quality, e.g. power backoff
- H04L1/0006—Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission format
- H04L1/0007—Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission format by modifying the frame length
- H04L1/0008—Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission format by modifying the frame length by supplementing frame payload, e.g. with padding bits
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L1/00—Arrangements for detecting or preventing errors in the information received
- H04L1/004—Arrangements for detecting or preventing errors in the information received by using forward error control
- H04L1/0041—Arrangements at the transmitter end
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L1/00—Arrangements for detecting or preventing errors in the information received
- H04L1/004—Arrangements for detecting or preventing errors in the information received by using forward error control
- H04L1/0045—Arrangements at the receiver end
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Quality & Reliability (AREA)
- Compression, Expansion, Code Conversion, And Decoders (AREA)
- Error Detection And Correction (AREA)
Abstract
本申请涉及一种信道编码方法、装置、设备和计算机可读存储介质,发送设备分块处理待编码的传输块,获得至少一个码块;然后,采用编码基图对各码块进行低密度奇偶校验码编码,其中,每个码块中包括信息比特以及填充比特,上述填充比特的填充位置与传输块对应的编码基图的列重相关。采用上述方法可以提高接收设备的译码性能。
This application relates to a channel coding method, device, equipment and computer-readable storage medium. The sending device processes the transmission blocks to be encoded in blocks to obtain at least one code block; then, the coding base map is used to perform low-density parity and parity processing on each code block. Check code encoding, wherein each code block includes information bits and padding bits, and the padding position of the padding bits is related to the column weight of the coding base diagram corresponding to the transport block. Using the above method can improve the decoding performance of the receiving device.
Description
技术领域Technical field
本申请涉及信号处理技术领域,特别是涉及一种信道编码方法、装置、设备和计算机可读存储介质。The present application relates to the field of signal processing technology, and in particular to a channel coding method, device, equipment and computer-readable storage medium.
背景技术Background technique
随着通信技术的发展,对通信设备中的编码方式提出了更高的需求。在新无线电(New Radio,简称NR)系统中,可以包括用户设备和接入网设备,上述用户设备和接入网设备均可以做作为发送设备发送信号。上述发送设备可以基于低密度奇偶校验(Low DensityParity Check Code,简称LDPC)码来对信息比特集合进行编码以产生码字,以支持大范围的码率、块长度和粒度。With the development of communication technology, higher demands have been placed on encoding methods in communication equipment. In a New Radio (NR for short) system, it may include user equipment and access network equipment, and the above user equipment and access network equipment may be used as transmitting equipment to send signals. The above-mentioned sending device can encode a set of information bits based on a Low Density Parity Check Code (LDPC) code to generate a codeword to support a wide range of code rates, block lengths and granularities.
发送设备在对信息比特进行编码的过程中,可以将传输块(Transport Block,简称TB)分割成若干个长度相等的码块(Code Block,简称CB)。每个CB中可以包括信息比特以及填充比特。上述填充比特的位置一般位于信息比特之后,导致接收设备基于上述码字进行译码之后,在部分场景下获得的译码性能差。In the process of encoding information bits, the sending device can divide the Transport Block (TB) into several Code Blocks (CB) of equal length. Each CB may include information bits and padding bits. The position of the above-mentioned padding bits is generally located after the information bits, resulting in poor decoding performance in some scenarios after the receiving device performs decoding based on the above-mentioned codewords.
发明内容Contents of the invention
本申请实施例提供了一种信道编码方法、装置、设备和计算机可读存储介质,可以接受设备的提高译码性能。The embodiments of the present application provide a channel coding method, device, equipment and computer-readable storage medium, which can improve the decoding performance of the equipment.
第一方面,一种信道编码方法,应用于发送设备,包括:In the first aspect, a channel coding method is applied to the sending device, including:
分块处理待编码的传输块,获得至少一个码块;每个码块中包括信息比特以及填充比特;填充比特的填充位置与传输块对应的编码基图的列重相关;Process the transport block to be encoded in blocks to obtain at least one code block; each code block includes information bits and padding bits; the padding position of the padding bits is related to the column weight of the coding base map corresponding to the transport block;
采用编码基图对各码块进行低密度奇偶校验码编码。The coding base map is used to encode each code block with a low-density parity check code.
第二方面,一种信道译码方法,应用于接收设备,包括:In the second aspect, a channel decoding method is applied to receiving equipment, including:
在待译码的传输码字中的填充位置添加填充比特;填充位置与传输码字对应的编码基图的列重相关;Add padding bits to the padding position in the transmission codeword to be decoded; the padding position is related to the column weight of the coding base map corresponding to the transmission codeword;
采用编码基图对填充后的传输码字进行低密度奇偶校验码译码。The coding base map is used to decode the low-density parity check code of the filled transmission codeword.
第三方面,一种信道编码装置,应用于发送设备,包括:In the third aspect, a channel coding device is applied to sending equipment, including:
分块模块,用于分块处理待编码的传输块,获得至少一个码块;每个码块中包括信息比特以及填充比特;填充比特的填充位置与传输块对应的编码基图的列重相关;The blocking module is used to process the transport block to be encoded in blocks to obtain at least one code block; each code block includes information bits and padding bits; the padding position of the padding bits is related to the column weight of the coding base map corresponding to the transport block ;
编码模块,用于采用编码基图对各码块进行低密度奇偶校验码编码。The encoding module is used to encode low-density parity check codes for each code block using the encoding base map.
第四方面,一种信道译码装置,应用于接收设备,包括:In the fourth aspect, a channel decoding device is applied to receiving equipment, including:
填充模块,用于在待译码的传输码字中的填充位置添加填充比特;填充位置与用于对传输码字对应的传输块进行编码时采用的编码基图的列重相关;A padding module, used to add padding bits at padding positions in the transmission codeword to be decoded; the padding position is related to the column weight of the coding base diagram used when encoding the transmission block corresponding to the transmission codeword;
译码模块,用于采用编码基图对填充后的传输码字进行低密度奇偶校验码译码。The decoding module is used to decode the low-density parity check code of the filled transmission codeword using the encoding base map.
第五方面,一种发送设备,包括存储器及处理器,存储器中储存有计算机程序,计算机程序被处理器执行时,使得处理器执行上述第一方面中的信道编码方法的步骤。In a fifth aspect, a sending device includes a memory and a processor. A computer program is stored in the memory. When the computer program is executed by the processor, it causes the processor to perform the steps of the channel coding method in the first aspect.
第六方面,一种接收设备,包括存储器及处理器,存储器中储存有计算机程序,计算机程序被处理器执行时,使得处理器执行上述第二方面中的信道译码方法的步骤。In a sixth aspect, a receiving device includes a memory and a processor. A computer program is stored in the memory. When the computer program is executed by the processor, it causes the processor to perform the steps of the channel decoding method in the second aspect.
一种计算机可读存储介质,其上存储有计算机程序,其特征在于,计算机程序被处理器执行时实现上述第一方面和第二方面中方法的步骤。A computer-readable storage medium on which a computer program is stored, characterized in that when the computer program is executed by a processor, the steps of the method in the first and second aspects are implemented.
上述信道编码方法、装置、设备和计算机可读存储介质,发送设备对待编码的传输块进行分块处理,获得至少一个码块;然后,采用编码基图对各码块进行低密度奇偶校验码编码,其中,每个码块中包括信息比特以及填充比特,上述填充比特的填充位置与传输块对应的编码基图的列重相关。由于编码基图中列的列重越大,采用该编码基图进行编码时所关联的校验方程就越多;本申请实施例中发送设备基于编码基图中列的列重来确定填充比特的填充位置,相比于直接在信息比特的末尾添加填充比特,可以使填充比特参与更多的奇偶校验等式,使得接收设备对接收到的传输码字进行迭代译码时,可以消除更多的不确定性因素,可以带来更好的译码性能。According to the above channel coding method, device, equipment and computer-readable storage medium, the sending device divides the transmission block to be encoded into blocks to obtain at least one code block; then, uses the coding base map to perform low-density parity check code on each code block Encoding, wherein each code block includes information bits and padding bits, and the padding position of the padding bits is related to the column weight of the coding base diagram corresponding to the transport block. Since the greater the column weight of the column in the coding base diagram, the more check equations are associated when encoding using the coding base diagram; in the embodiment of the present application, the sending device determines the stuffing bits based on the column weight of the column in the coding base diagram. Compared with adding padding bits directly at the end of the information bits, the padding bits can participate in more parity check equations, so that when the receiving device iteratively decodes the received transmission codeword, more errors can be eliminated. More uncertainty factors can bring better decoding performance.
附图说明Description of the drawings
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。In order to explain the embodiments of the present application or the technical solutions in the prior art more clearly, the drawings needed to be used in the description of the embodiments or the prior art will be briefly introduced below. Obviously, the drawings in the following description are only These are some embodiments of the present application. For those of ordinary skill in the art, other drawings can be obtained based on these drawings without exerting creative efforts.
图1为本申请一个实施例中信道编码方法的应用环境图;Figure 1 is an application environment diagram of the channel coding method in one embodiment of the present application;
图2为本申请一个实施例中信道编码方法的流程图;Figure 2 is a flow chart of a channel coding method in an embodiment of the present application;
图3为本申请一个实施例中填充位置的示意图;Figure 3 is a schematic diagram of the filling position in one embodiment of the present application;
图4为本申请一个实施例中填充位置对应的列数的示意图;Figure 4 is a schematic diagram of the number of columns corresponding to filling positions in an embodiment of the present application;
图5为本申请一个实施例中填充位置对应的列数的示意图;Figure 5 is a schematic diagram of the number of columns corresponding to filling positions in an embodiment of the present application;
图6为本申请一个实施例中填充位置的示意图;Figure 6 is a schematic diagram of the filling position in one embodiment of the present application;
图7为本申请一个实施例中填充位置的示意图;Figure 7 is a schematic diagram of the filling position in one embodiment of the present application;
图8为本申请一个实施例中译码性能的对比示意图;Figure 8 is a schematic diagram comparing decoding performance in an embodiment of the present application;
图9为本申请一个实施例中译码性能的对比示意图;Figure 9 is a schematic diagram comparing decoding performance in an embodiment of the present application;
图10为本申请一个实施例中译码性能的对比示意图;Figure 10 is a schematic diagram comparing decoding performance in an embodiment of the present application;
图11为本申请一个实施例中信道译码方法的流程图;Figure 11 is a flow chart of a channel decoding method in an embodiment of the present application;
图12为本申请一个实施例中信道编码装置的结构框图;Figure 12 is a structural block diagram of a channel coding device in an embodiment of the present application;
图13为本申请一个实施例中信道编码装置的结构框图;Figure 13 is a structural block diagram of a channel coding device in an embodiment of the present application;
图14为本申请一个实施例中信道译码装置的结构框图;Figure 14 is a structural block diagram of a channel decoding device in an embodiment of the present application;
图15为本申请一个实施例中发送设备的结构示意图;Figure 15 is a schematic structural diagram of a sending device in an embodiment of the present application;
图16为本申请一个实施例中接收设备的结构示意图。Figure 16 is a schematic structural diagram of a receiving device in an embodiment of the present application.
具体实施方式Detailed ways
为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本申请,并不用于限定本申请。In order to make the purpose, technical solutions and advantages of the present application more clear, the present application will be further described in detail below with reference to the drawings and embodiments. It should be understood that the specific embodiments described here are only used to explain the present application and are not used to limit the present application.
图1为一个实施例中信道编码方法的应用环境示意图。如图1所示,该应用环境包括相互通信的发送设备102和接收设备104。发送设备102可以是网络设备,也可以是用户设备;相应地,上述接收设备104可以使用户设备,也可以是网络设备,在此不做限定。上述网络设备可以是任意一种具有无线收发功能的设备。包括但不限于:基站NodeB、演进型基站eNodeB、第五代(the fifth generation,5G)通信系统中的基站、未来通信系统中的基站或网络设备、WiFi系统中的接入节点、无线中继节点、无线回传节点等。网络设备还可以是云无线接入网络(cloud radio access network,CRAN)场景下的无线控制器。网络设备还可以是小站,传输节点(transmission reference point,TRP),路侧单元(road side unit,RSU)等。本申请的实施例对上述网络设备所采用的具体技术和具体设备形态不做限定。上述用户设备可以是一种具有无线收发功能的设备,可以但不限于是手持、穿戴或车载的设备等。用户设备可以是手机、平板电脑、带无线收发功能的电脑、虚拟现实(virtualreality,VR)终端设备、增强现实(augmented reality,AR)终端设备、工业控制(industrial control)中的无线终端、无人驾驶(self-driving)中的无线终端、远程医疗(remote medical)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smarthome)中的无线终端等。本申请的实施例对应用场景不做限定。Figure 1 is a schematic diagram of the application environment of the channel coding method in one embodiment. As shown in Figure 1, the application environment includes a sending device 102 and a receiving device 104 that communicate with each other. The sending device 102 may be a network device or a user device; accordingly, the receiving device 104 may be a user device or a network device, which is not limited here. The above network device can be any device with wireless transceiver function. Including but not limited to: base station NodeB, evolved base station eNodeB, base station in the fifth generation (5G) communication system, base station or network equipment in future communication system, access node in WiFi system, wireless relay nodes, wireless backhaul nodes, etc. The network device may also be a wireless controller in a cloud radio access network (CRAN) scenario. The network equipment can also be a small station, a transmission reference point (TRP), a road side unit (RSU), etc. The embodiments of this application do not limit the specific technologies and specific equipment forms used by the above network equipment. The above-mentioned user equipment may be a device with a wireless transceiver function, and may be, but is not limited to, a handheld, wearable, or vehicle-mounted device. User equipment can be mobile phones, tablets, computers with wireless transceiver functions, virtual reality (VR) terminal equipment, augmented reality (AR) terminal equipment, wireless terminals in industrial control (industrial control), unmanned Wireless terminals in self-driving, wireless terminals in remote medical, wireless terminals in smart grid, wireless terminals in transportation safety, smart city Wireless terminals in smart homes, wireless terminals in smart homes, etc. The embodiments of this application do not limit application scenarios.
图2为一个实施例中信道编码方法的流程图。本实施例中的信道编码方法,以运行于图1中的发送设备上为例进行描述。如图2所示,上述方法包括:Figure 2 is a flow chart of a channel coding method in an embodiment. The channel coding method in this embodiment is described by taking it running on the sending device in Figure 1 as an example. As shown in Figure 2, the above methods include:
S101、分块处理待编码的传输块,获得至少一个码块;每个码块中包括信息比特以及填充比特;所述填充比特的填充位置与所述传输块对应的编码基图的列重相关。S101. Process the transport block to be encoded in blocks to obtain at least one code block; each code block includes information bits and padding bits; the padding position of the padding bits is related to the column weight of the coding base diagram corresponding to the transport block. .
其中,上述待编码的传输块可以是发送设备中多媒体控制层(Medium AcdessControl,简称MAC层)处理后,传递至物理层的消息。上述传输块可以是物理层中数据信道传递的消息。上述发送设备为网络设备时,上述数据信道可以是物理下行共享信道(Physical Downlink Shared Channel,简称PDSCH),上述传输块可以承载下行单播数据,也可以是寻呼消息,还可以是系统消息。上述发送设备为用户设备时,上述数据信道可以是物理上行共享信道(Physical Upink Shared Channel,简称PUSCH),上述传输块可以承载上行业务数据。Wherein, the above-mentioned transport block to be encoded may be a message that is processed by a multimedia control layer (Medium AcdessControl, referred to as MAC layer) in the sending device and then transferred to the physical layer. The above-mentioned transport block may be a message transmitted by a data channel in the physical layer. When the above-mentioned sending device is a network device, the above-mentioned data channel may be a Physical Downlink Shared Channel (PDSCH), and the above-mentioned transmission block may carry downlink unicast data, a paging message, or a system message. When the above-mentioned sending device is user equipment, the above-mentioned data channel may be a Physical Uplink Shared Channel (PUSCH for short), and the above-mentioned transmission block may carry uplink service data.
发送设备可以对传输块进行LDPC编码,将传输块转换成一些列待传输的比特流数据。上述LDPC编码是一种接近香农极限的线性编码方式,可以采用具有稀疏校验矩阵的线性分组码对传输块进行编码。The sending device can perform LDPC encoding on the transport block and convert the transport block into a series of bit stream data to be transmitted. The above-mentioned LDPC coding is a linear coding method close to the Shannon limit, and a linear block code with a sparse check matrix can be used to encode the transmission block.
发送设备对传输块进行LDPC编码之前,需要选择相应的编码基图。上述编码基图可以包括2种,分别为基图1(BG1)和基图2(BG2),上述BG1主要用于传输块较长或者码率较高的情形,上述BG2可以用于传输块较短,一级码率较低的情形。上述BG1支持最大值为Kcb=8448的码块长度,BG1由0和1构成46×68的矩阵,对应的用于信息比特的最大列数Kbmax为22。上述BG2支持最大值为Kcb=3840的码块长度,BG1由0和1构成42×52的矩阵,对应的用于信息比特的最大列数Kbmax为10。Before the sending device performs LDPC encoding on the transmission block, it needs to select the corresponding encoding base image. The above-mentioned coding base pictures can include two types, namely base picture 1 (BG1) and base picture 2 (BG2). The above-mentioned BG1 is mainly used when the transmission block is long or the code rate is high, and the above-mentioned BG2 can be used when the transmission block is relatively long. Short, the first-level code rate is low. The above-mentioned BG1 supports a code block length with a maximum value of K cb =8448. BG1 consists of 0 and 1 to form a 46×68 matrix, and the corresponding maximum number of columns K bmax for information bits is 22. The above-mentioned BG2 supports a code block length with a maximum value of K cb =3840. BG1 consists of 0 and 1 to form a 42×52 matrix, and the corresponding maximum number of columns K bmax for information bits is 10.
由于编码基图单次能够传输的码块大小是有限的,因此需要对传输块进行分块处理。发送设备可以在传输块上添加CRC校验码,然后将添加了CRC校验码的传输块进行分段处理。发送设备可以将传输块分割成若干个长度相等的码块。上述码块中的信息比特的个数可以为K′,发送设备可以在码块中添加填充比特,使得码块的长度为提升值Z的整数倍。Since the code block size that can be transmitted in a single transmission of the coding base map is limited, the transmission blocks need to be divided into blocks. The sending device can add a CRC check code to the transmission block, and then segment the transmission block with the CRC check code added. The sending device can divide the transmission block into several code blocks of equal length. The number of information bits in the above code block may be K′, and the sending device may add padding bits to the code block so that the length of the code block is an integer multiple of the boost value Z.
上述添加了CRC校验码的传输块的长度可以为B,发送设备可以根据传输块长度B选择对应的信息比特在编码基图中占据的列数Kb。上述Kb的选择方法可以如下:在编码基图为BG1的情况下,取Kb=22;在编码基图为BG2的情况下,若B>640,则Kb=10;若640≥B>560,则Kb=9;若560≥B>192,则Kb=8;若B≤192,则Kb=6。在确定Kb的基础上,发送设备可以在预设的提升值列表,选择满足条件的提升值Z。The length of the above-mentioned transport block with added CRC check code can be B, and the sending device can select the number of columns K b occupied by the corresponding information bits in the coding base diagram according to the transport block length B. The selection method of the above K b can be as follows: when the coding base picture is BG1, take K b =22; when the coding base picture is BG2, if B>640, then K b =10; if 640≥B >560, then K b =9; if 560≥B>192, then K b =8; if B≤192, then K b =6. On the basis of determining K b , the sending device can select the promotion value Z that meets the conditions from the preset promotion value list.
上述提升值Z为满足关系式Kb·Z≥K′中的最小值。当Kbmax·Z>K′时,需要在码块中添加填充比特,以满足LDPC的编码格式要求。填充完成之后,每个码块的长度为K=Kbmax·Z,也就是填充比特的个数为F=K′-K。The above-mentioned improvement value Z is the minimum value satisfying the relational expression K b ·Z≥K′. When K bmax ·Z>K′, padding bits need to be added to the code block to meet the coding format requirements of LDPC. After the filling is completed, the length of each code block is K=K bmax ·Z, that is, the number of filling bits is F=K'-K.
上述填充比特的填充位置与传输块对应的编码基图的列重相关。其中,上述列重为编码基图中的一列中包含1的数量。上述填充位置可以位于列重最大的一列,也可以位于列重次大的一列,在此不做限定。当填充比特数量较大时,上述填充位置可以占据多个列,上述多个列中可以包括列重最大的列,也可以是列重相当的多个列。如图3所示,上述填充比特可以对应于编码基图中的第3列和第5列。The padding position of the padding bits is related to the column weight of the encoding base picture corresponding to the transport block. Among them, the above-mentioned column weight is the number of 1 contained in a column in the encoding base map. The above filling position may be located in the column with the largest column weight, or may be located in the column with the second largest column weight, which is not limited here. When the number of padding bits is large, the padding positions may occupy multiple columns, and the multiple columns may include the column with the largest column weight, or may be multiple columns with similar column weights. As shown in Figure 3, the above-mentioned padding bits may correspond to the 3rd column and the 5th column in the encoding base image.
上述填充比特可以是0元素,也可以是1元素,可选地,上述填充比特可以为0和1交替形成的比特组合。上述比特组合中1和1的交替方式可以是0,1,0,1……,也可以是0,0,1,0,0,1,……,对于上述交替方式在此不做限定。相比于全部填充0的填充方式,上述比特填充方式的鲁棒性更优,可以降低校验和循环冗余校验(Cyclic Redundancy Check,简称CRC)校验发生漏检的概率。The above-mentioned stuffing bits may be 0 elements or 1 elements. Optionally, the above-mentioned stuffing bits may be a bit combination formed by alternating 0s and 1s. The alternation pattern of 1 and 1 in the above bit combination may be 0, 1, 0, 1..., or 0, 0, 1, 0, 0, 1, . . . The above alternation pattern is not limited here. Compared with the filling method of filling all zeros, the above-mentioned bit filling method is more robust and can reduce the probability of missed detection in the checksum and cyclic redundancy check (Cyclic Redundancy Check, referred to as CRC).
S102、采用所述编码基图对各所述码块进行低密度奇偶校验码编码。S102. Use the encoding base map to perform low-density parity check code encoding on each of the code blocks.
在对传输块进行分段处理后,发送设备可以采用编码基图对分段后的各个码块进行LDPC编码。After segmenting the transport block, the sending device can use the coding base map to perform LDPC encoding on each segmented code block.
发送设备可以基于上述编码基图生成奇偶校验矩阵。发送设备可以将编码基图中的0元素扩展为全零的Z×Z矩阵,将基图中的1元素扩展为Z×Z置换矩阵。其中,上述置换矩阵可以由单位阵向右循环移位得到。The sending device may generate a parity check matrix based on the above encoding base map. The sending device can expand the 0 elements in the encoding base map into a Z×Z matrix of all zeros, and expand the 1 elements in the base map into a Z×Z permutation matrix. Among them, the above permutation matrix can be obtained by circularly shifting the unit matrix to the right.
进一步地,发送设备可以采用上述奇偶校验矩阵分别对各个码块进行编码,获得每个码块对应的编码比特序列。发送设备可以对编码比特序列进行速率匹配,根据分配的物理资源以及选丁的调制和编码方式,在编码后的编码比特序列中将填充序列丢弃。Further, the sending device can use the above parity check matrix to encode each code block separately to obtain the coded bit sequence corresponding to each code block. The sending device can perform rate matching on the coded bit sequence, and discard the padding sequence in the coded coded bit sequence according to the allocated physical resources and the selected modulation and coding methods.
需要说明的是,本申请实施例中的信道编码方式,可以应用于NR系统中的LDPC编码;也可以应用于其它系统中的LDPC编码,在此不做限定。It should be noted that the channel coding method in the embodiment of the present application can be applied to LDPC coding in NR systems; it can also be applied to LDPC coding in other systems, and is not limited here.
上述信道编码方法,发送设备对待编码的传输块进行分块处理,获得至少一个码块;然后,采用编码基图对各码块进行低密度奇偶校验码编码,其中,每个码块中包括信息比特以及填充比特,上述填充比特的填充位置与传输块对应的编码基图的列重相关。由于编码基图中列的列重越大,采用该编码基图进行LDPC编码时所关联的校验方程就越多;本申请实施例中发送设备基于编码基图中列的列重来确定填充比特的填充位置,相比于直接在信息比特的末尾添加填充比特,可以使填充比特参与更多的奇偶校验等式,使得接收设备对接收到的传输码字进行迭代译码时,可以消除更多的不确定性因素,可以带来更好的译码性能。In the above channel coding method, the sending device divides the transmission block to be encoded into blocks to obtain at least one code block; then, uses the coding base map to perform low-density parity check code encoding on each code block, where each code block includes Information bits and padding bits. The padding positions of the padding bits are related to the column weight of the coding base image corresponding to the transport block. Since the greater the column weight of the column in the coding base map, the more check equations are associated when using the coding base map for LDPC encoding; in the embodiment of the present application, the sending device determines the padding based on the column weight of the column in the coding base map. The padding position of the bits, compared to adding padding bits directly at the end of the information bits, can make the padding bits participate in more parity check equations, so that when the receiving device iteratively decodes the received transmission codeword, it can eliminate More uncertainty factors can bring better decoding performance.
在一个实施例中,涉及发送设备对待编码的传输块进行分块处理过程中,确定填充比特的填充位置的一种方式。发送设备可以码块中的信息比特在编码基图中占据的列数Kb,与编码基图用于信息比特的最大列数Kbmax进行比较,根据比较结果确定码块中的填充比特的填充位置。In one embodiment, it relates to a way for a sending device to determine the filling position of filling bits during the block processing of a transport block to be encoded. The sending device can compare the number of columns K b occupied by the information bits in the code block in the coding base diagram with the maximum number of columns K bmax used for information bits in the coding base diagram, and determine the filling of the stuffing bits in the code block based on the comparison result. Location.
若Kb等于Kbmax,则该码块的填充比特的填充位置对应于编码基图中的1列。若Kb小于Kbmax,则该码块的填充比特的填充位置对应于编码基图中的至少2列。以编码基图为BG2为里,BG2中最大用于信息比特的列数为10,若码块中的信息比特在编码基图中占据的比特数Kb也是10,说明需要添加的填充比特的个数小于提升值Z。若Kb小于10,说明需要添加的填充比特的个数大于提升值Z,需要在至少两列上添加填充比特。以编码基图为BG2,提升值Z=4为例,则每个码块的长度为40。若码块中信息比特的个数K′为30,码块中的信息比特可以包括a0至a29,在编码基图中占据的列数为8,则需要添加的填充比特的数量为10,也就是需要在3列中完成比特填充,如图4所示。若码块中信息比特的个数K′为38,码块中的信息比特可以包括a0至a37,在编码基图中占据的列数为10,则需要添加的填充比特的数量为2,可以在1列中完成比特填充,如图5所示。If K b is equal to K bmax , then the padding position of the padding bits of the code block corresponds to column 1 in the coding base image. If K b is less than K bmax , then the padding positions of the padding bits of the code block correspond to at least 2 columns in the coding base image. Taking the coding base picture as BG2 as the center, the maximum number of columns used for information bits in BG2 is 10. If the number of bits K b occupied by the information bits in the code block in the coding base picture is also 10, it means that the padding bits need to be added. The number is less than the promotion value Z. If K b is less than 10, it means that the number of padding bits that need to be added is greater than the improvement value Z, and padding bits need to be added to at least two columns. Taking the coding base picture as BG2 and the boost value Z=4 as an example, the length of each code block is 40. If the number K' of information bits in the code block is 30, the information bits in the code block can include a0 to a29, and the number of columns occupied in the coding base diagram is 8, then the number of padding bits that need to be added is 10, also It is necessary to complete bit filling in 3 columns, as shown in Figure 4. If the number K' of information bits in the code block is 38, the information bits in the code block can include a0 to a37, and the number of columns occupied in the coding base diagram is 10, then the number of padding bits that need to be added is 2, which can be Bit stuffing is done in column 1, as shown in Figure 5.
发送设备可以根据需要填充的列数,确定填充比特的填充位置。发送设备可以根据预设填充列数与编码基图的列的对应关系,确定填充比特的填充位置。例如,若需要填充的列数为1,上述填充位置可以对应于编码基图中的第0列;若需要填充的列数为2,上述填充位置可以位于编码基图中的第3列和第5列。The sending device can determine the padding position of the padding bits based on the number of columns that need to be padded. The sending device can determine the filling position of the filling bits based on the correspondence between the preset number of filling columns and the columns of the encoding base map. For example, if the number of columns that need to be filled is 1, the above filling position can correspond to the 0th column in the encoding base map; if the number of columns that need to be filled is 2, the above filling positions can be located in the 3rd and 3rd columns in the encoding base map. 5 columns.
上述对应关系可以基于仿真结果确定;上述仿真结果可以包括不同列重组合对应的译码性能。通过将填充位置设置于不同列重组合对应的列,对获得的译码性能进行分析,确定译码性能最佳的列重组合。The above correspondence relationship can be determined based on simulation results; the above simulation results can include decoding performance corresponding to different column recombinations. By setting the padding positions in columns corresponding to different column recombinations, the obtained decoding performance is analyzed to determine the column recombination with the best decoding performance.
在一种实现方式中,若Kb等于Kbmax,也就是发送设备可以在编码基图中选择1列进行比特填充,上述填充比特的填充位置可以对应于编码基图中的预设列。上述预设列可以为编码基图中用于信息比特的列,上述预设列的列重可以大于预设阈值。上述列重大于预设阈值的列可以是列重最大的列,也可以是其它列重较大的列,例如编码基图中列重大于13的其中一个列。In one implementation, if K b is equal to K bmax , that is, the sending device can select 1 column in the coding base picture for bit filling, and the filling position of the above filling bits can correspond to a preset column in the coding base picture. The above-mentioned preset columns may be columns used for information bits in the coding base image, and the column weight of the above-mentioned preset columns may be greater than the preset threshold. The column whose column weight is greater than the preset threshold may be the column with the largest column weight, or may be another column with a larger column weight, such as one of the columns in the encoding base map with a column weight greater than 13.
发送设备可以根据上述预设列,确定填充位置的起始位置,然后根据填充比特的数量确定各个填充位置所占的比特。以列重大于预设阈值的列为第i列为例,填充位置的起始位置为码块中的第Z·i位,依次填充F个元素,获得填充比特。The sending device can determine the starting position of the filling position based on the above-mentioned preset column, and then determine the bits occupied by each filling position based on the number of filling bits. Taking the column whose column weight is greater than the preset threshold as the i-th column as an example, the starting position of the filling position is the Z·i-th bit in the code block, and F elements are filled in sequence to obtain the filling bits.
以编码基图的Kbmax为10列,提升值Z=2为例。若码块中信息比特的个数K′为18,Kb=9,码块中的信息比特可以包括a0至a17;若上述编码基图中列重大于预设阈值的列为第3列,那么可以确定填充位置对应于编码基图的第3列,对应的填充位置的起始位置为第3Z=12位。填充比特的个数为20-18=2,也就是确定填充位置为第12位和第13位,相应地,信息比特a12可以位于第14位。填充结果可以如图6所示,图中的填充位置用0元素填充。Take the K bmax of the encoding base image as 10 columns and the lifting value Z=2 as an example. If the number K′ of information bits in the code block is 18, K b =9, the information bits in the code block may include a0 to a17; if the column in the above coding base diagram is greater than the preset threshold, the third column, Then it can be determined that the filling position corresponds to the third column of the encoding base image, and the starting position of the corresponding filling position is bit 3Z=12. The number of padding bits is 20-18=2, that is, the padding positions are determined to be the 12th and 13th bits. Correspondingly, the information bit a12 can be located at the 14th bit. The filling result can be shown in Figure 6. The filling position in the figure is filled with 0 elements.
在一种实现方式中,若Kb小于Kbmax,则发送设备可以根据预设的填充位置对应关系,确定填充比特的填充位置;其中,填充位置对应关系中包括不同Kb值的填充位置在编码基图中对应的列。In one implementation, if K b is less than K bmax , the sending device can determine the filling position of the filling bits according to the preset filling position correspondence; wherein the filling position correspondence includes filling positions with different K b values in Encode the corresponding column in the base graph.
对于不同的Kb值,上述填充位置对应关系中Kb值对应的列的数量可以不同。上述填充位置对应关系中,Kb值对应的列的数量可以是Kbmax-Kb+1,也可以大于Kbmax-Kb+1,在此不做限定。例如,Kbmax为10,Kb为8,则填充位置对应的列数可以是3列,也可以是4列,发送设备可以在上述4列中随机选择3列进行填充。For different K b values, the number of columns corresponding to the K b value in the above filling position correspondence relationship may be different. In the above filling position correspondence relationship, the number of columns corresponding to the K b value may be K bmax -K b +1, or may be greater than K bmax -K b +1, and is not limited here. For example, if K bmax is 10 and K b is 8, the number of columns corresponding to the filling position can be 3 columns or 4 columns. The sending device can randomly select 3 columns among the above 4 columns for filling.
其中,上述填充位置对应关系可以基于仿真结果确定。针对每个Kb值,可以仿真分析填充比特对应于编码基图中不同列时的译码性能;然后根据译码性能选择Kbmax-Kb+1个列确定为该Kb值的填充位置在编码基图中对应的列。在获得每个Kb值的填充位置在编码基图中对应的列之后,可以形成上述填充位置对应关系。需要说明的是,在根据多个译码性能确定Kb值的填充位置在编码基图中对应的列时,可以将译码性能最佳的Kbmax-Kb+1个列确定为该Kb值的填充位置在编码基图中对应的列,也可以结合译码性能、编码复杂度等各种参数共同确定该Kb值的填充位置在编码基图中对应的列。Wherein, the above filling position correspondence relationship can be determined based on the simulation results. For each K b value, the decoding performance when the filling bits correspond to different columns in the encoding base map can be simulated and analyzed; then K bmax -K b +1 columns are selected according to the decoding performance to determine the filling position of the K b value. The corresponding column in the encoding base graph. After obtaining the corresponding column of the filling position of each K b value in the encoding base map, the above filling position correspondence relationship can be formed. It should be noted that when determining the filling position of the K b value in the corresponding column in the encoding base picture based on multiple decoding performances, the K bmax -K b +1 columns with the best decoding performance can be determined as K The filling position of the b value is in the corresponding column in the coding base map. The filling position of the K b value in the corresponding column in the coding base map can also be determined in combination with various parameters such as decoding performance and coding complexity.
发送设备可以根据Kb值对应的至少一个列,确定各个填充比特的填充位置。例如,上述至少一个列包括第b1列、b2列,…bi列,可以根据上述至少一个列确定多个填充起始位置,包括第Z·b1位、第Z·b2位,…第Z·bi位。The sending device can determine the filling position of each filling bit according to at least one column corresponding to the K b value. For example, the above-mentioned at least one column includes the b1-th column, the b2-th column,...bi-th column, and multiple filling starting positions can be determined based on the above-mentioned at least one column, including the Z·b1-th position, the Z·b2-th position,...the Z·bi-th Bit.
以上述各个填充起始位置中i-1个填充起始位置为起点,确定连续的Z个填充位置;以剩余的一个填充起始位置为起点,确定连续的M个填充位置,其中(i-1)Z+M=F。上述剩余的一个填充起始位置对应的列,可以是Kb值对应的至少一个列中的最后一个列,也可以是Kb值对应的至少一个列中列重最小的列,还可以是Kb值对应的至少一个列中的任意一列,在此不做限定。Taking the i-1 filling starting positions among the above filling starting positions as the starting point, determine the consecutive Z filling positions; taking the remaining filling starting position as the starting point, determine the consecutive M filling positions, where (i- 1)Z+M=F. The remaining column corresponding to the starting position of the filling above can be the last column in at least one column corresponding to the K b value, or it can be the column with the smallest column weight in at least one column corresponding to the K b value, or it can be K Any column in at least one column corresponding to the b value is not limited here.
以编码基图的Kbmax为10列,提升值Z=4为例。若码块中信息比特的个数K′为30,Kb=8,码块中的信息比特可以包括a0至a29。填充位置对应关系中,Kb=8的填充位置对应编码基图中的第3列、第5列和第7列。起始填充位置包括第12位、第20位以及第28位;填充位置可以包括:第12位、第13位、第14位、第15位、第20位、第21位、第22位、第23位以及第28位、第29位。填充结果可以如图7所示,图中的填充位置用0元素填充。Take the K bmax of the encoding base image as 10 columns and the lifting value Z=4 as an example. If the number K′ of information bits in the code block is 30 and K b =8, the information bits in the code block may include a0 to a29. In the filling position correspondence relationship, the filling position of K b =8 corresponds to the 3rd column, the 5th column and the 7th column in the encoding base image. The starting filling positions include the 12th, 20th and 28th positions; the filling positions can include: the 12th, 13th, 14th, 15th, 20th, 21st, 22nd, 23rd and 28th and 29th. The filling result can be shown in Figure 7. The filling position in the figure is filled with 0 elements.
上述信道编码方法,基于Kb值和Kbmax的比较结果,确定填充比特的填充位置,可以获得与Kb值匹配的填充位置,使得在该填充位置进行比特填充并对码块进行LDPC编码之后,接收设备对接收到的传输码字进行迭代译码时,可以消除更多的不确定性因素,可以带来更好的译码性能。The above channel coding method determines the filling position of the filling bit based on the comparison result of K b value and K bmax , and can obtain the filling position matching the K b value, so that after bit filling is performed at the filling position and the code block is LDPC encoded , when the receiving device iteratively decodes the received transmission codeword, it can eliminate more uncertainty factors and bring better decoding performance.
在一个实施例中,提供一种具体的编码基图对应的填充位置对应关系。上述编码基图可以为针对编码码率小于预设码率阈值,和/或,传输块长度小于预设长度阈值的传输块使用的基图,上述编码基图可以是NR系统中的BG2。In one embodiment, a specific filling position correspondence relationship corresponding to the encoding base image is provided. The above-mentioned coding base map may be a base map used for transport blocks whose coding rate is less than a preset code rate threshold, and/or the transport block length is less than a preset length threshold. The above-mentioned coding base map may be BG2 in the NR system.
当信息比特长度相同而码率不同时,实际有效的奇偶校验矩阵为完整奇偶校验矩阵左上角的一部分。这意味着编码基图中信息比特列的列重发生了变化,最优的填充比特列的位置也随之不同。当传输块长度较短时,填充比特的填充位置对编码性能的影响较大。针对编码基图为BG2,特别是传输块长度小于640的码块,采用本申请中的编码方式可以对译码性能有更为明显的提升。When the information bit length is the same but the code rate is different, the actual effective parity check matrix is a part of the upper left corner of the complete parity check matrix. This means that the column weight of the information bit string in the encoding base map has changed, and the position of the optimal padding bit string is also different. When the transport block length is short, the padding position of the padding bits has a greater impact on the coding performance. For the coding base picture BG2, especially the code blocks whose transport block length is less than 640, the coding method in this application can significantly improve the decoding performance.
上述编码基图对应的填充位置对应关系中可以包括Kb值为8、9的填充位置在编码基图中对应的列。其中,Kb值为8的填充位置对应于编码基图中的第5列、第8列以及第9列。Kb值为9的填充位置对应于编码基图中的第5列以及第7列。The padding position correspondence relationship corresponding to the above encoding base map may include the columns corresponding to the padding positions with K b values of 8 and 9 in the encoding base map. Among them, the filling positions with a K b value of 8 correspond to the 5th column, the 8th column, and the 9th column in the encoding base image. The padding positions with a K b value of 9 correspond to the 5th and 7th columns in the encoding base image.
可选地,上述填充位置对应关系中还包括Kb值为10的填充位置在编码基图中对应的列。上述Kb值为10时,与Kbmax相等,填充位置可以对应编码基图中列重大于预设阈值的其中一列。可选地,Kb值为10时,填充位置可以对应于编码基图中的第7列。上述编码基图对应的填充位置对应关系,可以如下表所示。Optionally, the above filling position correspondence also includes the column corresponding to the filling position in the encoding base map with a K b value of 10. When the above K b value is 10, it is equal to K bmax , and the filling position can correspond to one of the columns in the encoding base image whose column weight is greater than the preset threshold. Optionally, when the K b value is 10, the padding position may correspond to the 7th column in the encoding base map. The corresponding relationship between the filling positions corresponding to the above encoding base map can be shown in the following table.
上述信道编码方法,发送设备基于仿真结果确定上述填充位置对应关系,从而可以通过填充位置对应关系,从而可以快速准确地确定出码块中的填充位置;在对码块进行比特填充之后,可以获得与仿真结果匹配的译码性能。With the above channel coding method, the sending device determines the filling position correspondence relationship based on the simulation results, so that the filling position correspondence relationship can be used to quickly and accurately determine the filling position in the code block; after bit filling the code block, it can be obtained Decoding performance that matches simulation results.
在一个实施例中,在上述实施例的基础上,当填充位置对应多个列时,存在其中一个列对应的填充位置小于提升值Z,而在其他列的填充位置等于提升值Z,上述填充位置小于提升值Z的列可以称之为部分填充的列。当填充位置对应多个列时,将不同的列确定为部分填充的列,采用上述部分填充的列进行比特填充后,对应的译码性能可能是不同的。通过仿真分析,对不同列作为部分填充的列时的译码性能进行比较,选择其中一个列在填充位置对应关系中标识为部分填充的列。In one embodiment, based on the above embodiment, when the filling position corresponds to multiple columns, there is a filling position corresponding to one column that is less than the lifting value Z, while the filling position in other columns is equal to the lifting value Z. The above-mentioned filling Columns whose positions are smaller than the boost value Z can be called partially filled columns. When the filling positions correspond to multiple columns, different columns are determined as partially filled columns. After bit filling is performed using the partially filled columns, the corresponding decoding performance may be different. Through simulation analysis, the decoding performance when different columns are used as partially filled columns is compared, and one of the columns is selected as a partially filled column in the filling position correspondence relationship.
每个Kb值的填充位置在编码基图中对应的列中,包括用于部分填充的列。上述填充位置对应关系可以包括部分填充的列的标识,上述Kb值为8时,用于部分填充的列为编码基图中的第9列;Kb值为9时,用于部分填充的列为为编码基图中的第5列;Kb值为10时,用于部分填充的列为为编码基图中的第7列。The filling position of each K b value is in the corresponding column in the encoding base map, including the column used for partial filling. The above-mentioned filling position correspondence may include the identification of partially filled columns. When the above K b value is 8, the column used for partial filling is the 9th column in the encoding base map; when the K b value is 9, the column used for partial filling is 9. The column is the 5th column in the encoding base map; when the K b value is 10, the column used for partial filling is the 7th column in the encoding base map.
如下表所示,上述部分填充的列通过括号进行标识。As shown in the following table, the partially populated columns above are identified by parentheses.
下面以具体示例对本申请实施例中的信道编码方法的译码性能提升效果进行说明。以传输块长度为184、编码码率为五分之一,调制方式为QPSK为例。接收设备采用的一码算法为归一化最小和算法,归一化因子可以取0.75。图8为Kb=8对应的译码性能对比图。图8中,圆形标记的曲线为码块中在信息比特末尾进行填充,获得的译码结果;三角形标记的曲线为在编码基图中的第5,8,9列对应的填充位置进行比特填充后,获得的译码性能。横轴表示接受设备接收到的信号的噪声比SNR,纵轴表示不同信噪比对应的误块率BLER。类似地,图9为Kb=9对应的译码性能对比图;图10为Kb=10对应的译码性能对比图。由图8至图10中的对比结果可以看出,采用本申请中的信道编码方法,可以明显提升接收设备的译码性能。The following uses specific examples to illustrate the decoding performance improvement effect of the channel coding method in the embodiment of the present application. Take the transport block length as 184, the encoding code rate as one-fifth, and the modulation method as QPSK as an example. The one-code algorithm used by the receiving device is the normalized minimum sum algorithm, and the normalization factor can be 0.75. Figure 8 is a comparison chart of decoding performance corresponding to K b =8. In Figure 8, the curve marked with a circle is the decoding result obtained by padding at the end of the information bits in the code block; the curve marked with a triangle is the decoding result obtained by padding the bits at the filling positions corresponding to the 5th, 8th, and 9th columns in the coding base diagram. After padding, the decoding performance obtained. The horizontal axis represents the noise ratio SNR of the signal received by the receiving device, and the vertical axis represents the block error rate BLER corresponding to different signal-to-noise ratios. Similarly, Figure 9 is a comparison chart of decoding performance corresponding to K b =9; Figure 10 is a comparison chart of decoding performance corresponding to K b =10. It can be seen from the comparison results in Figures 8 to 10 that using the channel coding method in this application can significantly improve the decoding performance of the receiving device.
上述信道编码方法,通过在填充位置对应关系中标识部分填充的列,使得发送设备在进行比特填充时,可以更准确地确定部分填充的列对应的填充位置,以及完全填充的列对应的填充位置,采用上述方式进行比特填充值后,获得与仿真结果匹配的译码性能。The above channel coding method identifies the partially filled columns in the filling position correspondence, so that the sending device can more accurately determine the filling positions corresponding to the partially filled columns and the filling positions corresponding to the completely filled columns when performing bit filling. , after using the above method to fill the bit values, the decoding performance matching the simulation results is obtained.
在一个实施例如,如图11所示,提供一种信道译码方法,应用于图1中的接收设备,上述方法包括:In one embodiment, as shown in Figure 11, a channel decoding method is provided and applied to the receiving device in Figure 1. The above method includes:
S201、在待译码的传输码字中的填充位置添加填充比特;所述填充位置与所述传输码字对应的编码基图的列重相关;S201. Add padding bits to the padding position in the transmission codeword to be decoded; the padding position is related to the column weight of the coding base diagram corresponding to the transmission codeword;
S202、采用所述编码基图对填充后的传输码字进行低密度奇偶校验码译码。S202. Use the encoding base map to decode the filled transmission codeword with a low-density parity check code.
接收设备接收到的传输码字,可以是发送设备基于上述实施例中的信道编码方法进行LDPC编码获得的,并通过速率匹配后将填充比特进行删除后获得的。接收设备可以对传输码字进行比特填充,接收设备对传输码字进行比特填充时,填充比特对应的填充位置与发送设备对待编码的码块进行比特填充的位置一致。接收设备可以采用上述实施例中的方法,确定填充比特的填充位置,然后对传输码字进行比特填充。进一步地,接收设备可以采用与编码基图对填充后的传输码字进行LDPC译码。The transmission codeword received by the receiving device may be obtained by the sending device performing LDPC coding based on the channel coding method in the above embodiment, and by deleting the stuffing bits after rate matching. The receiving device can perform bit filling on the transmission codeword. When the receiving device performs bit filling on the transmission codeword, the filling position corresponding to the filling bits is consistent with the position where the sending device performs bit filling on the code block to be encoded. The receiving device can use the method in the above embodiment to determine the filling position of the filling bits, and then perform bit filling on the transmission codeword. Further, the receiving device can perform LDPC decoding on the filled transmission codeword using the coding base map.
接收设备采用的译码算法可以是归一化最小和算法,也可以是和积算法,在此不做限定。需要说明的是,对于不同的译码算法,译码性能的提升程度可以不同。The decoding algorithm used by the receiving device may be a normalized minimum sum algorithm or a sum-product algorithm, which is not limited here. It should be noted that for different decoding algorithms, the degree of improvement in decoding performance can be different.
上述信道译码方法,其实现原理和技术效果与上述信道编码方法对应,在此不做赘述。The implementation principles and technical effects of the above channel decoding method correspond to the above channel coding method, and will not be described in detail here.
应该理解的是,虽然图2、图11的流程图中的各个步骤按照箭头的指示依次显示,但是这些步骤并不是必然按照箭头指示的顺序依次执行。除非本文中有明确的说明,这些步骤的执行并没有严格的顺序限制,这些步骤可以以其它的顺序执行。而且,图2、图11中的至少一部分步骤可以包括多个子步骤或者多个阶段,这些子步骤或者阶段并不必然是在同一时刻执行完成,而是可以在不同的时刻执行,这些子步骤或者阶段的执行顺序也不必然是依次进行,而是可以与其它步骤或者其它步骤的子步骤或者阶段的至少一部分轮流或者交替地执行。It should be understood that although the steps in the flowcharts of Figures 2 and 11 are shown in sequence as indicated by arrows, these steps are not necessarily executed in the order indicated by arrows. Unless explicitly stated in this article, there is no strict order restriction on the execution of these steps, and these steps can be executed in other orders. Moreover, at least some of the steps in Figure 2 and Figure 11 may include multiple sub-steps or multiple stages. These sub-steps or stages are not necessarily executed at the same time, but can be executed at different times. These sub-steps or The execution order of the stages is not necessarily sequential, but may be performed in turn or alternately with other steps or sub-steps of other steps or at least part of the stages.
图12为一个实施例的信道编码装置的结构框图。如图13所示,上述装置应用于发送设备,包括:Figure 12 is a structural block diagram of a channel coding device according to an embodiment. As shown in Figure 13, the above device is applied to sending equipment, including:
分块模块110,用于分块待编码的传输块,获得至少一个码块;每个码块中包括信息比特以及填充比特;填充比特的填充位置与传输块对应的编码基图的列重相关;The blocking module 110 is used to divide the transport block to be encoded into blocks to obtain at least one code block; each code block includes information bits and stuffing bits; the stuffing position of the stuffing bits is related to the column weight of the coding base diagram corresponding to the transport block. ;
编码模块120,用于采用编码基图对各码块进行低密度奇偶校验码编码。The encoding module 120 is used to encode each code block with a low-density parity check code using the encoding base map.
在一个实施例中,在上述实施例的基础上,如图13所示,上述装置还包括确定模块130,用于:将所述码块中的信息比特在所述编码基图中占据的列数Kb,与所述编码基图用于信息比特的最大列数Kbmax进行比较,根据比较结果确定所述码块中的填充比特的填充位置。In one embodiment, on the basis of the above embodiment, as shown in Figure 13, the above device further includes a determining module 130, configured to: determine the column occupied by the information bits in the code block in the coding base diagram. The number K b is compared with the maximum column number K bmax of the coding base diagram for information bits, and the filling position of the filling bits in the code block is determined according to the comparison result.
在一个实施例中,在上述实施例的基础上,确定模块130具体用于:若Kb等于Kbmax,则确定所述填充比特的填充位置对应于所述编码基图中的预设列;所述预设列的列重大于预设阈值。In one embodiment, based on the above embodiment, the determination module 130 is specifically configured to: if K b is equal to K bmax , determine that the filling position of the filling bit corresponds to the preset column in the encoding base image; The column weight of the preset column is greater than the preset threshold.
在一个实施例中,在上述实施例的基础上,确定模块130具体用于:若Kb小于Kbmax,则根据预设的填充位置对应关系,确定所述填充比特的填充位置;其中,填充位置对应关系中包括不同Kb值的填充位置在编码基图中对应的列。In one embodiment, based on the above embodiment, the determination module 130 is specifically configured to: if K b is less than K bmax , determine the filling position of the filling bit according to the preset filling position correspondence relationship; wherein, the filling position The position correspondence includes the columns corresponding to the filling positions of different K b values in the encoding base map.
在一个实施例中,在上述实施例的基础上,所述编码基图为针对编码码率小于预设码率阈值,和/或,传输块长度小于预设长度阈值的传输块使用的基图;所述填充位置对应关系中包括Kb值为8、9的填充位置在编码基图中对应的列。In one embodiment, based on the above embodiment, the coding base map is a base map used for transport blocks whose coding code rate is less than a preset code rate threshold, and/or the transport block length is less than a preset length threshold. ; The filling position correspondence includes the corresponding columns in the encoding base map of the filling positions with K b values of 8 and 9.
在一个实施例中,在上述实施例的基础上,Kb值为8的填充位置对应于所述编码基图中的第5列、第8列以及第9列。In one embodiment, based on the above embodiment, the filling position with a K b value of 8 corresponds to the 5th column, the 8th column and the 9th column in the encoding base image.
在一个实施例中,在上述实施例的基础上,Kb值为9的填充位置对应于所述编码基图中的第5列以及第7列。In one embodiment, based on the above embodiment, the padding position with a K b value of 9 corresponds to the 5th column and the 7th column in the encoding base image.
在一个实施例中,在上述实施例的基础上,所述填充位置对应关系中还包括Kb值为10的填充位置在所述编码基图中对应的列。In one embodiment, based on the above embodiment, the filling position correspondence relationship further includes the column corresponding to the filling position with a K b value of 10 in the encoding base map.
在一个实施例中,在上述实施例的基础上,所述Kb值为10的填充位置对应于所述编码基图中的第7列。In one embodiment, based on the above embodiment, the padding position with a K b value of 10 corresponds to the 7th column in the encoding base map.
在一个实施例中,在上述实施例的基础上,所述每个Kb值的填充位置在所述编码基图中对应的列中包括用于部分填充的列。In one embodiment, based on the above embodiment, the filling position of each K b value includes a column for partial filling in the corresponding column in the encoding base map.
在一个实施例中,所述Kb值为8时,所述用于部分填充的列为编码基图中的第9列。In one embodiment, when the K b value is 8, the column used for partial filling is the 9th column in the encoding base image.
在一个实施例中,所述Kb值为9时,所述用于部分填充的列为编码基图中的第5列。In one embodiment, when the K b value is 9, the column used for partial filling is the 5th column in the encoding base image.
在一个实施例中,所述Kb值为10时,所述用于部分填充的列为编码基图中的第7列。In one embodiment, when the K b value is 10, the column used for partial filling is the 7th column in the encoding base image.
在一个实施例中,在上述实施例的基础上,所述填充比特为0和1交替形成的比特组合。In one embodiment, based on the above embodiment, the padding bits are a bit combination formed by alternating 0 and 1.
上述信道编码装置,其实现原理和技术效果参见上述方法实施例,在此不做赘述。For the implementation principles and technical effects of the above-mentioned channel coding device, please refer to the above-mentioned method embodiments and will not be described in detail here.
上述信道编码装置中各个模块的划分仅仅用于举例说明,在其他实施例中,可将信道编码装置按照需要划分为不同的模块,以完成上述信道编码装置的全部或部分功能。The division of various modules in the above channel coding device is only for illustration. In other embodiments, the channel coding device can be divided into different modules as needed to complete all or part of the functions of the above channel coding device.
关于信道编码装置的具体限定可以参见上文中对于信道编码方法的限定,在此不再赘述。上述信道编码装置中的各个模块可全部或部分通过软件、硬件及其组合来实现。上述各模块可以硬件形式内嵌于或独立于计算机设备中的处理器中,也可以以软件形式存储于计算机设备中的存储器中,以便于处理器调用执行以上各个模块对应的操作。For specific limitations on the channel coding device, please refer to the above limitations on the channel coding method, which will not be described again here. Each module in the above channel coding device can be implemented in whole or in part by software, hardware, and combinations thereof. Each of the above modules may be embedded in or independent of the processor of the computer device in the form of hardware, or may be stored in the memory of the computer device in the form of software, so that the processor can call and execute the operations corresponding to the above modules.
图14为一个实施例的信道译码装置的结构框图。如图14所示,上述装置应用于接收设备,包括:Figure 14 is a structural block diagram of a channel decoding device according to an embodiment. As shown in Figure 14, the above device is applied to receiving equipment, including:
填充模块210,用于在待译码的传输码字中的填充位置添加填充比特;填充位置与用于对传输码字对应的传输块进行编码时采用的编码基图的列重相关;The padding module 210 is configured to add padding bits to the padding position in the transmission codeword to be decoded; the padding position is related to the column weight of the coding base diagram used when encoding the transmission block corresponding to the transmission codeword;
译码模块220,用于采用编码基图对填充后的传输码字进行低密度奇偶校验码译码。The decoding module 220 is used to decode the low-density parity check code of the filled transmission codeword using the coding base map.
上述信道译码装置中各个模块的划分仅仅用于举例说明,在其他实施例中,可将信道译码装置按照需要划分为不同的模块,以完成上述信道译码装置的全部或部分功能。The division of each module in the above channel decoding device is only for illustration. In other embodiments, the channel decoding device can be divided into different modules as needed to complete all or part of the functions of the above channel decoding device.
关于信道译码装置的具体限定可以参见上文中对于信道译码方法的限定,在此不再赘述。上述信道译码装置中的各个模块可全部或部分通过软件、硬件及其组合来实现。上述各模块可以硬件形式内嵌于或独立于计算机设备中的处理器中,也可以以软件形式存储于计算机设备中的存储器中,以便于处理器调用执行以上各个模块对应的操作。For specific limitations on the channel decoding device, please refer to the above limitations on the channel decoding method, which will not be described again here. Each module in the above-mentioned channel decoding device can be implemented in whole or in part by software, hardware, or combinations thereof. Each of the above modules may be embedded in or independent of the processor of the computer device in the form of hardware, or may be stored in the memory of the computer device in the form of software, so that the processor can call and execute the operations corresponding to the above modules.
图15为一个实施例中发送设备的内部结构示意图。该发送设备可以是手机、平板电脑、笔记本电脑、台式电脑、PDA(Personal Digital Assistant,个人数字助理)、POS(Point of Sales,销售终端)、车载电脑、穿戴式设备等任意终端设备。该发送设备包括通过系统总线连接的处理器和存储器。其中,该处理器可以包括一个或多个处理单元。处理器可为CPU(Central Processing Unit,中央处理单元)或DSP(Digital Signal Processing,数字信号处理器)等。存储器可包括非易失性存储介质及内存储器。非易失性存储介质存储有操作系统和计算机程序。该计算机程序可被处理器所执行,以用于实现以下各个实施例所提供的一种信道编码方法。内存储器为非易失性存储介质中的操作系统计算机程序提供高速缓存的运行环境。Figure 15 is a schematic diagram of the internal structure of a sending device in an embodiment. The sending device can be any terminal device such as a mobile phone, tablet computer, notebook computer, desktop computer, PDA (Personal Digital Assistant, Personal Digital Assistant), POS (Point of Sales, sales terminal), vehicle-mounted computer, wearable device, etc. The sending device includes a processor and memory connected via a system bus. The processor may include one or more processing units. The processor may be a CPU (Central Processing Unit, central processing unit) or a DSP (Digital Signal Processing, digital signal processor), etc. Memory may include non-volatile storage media and internal memory. Non-volatile storage media stores operating systems and computer programs. The computer program can be executed by a processor to implement a channel coding method provided in the following embodiments. The internal memory provides a cached execution environment for operating system computer programs in non-volatile storage media.
图16为一个实施例中接收设备的内部结构示意图。该接收设备包括通过系统总线连接的处理器和存储器。其中,处理器可为CPU(Central Processing Unit,中央处理单元)或DSP(Digital Signal Processing,数字信号处理器)等。存储器可包括非易失性存储介质及内存储器。非易失性存储介质存储有操作系统和计算机程序。该计算机程序可被处理器所执行,以用于实现以下各个实施例所提供的一种信道译码方法。内存储器为非易失性存储介质中的操作系统计算机程序提供高速缓存的运行环境。服务器可以用独立的服务器或者是多个服务器组成的服务器集群来实现。本领域技术人员可以理解,图中示出的结构,仅仅是与本申请方案相关的部分结构的框图,并不构成对本申请方案所应用于其上的服务器的限定,具体的服务器可以包括比图中所示更多或更少的部件,或者组合某些部件,或者具有不同的部件布置。Figure 16 is a schematic diagram of the internal structure of a receiving device in an embodiment. The receiving device includes a processor and memory connected through a system bus. The processor may be a CPU (Central Processing Unit, central processing unit) or a DSP (Digital Signal Processing, digital signal processor), etc. Memory may include non-volatile storage media and internal memory. Non-volatile storage media stores operating systems and computer programs. The computer program can be executed by a processor to implement a channel decoding method provided in the following embodiments. The internal memory provides a cached execution environment for operating system computer programs in non-volatile storage media. The server can be implemented as an independent server or a server cluster composed of multiple servers. Those skilled in the art can understand that the structure shown in the figure is only a block diagram of a part of the structure related to the solution of the present application, and does not constitute a limitation on the server on which the solution of the present application is applied. The specific server may include: More or fewer parts are shown in, or certain parts are combined, or have different parts arrangements.
本申请实施例中提供的装置中的各个模块的实现可为计算机程序的形式。该计算机程序可在终端或服务器上运行。该计算机程序构成的程序模块可存储在电子设备的存储器上。该计算机程序被处理器执行时,实现本申请实施例中所描述方法的步骤。The implementation of each module in the device provided in the embodiment of the present application may be in the form of a computer program. The computer program can be run on a terminal or on a server. The program modules formed by the computer program can be stored in the memory of the electronic device. When the computer program is executed by the processor, the steps of the methods described in the embodiments of the present application are implemented.
本申请实施例还提供了一种计算机可读存储介质。一个或多个包含计算机可执行指令的非易失性计算机可读存储介质,当所述计算机可执行指令被一个或多个处理器执行时,使得所述处理器执行信道编码方法或信道译码方法的步骤。An embodiment of the present application also provides a computer-readable storage medium. One or more non-volatile computer-readable storage media containing computer-executable instructions that, when executed by one or more processors, cause the processors to perform a channel encoding method or channel decoding Method steps.
本申请实施例还提供了一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行信道编码方法或信道译码方法。Embodiments of the present application also provide a computer program product containing instructions that, when run on a computer, cause the computer to execute a channel encoding method or a channel decoding method.
本申请所使用的对存储器、存储、数据库或其它介质的任何引用可包括非易失性和/或易失性存储器。非易失性存储器可包括ROM(Read-Only Memory,只读存储器)、PROM(Programmable Read-only Memory,可编程只读存储器)、EPROM(Erasable ProgrammableRead-Only Memory,可擦除可编程只读存储器)、EEPROM(Electrically ErasableProgrammable Read-only Memory,电可擦除可编程只读存储器)或闪存。易失性存储器可包括RAM(Random Access Memory,随机存取存储器),它用作外部高速缓冲存储器。作为说明而非局限,RAM以多种形式可得,诸如SRAM(Static Random Access Memory,静态随机存取存储器)、DRAM(Dynamic Random Access Memory,动态随机存取存储器)、SDRAM(Synchronous Dynamic Random Access Memory,同步动态随机存取存储器)、双数据率DDRSDRAM(Double Data Rate Synchronous Dynamic Random Access memory,双数据率同步动态随机存取存储器)、ESDRAM(Enhanced Synchronous Dynamic Random Access memory,增强型同步动态随机存取存储器)、SLDRAM(Sync Link Dynamic Random Access Memory,同步链路动态随机存取存储器)、RDRAM(Rambus Dynamic Random Access Memory,总线式动态随机存储器)、DRDRAM(Direct Rambus Dynamic Random Access Memory,接口动态随机存储器)。Any reference to memory, storage, database or other media used herein may include non-volatile and/or volatile memory. Non-volatile memory can include ROM (Read-Only Memory, read-only memory), PROM (Programmable Read-only Memory, programmable read-only memory), EPROM (Erasable ProgrammableRead-Only Memory, erasable programmable read-only memory) ), EEPROM (Electrically Erasable Programmable Read-only Memory, electrically erasable programmable read-only memory) or flash memory. Volatile memory may include RAM (Random Access Memory), which is used as an external cache memory. By way of illustration and not limitation, RAM is available in many forms, such as SRAM (Static Random Access Memory, static random access memory), DRAM (Dynamic Random Access Memory, dynamic random access memory), SDRAM (Synchronous Dynamic Random Access Memory) , synchronous dynamic random access memory), double data rate DDRSDRAM (Double Data Rate Synchronous Dynamic Random Access memory, double data rate synchronous dynamic random access memory), ESDRAM (Enhanced Synchronous Dynamic Random Access memory, enhanced synchronous dynamic random access memory) memory), SLDRAM (Sync Link Dynamic Random Access Memory, synchronous link dynamic random access memory), RDRAM (Rambus Dynamic Random Access Memory, bus dynamic random access memory), DRDRAM (Direct Rambus Dynamic Random Access Memory, interface dynamic random access memory) ).
以上所述实施例仅表达了本申请的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对本申请专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。因此,本申请专利的保护范围应以所附权利要求为准。The above-described embodiments only express several implementation modes of the present application, and their descriptions are relatively specific and detailed, but should not be construed as limiting the patent scope of the present application. It should be noted that, for those of ordinary skill in the art, several modifications and improvements can be made without departing from the concept of the present application, and these all fall within the protection scope of the present application. Therefore, the protection scope of this patent application should be determined by the appended claims.
Claims (17)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210020690.1A CN114499758B (en) | 2022-01-10 | 2022-01-10 | Channel coding method, device, equipment and computer readable storage medium |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210020690.1A CN114499758B (en) | 2022-01-10 | 2022-01-10 | Channel coding method, device, equipment and computer readable storage medium |
Publications (2)
Publication Number | Publication Date |
---|---|
CN114499758A CN114499758A (en) | 2022-05-13 |
CN114499758B true CN114499758B (en) | 2023-10-13 |
Family
ID=81510587
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210020690.1A Active CN114499758B (en) | 2022-01-10 | 2022-01-10 | Channel coding method, device, equipment and computer readable storage medium |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114499758B (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN118138189A (en) * | 2022-12-02 | 2024-06-04 | 华为技术有限公司 | Coding method, decoding method and communication device |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108173621A (en) * | 2016-12-07 | 2018-06-15 | 华为技术有限公司 | Data transmission method, sending device, receiving device and communication system |
CN108347298A (en) * | 2017-01-24 | 2018-07-31 | 华为技术有限公司 | A kind of method and communication device of coding |
CN108631925A (en) * | 2017-03-24 | 2018-10-09 | 中兴通讯股份有限公司 | A kind of quasi-circulating low-density parity check code processing method and device |
WO2018201554A1 (en) * | 2017-05-05 | 2018-11-08 | 华为技术有限公司 | Information processing method and communication apparatus |
CN110266320A (en) * | 2019-07-01 | 2019-09-20 | 京信通信系统(中国)有限公司 | LDPC coding and interpretation method, device and coding/decoding system |
CN110289933A (en) * | 2018-03-19 | 2019-09-27 | 华为技术有限公司 | Communication method, communication device and system |
CN112202455A (en) * | 2015-03-02 | 2021-01-08 | 三星电子株式会社 | send method and receive method |
CN113612579A (en) * | 2021-07-23 | 2021-11-05 | 广州慧睿思通科技股份有限公司 | Data processing method based on QC _ LDPC code, communication device, equipment and storage medium |
CN113612486A (en) * | 2021-08-16 | 2021-11-05 | 重庆大学 | Method, system, device and storage medium for constructing base matrix of PBRL LDPC code |
-
2022
- 2022-01-10 CN CN202210020690.1A patent/CN114499758B/en active Active
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112202455A (en) * | 2015-03-02 | 2021-01-08 | 三星电子株式会社 | send method and receive method |
CN108173621A (en) * | 2016-12-07 | 2018-06-15 | 华为技术有限公司 | Data transmission method, sending device, receiving device and communication system |
CN108347298A (en) * | 2017-01-24 | 2018-07-31 | 华为技术有限公司 | A kind of method and communication device of coding |
CN108631925A (en) * | 2017-03-24 | 2018-10-09 | 中兴通讯股份有限公司 | A kind of quasi-circulating low-density parity check code processing method and device |
WO2018201554A1 (en) * | 2017-05-05 | 2018-11-08 | 华为技术有限公司 | Information processing method and communication apparatus |
CN110289933A (en) * | 2018-03-19 | 2019-09-27 | 华为技术有限公司 | Communication method, communication device and system |
CN110266320A (en) * | 2019-07-01 | 2019-09-20 | 京信通信系统(中国)有限公司 | LDPC coding and interpretation method, device and coding/decoding system |
CN113612579A (en) * | 2021-07-23 | 2021-11-05 | 广州慧睿思通科技股份有限公司 | Data processing method based on QC _ LDPC code, communication device, equipment and storage medium |
CN113612486A (en) * | 2021-08-16 | 2021-11-05 | 重庆大学 | Method, system, device and storage medium for constructing base matrix of PBRL LDPC code |
Non-Patent Citations (3)
Title |
---|
"Failure Analysis of the Interval-Passing Algorithm for Compressed Sensing";Yauhen Yakimenka;《IEEE transactions on information theory》;全文 * |
"面向5G新空口技术的LDPC码标准化研究进展";柴荣;《重庆邮电大学学报自然科学版》;全文 * |
ZTE, ZTE Microelectronics.R1-1701599 "Complexity, throughput and latency considerations on LDPC codes for eMBB".3GPP tsg_ran\WG1_RL1.2017,(TSGR1_88),全文. * |
Also Published As
Publication number | Publication date |
---|---|
CN114499758A (en) | 2022-05-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2018202057A1 (en) | Method for transmitting data, base station, and terminal apparatus | |
CN108574494B (en) | Coding and decoding method and device | |
JP7220657B2 (en) | Puncturing and Repetition for Information Coding | |
TWI580197B (en) | Encoding and decoding method of low density parity check code | |
WO2018171401A1 (en) | Information processing method, apparatus and device | |
US12160252B2 (en) | Constructing method, processing device, storage medium and coding method | |
WO2021254422A1 (en) | Polar code encoding method and apparatus, and polar code decoding method and apparatus | |
CN114499758B (en) | Channel coding method, device, equipment and computer readable storage medium | |
KR20190073386A (en) | Puncturing and retransmission techniques for encoded transmissions | |
US20200092042A1 (en) | Method and apparatus for constructing coding sequence | |
WO2022171019A1 (en) | Encoding and decoding methods and related apparatuses | |
WO2019144862A1 (en) | Method and device for low density parity check, and communication device | |
WO2021213219A1 (en) | Encoding and decoding methods and apparatuses, and device | |
CN108574491A (en) | Data processing method, data processing device and communication device | |
CN108631913A (en) | A kind of deinterleaving method and relevant device based on Quasi-cyclic Low-density Parity-check Codes | |
CN109391358B (en) | Method and device for coding polarization code | |
WO2022193919A1 (en) | Encoding method and apparatus and decoding method and apparatus | |
CN108631931A (en) | A kind of method and device of construction polarization code sequence | |
CN108574493A (en) | Method and device for data processing | |
CN107317587B (en) | Encoding and Decoding Method of Low Density Parity Check Code | |
CN108429600A (en) | Method and device for data processing in a communication system | |
WO2020000490A1 (en) | Method and device for decoding polar code | |
WO2019242022A1 (en) | Polar code decoding method and apparatus | |
WO2019096124A1 (en) | Cyclic redundancy check (crc) calculation method and device | |
CN120074543A (en) | Coding method, device, communication device and computer storage medium |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
TR01 | Transfer of patent right | ||
TR01 | Transfer of patent right |
Effective date of registration: 20241114 Address after: 6th Floor, No.1 Chongqing Road, Banqiao District, Xinbei City, Taiwan, China, China Patentee after: Weiguang Co.,Ltd. Country or region after: Samoa Address before: Room 1501, 15 / F, building 2, courtyard 10, Chaoyang Park South Road, Chaoyang District, Beijing 100020 Patentee before: Zheku Technology (Beijing) Co.,Ltd. Country or region before: China |