CN114499477B - A GaN driver with double protection - Google Patents
A GaN driver with double protection Download PDFInfo
- Publication number
- CN114499477B CN114499477B CN202210048233.3A CN202210048233A CN114499477B CN 114499477 B CN114499477 B CN 114499477B CN 202210048233 A CN202210048233 A CN 202210048233A CN 114499477 B CN114499477 B CN 114499477B
- Authority
- CN
- China
- Prior art keywords
- nmos transistor
- control signal
- gate
- power device
- external input
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03K—PULSE TECHNIQUE
- H03K17/00—Electronic switching or gating, i.e. not by contact-making and –breaking
- H03K17/16—Modifications for eliminating interference voltages or currents
- H03K17/161—Modifications for eliminating interference voltages or currents in field-effect transistor switches
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03K—PULSE TECHNIQUE
- H03K17/00—Electronic switching or gating, i.e. not by contact-making and –breaking
- H03K17/51—Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used
- H03K17/56—Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices
- H03K17/687—Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices the devices being field-effect transistors
- H03K17/6871—Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices the devices being field-effect transistors the output circuit comprising more than one controlled field-effect transistor
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B70/00—Technologies for an efficient end-user side electric power management and consumption
- Y02B70/10—Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes
Landscapes
- Electronic Switches (AREA)
- Power Conversion In General (AREA)
Abstract
本发明属于电子电路技术领域,具体涉及一种具有双重保护功能的GaN半桥驱动器。该驱动器是在传统电容耦合产生负压的基础上,利用高K介质功率器件能够根据不同控制信号切换至相应工作模式,使其适用各种不同电压等级的驱动中这一特点,通过外部输入的控制信号控制高K介质功率器件的工作模式和耦合电容的充放电,使第一耦合电容稳定的产生负压,有效防止GaN功率管误开启。克服了传统电容耦合产生负压时,电容电荷且容易受到扰动而导致负压消失的问题。且本发明无需外接负压或内部降压转换器集成,一方面免去了传统的外加负压带来的大功耗和开关干扰造成的稳定性问题,另一方面降低了结构复杂度,节省版图面积,减小成本。
The invention belongs to the technical field of electronic circuits, and in particular relates to a GaN half-bridge driver with double protection functions. The driver is based on the negative pressure generated by traditional capacitive coupling, and uses the high-K dielectric power device to switch to the corresponding working mode according to different control signals, making it suitable for driving with various voltage levels. The control signal controls the working mode of the high-K dielectric power device and the charging and discharging of the coupling capacitor, so that the first coupling capacitor can stably generate negative pressure, effectively preventing the GaN power tube from being turned on by mistake. It overcomes the problem that when negative pressure is generated by traditional capacitive coupling, the capacitive charge is easily disturbed and causes the negative pressure to disappear. Moreover, the present invention does not require external negative pressure or integration of internal step-down converters. On the one hand, it avoids the stability problems caused by large power consumption and switching interference caused by traditional external negative pressure. On the other hand, it reduces the structural complexity and saves layout area, reduce cost.
Description
技术领域technical field
本发明属于电子电路技术领域,具体涉及一种具有双重保护功能的GaN驱动器。The invention belongs to the technical field of electronic circuits, and in particular relates to a GaN driver with double protection functions.
背景技术Background technique
氮化镓(GaN)功率管有着高迁移率的电子气,可实现远超传统硅基器件的电流密度和开关速度,具有广泛的应用性。在电机驱动、高边驱动、电源转换、电动汽车驱动等涉及到GaN半桥开关的应用上,需要上拉、下拉器件的配合,但上拉的P沟道GaN晶体管的发展比较滞后,要实现全GaN集成电路,存在较大困难,主要体现在GaN半桥开关的阈值电压很低(一般低于1.5V,最小值低至0.7V),在实际电路中GaN半桥开关自身的低阈值电压会给绝大多数应用带来严重的可靠性问题,如误开启等。Gallium Nitride (GaN) power transistors have a high mobility electron gas, which can achieve a current density and switching speed far exceeding that of traditional silicon-based devices, and has a wide range of applications. In applications involving GaN half-bridge switches such as motor drive, high-side drive, power conversion, and electric vehicle drive, the cooperation of pull-up and pull-down devices is required, but the development of pull-up P-channel GaN transistors is lagging behind. All-GaN integrated circuits have great difficulties, mainly reflected in the low threshold voltage of the GaN half-bridge switch (generally lower than 1.5V, the minimum value is as low as 0.7V), and the low threshold voltage of the GaN half-bridge switch itself in the actual circuit It will cause serious reliability problems for most applications, such as false opening and so on.
为克服这一问题,已有文献针对不同的应用提出了相应的驱动方案,可分为非负压栅极驱动和负压栅极驱动两大类。其中,非负压栅极驱动与传统CMOS功率管驱动方式类似,通过对GaN使用零伏以上的栅极电压驱动实现其开关;负压栅极驱动是使用负压来驱动GaN功率管的栅极,通过驱动电路产生负压,将关闭GaN功率管的栅极电压降低到地电平以下,来避免GaN功率管栅极的误开启。To overcome this problem, existing literatures have proposed corresponding driving schemes for different applications, which can be divided into two categories: non-negative voltage gate drive and negative voltage gate drive. Among them, the non-negative voltage gate drive is similar to the traditional CMOS power tube drive method, and the GaN switch is realized by driving the gate voltage above zero volts; the negative voltage gate drive uses negative voltage to drive the gate of the GaN power tube , by driving the circuit to generate a negative voltage, the gate voltage of the closed GaN power tube is lowered below the ground level, so as to avoid false opening of the gate of the GaN power tube.
传统的负压栅极驱动电路通过外接负压,或使用内部降压转换器产生负压,或基于电容耦合产生负压,实现GaN功率管驱动。通过外接负压或使用内部降压转换器产生负压会导致额外的功耗和成本;通过电容耦合的方式产生负压,在GaN功率管导通时,先将电容充电,当GaN功率管需要关断时,将电容的一端接地,使得电容上的电压差直接作用在GaN功率管栅极上,实现负压驱动,该驱动方式无法为GaN功率管栅极提供稳定的负压,当电路中出现大扰动,耦合电容的电荷且容易受到扰动而导致负压消失,使得GaN功率管的栅极电压升高,电容耦合方式产生的负压将被破坏,使GaN功率管出现误开启的情况。The traditional negative voltage gate drive circuit achieves GaN power transistor driving by connecting an external negative voltage, or using an internal buck converter to generate negative voltage, or generating negative voltage based on capacitive coupling. Generating negative voltage through an external negative voltage or using an internal step-down converter will result in additional power consumption and cost; through capacitive coupling to generate negative voltage, when the GaN power tube is turned on, the capacitor is charged first, and when the GaN power tube needs When it is turned off, connect one end of the capacitor to the ground, so that the voltage difference on the capacitor directly acts on the gate of the GaN power tube to realize negative voltage driving. This driving method cannot provide a stable negative voltage for the gate of the GaN power tube. When there is a large disturbance, the charge of the coupling capacitor is easily disturbed and the negative pressure disappears, which makes the gate voltage of the GaN power tube rise, and the negative pressure generated by the capacitive coupling method will be destroyed, causing the GaN power tube to be turned on by mistake.
发明内容Contents of the invention
本发明的目的在于提供一种具有双重保护功能的GaN驱动器,以解决传统基于电容耦合产生负压实现GaN功率管驱动方式存在的无法为GaN功率管栅极提供稳定的负压的问题。The purpose of the present invention is to provide a GaN driver with dual protection functions, so as to solve the problem that the traditional GaN power tube driving method based on capacitive coupling to generate negative pressure cannot provide a stable negative voltage for the GaN power tube gate.
为实现上述目的,本发明采用的如下技术方案:To achieve the above object, the present invention adopts the following technical solutions:
一种具有双重保护功能的GaN驱动器,包括第一管芯和负载,负载的一端与第一管芯的输出端G1相连,另一端接地;A GaN driver with dual protection functions, including a first die and a load, one end of the load is connected to the output terminal G1 of the first die, and the other end is grounded;
所述第一管芯包括第一高K介质功率器件S1、第一耦合电容C1、第一NMOS管M1、电源Vcc和第二NMOS管M2;The first die includes a first high-K dielectric power device S1, a first coupling capacitor C1, a first NMOS transistor M1, a power supply Vcc, and a second NMOS transistor M2;
第一高K介质功率器件S1具有主栅极、从栅极、阳极和阴极,其主栅极接外部输入的控制信号一,从栅极接外部输入的控制信号二,阳极连接第一NMOS管M1的源极和第二NMOS管M2的漏极,阴极接地和第二NMOS管M2的源极;The first high-K dielectric power device S1 has a main grid, a slave grid, an anode and a cathode, the main grid is connected to an externally
第一耦合电容C1的一端连接第一高K介质功率器件S1的从栅极,另一端连接第一NMOS管M1的源极和第二NMOS管M2的漏极;One end of the first coupling capacitor C1 is connected to the slave gate of the first high-K dielectric power device S1, and the other end is connected to the source of the first NMOS transistor M1 and the drain of the second NMOS transistor M2;
第一NMOS管M1的栅极接外部输入的控制信号三,漏极连接电源Vcc,源极与第二NMOS管M2的漏极相连后形成第一管芯的输出端G1;The gate of the first NMOS transistor M1 is connected to the external
第二NMOS管M2的栅极接外部输入的控制信号四,源极接地;The gate of the second NMOS transistor M2 is connected to an externally
通过外部输入的控制信号三和控制信号四的高低电平来控制第一NMOS管M1和第二NMOS管M2的导通关断;通过外部输入的控制信号一和控制信号二的高低电平来控制高K介质功率器件S1的工作模式,实现控制第一耦合电容C1的充放电,以使其稳定的产生负压。Control the on-off of the first NMOS transistor M1 and the second NMOS transistor M2 through the high and low levels of the externally
进一步的,所述具有双重保护功能的GaN驱动器的稳定产生负压的过程为:Further, the process of stably generating negative pressure of the GaN driver with double protection function is:
当外部输入低电平控制信号三和低电平控制信号四将第一NMOS管M1和第二NMOS管M2关断;外部输入高电平控制信号二将高K介质功率器件S1的从栅极置为高电平,外部输入的电平控制信号一将主栅极置为低电平时,高K介质功率器件S1处于关断模式,第一耦合电容C1连接从栅极的一端充正电荷,另一端充负电荷,需要产生负压时,外部输入高电平控制信号四使第二NMOS管M2开启,即可将G1下拉变为地电位,为产生负压做准备;When the external input low-
当外部输入低电平控制信号四将第二NMOS管M2关断,外部输入低电平控制信号二将高K介质功率器件的从栅极输入由高电平变为低电平,外部输入高电平控制信号一将主栅极输入由低电平变为高电平,高K介质功率器件S1开启,工作在强电流下拉能力状态,由于第一耦合电容C1连接从栅极的一端为地电平,第一耦合电容C1的另一端将产生负电压。When the external input low-level control signal four turns off the second NMOS transistor M2, the external input low-level control signal two changes the gate input of the high-K dielectric power device from high level to low level, and the external input high As soon as the level control signal changes the main gate input from low level to high level, the high-K dielectric power device S1 is turned on and works in a state of strong current pull-down capability. Since the first coupling capacitor C1 is connected to one end of the slave gate as the ground level, the other end of the first coupling capacitor C1 will generate a negative voltage.
进一步的,所述负载为GaN功率管M3,其栅极连接第一管芯的输出端G1,漏极连接正电源HV,源极接地。Further, the load is a GaN power transistor M3, the gate of which is connected to the output terminal G1 of the first die, the drain is connected to the positive power supply HV, and the source is grounded.
一种具有双重保护功能的GaN驱动器,包括高侧GaN管M5、低侧GaN管M6、第一管芯以及第二管芯;A GaN driver with dual protection functions, including a high-side GaN transistor M5, a low-side GaN transistor M6, a first die, and a second die;
高侧GaN管M5的栅极连接第一管芯的输出G1,漏极连接正电源HV,源极连接浮动电位SW;低侧GaN管M6的栅极连接管芯2的输出G2,漏极连接浮动电位SW,源极连接地;The gate of the high-side GaN tube M5 is connected to the output G1 of the first die, the drain is connected to the positive power supply HV, and the source is connected to the floating potential SW; the gate of the low-side GaN tube M6 is connected to the output G2 of the
第一管芯由第一电源Vcc1、第一NMOS管M1、第二NMOS管M2、第一耦合电容C1以及第一高K介质功率器件S1构成;第一电源Vcc1连接第一NMOS管M1的漏极;第一NMOS管M1的栅极接外部输入控制信号七,源极与第二NMOS管M2的漏极相连后形成第一管芯的输出端G1;第二NMOS管M2的栅极接外部输入控制信号八,源极连接第一高K介质功率器件S1的阴极和浮动电位SW;第一耦合电容C1的一端连接输出端G1和第一高K介质功率器件S1的阳极,另一端连接第一高K介质功率器件S1的从栅极;第一高K介质功率器件S1的主栅极接外部输入控制信号六,从栅极接外部输入控制信号五;The first die is composed of the first power supply Vcc1, the first NMOS transistor M1, the second NMOS transistor M2, the first coupling capacitor C1, and the first high-K dielectric power device S1; the first power supply Vcc1 is connected to the drain of the first NMOS transistor M1 The gate of the first NMOS transistor M1 is connected to the external input control signal 7, and the source is connected to the drain of the second NMOS transistor M2 to form the output terminal G1 of the first die; the gate of the second NMOS transistor M2 is connected to the external Input control signal eight, the source is connected to the cathode of the first high-K dielectric power device S1 and the floating potential SW; one end of the first coupling capacitor C1 is connected to the output terminal G1 and the anode of the first high-K dielectric power device S1, and the other end is connected to the first high-K dielectric power device S1. The slave gate of a high-K dielectric power device S1; the main gate of the first high-K dielectric power device S1 is connected to the external
第二管芯由第二电源Vcc2、第三NMOS管M3、第四NMOS管M4、第二耦合电容C2以及第二高K介质功率器件S2构成;第二电源Vcc2连接第三NMOS管M3的漏极;第三NMOS管M3的栅极接外部输入控制信号九,源极与第四NMOS管M4的漏极相连后形成第二管芯的输出端G2;第四NMOS管M4的栅极接外部输入控制信号十,源极连接第二高K介质功率器件S2的阴极、低侧GaN管M6的源极和地;第二耦合电容C2的一端连接输出端G2和第二高K介质功率器件S2的阳极,另一端连接第二高K介质功率器件S2的从栅极;第二高K介质功率器件S2的主栅极接外部输入控制信号十二,从栅极接外部输入控制信号十一。The second die is composed of a second power supply Vcc2, a third NMOS transistor M3, a fourth NMOS transistor M4, a second coupling capacitor C2, and a second high-K dielectric power device S2; the second power supply Vcc2 is connected to the drain of the third NMOS transistor M3 The gate of the third NMOS transistor M3 is connected to the external input control signal 9, and the source is connected to the drain of the fourth NMOS transistor M4 to form the output terminal G2 of the second die; the gate of the fourth NMOS transistor M4 is connected to the external Input the control signal ten, the source is connected to the cathode of the second high-K dielectric power device S2, the source of the low-side GaN transistor M6 and the ground; one end of the second coupling capacitor C2 is connected to the output terminal G2 and the second high-K dielectric power device S2 The anode of the second high-K dielectric power device S2 is connected with the other end; the main gate of the second high-K dielectric power device S2 is connected to the external input control signal twelve, and the slave gate is connected to the external input control signal eleven.
高K介质功率器件是在高K器件的技术积累基础之上,研究出的一种功率器件,该器件具有标准LIGBT、增强双子导电和PMOS三种工作模式,通过切换三种工作模式可使其应用于不同的电压等级中,具体可参考专利号ZL201510998522.X公开的内容。The high-K dielectric power device is a power device developed on the basis of the technology accumulation of high-K devices. The device has three operating modes: standard LIGBT, enhanced twin conduction and PMOS. By switching the three operating modes, it can It is applied to different voltage levels, for details, please refer to the content disclosed in patent number ZL201510998522.X.
本发明提供的一种具有双重保护功能的GaN驱动器,是在传统电容耦合产生负压的基础上提供第一重负压保护,利用高K介质功率器件实现根据不同控制信号切换至相应工作模式,使其适用各种不同电压等级的驱动这一特点,通过外部输入的控制信号控制高K介质功率器件工作在强下拉能力状态下,使GaN功率管栅极电压低于0.7V,提供第二重保护,通过电容耦合与高K介质功率器件共同作用,实现有效防止GaN功率管误开启。在本发明中,耦合电容的一端连接高K介质功率器件的从栅极,另一端连接连接管芯的输出端和高K介质功率器件的阳极,当耦合电容被施加一个电压后,连接从栅极的一端在电场力的作用下积累正电荷,另一端积累负电荷。即在耦合电容的耦合作用下,耦合电容积累的负电荷不同于传统意思上的负电压,其实质为正电压,只是电压值低于连接从栅极一端的正电荷产生的电压值。当外部输入高电平控制信号四使第二NMOS管M2开启时,即可将输出端G1下拉变为地电位。使整个负压的产生过程中存在一个过渡阶段,有效降低驱动器的功耗。当出现大电流扰动时,控制高K功率器件进入增强双子导电工作模式,此时高K功率器件具有强电流下拉能力,利用高K功率器件的强电流下拉能力及时泄放输出端G1的大电流,将栅极电位钳制在0.7V,防止GaN管误开启。A GaN driver with dual protection functions provided by the present invention provides the first heavy negative pressure protection on the basis of negative pressure generated by traditional capacitive coupling, and uses high-K dielectric power devices to switch to corresponding working modes according to different control signals. To make it suitable for the drive of various voltage levels, control the high-K dielectric power device to work in the state of strong pull-down capability through the external input control signal, so that the gate voltage of the GaN power tube is lower than 0.7V, providing the second layer Protection, through the joint action of capacitive coupling and high-K dielectric power devices, effectively prevents GaN power tubes from being turned on by mistake. In the present invention, one end of the coupling capacitor is connected to the slave gate of the high-K dielectric power device, and the other end is connected to the output end of the tube core and the anode of the high-K dielectric power device. When a voltage is applied to the coupling capacitor, it is connected to the slave gate One end of the pole accumulates positive charge under the action of electric field force, and the other end accumulates negative charge. That is, under the coupling effect of the coupling capacitor, the negative charge accumulated by the coupling capacitor is different from the negative voltage in the traditional sense. It is essentially a positive voltage, but the voltage value is lower than the voltage value generated by the positive charge connected to one end of the gate. When the external high-
与现有技术相比,本发明具有以下优点:Compared with the prior art, the present invention has the following advantages:
1、本发明无需外接负压或内部降压转换器集成,一方面免去了传统的外接负压带来的大功耗和开关干扰造成的稳定性问题,另一方面降低了结构复杂度,节省版图面积,减小成本。1. The present invention does not require external negative pressure or internal step-down converter integration. On the one hand, it avoids the large power consumption caused by the traditional external negative pressure and the stability problem caused by switching interference. On the other hand, it reduces the structural complexity. Save layout area and reduce cost.
2、通过外部输入的控制信号控制高K介质功率器件的工作模式和耦合电容的充放电,克服了传统电容耦合产生负压时,电容电荷容易受到扰动而导致负压消失的问题。2. The working mode of the high-K dielectric power device and the charging and discharging of the coupling capacitor are controlled by an externally input control signal, which overcomes the problem that when the traditional capacitive coupling generates negative pressure, the capacitor charge is easily disturbed and the negative pressure disappears.
附图说明Description of drawings
图1为本发明结构示意图;Fig. 1 is a structural representation of the present invention;
图2为实施例1结构示意图;Fig. 2 is the structural representation of
图3为实施例1时序图;Fig. 3 is
图4为实施例2结构示意图:Fig. 4 is the structural representation of embodiment 2:
图5为实施例2时序图。FIG. 5 is a timing diagram of
具体实施方式Detailed ways
下面结合附图和实施例对本发明的双重保护功能的GaN半桥驱动器做详细说明。The GaN half-bridge driver with dual protection functions of the present invention will be described in detail below with reference to the drawings and embodiments.
实施例1Example 1
图4提供了本发明的第一种实施例方式,如图4所示,一种具有双重保护功能的GaN驱动器包括第一管芯和负载;FIG. 4 provides a first embodiment of the present invention. As shown in FIG. 4, a GaN driver with dual protection functions includes a first die and a load;
所述第一管芯包括第一高K介质的功率器件S1、电源Vcc,第一耦合电容C1、第一NMOS管M1和第二NMOS管M2。第一高K介质功率器件S1具有主栅极4、从栅极3、阳极7和阴极8;高K介质功率器件S1的主栅极4接外部输入控制信号一5,从栅极3接外部输入控制信号二6,阳极7连接第一NMOS管M1的源极和第二NMOS管M2的漏极,从栅极和阳极之间连接第一耦合电容C1,阴极接地和第二NMOS管M2的源极;第一NMOS管M1的栅极接外部输入控制信号三1,漏极连接电源Vcc,源极与第二NMOS管M2的漏极相连后形成第一管芯的输出端G1;第二NMOS管M2的栅极接外部输入控制信号四2,源极接地。The first die includes a first high-K dielectric power device S1, a power supply Vcc, a first coupling capacitor C1, a first NMOS transistor M1, and a second NMOS transistor M2. The first high-K dielectric power device S1 has a
所述负载为GaN功率管M3,GaN功率管M3的栅极连接第一管芯的输出端G1,漏极连接正电源HV,源极接地。The load is a GaN power transistor M3, the gate of the GaN power transistor M3 is connected to the output terminal G1 of the first die, the drain is connected to the positive power supply HV, and the source is grounded.
如附图5所示,在t0-t1时刻,将外部输入控制信号三1置为高电平开启第一NMOS管M1、外部输入控制信号四2置为低电平关断第二NMOS管M2;将外部输入控制信号二6置为高电平、外部输入控制信号一5置为低电平,使第一高K介质功率器件S1彻底关断;此时,第一耦合电容C1连接从栅极3的一端充正电荷,另一端为负电荷,通过第一NMOS管M1的上拉作用,将G1点的电压拉高,GaN功率管M3开启。As shown in Figure 5, at time t0-t1, the external input control signal 31 is set to high level to turn on the first NMOS transistor M1, and the external input control signal 42 is set to low level to turn off the second NMOS transistor M2 ; The external input control signal 26 is set to high level, and the external
t1时刻需要将GaN功率管M3关断时,将外部输入信号三1置为低电平关断第一NMOS管M1、外部输入信号四2置为低电平关断第二NMOS管M2;t2时刻外部输入信号一5给主栅极4提供高电平,此时第一高K介质功率器件S1工作在标准传统LIGBT的典型双子导电模式下,同时外部输入信号四2提供高电平将第二NMOS管M2开启,G1点下降到地电位。t3时刻将外部输入信号四2置为低电平关断第二NMOS管,外部输入信号二6置为低电平,由于此时第一高K介质功率器件S1的从栅极3为低电平,第一耦合电容C1的右侧将实现负压,彻底关断GaN功率管M3。即使电路出现扰动,使G1的电位上升,由于此时高K介质功率器件S1工作在强电流下拉能力状态下,可以快速吸收G1点的电流,使该点的电位下降,并且由于此时高K介质功率器件S1的阳极7和阴极8存在着0.7V的电压差,能保证最坏条件下GaN功率管M3的栅极电压不超过0.7V,为负压提供双重保护。When the GaN power transistor M3 needs to be turned off at time t1, set the external input signal 31 to low level to turn off the first NMOS transistor M1, and set the external input signal 42 to low level to turn off the second NMOS transistor M2; t2 At any time, the
实施例2Example 2
图2提供了本发明的第二种实施例方式,如图2所示,该实施例提供的一种具有双重保护功能的GaN驱动器包括:第一管芯,第二管芯,高侧GaN管M5和低侧GaN管M6,正电源HV。高侧GaN管M5栅极G1连接管芯1输出,M5漏极连接正电源HV,M5源极连接浮动电位SW。低侧GaN管M6栅极G2连接管芯2输出,M6漏极连接浮动电位SW,M6源极连接地。Figure 2 provides a second embodiment of the present invention, as shown in Figure 2, a GaN driver with dual protection functions provided by this embodiment includes: a first die, a second die, a high-side GaN transistor M5 and low-side GaN tube M6, positive power supply HV. The gate G1 of the high-side GaN transistor M5 is connected to the output of the
管芯1包含:高K介质功率器件S1,第一NMOS管M1,第二NMOS管M2,第一耦合电容C1,外部输入控制信号五11,外部输入控制信号六12,外部输入控制信号七7,外部输入控制信号八8,正电源Vcc1。其中第一NMOS管(M1)栅极接外部输入控制信号七7,第二NMOS管M2栅极接外部输入控制信号八8,高K介质功率器件S1主栅极10接外部输入控制信号六12,从栅极9接外部输入控制信号五11,第一耦合电容C1左侧接外部输入控制信号五11,右侧连接G1。第一NMOS管M1的漏极连接电源Vcc1,源极连接G1。第二NMOS管漏极连接G1,源极连接浮动电位SW。
管芯2包含:高K介质功率器件S2,第三NMOS管M3,第四NMOS管M4,第二耦合电容C2,外部输入控制信号九15,外部输入控制信号十16,外部输入控制信号十一17,外部输入控制信号十二18,正电源Vcc2。其中第三NMOS管M3的栅极接外部输入控制信号九15,第四NMOS管M4的栅极接外部输入控制信号十16,高K介质功率器件S2的从栅极19接外部输入控制信号十一17,主栅极20接外部输入控制信号十二18,第二耦合电容C2左侧接外部输入控制信号十一17,右侧连接G2。第三NMOS管M3的漏极连接电源Vcc2,源极连接G2。第四NMOS管漏极连接G2,源极连接地。
如附图3所示的标准工作时序图,当高侧GaN管M5需要关闭时,在t1时刻,第一NMOS栅极电平被拉低,M1截止;然后在t2时刻,管芯1内部的第二NMOS管栅极电平置为高电平,M2导通,同时外部输入控制信号六12将高K介质功率器件S1主栅极10置为高电平,而外部输入控制信号五11保持从栅极9高电平不变。此时第二NMOS管M2将G1下拉到浮动电位SW点的电平,高侧GaN管M5的栅源电压为零,将处于截止状态。As shown in the standard working timing diagram in Figure 3, when the high-side GaN transistor M5 needs to be turned off, at time t1, the gate level of the first NMOS is pulled down, and M1 is turned off; then at time t2, the internal The gate level of the second NMOS transistor is set to a high level, M2 is turned on, and at the same time, the external
在t2和t3的开关死区时间内,由于高K介质功率器件S1的主栅极10和从栅极9同时为高电平,此时的高K介质功率器件S1将处于标准LIGBT工作模式,由于第二NMOS管M2将G1点电压拉至浮动电位SW电压,导致高K介质功率器件S1阳极13和阴极14之间电压低于0.7V,使得高K介质功率器件S1中无电流流过,但由于LIGBT的强电流下拉能力,如果此时出现了一个较大的扰动,使得G1点电压迅速提高,高K介质功率器件S1的强电流下拉能力将迅速吸收该扰动电流,保证G1点电压不超过0.7V,避免了高侧GaN管M5的误开启。此时由于高K介质功率器件S1的从栅极9为高而G1为低,所以第一耦合电容C1将在左侧极板充正电荷而在右侧极板充负电荷。During the switching dead time between t2 and t3, since the
当t2至t3的死区时间结束,需要打开低侧GaN管M6。在t3之前,高K介质功率器件S2工作在强电流下拉能力状态下,G2为负压。在t3时刻,外部输入控制信号十一17将高K介质功率器件S2从栅极19置为高电平,外部输入控制信号十二18将主栅极20置为低电平以彻底关闭高K介质功率器件S2。由于在低侧GaN管M6关闭期间,第二耦合电容C2存在漏电,使得C2上的电压差降低,所以当高K介质功率器件S2从栅极19上的电压上升到高电平电压时,G2将产生正压,从而打开低侧GaN管M6。由于高K介质功率器件S2从栅极19快速上升的电压是通过第二耦合电容C2耦合到G2点时,因此延迟较小,低侧GaN管M6的开启将极为迅速。同时外部输入控制信号八8变为低电平,关闭管芯1中的M2。外部输入控制信号五11将高K介质功率器件S1的从栅极9由高置为低时,第一耦合电容C1上存在一个左到右的电压,第一耦合电容C1右侧G1将实现负压,彻底关闭高侧GaN管M5。When the dead time from t2 to t3 ends, the low-side GaN transistor M6 needs to be turned on. Before t3, the high-K dielectric power device S2 works in a state of strong current pull-down capability, and G2 is a negative voltage. At time t3, the external
由于高K介质功率器件S2已经在t3时刻被关闭。在t4时刻,外部输入控制信号九15变高电平,打开第三NMOS管M3而不会产生短路电流,当M3打开之后,将为G2提供稳定的有源正电压,从而保持低侧GaN管M6的开启。当需要关闭低侧GaN管M6而打开高侧GaN管M5时,在t5时刻,外部输入控制信号九15先将管芯2中的第三NMOS管栅极置为低电平以关闭M3避免短路。然后在t6时刻,外部输入控制信号十二18将管芯2中的高K介质功率器件S2的主栅极20置为高电平,外部输入控制信号十16将第四NMOS管M4的栅极置为高电平,同时M4将G2点拉到地电平,类似t2时刻管芯1中的高K介质功率器件S1,此时高K介质功率器件S2将进入标准LIGBT工作模式,可泄放G2点的大电流扰动。同时高K介质功率器件S2的从栅极19点为高而G2点为低,第二耦合电容C2将在左侧极板充正电而在右侧极板充负电。在t7时刻,同时将高K介质功率器件S1主栅极10和从栅极9分别置为低电平和高电平以彻底关闭新型高K介质多功能器件S1,并利用从栅极9的上升电压,通过第一耦合电容C1的电容耦合,快速开启高侧GaN管M5。同时外部输入控制信号十16变为低电平,关闭管芯2中的第四NMOS管M4。外部输入控制信号十一17将高K介质功率器件S2的从栅极19由高置低。由于第二耦合电容C2上存在一个左到右的电压,所以当从栅极19为地电平时,G2点将实现负压。Since the high-K dielectric power device S2 has been turned off at time t3. At time t4, the external input control signal 915 becomes high level, and the third NMOS transistor M3 is turned on without generating short-circuit current. When M3 is turned on, it will provide a stable active positive voltage for G2, thereby maintaining the low-side GaN transistor The opening of M6. When it is necessary to turn off the low-side GaN transistor M6 and turn on the high-side GaN transistor M5, at time t5, the external input control signal 915 first sets the gate of the third NMOS transistor in
在t8时刻,外部输入控制信号7七将管芯1中的第一NMOS管栅极置为高电平,打开第一NMOS管M1,保持G1点的电压为高,使高侧GaN管M5持续开启,从而实现高侧开关操作。At time t8, the external input control signal 77 sets the gate of the first NMOS transistor in
由此可见,本发明无需外接负压和内部降压转换器集成,也能实现负压驱动。相较于传统的电容耦合产生负压驱动GaN功率管的方式,本实施例提供了一种新的思路。本实施例通过控制高K介质功率器件和耦合电容产生负压,实现GaN功率管的驱动,克服了传统电容耦合负压驱动存在的电容电荷且容易受到扰动而导致负压消失,或电路中的扰动过大时可能导致GaN栅极正压,使本应关闭的GaN栅极持续导通的问题。在本实施例中,切换高K介质功率器件的工作模式,控制耦合电容产生负压,使高K介质功率器件处于强电流下拉能力状态下,可充分吸收因大扰动带来的尖峰电流,保证最坏情况下GaN栅极电压不超过0.7V,从而为GaN提供高可靠双重保护。It can be seen that the present invention can realize negative voltage driving without external negative pressure and integration of internal buck converter. Compared with the traditional way of driving GaN power transistors by generating negative pressure through capacitive coupling, this embodiment provides a new idea. This embodiment controls the high-K dielectric power device and the coupling capacitor to generate negative pressure to realize the driving of the GaN power tube, which overcomes the capacitive charge in the traditional capacitive coupling negative voltage drive and is easily disturbed to cause the negative pressure to disappear, or the circuit. When the disturbance is too large, it may cause a positive voltage on the GaN gate, making the GaN gate that should be off continue to be turned on. In this embodiment, the working mode of the high-K dielectric power device is switched, and the coupling capacitor is controlled to generate negative pressure, so that the high-K dielectric power device is in a state of strong current pull-down capability, which can fully absorb the peak current caused by the large disturbance, ensuring In the worst case, the GaN gate voltage does not exceed 0.7V, thus providing highly reliable double protection for GaN.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210048233.3A CN114499477B (en) | 2022-01-17 | 2022-01-17 | A GaN driver with double protection |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210048233.3A CN114499477B (en) | 2022-01-17 | 2022-01-17 | A GaN driver with double protection |
Publications (2)
Publication Number | Publication Date |
---|---|
CN114499477A CN114499477A (en) | 2022-05-13 |
CN114499477B true CN114499477B (en) | 2023-04-21 |
Family
ID=81512034
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210048233.3A Active CN114499477B (en) | 2022-01-17 | 2022-01-17 | A GaN driver with double protection |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114499477B (en) |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2003090196A1 (en) * | 2002-04-22 | 2003-10-30 | Koninklijke Philips Electronics N.V. | Driver circuit for a plasma display panel |
JP2010219661A (en) * | 2009-03-13 | 2010-09-30 | Fuji Electric Systems Co Ltd | Semiconductor device |
JP2012085131A (en) * | 2010-10-13 | 2012-04-26 | Fuji Electric Co Ltd | Power semiconductor device with sense function |
CN107170815A (en) * | 2017-05-11 | 2017-09-15 | 电子科技大学 | A kind of landscape insulation bar double-pole-type transistor |
CN109951178A (en) * | 2019-04-03 | 2019-06-28 | 电子科技大学 | A system protection method for GaN gate drive circuit |
CN110149042A (en) * | 2019-06-14 | 2019-08-20 | 电子科技大学 | A kind of power tube gate driving circuit with drive part by part function |
CN111293860A (en) * | 2020-03-20 | 2020-06-16 | 电子科技大学 | High-side conductance enhanced power switch driving circuit |
US10979032B1 (en) * | 2020-01-08 | 2021-04-13 | Infineon Technologies Austria Ag | Time-programmable failsafe pulldown circuit for GaN switch |
-
2022
- 2022-01-17 CN CN202210048233.3A patent/CN114499477B/en active Active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2003090196A1 (en) * | 2002-04-22 | 2003-10-30 | Koninklijke Philips Electronics N.V. | Driver circuit for a plasma display panel |
JP2010219661A (en) * | 2009-03-13 | 2010-09-30 | Fuji Electric Systems Co Ltd | Semiconductor device |
JP2012085131A (en) * | 2010-10-13 | 2012-04-26 | Fuji Electric Co Ltd | Power semiconductor device with sense function |
CN107170815A (en) * | 2017-05-11 | 2017-09-15 | 电子科技大学 | A kind of landscape insulation bar double-pole-type transistor |
CN109951178A (en) * | 2019-04-03 | 2019-06-28 | 电子科技大学 | A system protection method for GaN gate drive circuit |
CN110149042A (en) * | 2019-06-14 | 2019-08-20 | 电子科技大学 | A kind of power tube gate driving circuit with drive part by part function |
US10979032B1 (en) * | 2020-01-08 | 2021-04-13 | Infineon Technologies Austria Ag | Time-programmable failsafe pulldown circuit for GaN switch |
CN111293860A (en) * | 2020-03-20 | 2020-06-16 | 电子科技大学 | High-side conductance enhanced power switch driving circuit |
Non-Patent Citations (4)
Title |
---|
Junhong Li等.Fabrication and Investigation of a Lateral Insulated Gate-Bipolar-Transistor With Ultrafast Turn-Off Speed.《IEEE Electron Device Letters》.2020,第41卷(第4期),573-576. * |
Junhong Li等.Simulation Study of a High-Current and Fast Dual-Gate IGBT Device With High- K Material.《IEEE Electron Device Letters》.2016,第37卷(第9期),1181-1184. * |
刘奎方.具有电场加强单元的高速IGBT结构的研究.《中国优秀硕士学位论文全文数据库信息科技辑》.2019,(第12期),I135-91. * |
胡斌.具有高K材料的大功率可集成器件研究.《中国优秀硕士学位论文全文数据库信息科技辑》.2020,(第1期),I135-344. * |
Also Published As
Publication number | Publication date |
---|---|
CN114499477A (en) | 2022-05-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104022776B (en) | Bootstrapping diode artificial circuit in half-bridge driving circuit | |
CN108155903B (en) | High-speed high-voltage level conversion circuit applied to GaN grid drive | |
CN109004820A (en) | Switch bootstrap charge circuit circuit suitable for the driving of GaN power device high speed grid | |
US6940317B2 (en) | Level-shifter circuit properly operable with low voltage input | |
EP1654804B1 (en) | High frequency control of a semiconductor switch | |
CN105187047A (en) | Ultra-high-voltage level shifting circuit for IGBT (Insulated Gate Bipolar Translator) driving chip | |
CN117375593A (en) | Direct drive circuit of depletion type power semiconductor device | |
CN101630956A (en) | NMOS power switch pipe drive circuit adopting starting strap circuit | |
CN114268219B (en) | Bootstrap circuit for driving high-side NMOS (N-channel metal oxide semiconductor) tube | |
CN113162373B (en) | An all-GaN integrated gate driver circuit with dead-time control | |
CN114499477B (en) | A GaN driver with double protection | |
CN113225054B (en) | Full-integrated Full-NMOS power tube high-side driving circuit | |
CN108336988B (en) | Negative voltage driving circuit of MOS switch | |
CN114614802B (en) | A GaN driver with fast turn-on | |
CN118920858B (en) | A built-in high-side charge pump circuit | |
CN118100882B (en) | Driving circuit of normally-open depletion type switching device | |
CN220440558U (en) | Driving circuit and high-voltage drop-out conversion circuit | |
CN220492852U (en) | Driving circuit and switching power supply | |
CN113489479B (en) | Three-level semiconductor switching tube gate electrode driving circuit | |
CN216564940U (en) | Converter and positive feedback circuit thereof | |
CN218071318U (en) | High-side driving power supply circuit, integrated circuit and switching power supply | |
CN216873068U (en) | Driving and current detection circuit of D-Mode gallium nitride power tube easy to integrate | |
CN119543913B (en) | Common-mode noise reduction level shifting circuit | |
CN114465451A (en) | A switching tube control circuit and switching power supply | |
CN115800699A (en) | Half-bridge drive circuit with full duty ratio |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |