CN114498977A - A rotor iron core, rotor, motor, motor drive system and electric vehicle - Google Patents
A rotor iron core, rotor, motor, motor drive system and electric vehicle Download PDFInfo
- Publication number
- CN114498977A CN114498977A CN202111682531.XA CN202111682531A CN114498977A CN 114498977 A CN114498977 A CN 114498977A CN 202111682531 A CN202111682531 A CN 202111682531A CN 114498977 A CN114498977 A CN 114498977A
- Authority
- CN
- China
- Prior art keywords
- rotor
- iron core
- motor
- core
- slot
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical group [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 title claims abstract description 238
- 238000002955 isolation Methods 0.000 claims abstract description 17
- 229910000976 Electrical steel Inorganic materials 0.000 claims description 23
- 229910000831 Steel Inorganic materials 0.000 claims description 9
- 239000010959 steel Substances 0.000 claims description 9
- 229920000049 Carbon (fiber) Polymers 0.000 claims description 8
- 239000004917 carbon fiber Substances 0.000 claims description 8
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 claims description 8
- 238000001746 injection moulding Methods 0.000 claims description 4
- 229910000851 Alloy steel Inorganic materials 0.000 claims description 3
- 230000005415 magnetization Effects 0.000 claims description 3
- 238000010276 construction Methods 0.000 claims 1
- 230000001360 synchronised effect Effects 0.000 abstract description 22
- 230000004907 flux Effects 0.000 abstract description 16
- 238000010586 diagram Methods 0.000 description 29
- 230000000052 comparative effect Effects 0.000 description 27
- 238000000034 method Methods 0.000 description 19
- 239000003638 chemical reducing agent Substances 0.000 description 14
- 238000009434 installation Methods 0.000 description 11
- 239000000463 material Substances 0.000 description 11
- 238000004088 simulation Methods 0.000 description 6
- 230000000694 effects Effects 0.000 description 5
- 230000005284 excitation Effects 0.000 description 5
- 230000009286 beneficial effect Effects 0.000 description 4
- 238000003475 lamination Methods 0.000 description 4
- 230000002093 peripheral effect Effects 0.000 description 4
- 230000008719 thickening Effects 0.000 description 4
- 238000004458 analytical method Methods 0.000 description 3
- 238000002347 injection Methods 0.000 description 3
- 239000007924 injection Substances 0.000 description 3
- 230000001133 acceleration Effects 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 230000005672 electromagnetic field Effects 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- 230000005389 magnetism Effects 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 238000011084 recovery Methods 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 238000004804 winding Methods 0.000 description 2
- 208000010392 Bone Fractures Diseases 0.000 description 1
- 206010017076 Fracture Diseases 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 230000008602 contraction Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 235000000396 iron Nutrition 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 238000003754 machining Methods 0.000 description 1
- 239000000696 magnetic material Substances 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 238000004080 punching Methods 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 150000003376 silicon Chemical class 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K1/00—Details of the magnetic circuit
- H02K1/06—Details of the magnetic circuit characterised by the shape, form or construction
- H02K1/22—Rotating parts of the magnetic circuit
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K1/00—Details of the magnetic circuit
- H02K1/06—Details of the magnetic circuit characterised by the shape, form or construction
- H02K1/22—Rotating parts of the magnetic circuit
- H02K1/27—Rotor cores with permanent magnets
- H02K1/2706—Inner rotors
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K1/00—Details of the magnetic circuit
- H02K1/06—Details of the magnetic circuit characterised by the shape, form or construction
- H02K1/22—Rotating parts of the magnetic circuit
- H02K1/27—Rotor cores with permanent magnets
- H02K1/2706—Inner rotors
- H02K1/272—Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
- H02K1/274—Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
- H02K1/2753—Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets the rotor consisting of magnets or groups of magnets arranged with alternating polarity
- H02K1/276—Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM]
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K1/00—Details of the magnetic circuit
- H02K1/06—Details of the magnetic circuit characterised by the shape, form or construction
- H02K1/22—Rotating parts of the magnetic circuit
- H02K1/28—Means for mounting or fastening rotating magnetic parts on to, or to, the rotor structures
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K2213/00—Specific aspects, not otherwise provided for and not covered by codes H02K2201/00 - H02K2211/00
- H02K2213/03—Machines characterised by numerical values, ranges, mathematical expressions or similar information
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Permanent Field Magnets Of Synchronous Machinery (AREA)
- Synchronous Machinery (AREA)
- Iron Core Of Rotating Electric Machines (AREA)
Abstract
本申请实施例涉及一种转子铁芯、转子、电机、电机驱动系统及电动车。转子铁芯包括转子本体和套筒,转子本体中的铁芯基体沿周向布置有多个铁芯附件,在铁芯基体和每个铁芯附件之间分别形成有第一转子槽,转子本体外加套筒用以加强转子本体的机械强度,实现转子高转速运行。在铁芯基体和铁芯附件之间无需设置比较厚的用于降低漏磁的磁桥,而通过隔磁槽去调整磁力线的走向以降低漏磁,无需考虑磁桥在转子高转速时磁桥容易断裂的风险。在采用相同转子外径、相同永磁体内置形式和尺寸下,本申请电机可达到更高的转速,实现更高的功率密度。采用上述转子铁芯的同步磁阻电机、永磁辅助式同步磁阻电机也可以实现更高转速运行,提升电机功率密度。
The embodiments of the present application relate to a rotor iron core, a rotor, a motor, a motor drive system and an electric vehicle. The rotor iron core includes a rotor body and a sleeve, the iron core base in the rotor body is arranged with a plurality of iron core accessories along the circumferential direction, a first rotor slot is respectively formed between the iron core base and each iron core accessory, and the rotor body The additional sleeve is used to strengthen the mechanical strength of the rotor body and realize the high-speed operation of the rotor. There is no need to set a relatively thick magnetic bridge between the iron core base and the iron core accessories to reduce the magnetic flux leakage, and the direction of the magnetic field lines is adjusted through the magnetic isolation slot to reduce the magnetic flux leakage, without considering the magnetic bridge when the rotor rotates at high speed. Risk of easy breakage. Under the same rotor outer diameter and the same built-in form and size of permanent magnets, the motor of the present application can achieve a higher rotational speed and achieve a higher power density. The synchronous reluctance motor and the permanent magnet-assisted synchronous reluctance motor using the above-mentioned rotor core can also achieve higher speed operation and improve the power density of the motor.
Description
技术领域technical field
本申请实施例涉及电机领域,尤其涉及一种转子铁芯、转子、电机、电机驱动系统及电动车。The embodiments of the present application relate to the field of motors, and in particular, to a rotor iron core, a rotor, a motor, a motor drive system, and an electric vehicle.
背景技术Background technique
在一些应用场景中,电机需要达到很高的转速,高转速会给电机结构带来更大的挑战。以电动车常用的内置式永磁电机为例,转子铁芯上通常会有用于强度支撑的磁桥。更高的电机转速会给转子带来更大的离心力,磁桥存在应力集中而疲劳断裂风险。为了降低更高转速带来磁桥的破坏风险,可设置相对较厚的磁桥,但是会增加电机漏磁的风险,使转矩、功率因素和效率等电磁性能降低。为了提升电机转速,可在转子铁芯上设置更多的永磁体,但是在转子铁芯上加厚磁桥的空间就会变得更少,较薄的磁桥难以面对断裂风险,从而限制了电机转速的提升。业界的永磁电机在需要很高转速时,难以兼顾磁桥机械强度和电磁性能,以及只通过加厚磁桥难以进一步提升电机转速。In some application scenarios, the motor needs to reach a very high speed, which will bring greater challenges to the motor structure. Taking the built-in permanent magnet motor commonly used in electric vehicles as an example, there is usually a magnetic bridge on the rotor core for strength support. Higher motor speed will bring greater centrifugal force to the rotor, and the magnetic bridge has the risk of stress concentration and fatigue fracture. In order to reduce the risk of damage to the magnetic bridge caused by higher rotation speed, a relatively thick magnetic bridge can be set, but it will increase the risk of magnetic flux leakage of the motor, and reduce the electromagnetic performance such as torque, power factor and efficiency. In order to increase the speed of the motor, more permanent magnets can be arranged on the rotor core, but the space for thickening the magnetic bridge on the rotor core becomes less, and the thinner magnetic bridge is difficult to face the risk of fracture, thus limiting the increase the motor speed. When the permanent magnet motor in the industry requires a high speed, it is difficult to take into account the mechanical strength and electromagnetic performance of the magnetic bridge, and it is difficult to further increase the motor speed by only thickening the magnetic bridge.
发明内容SUMMARY OF THE INVENTION
本申请实施例提供一种转子铁芯、转子、电机、电机驱动系统及电动车,解决了现有技术中的电机在需要很高转速时,难以兼顾磁桥机械强度和电磁性能,以及只通过加厚磁桥难以进一步提升电机转速的问题。The embodiments of the present application provide a rotor iron core, a rotor, a motor, a motor drive system and an electric vehicle, which solve the problem that when the motor in the prior art requires a high rotational speed, it is difficult to take into account the mechanical strength and electromagnetic performance of the magnetic bridge, and only through the It is difficult to further increase the motor speed by thickening the magnetic bridge.
为达到上述目的,本申请实施例采用如下技术方案:In order to achieve the above purpose, the embodiment of the present application adopts the following technical solutions:
第一方面,本申请实施例提供一种转子铁芯,包括转子本体和套筒。转子本体包括铁芯基体和多个铁芯附件,铁芯基体用于和转轴连接,多个铁芯附件沿铁芯基体的周向分布。铁芯基体和每个铁芯附件之间分别形成有第一转子槽,每个第一转子槽的至少一部分形成有用于降低漏磁的隔磁槽。套筒套设于多个铁芯附件的外边缘。In a first aspect, embodiments of the present application provide a rotor core, including a rotor body and a sleeve. The rotor body includes an iron core base body and a plurality of iron core accessories, the iron core base body is used for connecting with the rotating shaft, and the plurality of iron core accessories are distributed along the circumference of the iron core base body. A first rotor slot is respectively formed between the iron core base and each iron core accessory, and at least a part of each first rotor slot is formed with a magnetic isolation slot for reducing magnetic flux leakage. The sleeve is sleeved on the outer edges of the plurality of iron core accessories.
本申请实施例提供的转子铁芯,转子本体中的铁芯基体沿周向布置有多个铁芯附件,在铁芯基体和每个铁芯附件之间分别形成有第一转子槽,转子本体外加套筒用以加强转子本体的机械强度,实现转子高转速运行。在铁芯基体和铁芯附件之间无需设置比较厚的用于降低漏磁的磁桥,而通过隔磁槽去调整磁力线的走向以降低漏磁,无需考虑磁桥在转子高转速时磁桥容易断裂的风险。对常规电机和应用上述转子铁芯的内置式永磁电机进行比较,在采用相同转子外径、相同永磁体内置形式和尺寸下,本申请电机可达到更高的转速,实现更高的功率密度。采用上述转子铁芯的同步磁阻电机、永磁辅助式同步磁阻电机也可以实现更高转速运行,提升电机功率密度。In the rotor iron core provided by the embodiment of the present application, the iron core base in the rotor body is arranged with a plurality of iron core accessories in the circumferential direction, and a first rotor slot is respectively formed between the iron core base and each iron core accessory. The additional sleeve is used to strengthen the mechanical strength of the rotor body and realize the high-speed operation of the rotor. There is no need to set a relatively thick magnetic bridge between the iron core base and the iron core accessories to reduce the magnetic flux leakage, and the direction of the magnetic field lines is adjusted through the magnetic isolation slot to reduce the magnetic flux leakage, and there is no need to consider the magnetic bridge when the rotor rotates at high speed. Risk of easy breakage. Comparing the conventional motor and the built-in permanent magnet motor using the above-mentioned rotor iron core, under the same rotor outer diameter, the same permanent magnet built-in form and size, the motor of the present application can achieve a higher speed and achieve a higher power density . The synchronous reluctance motor and the permanent magnet-assisted synchronous reluctance motor using the above-mentioned rotor core can also achieve higher speed operation and improve the power density of the motor.
将电机应用在电动车的驱动电机,驱动电机的动力通过减速器传递至电动车的驱动轮,减速器起到降低转速、提升转矩的作用。对常规电机和本申请电机应用在电动车进行仿真试验,采用相同转子外径、相同永磁体内置形式和尺寸以及相同高转速,通过仿真分析得到:相比于常规电机,本申请电机中的转子铁芯轴向尺寸可以做得更小,即电机体积可以做得更小,而电机功率可以更高,从而实现功率密度提升。在电动车中的驱动电机和减速器装配空间一定的情况下,本申请电机体积做小后,减速器体积就可以做大,减速器就具有更大速比。本申请电机在配置更大速比的减速器后,就能实现驱动轮的轮边扭矩提升,使得电动车具有更好的动力性能。The motor is applied to the driving motor of the electric vehicle, and the power of the driving motor is transmitted to the driving wheel of the electric vehicle through the reducer, and the reducer plays the role of reducing the speed and increasing the torque. The simulation test is carried out on the application of the conventional motor and the motor of the present application in the electric vehicle, using the same outer diameter of the rotor, the same built-in form and size of the permanent magnet, and the same high speed, and obtained through simulation analysis: compared with the conventional motor, the rotor in the motor of the present application is The axial size of the iron core can be made smaller, that is, the volume of the motor can be made smaller, and the power of the motor can be higher, thereby achieving an increase in power density. Under the condition that the assembly space of the drive motor and the reducer in the electric vehicle is certain, after the motor volume of the present application is made small, the volume of the reducer can be made larger, and the reducer has a larger speed ratio. After the motor of the present application is configured with a reducer with a larger speed ratio, the wheel torque of the driving wheel can be increased, so that the electric vehicle has better dynamic performance.
结合第一方面,在第一方面的第一种可能的实现方式中,转子本体中的铁芯基体和多个铁芯附件为分离结构,转子本体上不设置磁桥,并不是如常规内置式永磁电机采用一个整体的转子铁芯冲片。这种铁芯基体和多个铁芯附件可以通过套筒固定在一起,提升整体结构强度,使转子可承受更高转速。In combination with the first aspect, in the first possible implementation manner of the first aspect, the iron core base and the plurality of iron core accessories in the rotor body are separate structures, and the rotor body is not provided with a magnetic bridge, which is not a conventional built-in type. Permanent magnet motors use an integral rotor core punch. The iron core base body and a plurality of iron core accessories can be fixed together by a sleeve, which improves the overall structural strength and enables the rotor to withstand higher rotational speeds.
结合第一方面,在第一方面的第二种可能的实现方式中,第一转子槽内设有磁桥,磁桥用于连接铁芯基体和铁芯附件,磁桥的厚度小于或等于1mm。本实施例设置磁桥厚度极小,只用于在加工转子本体时连接铁芯基体和铁芯附件,以便在冲压成型后对转子本体工件的取放和装配操作。本实施例的转子转动时,该磁桥有可能发生断裂,由于转子外部的套筒结构,转子整体强度不会受到影响。In combination with the first aspect, in a second possible implementation manner of the first aspect, a magnetic bridge is provided in the first rotor slot, the magnetic bridge is used to connect the iron core base and the iron core accessories, and the thickness of the magnetic bridge is less than or equal to 1mm . In this embodiment, the thickness of the magnetic bridge is extremely small, and it is only used to connect the iron core base and the iron core accessories when processing the rotor body, so as to facilitate the pick-and-place and assembly operations of the rotor body workpiece after stamping. When the rotor of this embodiment rotates, the magnetic bridge may be broken. Due to the sleeve structure outside the rotor, the overall strength of the rotor will not be affected.
结合第一方面至第一方面的第二种可能的实现方式中任一项,在第一方面的第三种可能的实现方式中,转子本体呈片状,转子本体的数量为多个,多个转子本体层叠设置,不同转子本体中的铁芯附件层叠设置。多个层叠的转子本体容易成型和装配。With reference to any one of the first aspect to the second possible implementation manner of the first aspect, in a third possible implementation manner of the first aspect, the rotor body is in a sheet shape, and the number of the rotor The rotor bodies are arranged in layers, and the iron core accessories in different rotor bodies are arranged in layers. Multiple stacked rotor bodies are easily formed and assembled.
结合第一方面的第三种可能的实现方式,在第一方面的第四种可能的实现方式中,层叠设置的多个铁芯附件通过紧固件连接,紧固件穿过于不同转子本体上同一个位置的多个铁芯附件的定位孔。紧固件可以包括长螺栓和螺母,将长螺栓穿过多个铁芯附件的定位孔,并采用螺母螺接在长螺栓的末端,将同一轴向上的铁芯附件固定在一起,该装配方式容易操作,连接可靠,可提高转子强度。With reference to the third possible implementation manner of the first aspect, in a fourth possible implementation manner of the first aspect, the multiple iron core accessories arranged in layers are connected by fasteners, and the fasteners pass through different rotor bodies Locating holes for multiple core attachments at the same location. Fasteners can include long bolts and nuts, the long bolts are passed through the positioning holes of a plurality of iron core accessories, and nuts are screwed on the ends of the long bolts to fix the iron core accessories on the same axis together, the assembly The method is easy to operate, the connection is reliable, and the strength of the rotor can be improved.
结合第一方面的第三种可能的实现方式,在第一方面的第五种可能的实现方式中,层叠设置的多个铁芯附件通过注塑件连接,注塑件填充于不同转子本体上同一个位置的多个铁芯附件的第一转子槽。将多个转子本体组装好,向多个层叠铁芯附件的第一转子槽部分区域填充热塑料,在降温后形成注塑件,将多个铁芯附件可靠地连接在一起。In combination with the third possible implementation manner of the first aspect, in the fifth possible implementation manner of the first aspect, a plurality of iron core accessories arranged in layers are connected by injection molding parts, and the injection molding parts are filled with the same rotor body on different rotor bodies. A first rotor slot of a plurality of iron core attachments. The plurality of rotor bodies are assembled, and the partial regions of the first rotor grooves of the plurality of laminated iron core accessories are filled with thermal plastic, and after the temperature is lowered, an injection molded part is formed, and the plurality of iron core accessories are reliably connected together.
结合第一方面的第三种可能的实现方式,在第一方面的第六种可能的实现方式中,层叠设置的多个铁芯附件通过扣片连接,扣片扣接于不同转子本体上同一个位置的多个铁芯附件的扣接槽。将扣片设于对齐后的多个铁芯附件的扣接槽,即可将多个铁芯附件固定在一起。In combination with the third possible implementation manner of the first aspect, in the sixth possible implementation manner of the first aspect, a plurality of iron core accessories arranged in layers are connected by buckle pieces, and the buckle pieces are buckled on different rotor bodies at the same time. Snap-in slots for multiple core attachments in one location. The plurality of iron core accessories can be fixed together by arranging the buckle pieces in the buckle grooves of the aligned plurality of iron core accessories.
结合第一方面的第三种可能的实现方式至第六种可能的实现方式中任一项,在第一方面的第七种可能的实现方式中,铁芯附件的定位孔的位置由铁芯附件的对称轴绕着转子本体的中心偏移预定角度确定,相邻两个转子本体正反相叠,以使相叠设置的两个铁芯附件的定位孔共线设置。通过复用同一种片状转子本体,使相邻两个转子本体正反叠,在每个转子本体的转子槽分别设置永磁体,在转子轴向相邻两个永磁体没有完全重合而是错开一定角度,能够实现转子斜极效果,降低电机转矩波动,改善电机在运行过程中对外表现出的噪声、振动与声振粗糙度性能。With reference to any one of the third possible implementation manner to the sixth possible implementation manner of the first aspect, in the seventh possible implementation manner of the first aspect, the position of the positioning hole of the iron core attachment is determined by the iron core. The axis of symmetry of the attachment is determined to be offset by a predetermined angle around the center of the rotor body, and two adjacent rotor bodies are stacked in positive and reverse directions, so that the positioning holes of the two overlapping iron core attachments are arranged in line. By reusing the same sheet-shaped rotor body, two adjacent rotor bodies are made to be stacked upside down, and permanent magnets are respectively arranged in the rotor slots of each rotor body. The two adjacent permanent magnets in the rotor axis are not completely overlapped but staggered. At a certain angle, the rotor skew effect can be achieved, the torque fluctuation of the motor can be reduced, and the noise, vibration and acoustic and vibration roughness performance of the motor during operation can be improved.
结合第一方面至第一方面的第七种可能的实现方式中任一项,在第一方面的第八种可能的实现方式中,第一转子槽呈一字型,所有第一转子槽的中心延长线能够围成凸多边形。每个第一转子槽的中间位置用于安装永磁体,在第一转子槽的两端分别形成隔磁槽。With reference to any one of the first aspect to the seventh possible implementation manner of the first aspect, in the eighth possible implementation manner of the first aspect, the first rotor slot is in a line shape, and all the first rotor slots have a The center extension can enclose a convex polygon. The middle position of each first rotor slot is used for installing permanent magnets, and magnetic isolation slots are respectively formed at both ends of the first rotor slot.
结合第一方面至第一方面的第七种可能的实现方式中任一项,在第一方面的第九种可能的实现方式中,第一转子槽呈V字型,第一转子槽的内凹侧背向转子本体的中心设置。第一转子槽包括呈V字排布的两段第一子槽,每个第一子槽的中间位置用于安装永磁体,在第一转子槽的两端以及两段第一子槽相靠近位置分别形成隔磁槽。With reference to any one of the first aspect to the seventh possible implementation manner of the first aspect, in a ninth possible implementation manner of the first aspect, the first rotor slot is V-shaped, and the inner portion of the first rotor slot is V-shaped. The concave side is disposed away from the center of the rotor body. The first rotor slot includes two sections of first sub-slots arranged in a V shape, the middle position of each first sub-slot is used to install permanent magnets, and the two ends of the first rotor slot and the two first sub-slots are close to each other. The positions respectively form magnetic isolation grooves.
结合第一方面至第一方面的第七种可能的实现方式中任一项,在第一方面的第十种可能的实现方式中,第一转子槽呈V字型,第一转子槽的内凹侧背向转子本体的中心设置;铁芯附件具有呈一字型的第二转子槽,所有第二转子槽的中心延长线能够围成凸多边形。在铁芯附件上增加了一字型的第二转子槽,第一转子槽作为内层槽而第二转子槽作为外层槽。With reference to any one of the first aspect to the seventh possible implementation manner of the first aspect, in a tenth possible implementation manner of the first aspect, the first rotor slot is V-shaped, and the inner portion of the first rotor slot is V-shaped. The concave side is arranged away from the center of the rotor body; the iron core attachment has a second rotor slot in a line shape, and the center extension lines of all the second rotor slots can enclose a convex polygon. A zigzag second rotor slot is added to the iron core attachment, the first rotor slot is used as an inner layer slot and the second rotor slot is used as an outer layer slot.
结合第一方面至第一方面的第七种可能的实现方式中任一项,在第一方面的第十一种可能的实现方式中,第一转子槽呈V字型,第一转子槽的内凹侧背向转子本体的中心设置;铁芯附件具有呈V字型的第二转子槽,第二转子槽的内凹侧背向转子本体的中心设置。With reference to any one of the first aspect to the seventh possible implementation manner of the first aspect, in an eleventh possible implementation manner of the first aspect, the first rotor slot is V-shaped, and the first rotor slot has a V-shape. The concave side is arranged away from the center of the rotor body; the iron core attachment has a V-shaped second rotor slot, and the inner concave side of the second rotor slot is arranged away from the center of the rotor body.
在铁芯附件上增加了V字型的第二转子槽,第二转子槽包括呈V字排布的两段第二子槽,第一转子槽作为内层槽而第二转子槽作为外层槽。A V-shaped second rotor slot is added to the iron core attachment. The second rotor slot includes two second sub-slots arranged in a V-shape. The first rotor slot is used as the inner layer slot and the second rotor slot is used as the outer layer. groove.
以上四种转子槽实现方式适用于内置式永磁电机转子结构,第一转子槽均安装有永磁体,在第一转子槽的部分位置形成隔磁槽以降低漏磁,在转子铁芯上形成预定磁路。The above four rotor slot implementation methods are suitable for the rotor structure of the built-in permanent magnet motor. The first rotor slots are all installed with permanent magnets, and a magnetic isolation slot is formed in part of the first rotor slot to reduce magnetic flux leakage. predetermined magnetic circuit.
结合第一方面至第一方面的第七种可能的实现方式中任一项,在第一方面的第十二种可能的实现方式中,第一转子槽呈由多个直线段组成的U字型,第一转子槽的内凹侧背向转子本体的中心设置。With reference to any one of the first aspect to the seventh possible implementation manner of the first aspect, in the twelfth possible implementation manner of the first aspect, the first rotor slot is in a U-shape composed of a plurality of straight segments Type, the concave side of the first rotor slot is disposed away from the center of the rotor body.
结合第一方面至第一方面的第七种可能的实现方式中任一项,在第一方面的第十三种可能的实现方式中,第一转子槽呈由多个直线段组成的U字型,第一转子槽的内凹侧背向转子本体的中心设置;铁芯附件具有第二转子槽,第二转子槽呈由多个直线段组成的U字型,第二转子槽的内凹侧背向转子本体的中心设置。在铁芯附件上增加一个或多个第二转子槽,第一转子槽作为内层槽而第二转子槽作为外层槽。With reference to any one of the first aspect to the seventh possible implementation manner of the first aspect, in a thirteenth possible implementation manner of the first aspect, the first rotor slot is in a U-shape composed of a plurality of straight segments The inner concave side of the first rotor slot is set away from the center of the rotor body; the iron core attachment has a second rotor slot, the second rotor slot is U-shaped composed of multiple straight segments, and the inner concave side of the second rotor slot is The side faces away from the center of the rotor body. One or more second rotor slots are added to the core attachment, the first rotor slot serving as an inner slot and the second rotor slot serving as an outer slot.
结合第一方面至第一方面的第七种可能的实现方式中任一项,在第一方面的第十四种可能的实现方式中,第一转子槽呈弧形,第一转子槽的内凹侧背向转子本体的中心设置。With reference to any one of the first aspect to the seventh possible implementation manner of the first aspect, in the fourteenth possible implementation manner of the first aspect, the first rotor slot is arc-shaped, and the inner portion of the first rotor slot is in an arc shape. The concave side is disposed away from the center of the rotor body.
结合第一方面至第一方面的第七种可能的实现方式中任一项,在第一方面的第十五种可能的实现方式中,第一转子槽呈弧形,第一转子槽的内凹侧背向转子本体的中心设置;铁芯附件具有呈弧形的第二转子槽,第二转子槽的内凹侧背向转子本体的中心设置。在铁芯附件上增加一个或多个第二转子槽,第一转子槽作为内层槽而第二转子槽作为外层槽。With reference to any one of the first aspect to the seventh possible implementation manner of the first aspect, in a fifteenth possible implementation manner of the first aspect, the first rotor slot is arc-shaped, and the inner portion of the first rotor slot is in an arc shape. The concave side is arranged away from the center of the rotor body; the iron core attachment has an arc-shaped second rotor slot, and the inner concave side of the second rotor slot is arranged away from the center of the rotor body. One or more second rotor slots are added to the core attachment, the first rotor slot serving as an inner slot and the second rotor slot serving as an outer slot.
采用后四种转子铁芯的其中一种,在转子本体上设置转子槽(第一转子槽、第二转子槽),转子槽内可以不设置永磁体,将转轴穿过并固定于转子铁芯,得到同步磁阻电机的转子,在转子铁芯上能形成预定磁路。One of the last four rotor cores is used, and rotor slots (a first rotor slot, a second rotor slot) are arranged on the rotor body. Permanent magnets may not be arranged in the rotor slots, and the rotating shaft is passed through and fixed to the rotor core. , the rotor of the synchronous reluctance motor is obtained, and a predetermined magnetic circuit can be formed on the rotor iron core.
采用后四种转子铁芯的其中一种,在转子本体上设置转子槽(第一转子槽、第二转子槽)并增加永磁体后,将转轴穿过并固定于转子铁芯,得到永磁辅助式同步磁阻电机的转子,在转子铁芯上能形成预定磁路。采用后四种转子铁芯的永磁辅助式同步磁阻电机中所采用的永磁体体积可以设置得更小,磁阻回路更为明显,从而提升转子磁阻转矩分量。One of the last four rotor cores is used. After setting rotor slots (first rotor slot and second rotor slot) on the rotor body and adding permanent magnets, the rotating shaft is passed through and fixed to the rotor core to obtain permanent magnets. The rotor of the auxiliary synchronous reluctance motor can form a predetermined magnetic circuit on the rotor iron core. The volume of the permanent magnets used in the permanent magnet-assisted synchronous reluctance motor using the last four rotor cores can be set smaller, and the reluctance loop is more obvious, thereby increasing the rotor reluctance torque component.
结合第一方面至第一方面的第十五种可能的实现方式中任一项,在第一方面的第十六种可能的实现方式中,套筒为碳纤维套筒、钢套筒或者合金钢套筒。通过在转子本体外套设套筒,提升转子结构的机械强度,使转子能在高转速下可靠运行。With reference to any one of the first aspect to the fifteenth possible implementation manner of the first aspect, in the sixteenth possible implementation manner of the first aspect, the sleeve is a carbon fiber sleeve, a steel sleeve or an alloy steel sleeve. By arranging a sleeve on the rotor body, the mechanical strength of the rotor structure is improved, so that the rotor can run reliably at high speed.
结合第一方面至第一方面的第十六种可能的实现方式中任一项,在第一方面的第十七种可能的实现方式中,铁芯基体为无取向硅钢件,铁芯附件为取向硅钢件,铁芯附件的磁化取向为由铁芯附件的内边缘至外边缘的方向。在采用取向硅钢制作的铁芯附件后,有效降低铁芯附件区域的漏磁,从而提升电磁性能。在相同交变电磁场下,铁芯附件所产生的损耗会下降。或,铁芯基体和铁芯附件均为无取向硅钢件,也是可行的。In combination with any one of the sixteenth possible implementation manners of the first aspect to the first aspect, in the seventeenth possible implementation manner of the first aspect, the iron core base is a non-oriented silicon steel piece, and the iron core accessories are For oriented silicon steel parts, the magnetization orientation of the core attachment is the direction from the inner edge to the outer edge of the core attachment. After adopting the iron core accessories made of grain-oriented silicon steel, the magnetic flux leakage in the area of the iron core accessories is effectively reduced, thereby improving the electromagnetic performance. Under the same alternating electromagnetic field, the losses generated by the core attachment will decrease. Alternatively, it is also feasible that both the iron core base and the iron core accessories are non-oriented silicon steel parts.
结合第一方面至第一方面的第十七种可能的实现方式中任一项,在第一方面的第十八种可能的实现方式中,铁芯基体的外周具有沿铁芯基体的周向分布的多个安装位,多个铁芯附件一一对应地设于多个安装位,铁芯基体在相邻两个安装位之间形成外凸部,外凸部用于和套筒的内壁抵接。在装配套筒时,套筒的内壁抵设于各个铁芯附件的外边缘和铁芯基体的各个外凸部,将铁芯基体和各个铁芯附件可靠地固定在一起。With reference to any one of the first aspect to the seventeenth possible implementation manner of the first aspect, in the eighteenth possible implementation manner of the first aspect, the outer periphery of the iron core base has a circumferential direction along the iron core base There are a plurality of distributed installation positions, and a plurality of iron core accessories are set in the plurality of installation positions in one-to-one correspondence. The iron core base body forms an outer convex portion between two adjacent installation positions, and the outer convex portion is used to connect with the inner wall of the sleeve. Abut. When assembling the sleeve, the inner wall of the sleeve abuts against the outer edge of each iron core accessory and each outer convex portion of the iron core base, so as to reliably fix the iron core base and each iron core accessory together.
结合第一方面至第一方面的第十七种可能的实现方式中任一项,在第一方面的第十九种可能的实现方式中,芯基体的外周具有沿铁芯基体的周向分布的多个安装位,多个铁芯附件一一对应地设于多个安装位,铁芯基体在相邻两个安装位之间形成第一表面,第一表面和套筒的内壁间隔设置,安装位能够适配多种不同外径的铁芯附件。该铁芯基体的安装位可在一定范围内兼容不同圆弧外径的铁芯附件,实现转子外径可调,以适配不同规格的电机,实现平台化设计,降低生产成本。With reference to any one of the first aspect to the seventeenth possible implementation manner of the first aspect, in the nineteenth possible implementation manner of the first aspect, the outer periphery of the core base has a circumferential distribution along the iron core base There are multiple installation positions, a plurality of iron core accessories are set in the multiple installation positions in one-to-one correspondence, the iron core base body forms a first surface between two adjacent installation positions, and the first surface and the inner wall of the sleeve are arranged at intervals, The mounting position can accommodate a variety of core accessories with different outer diameters. The installation position of the iron core base can be compatible with iron core accessories of different arc outer diameters within a certain range, and the outer diameter of the rotor can be adjusted to adapt to motors of different specifications, realize platform design, and reduce production costs.
第二方面,本申请实施例提供一种转子,包括转轴、永磁体和如第一方面至第一方面的第十九种可能的实现方式中所描述的转子铁芯,转轴穿过并固定于转子铁芯,永磁体安装于转子铁芯内。In a second aspect, embodiments of the present application provide a rotor, including a rotating shaft, a permanent magnet, and a rotor core as described in the nineteenth possible implementation manner of the first aspect to the first aspect, the rotating shaft passing through and being fixed to The rotor iron core, the permanent magnets are installed in the rotor iron core.
第三方面,本申请实施例提供一种转子,包括转轴和如第一方面的第十二种可能的实现方式至第十五种可能的实现方式中所描述的转子铁芯,转轴穿过并固定于转子铁芯。In a third aspect, embodiments of the present application provide a rotor, including a rotating shaft and a rotor core as described in the twelfth possible implementation manner to the fifteenth possible implementation manner of the first aspect, the rotating shaft passing through and Fixed to the rotor core.
第四方面,本申请实施例提供一种电机,包括定子和如第二方面或第三方面所描述的转子,定子套设于套筒的外周,定子和转子之间形成有气隙。电机可以是内置式永磁电机、同步磁阻电机或者永磁辅助式同步磁阻电机。In a fourth aspect, embodiments of the present application provide a motor, including a stator and the rotor as described in the second or third aspect, the stator is sleeved on the outer circumference of the sleeve, and an air gap is formed between the stator and the rotor. The motor may be a built-in permanent magnet motor, a synchronous reluctance motor, or a permanent magnet assisted synchronous reluctance motor.
第五方面,本申请实施例提供一种电机驱动系统,包括控制器和如第四方面所描述的电机,控制器和电机电连接。控制器用于调节电机的输出转矩,以实现电机的怠速、加速、能量回收等功能。In a fifth aspect, an embodiment of the present application provides a motor drive system, including a controller and the motor described in the fourth aspect, and the controller and the motor are electrically connected. The controller is used to adjust the output torque of the motor to realize the functions of idling, acceleration and energy recovery of the motor.
第六方面,本申请实施例提供一种电动车,包括如第五方面所描述的电机驱动系统。电动车可以为电动汽车、地铁列车、高速动车组等等。In a sixth aspect, embodiments of the present application provide an electric vehicle, including the motor drive system described in the fifth aspect. The electric vehicle may be an electric vehicle, a subway train, a high-speed EMU, and the like.
附图说明Description of drawings
图1为常规技术中的双V型转子的局部结构图;Fig. 1 is the partial structure diagram of the double V-shaped rotor in the conventional technology;
图2为本申请实施例提供的转子的结构示意图;2 is a schematic structural diagram of a rotor provided by an embodiment of the present application;
图3为图2的转子的分解示意图;3 is an exploded schematic view of the rotor of FIG. 2;
图4为本申请另一实施例提供的转子的结构示意图;4 is a schematic structural diagram of a rotor provided by another embodiment of the present application;
图5中的(a)、(b)分别为作为第一对比例的转子的立体装配图和沿A-A线剖视图;(a) and (b) in FIG. 5 are respectively a three-dimensional assembly view and a cross-sectional view along the A-A line of the rotor as the first comparative example;
图6为作为第二对比例的转子的结构示意图;6 is a schematic structural diagram of a rotor as a second comparative example;
图7为作为第三对比例的转子的结构示意图;7 is a schematic structural diagram of a rotor as a third comparative example;
图8为作为第四对比例的转子的结构示意图;FIG. 8 is a schematic structural diagram of a rotor as a fourth comparative example;
图9中的(a)、(b)、(c)分别为本申请不同实施例提供的转子在设置磁桥时的局部结构示意图;(a), (b), and (c) in FIG. 9 are respectively schematic partial structural diagrams of rotors provided by different embodiments of the present application when magnetic bridges are provided;
图10为本申请另一实施例提供的转子的立体装配图;10 is a perspective assembly view of a rotor provided by another embodiment of the application;
图11为图10的转子的立体分解图;Figure 11 is an exploded perspective view of the rotor of Figure 10;
图12为图10的沿B-B线的剖视图;Figure 12 is a cross-sectional view along line B-B of Figure 10;
图13为本申请另一实施例提供的转子的立体装配图;13 is a perspective assembly view of a rotor provided by another embodiment of the application;
图14为本申请另一实施例提供的转子的结构示意图;14 is a schematic structural diagram of a rotor provided by another embodiment of the application;
图15为图14的转子的分解示意图;Figure 15 is an exploded schematic view of the rotor of Figure 14;
图16为本申请另一实施例提供的转子的结构示意图;16 is a schematic structural diagram of a rotor provided by another embodiment of the application;
图17中的(a)至(e)分别为本申请不同实施例提供的转子的局部结构示意图;(a) to (e) in FIG. 17 are respectively partial structural schematic diagrams of rotors provided by different embodiments of the present application;
图18为本申请另一实施例提供的转子在铁芯附件为取向硅钢件时的结构示意图;18 is a schematic structural diagram of a rotor provided by another embodiment of the application when the iron core attachment is an oriented silicon steel part;
图19中的(a)、(b)分别为本申请另一实施例提供的转子在去除外凸部前后的结构示意图;(a) and (b) in FIG. 19 are respectively schematic structural diagrams of the rotor before and after removing the outer convex portion according to another embodiment of the present application;
图20为本申请另一实施例提供的转子的结构示意图;20 is a schematic structural diagram of a rotor provided by another embodiment of the application;
图21为图20的转子在正反相叠时的结构示意图。FIG. 21 is a schematic structural diagram of the rotor of FIG. 20 when the front and back sides are stacked.
具体实施方式Detailed ways
相比于异步电机,永磁电机以永磁体提供励磁,无需励磁电流,没有励磁损耗,可提高电机的效率和功率密度。永磁电机可用作电动车的驱动电机。永磁电机包括定子和转子。定子由叠片叠压而成,可减少电机运行时的铁耗。定子安装有三相交流绕组,用于产生定子旋转磁场。转子可以做成实心或者由叠片叠压而成,转子上装有永磁体,永磁体用于产生转子磁场。Compared with asynchronous motors, permanent magnet motors provide excitation with permanent magnets, without excitation current and without excitation loss, which can improve the efficiency and power density of the motor. Permanent magnet motors can be used as drive motors for electric vehicles. A permanent magnet motor includes a stator and a rotor. The stator is made of laminations, which can reduce the iron loss when the motor is running. The stator is installed with three-phase AC windings for generating the stator rotating magnetic field. The rotor can be made of solid or laminated by lamination, the rotor is equipped with permanent magnets, and the permanent magnets are used to generate the rotor magnetic field.
根据电机转子上永磁体所处位置的不同,永磁电机分为表贴式永磁电机(surface-mounted permanent magnet machine,SPM)和内置式永磁电机(insertedpermanent magnet machine,IPM)。在表贴式永磁电机中,永磁体贴在转子铁芯的表面。参阅图1,在内置式永磁电机中,永磁体1嵌入转子铁芯2内部,转子铁芯2具有用于安装永磁体1的转子槽2a。永磁体1的内置形式可以分为一字形、单V、双V、V+一等等。图1展示了常规双V型转子的结构。相比于表贴式永磁电机,内置式永磁电机的转子磁路不对称,在运行中会产生磁阻转矩,可提高电机的功率密度和过载能力,更易于实现弱磁扩速。永磁电机作为电动机使用时,将三相电流通入定子的三相交流绕组,定子产生旋转磁场,转子磁场和定子旋转磁场相互作用,在转子上产生一个电磁转矩以推动转子旋转。According to the different positions of the permanent magnets on the motor rotor, permanent magnet motors are divided into surface-mounted permanent magnet machines (SPM) and inserted permanent magnet machines (IPM). In a surface-mounted permanent magnet motor, the permanent magnets are attached to the surface of the rotor core. Referring to FIG. 1 , in the built-in permanent magnet motor, the
在常规电机的转子铁芯上,转子铁芯2的相邻两个转子槽2a之间或转子槽2a和转子铁芯2的外周面之间会设置磁桥2b,长条形的磁桥2b用于供磁力线通过,在磁桥2b的磁力线达到饱和时起到减少漏磁的作用。磁桥2b的厚度越小,磁桥2b的磁力线越饱和,减少漏磁效果越好。磁桥2b的长度方向X和厚度方向Y都在转子铁芯2的平面上,两者相垂直。磁桥2b需要满足一定的厚度,以克服在转子高转速旋转时离心力对磁桥2b的疲劳断裂破坏。On the rotor iron core of a conventional motor, a
在电机设计中,通常希望功率密度越高越好,功率密度是电机输出功率与电机导电导磁材料体积的比值,电机输出功率是转速与转矩的乘积,因此提升电机转矩密度和转速可以提升电机功率密度。在一定的材料、工艺水平下,常规电机的转矩密度是一定的,即电机体积或外径越大,转矩就越大。为了追求更高的电机功率密度,就要依赖更高的电机转速。目前,用于电动车的驱动电机转速达到16000rpm以上,在一些对装配空间很严格的场合,需要将电机体积做得更小,在保持电机功率不变的情况下,就要进一步提升电机转速,达到20000rpm以上。In motor design, it is usually hoped that the higher the power density, the better. The power density is the ratio of the motor output power to the volume of the motor's conductive and magnetic material, and the motor output power is the product of the speed and the torque. Therefore, improving the motor torque density and speed can Improve motor power density. Under a certain material and process level, the torque density of a conventional motor is constant, that is, the larger the motor volume or outer diameter, the greater the torque. In order to pursue higher motor power density, it is necessary to rely on higher motor speed. At present, the speed of the drive motor used for electric vehicles reaches more than 16000rpm. In some occasions where the assembly space is very strict, the motor volume needs to be made smaller. In the case of keeping the motor power unchanged, it is necessary to further increase the motor speed. Reach above 20000rpm.
常规电机采用大外径结构在高转速下,转子应力会超过材料屈服强度,这就限制了电机转速或功率进一步提高。示例性的,在常规电机中,转子采用硅钢片叠压而成,硅钢片材料屈服强度约为450MPa,在高温下会更低,电机转速在20000rpm以上后,考虑转速安全余量,外径130mm的转子薄弱位置(即磁桥)应力通常超过460MPa,磁桥容易发生疲劳断裂。为了进一步提升转速,通过减小转子外径,可使转子薄弱位置应力在材料屈服强度以下,电机转矩会减小。因此,常规电机难以兼顾电机高转速和高转矩。The conventional motor adopts a large outer diameter structure at high speed, and the rotor stress will exceed the material yield strength, which limits the further increase of the motor speed or power. Exemplarily, in a conventional motor, the rotor is made of laminated silicon steel sheets. The yield strength of the silicon steel sheet material is about 450MPa, which will be lower at high temperatures. After the motor speed is above 20,000rpm, consider the safety margin of the speed, and the outer diameter is 130mm. The stress at the weak position of the rotor (that is, the magnetic bridge) usually exceeds 460MPa, and the magnetic bridge is prone to fatigue fracture. In order to further increase the speed, by reducing the outer diameter of the rotor, the stress at the weak position of the rotor can be made below the yield strength of the material, and the motor torque will be reduced. Therefore, it is difficult for a conventional motor to take into account both the high rotational speed and the high torque of the motor.
图2为本申请实施例提供的转子的结构示意图;图3为图2的转子的分解示意图;FIG. 2 is a schematic structural diagram of a rotor provided by an embodiment of the application; FIG. 3 is an exploded schematic diagram of the rotor of FIG. 2 ;
图4为本申请另一实施例提供的转子的结构示意图。FIG. 4 is a schematic structural diagram of a rotor provided by another embodiment of the present application.
参阅图2至图4,本申请实施例提供一种转子铁芯100,其包括转子本体110和套筒120。转子本体110包括铁芯基体111和多个铁芯附件112,铁芯基体111用于和转轴(图未示)连接,多个铁芯附件112沿铁芯基体111的周向分布,铁芯附件112作为不直接连接转轴的部分。铁芯基体111和每个铁芯附件112之间分别形成有第一转子槽113,每个第一转子槽113的至少一部分形成有用于降低漏磁的隔磁槽1131。套筒120套设于多个铁芯附件112的外边缘112b。Referring to FIGS. 2 to 4 , an embodiment of the present application provides a
其中,铁芯附件112的外边缘112b是指铁芯附件112远离转子本体110的最外边缘。转子本体110中的铁芯基体111和多个铁芯附件112可以分别做成实心的。或者,多个转子本体110层叠设置,每个转子本体110均包括呈片状的铁芯基体111和多个呈片状的铁芯附件112,在多个转子本体110装配好以后,多个铁芯基体111依次层叠设置,在铁芯基体111不同周向位置依次层叠有多个铁芯附件112。The
本申请实施例提供的转子铁芯100,转子本体110中的铁芯基体111沿周向布置有多个铁芯附件112,在铁芯基体111和每个铁芯附件112之间分别形成有第一转子槽113,转子本体110外加套筒120用以加强转子本体110的机械强度,实现转子高转速运行。在铁芯基体111和铁芯附件112之间无需设置比较厚的用于降低漏磁的磁桥,而通过隔磁槽1131去调整磁力线的走向以降低漏磁,无需考虑磁桥在转子高转速时磁桥容易断裂的风险。对常规电机和应用上述转子铁芯100的内置式永磁电机进行比较,在采用相同转子外径、相同永磁体内置形式和尺寸下,本申请电机可达到更高的转速,实现更高的功率密度。采用上述转子铁芯100的同步磁阻电机、永磁辅助式同步磁阻电机也可以实现更高转速运行,提升电机功率密度。In the
示例性的,常规电机和本申请电机中,转子铁芯100均采用硅钢片叠压而成,转子外径均为130mm。在满足转子机械强度下,常规电机中的转子转速只能达到18000rpm,当转子转速达到20000rpm以上时,转子中的磁桥应力会超过材料屈服强度而发生断裂破坏。本申请转子铁芯100中,在满足转子铁芯100机械强度下,转子的转速可达到25000rpm以上,可见采用本申请转子铁芯100的电机可达到更高的转速,实现更高的功率密度。Exemplarily, in the conventional motor and the motor of the present application, the
在采用相同转子外径、相同永磁体内置形式和尺寸下,相比于加厚磁桥实现转子较高转速的方式,本申请转子铁芯100通过套筒120去提升转子本体110的机械强度,可以将永磁体200进一步向气隙方向靠近,加强转子磁场和定子磁场之间的相互作用,从而提升电机性能或降低电机成本。With the same rotor outer diameter and the same permanent magnet built-in form and size, compared with the method of thickening the magnetic bridge to achieve a higher speed of the rotor, the
对常规电机和应用本申请转子铁芯的电机进行仿真试验,采用相同转子外径、相同永磁体内置形式和尺寸以及相同高转速,通过仿真分析得到:相比于常规电机,应用本申请转子铁芯的电机的转矩和功率均比较高,能够兼顾电机高转速和高转矩。The simulation test is carried out on the conventional motor and the motor using the rotor iron core of the application, using the same outer diameter of the rotor, the same built-in form and size of the permanent magnet, and the same high speed, and obtained through simulation analysis: compared with the conventional motor, the application of the rotor iron The torque and power of the motor of the core are relatively high, which can take into account the high speed and high torque of the motor.
将电机应用在电动车的驱动电机,驱动电机的动力通过减速器(比如齿轮减速器)传递至电动车的驱动轮,减速器起到降低转速、提升转矩的作用。对常规电机和本申请电机应用在电动车进行仿真试验,采用相同转子外径、相同永磁体内置形式和尺寸以及相同高转速,通过仿真分析得到:相比于常规电机,本申请电机中的转子铁芯轴向尺寸可以做得更小,即电机体积可以做得更小,而电机功率可以更高,从而实现功率密度提升。在电动车中的驱动电机和减速器装配空间一定的情况下,本申请电机体积做小后,减速器体积就可以做大,减速器就具有更大速比。本申请电机在配置更大速比的减速器后,就能实现驱动轮的轮边扭矩提升,使得电动车具有更好的动力性能。其中,驱动轮的轮边扭矩等于电机转矩和减速器速比的乘积。The motor is applied to the drive motor of the electric vehicle, and the power of the drive motor is transmitted to the driving wheel of the electric vehicle through a reducer (such as a gear reducer), and the reducer plays the role of reducing the speed and increasing the torque. The simulation test is carried out on the application of the conventional motor and the motor of the present application in the electric vehicle, using the same outer diameter of the rotor, the same built-in form and size of the permanent magnet, and the same high speed, and obtained through simulation analysis: compared with the conventional motor, the rotor in the motor of the present application is The axial size of the iron core can be made smaller, that is, the volume of the motor can be made smaller, and the power of the motor can be higher, thereby achieving an increase in power density. Under the condition that the assembly space of the drive motor and the reducer in the electric vehicle is certain, after the motor volume of the present application is made small, the volume of the reducer can be made larger, and the reducer has a larger speed ratio. After the motor of the present application is configured with a reducer with a larger speed ratio, the wheel torque of the driving wheel can be increased, so that the electric vehicle has better dynamic performance. Among them, the wheel side torque of the driving wheel is equal to the product of the motor torque and the speed ratio of the reducer.
图5中的(a)、(b)分别为作为第一对比例的转子的立体装配图和沿A-A线剖视图。(a) and (b) of FIG. 5 are a perspective assembly view and a cross-sectional view along the A-A line of the rotor as the first comparative example, respectively.
在作为第一对比例的转子中,参阅图5中的(a)、(b),转子包括多个轴向布置的盘形永磁体11、套设于各个盘形永磁体11的外周的套筒12,以及多个沿套筒12的轴向延伸的连杆13,多个连杆13设置在套筒12的外壁或者设置在套筒12的内壁。多个连杆13和套筒12配合可以加强转子的强度,使得转子达到更高的工作转速。然而,第一对比例的转子只适用于小电机之中,不适用电动车驱动电机或其它大电机场景,原因是多个连杆13连接在套筒12上的结构不可靠,占用气隙的尺寸会增加,降低电磁性能。该转子采用整体盘形永磁体11,本质上属于表贴式永磁电机,表贴式永磁电机的高速弱磁扩速能力较弱,难以满足电动车或其它场景宽速度运行范围的需求。考察第一对比例转子的变形方式,将转子换为内置式永磁电机结构,难以解决内置式永磁电机在高转速下磁桥强度不足的问题。In the rotor as the first comparative example, referring to (a) and (b) of FIG. 5 , the rotor includes a plurality of disk-shaped
相比于第一对比例的转子在套筒12上设置连杆13,参阅图2至图4,采用本申请转子铁芯100的转子通过套筒120套在转子本体110外,在结构上更可靠,占用气隙的尺寸较小,有利于提升电磁性能,使得采用本申请转子铁芯100的电机适用于大电机,适用电动车驱动电机或其它大电机场景。本申请的转子铁芯100适用于内置式永磁电机,具有较好的高速弱磁扩速能力,满足电动车或其它场景宽速度运行范围的需求。相比于第一对比例转子的变形方式,本申请转子铁芯100在转子本体110外加套筒120用以加强转子本体110的机械强度,实现转子高转速运行,无需考虑磁在转子高转速时磁桥容易断裂的风险。Compared with the rotor of the first comparative example, the connecting
图6为作为第二对比例的转子的结构示意图。FIG. 6 is a schematic structural diagram of a rotor as a second comparative example.
在作为第二对比例的转子中,参阅图6,转子包括多个轴向布置的盘形永磁体21、穿过各个盘形永磁体21的转轴22、套设于各个盘形永磁体21的外周的钢套筒23,以及套设在钢套筒23的外周的碳纤维套筒24。以钢套筒23作为内层护套,以碳纤维套筒24作为外层护套,在转子旋转时离心力先由钢套筒23承担一部分,碳纤维套筒24的温度系数较小,碳纤维套筒24只要较小的过盈量就可以装配。钢套筒23温度系数大,容易通过热胀冷缩的原理进行装配。然而,第二对比例的转子采用了两种材质的套筒,增加了物料种类和材料成本;钢套筒23产生的涡流损耗较大,会降低电机效率;两个套筒120占用气隙的尺寸增加,降低电磁性能。考察第二对比例转子的变形方式,将转子换为内置式永磁电机结构,由于磁桥的存在难以解决内置式永磁电机在高转速下磁桥强度不足的问题。In the rotor as the second comparative example, referring to FIG. 6 , the rotor includes a plurality of axially arranged disk-shaped
相比于第二对比例的转子采用两种套筒,参阅图2至图4,本申请的转子铁芯100采用一种套筒120即可,物料种类较少,材料成本较低;在转子本体110外套设单个套筒120,使套筒120占用气隙的尺寸较少,有利于提升电磁性能。相比于第二对比例转子的变形方式,本申请转子铁芯100在转子本体110外加套筒120用以加强转子本体110的机械强度,实现转子高转速运行,无需考虑磁桥在转子高转速时磁桥容易断裂的风险。Compared with the rotor of the second comparative example, two kinds of sleeves are used. Referring to FIGS. 2 to 4 , the
图7为作为第三对比例的转子的结构示意图。FIG. 7 is a schematic structural diagram of a rotor as a third comparative example.
在作为第三对比例的转子中,参阅图7,转子包括铁芯基体31和多个沿铁芯基体31的周向分布的铁芯附件32,铁芯基体31由无取向硅钢叠片组成,铁芯附件32由取向硅钢叠片组成,每个铁芯附件32的两端卡设在铁芯基体31的外周卡槽31a,铁芯基体31和各个铁芯附件32之间分别设有永磁体33。该方案能降低转子漏磁,提升电机电磁性能。然而,第三对比例的转子没有采用套筒进行加强,不适用于高转速工作场景。铁芯基体31和铁芯附件32之间的卡接方式较为薄弱,适用的最高转速较低。In the rotor of the third comparative example, referring to FIG. 7 , the rotor includes an
相比于第三对比例的转子中的铁芯基体31和铁芯附件32之间采用卡接装配,参阅图2至图4,本申请转子铁芯100采用套筒120加固转子机械强度,适用于高转速工作场景,无需考虑磁桥在转子高转速时磁桥容易断裂的风险。Compared to the rotor of the third comparative example, the
图8为作为第四对比例的转子的结构示意图。FIG. 8 is a schematic structural diagram of a rotor as a fourth comparative example.
在作为第四对比例的转子中,参阅图8,转子包括转轴41和多个沿转轴41的周向分布的铁芯附件42,转轴41具有多个沿周向分布的锯齿结构41a,锯齿结构41a卡接在铁芯附件42的卡槽42a以使铁芯附件42装配在转轴41外周,锯齿结构41a可分散高转速旋转带来的应力。在相邻两个铁芯附件42之间安装永磁体43,形成轮辐式永磁电机。然而,第四对比例的转子采用切向励磁方式,所需转子尺寸较大,永磁体43用量较多,成本较高。采用锯齿结构41a进行转轴41和铁芯附件42的连接,可接受应力较低,第四对比例的可承受离心力大于第三对比例的可承受离心力,但不如常规不加套筒的内置式永磁电机可承受的最高转速。In the rotor of the fourth comparative example, referring to FIG. 8 , the rotor includes a
相比于第四对比例的转子采用切向励磁方式,参阅图2至图4,采用本申请转子铁芯100的转子在铁芯基体111和每个铁芯附件112之间分别形成有第一转子槽113,在第一转子槽113内设置永磁体200时永磁体200可采用多种内置形式,比如一字形、单V、双V、V+一等等。在同样电磁性能时所需转子尺寸较小,永磁体200的用量较少,成本较低。本申请转子铁芯100通过套筒120套在转子本体110外,可提升转子本体110的机械强度,使得转子可承受更高转速。Compared with the rotor of the fourth comparative example, which adopts the tangential excitation method, referring to FIGS. 2 to 4 , the rotor using the
在一些实施例中,参阅图2至图4,转子本体110中的铁芯基体111和多个铁芯附件112为分离结构,转子本体110上不设置磁桥,并不是如常规内置式永磁电机采用一个整体的转子铁芯冲片。这种铁芯基体111和多个铁芯附件112可以通过套筒120固定在一起,提升整体结构强度,使转子可承受更高转速。In some embodiments, referring to FIGS. 2 to 4 , the
图9中的(a)、(b)、(c)分别为本申请不同实施例提供的转子在设置磁桥时的局部结构示意图。(a), (b), and (c) in FIG. 9 are respectively schematic partial structural diagrams of rotors provided by different embodiments of the present application when magnetic bridges are provided.
在一些实施例中,参阅图9中的(a)、(b)、(c),第一转子槽113内设有磁桥114,磁桥114用于连接铁芯基体111和铁芯附件112,磁桥114的厚度小于或等于1mm。磁桥114分为靠近转子外周面的外侧磁桥114a,以及位于相邻两个永磁体200间的中间磁桥114b。本实施例中可以设置外侧磁桥114a或中间磁桥114b,还可以设置两种磁桥114。相比于常规转子铁芯的磁桥,本实施例设置磁桥114厚度极小,只用于在加工转子本体110时连接铁芯基体111和铁芯附件112,以便在冲压成型后对转子本体110工件的取放和装配操作,该磁桥114并不是在转子转动时固定转子铁芯100和承担应力的结构。本实施例的转子转动时,该磁桥114有可能发生断裂,由于转子外部的套筒120结构,转子整体强度不会受到影响。In some embodiments, referring to (a), (b), and (c) of FIG. 9 , the
在常规的内置式永磁电机中,转子的磁桥厚度都在1mm以上,且随着转子外径增大或转速提高要加厚磁桥。在转子转速16000rpm以上的场景中,考虑到模具精度及硅钢片可加工最小尺寸,本实施例中的磁桥114厚度小于或等于1mm。本实施例中的磁桥114厚度与转子外径和转子最高转速无关,磁桥114厚度大致设置为硅钢片厚度的两倍。比如采用0.3mm硅钢片,磁桥114厚度设置为0.6mm即可。In a conventional built-in permanent magnet motor, the thickness of the magnetic bridge of the rotor is more than 1 mm, and the magnetic bridge should be thickened as the outer diameter of the rotor increases or the rotational speed increases. In the scenario where the rotor speed is above 16000rpm, considering the precision of the mold and the minimum size of the silicon steel sheet that can be processed, the thickness of the
图10为本申请另一实施例提供的转子的立体装配图;图11为图10的转子的立体分解图;图12为图10的沿B-B线的剖视图;图13为本申请另一实施例提供的转子的立体装配图。10 is a perspective assembly view of a rotor provided by another embodiment of the application; FIG. 11 is an exploded perspective view of the rotor in FIG. 10 ; FIG. 12 is a cross-sectional view along line B-B of FIG. 10 ; FIG. 13 is another embodiment of the application 3D assembly drawing of the rotor provided.
在设置转子本体110时,参阅图10至图12,转子本体110呈片状,转子本体110的数量为多个,多个转子本体110层叠设置,不同转子本体110中的铁芯附件112层叠设置。多个层叠的转子本体110容易成型和装配。在装配转子时,每个转子本体110外可以套设一个套筒120,也可以多个转子本体110外共用一个套筒120。When disposing the
在装配转子本体110时有不同的实现方式。第一种装配实现方式是:参阅图10至图12,层叠设置的多个铁芯附件112通过紧固件130连接,结合图2,紧固件130穿过于不同转子本体110上同一个位置的多个铁芯附件112的定位孔1121。其中,紧固件130可以包括长螺栓131和螺母132,将长螺栓131穿过多个铁芯附件112的定位孔1121,并采用螺母132螺接在长螺栓131的末端,将同一轴向上的铁芯附件112固定在一起,该装配方式容易操作,连接可靠,可提高转子强度。在装配转子时,铁芯附件112的定位孔1121可作为片状铁芯附件112在安装时定位使用。层叠设置的转子本体110的两端均可以设置端板400,端板400设置和定位孔1121对应的孔位401,在装配时紧固件130穿过端板400的孔位401和多个铁芯附件112的定位孔1121后,将两个端板400和多个铁芯附件112固定在一起。There are different implementations in assembling the
第二种装配实现方式是:参阅图13,层叠设置的多个铁芯附件112通过注塑件(图未示)连接,结合图2,注塑件填充于不同转子本体110上同一个位置的多个铁芯附件112的第一转子槽113。在装配时,将多个转子本体110组装好,向多个层叠铁芯附件112的第一转子槽113部分区域填充热塑料,在降温后形成注塑件,将多个铁芯附件112可靠地连接在一起。铁芯附件112的定位孔1121作为片状铁芯附件112在安装时定位使用。层叠设置的转子本体110的两端均可以设置端板400,而端板400无需设置和定位孔对应的孔位。The second assembly implementation method is: referring to FIG. 13 , the stacked
第三种装配实现方式是:层叠设置的多个铁芯附件112通过扣片(图未示)连接,扣片扣接于不同转子本体110上同一个位置的多个铁芯附件112的扣接槽(图未示)。铁芯附件112的外边缘设有扣接槽。将扣片设于对齐后的多个铁芯附件112的扣接槽,即可将多个铁芯附件112固定在一起。The third way of assembling is: the stacked
在设置转子槽时有不同的实现方式。第一种转子槽实现方式是一字型:参阅图2、图3,第一转子槽113呈一字型,所有第一转子槽113的中心延长线能够围成凸多边形。每个第一转子槽113的中间位置用于安装永磁体200,在第一转子槽113的两端(即靠近转子本体110外周面的位置)分别形成隔磁槽1131。第一转子槽113的中心延长线是指第一转子槽113用于安装永磁体200的区域的中心延长线。示例性的,在图2中的转子本体110具有六个第一转子槽113,六个第一转子槽113用于安装永磁体200的区域的中心延长线围成六边形。There are different implementations when setting the rotor slots. The first implementation of the rotor slot is inline shape: referring to FIGS. 2 and 3 , the
第二种转子槽实现方式是单V型:参阅图4,第一转子槽113呈V字型,第一转子槽113的内凹侧背向转子本体110的中心设置。第一转子槽113包括呈V字排布的两段第一子槽,每个第一子槽的中间位置用于安装永磁体200,在第一转子槽113的两端以及两段第一子槽相靠近位置分别形成隔磁槽1131。The second implementation manner of the rotor slot is a single V shape: referring to FIG. 4 , the
图14为本申请另一实施例提供的转子的结构示意图;图15为图14的转子的分解示意图。FIG. 14 is a schematic structural diagram of a rotor provided by another embodiment of the application; FIG. 15 is an exploded schematic diagram of the rotor of FIG. 14 .
第三种转子槽实现方式是V+一型:参阅图14、图15,第一转子槽113呈V字型,第一转子槽113的内凹侧背向转子本体110的中心设置;铁芯附件112具有呈一字型的第二转子槽1122,所有第二转子槽1122的中心延长线能够围成凸多边形。这种方式是在第二种转子槽实现方式的基础上,在铁芯附件112上增加了一字型的第二转子槽1122,第一转子槽113作为内层槽而第二转子槽1122作为外层槽。第二转子槽1122的中间位置用于安装永磁体200a,在第二转子槽1122的两端分别形成隔磁槽1123。在横截面积上,第一转子槽113中的永磁体200a大于第二转子槽1122中的永磁体200b。The third type of rotor slot implementation is V+ type: refer to Figures 14 and 15, the
图16为本申请另一实施例提供的转子的结构示意图。FIG. 16 is a schematic structural diagram of a rotor provided by another embodiment of the present application.
第四种转子槽实现方式是双V型:参阅图16,第一转子槽113呈V字型,第一转子槽113的内凹侧背向转子本体110的中心设置;铁芯附件112具有呈V字型的第二转子槽1122,第二转子槽1122的内凹侧背向转子本体110的中心设置。这种方式是在第二种转子槽实现方式的基础上,在铁芯附件112上增加了V字型的第二转子槽1122,第二转子槽1122包括呈V字排布的两段第二子槽,第一转子槽113作为内层槽而第二转子槽1122作为外层槽。每个第二子槽的中间位置用于安装永磁体200b,在第二转子槽1122的两端以及两段第二子槽相靠近位置分别形成隔磁槽。在横截面积上,第一转子槽113中的永磁体200a大于第二转子槽1122中的永磁体200b。The fourth rotor slot implementation is double V-shape: referring to FIG. 16 , the
以上四种转子槽实现方式适用于内置式永磁电机转子结构,第一转子槽113均安装有永磁体200,在第一转子槽113的部分位置形成隔磁槽1131以降低漏磁,在转子铁芯100上形成预定磁路。以上四种转子槽实现方式的转子铁芯100在安装永磁体200后,结合图10、图12,将转轴300穿过并固定于转子铁芯100,可得到内置式永磁电机转子。The above four rotor slot implementation methods are suitable for the rotor structure of the built-in permanent magnet motor. The
以下四种转子槽实现方式适用于同步磁阻电机或永磁辅助式同步磁阻电机拓扑。同步磁阻电机是一种遵循磁阻最小路径闭合原理,通过转子在不同位置引起的磁阻变化产生磁阻转矩去驱动转子旋转的交流电机。同步磁阻电机中的转子槽没有设置永磁体,转子槽均作为隔磁槽。在同步磁阻电机的基础上,转子槽内放入永磁体后,称为永磁辅助式同步磁阻电机,该类电机与内置式永磁电机基于相同工作原理运行。The following four rotor slot implementations are suitable for a synchronous reluctance motor or a PM-assisted synchronous reluctance motor topology. Synchronous reluctance motor is an AC motor that follows the principle of minimum reluctance path closure, and generates reluctance torque through the reluctance changes caused by the rotor at different positions to drive the rotor to rotate. The rotor slots in the synchronous reluctance motor are not provided with permanent magnets, and the rotor slots are used as magnetic isolation slots. On the basis of the synchronous reluctance motor, after the permanent magnet is placed in the rotor slot, it is called a permanent magnet assisted synchronous reluctance motor. This type of motor operates on the same working principle as the built-in permanent magnet motor.
图17中的(a)至(e)分别为本申请不同实施例提供的转子的局部结构示意图。(a) to (e) in FIG. 17 are partial structural schematic diagrams of rotors provided by different embodiments of the present application, respectively.
第五种转子槽实现方式是:参阅图17中的(a)、(b),第一转子槽113呈由多个直线段组成的U字型,第一转子槽113的内凹侧背向转子本体110的中心设置。在第一转子槽113内设置永磁体200时,可以在中间直线段设置一个永磁体200,在第一转子槽113没有设置永磁体200的部分形成隔磁槽1131。或者,在两侧的直线段分别设置永磁体200,中间直线段不设置永磁体200,也是可行的。此外,永磁体200还可以采用其它排列组合设置在第一转子槽113内。The fifth implementation of the rotor slot is: referring to (a) and (b) in FIG. 17 , the
第六种转子槽实现方式是:参阅图17中的(c),第一转子槽113呈由多个直线段组成的U字型,第一转子槽113的内凹侧背向转子本体110的中心设置;铁芯附件112具有第二转子槽1122,第二转子槽1122呈由多个直线段组成的U字型,第二转子槽1122的内凹侧背向转子本体110的中心设置。这种方式是在第五种转子槽实现方式的基础上,在铁芯附件112上增加一个或多个第二转子槽1122,第一转子槽113作为内层槽而第二转子槽1122作为外层槽。第二转子槽1122布置永磁体200的方式参考第一转子槽113的情况,比如第一转子槽113的中间直线段布置一个永磁体200,第二转子槽1122的中间直线段也布置一个永磁体200。同一铁芯附件112配置多个第二转子槽1122时可以是两个、三个或更多个第二转子槽1122,多个第二转子槽1122在转子径向依次排布,铁芯附件112可以包括多个沿转子径向依次排布的子附件,相邻子附件之间可通过磁桥连接或者不设置磁桥。The sixth implementation of the rotor slot is: referring to (c) in FIG. 17 , the
第七种转子槽实现方式是:参阅图17中的(d),第一转子槽113呈弧形,第一转子槽113的内凹侧背向转子本体110的中心设置。在第一转子槽113内设置永磁体200时,可以在中间直线段设置一个永磁体200,在第一转子槽113没有设置永磁体200的部分形成隔磁槽1131。或者,在第一转子槽113的两侧区域分别设置永磁体200,第一转子槽113的中间区域不设置永磁体200,也是可行的。此外,永磁体200还可以采用其它排列组合设置在第一转子槽113内。The seventh implementation of the rotor slot is: referring to FIG. 17 (d), the
第八种转子槽实现方式是:参阅图17中的(e),第一转子槽113呈弧形,第一转子槽113的内凹侧背向转子本体110的中心设置;铁芯附件112具有呈弧形的第二转子槽1122,第二转子槽1122的内凹侧背向转子本体110的中心设置。这种方式是在第七种转子槽实现方式的基础上,在铁芯附件112上增加一个或多个第二转子槽1122,第一转子槽113作为内层槽而第二转子槽1122作为外层槽。第二转子槽1122布置永磁体200的方式参考第一转子槽113的情况,比如第一转子槽113的中间区域布置一个永磁体,第二转子槽1122的中间区域也布置一个永磁体。同一铁芯附件112配置多个第二转子槽1122时可以是两个、三个或更多个第二转子槽1122,多个第二转子槽1122在转子径向依次排布,铁芯附件112可以包括多个沿转子径向依次排布的子附件,相邻子附件之间可通过磁桥连接或者不设置磁桥。The eighth implementation of the rotor slot is: referring to (e) in FIG. 17 , the
采用后四种转子铁芯的其中一种,在转子本体上设置转子槽(第一转子槽、第二转子槽),转子槽内可以不设置永磁体,将转轴穿过并固定于转子铁芯,得到同步磁阻电机的转子,在转子铁芯上能形成预定磁路。One of the last four rotor cores is used, and rotor slots (a first rotor slot, a second rotor slot) are arranged on the rotor body. Permanent magnets may not be arranged in the rotor slots, and the rotating shaft is passed through and fixed to the rotor core. , the rotor of the synchronous reluctance motor is obtained, and a predetermined magnetic circuit can be formed on the rotor iron core.
采用后四种转子铁芯的其中一种,在转子本体上设置转子槽(第一转子槽、第二转子槽)并增加永磁体后,将转轴穿过并固定于转子铁芯,得到永磁辅助式同步磁阻电机的转子,在转子铁芯上能形成预定磁路。与采用第一种至第四种转子铁芯的内置式永磁电机相比,采用后四种转子铁芯的永磁辅助式同步磁阻电机中所采用的永磁体体积可以设置得更小,磁阻回路更为明显,从而提升转子磁阻转矩分量。One of the last four rotor cores is used. After setting rotor slots (first rotor slot and second rotor slot) on the rotor body and adding permanent magnets, the rotating shaft is passed through and fixed to the rotor core to obtain permanent magnets. The rotor of the auxiliary synchronous reluctance motor can form a predetermined magnetic circuit on the rotor iron core. Compared with the built-in permanent magnet motors using the first to fourth rotor cores, the permanent magnets used in the permanent magnet-assisted synchronous reluctance motors using the latter four rotor cores can be set smaller in size, The reluctance loop is more pronounced, thereby increasing the rotor reluctance torque component.
在设置套筒120时,参阅图2、图10,套筒120可以为碳纤维套筒、钢套筒或者合金钢套筒,还可以采用其它高强度材质。通过在转子本体110外套设套筒120,提升转子结构的机械强度,使转子能在高转速下可靠运行。采用碳纤维套筒会比金属套筒更好,在一定程度上降低涡流损耗,提升电机效率。示例性的,转子本体110外径为130mm,套筒120的径向宽度为1mm,将套筒120套设在转子本体110外,能有效提升转子本体110的机械强度。When arranging the
图18为本申请另一实施例提供的转子在铁芯附件为取向硅钢件时的结构示意图。FIG. 18 is a schematic structural diagram of the rotor provided by another embodiment of the application when the iron core attachment is an oriented silicon steel part.
在一些实施例中,参阅图18,铁芯基体111为无取向硅钢件,铁芯附件112为取向硅钢件,铁芯附件112的磁化取向为由铁芯附件112的内边缘112a至外边缘112b的方向。其中,铁芯附件112内边缘112a是指铁芯附件112装配至转子本体110后靠近转子中心的边缘,铁芯附件112外边缘112b就是相对内边缘112a的另一侧。取向硅钢的磁性有较强的方向性,将取向硅钢的磁性设置为铁芯附件112的内边缘112a至外边缘112b的方向,即由铁芯附件112朝向气隙的方向。在采用取向硅钢制作的铁芯附件112后,有效降低铁芯附件112区域的漏磁,从而提升电磁性能。在相同交变电磁场下,铁芯附件112所产生的损耗会下降。相比于第三对比例的转子中的铁芯基体31和铁芯附件32之间采用卡接装配,本实施例的转子铁芯100通过套筒120固定转子本体110,具有更高的机械强度以适应更高的转子转速。In some embodiments, referring to FIG. 18 , the
在另一个实施例中,铁芯基体111和铁芯附件112均为无取向硅钢件,也是可行的。In another embodiment, the iron
图19中的(a)、(b)分别为本申请另一实施例提供的转子在去除外凸部前后的结构示意图。(a) and (b) in FIG. 19 are respectively schematic structural diagrams of a rotor before and after removing the outer convex portion according to another embodiment of the present application.
在一些实施例中,参阅图1、图19中的(a),铁芯基体111的外周具有沿铁芯基体111的周向分布的多个安装位1111,多个铁芯附件112一一对应地设于多个安装位1111,铁芯基体111在相邻两个安装位1111之间形成外凸部1112,外凸部1112用于和套筒120的内壁抵接。在装配套筒120时,套筒120的内壁抵设于各个铁芯附件112的外边缘112b和铁芯基体111的各个外凸部1112,将铁芯基体111和各个铁芯附件112可靠地固定在一起。In some embodiments, referring to FIGS. 1 and 19( a ), the outer periphery of the
在一些实施例中,参阅图19中的(b),为了使铁芯基体111能和不同尺寸的铁芯附件112搭配使用,铁芯基体111的外周具有沿铁芯基体111的周向分布的多个安装位1111,多个铁芯附件112一一对应地设于多个安装位1111,铁芯基体111在相邻两个安装位1111之间形成第一表面1113,第一表面1113和套筒120的内壁间隔设置,安装位1111能够适配多种不同外径的铁芯附件112。在加工转子本体110时,增加工装或工序将铁芯基体111的外凸部1112冲掉,在铁芯基体111的外周形成第一表面1113,该铁芯基体111的安装位1111可在一定范围内兼容不同圆弧外径的铁芯附件112,实现转子外径可调,以适配不同规格的电机,实现平台化设计,降低生产成本。In some embodiments, referring to (b) of FIG. 19 , in order to enable the
常规内置式永磁电机难以通过以上方式实现转子外径可调,主要原因是磁桥的厚度在二次冲制下会变薄,从而影响到转子强度。本实施例通过套设在转子本体110外的套筒120去满足转子结构的机械强度,转子本体110中的铁芯基体111和铁芯附件112可采用分离结构,磁桥结构可有可无,可在不破坏永磁体200的前提下将铁芯基体111的外凸部1112冲掉。It is difficult for conventional built-in permanent magnet motors to adjust the outer diameter of the rotor through the above methods. The main reason is that the thickness of the magnetic bridge will become thinner under the secondary punching, thus affecting the strength of the rotor. In this embodiment, the mechanical strength of the rotor structure is met by the
图20为本申请另一实施例提供的转子的结构示意图;图21为图20的转子在正反相叠时的结构示意图。FIG. 20 is a schematic structural diagram of a rotor provided by another embodiment of the application; FIG. 21 is a structural schematic diagram of the rotor of FIG. 20 when the front and back are stacked.
在一些实施例中,参阅图20、图21,为了用一种片状转子本体110实现转子斜极效果,铁芯附件112的定位孔1121的位置由铁芯附件112的对称轴112c绕着转子本体110的中心偏移预定角度α确定,相邻两个转子本体110正反相叠,以使相叠设置的两个铁芯附件112的定位孔1121共线设置。定位孔1121和转子本体110两者中心连线跟铁芯附件112的对称轴112c之间的夹角就是预定角度α。通过复用同一种片状转子本体110,使相邻两个转子本体110正反叠,在每个转子本体110的转子槽分别设置永磁体200,在转子轴向相邻两个永磁体200没有完全重合而是错开一定角度,该错开角度是上述预定角度α的两倍,能够实现转子斜极效果,降低电机转矩波动,改善电机在运行过程中对外表现出的噪声、振动与声振粗糙度(noise,vibration,harshness,NVH)性能。预定角度α的范围可以小于或等于10°,具体按需设置。示例性的,当定位孔1121偏移铁芯附件112的对称轴5°时,通过转子本体110正反叠的方式,采用同一种片状转子本体110可以实现±5°的转子斜极效果。In some embodiments, referring to FIGS. 20 and 21 , in order to use a sheet-
本申请实施例提供一种电机,包括定子和上述的转子,定子套设于套筒的外周,定子和转子之间形成有气隙。电机可以是内置式永磁电机、同步磁阻电机或者永磁辅助式同步磁阻电机。由于本电机采用了上述转子,因此同样具有转子所带来的所有有益效果,在此不再一一赘述。An embodiment of the present application provides a motor, including a stator and the above-mentioned rotor, the stator is sleeved on the outer circumference of a sleeve, and an air gap is formed between the stator and the rotor. The motor may be a built-in permanent magnet motor, a synchronous reluctance motor, or a permanent magnet assisted synchronous reluctance motor. Since the motor adopts the above-mentioned rotor, it also has all the beneficial effects brought by the rotor, which will not be repeated here.
本申请实施例提供一种电机驱动系统,包括控制器和上述的电机,控制器和电机电连接。控制器用于调节电机的输出转矩,以实现电机的怠速、加速、能量回收等功能。由于本电机驱动系统采用了上述电机,因此同样具有电机所带来的所有有益效果,在此不再一一赘述。An embodiment of the present application provides a motor drive system, including a controller and the above-mentioned motor, and the controller and the motor are electrically connected. The controller is used to adjust the output torque of the motor to realize the functions of idling, acceleration and energy recovery of the motor. Since the motor drive system adopts the above-mentioned motor, it also has all the beneficial effects brought by the motor, which will not be repeated here.
本申请实施例提供一种电动车,包括上述的电机驱动系统。电动车可以为电动汽车、地铁列车、高速动车组等等。电动车还包括车架,电机驱动系统可设于车架上。由于本电动车采用了上述电机驱动系统,因此同样具有电机驱动系统所带来的所有有益效果,在此不再一一赘述。Embodiments of the present application provide an electric vehicle, including the above-mentioned motor drive system. The electric vehicle may be an electric vehicle, a subway train, a high-speed EMU, and the like. The electric vehicle further includes a frame, and the motor drive system can be arranged on the frame. Since the electric vehicle adopts the above-mentioned motor drive system, it also has all the beneficial effects brought by the motor drive system, which will not be repeated here.
最后应说明的是:以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何在本申请揭露的技术范围内的变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。Finally, it should be noted that: the above are only specific embodiments of the present application, but the protection scope of the present application is not limited to this, and any changes or replacements within the technical scope disclosed in the present application should be covered by the present application. within the scope of protection of the application. Therefore, the protection scope of the present application should be subject to the protection scope of the claims.
Claims (15)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111682531.XA CN114498977A (en) | 2021-12-27 | 2021-12-27 | A rotor iron core, rotor, motor, motor drive system and electric vehicle |
PCT/CN2022/114790 WO2023124152A1 (en) | 2021-12-27 | 2022-08-25 | Rotor core, rotor, motor, motor driving system and electric vehicle |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111682531.XA CN114498977A (en) | 2021-12-27 | 2021-12-27 | A rotor iron core, rotor, motor, motor drive system and electric vehicle |
Publications (1)
Publication Number | Publication Date |
---|---|
CN114498977A true CN114498977A (en) | 2022-05-13 |
Family
ID=81510003
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202111682531.XA Pending CN114498977A (en) | 2021-12-27 | 2021-12-27 | A rotor iron core, rotor, motor, motor drive system and electric vehicle |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN114498977A (en) |
WO (1) | WO2023124152A1 (en) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114938088A (en) * | 2022-06-13 | 2022-08-23 | 珠海格力电器股份有限公司 | Rotor subassembly, motor, new forms of energy car |
CN115940455A (en) * | 2022-12-01 | 2023-04-07 | 中鑫电机(洛阳)有限公司 | A new type of built-in high-speed permanent magnet motor rotor structure |
WO2023124152A1 (en) * | 2021-12-27 | 2023-07-06 | 华为数字能源技术有限公司 | Rotor core, rotor, motor, motor driving system and electric vehicle |
DE102022116994A1 (en) | 2022-07-07 | 2024-01-18 | Dr. Ing. H.C. F. Porsche Aktiengesellschaft | Rotor arrangement and electrical machine |
DE102022125974A1 (en) * | 2022-10-07 | 2024-04-18 | Dr. Ing. H.C. F. Porsche Aktiengesellschaft | Rotor of an electric machine |
EP4362285A1 (en) * | 2022-10-29 | 2024-05-01 | Huawei Digital Power Technologies Co., Ltd. | Rotor, motor, and vehicle |
WO2024087235A1 (en) * | 2022-10-29 | 2024-05-02 | 华为数字能源技术有限公司 | Electric motor and vehicle |
CN118117792A (en) * | 2024-03-15 | 2024-05-31 | 格至控智能动力科技(上海)有限公司 | Rotor and motor |
WO2024120543A1 (en) * | 2022-12-29 | 2024-06-13 | 天蔚蓝电驱动科技(江苏)有限公司 | Motor rotor and method for manufacturing motor rotor |
US20240250569A1 (en) * | 2023-01-24 | 2024-07-25 | GM Global Technology Operations LLC | Stabilized core assembly for carbon fiber sleeved electric motor rotor |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015142871A1 (en) * | 2014-03-17 | 2015-09-24 | Delta T Corporation | Fan with remote temperature sensor and mounting arrangement |
CN108233573A (en) * | 2018-02-02 | 2018-06-29 | 东莞市博瓦特动力科技有限公司 | Permanent magnet motor with obliquely staggered poles of rotor |
CN110971032A (en) * | 2018-09-30 | 2020-04-07 | 杭州三花研究院有限公司 | Rotor assembly and electric pump |
JP2020145894A (en) * | 2019-03-08 | 2020-09-10 | 本田技研工業株式会社 | Rotor of rotary electric machine and manufacturing method therefor |
JP2021065023A (en) * | 2019-10-11 | 2021-04-22 | 本田技研工業株式会社 | Manufacturing method of rotary electric machine and manufacturing apparatus of the rotary electric machine |
CN213402602U (en) * | 2020-10-10 | 2021-06-08 | 厦门钨业股份有限公司 | Permanent magnet synchronous motor and permanent magnet synchronous motor rotor structure |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1080079A (en) * | 1996-09-02 | 1998-03-24 | Matsushita Electric Ind Co Ltd | Reluctance motor |
CN102624116B (en) * | 2012-03-23 | 2013-11-13 | 浙江大学 | Subsection skewed pole-shoe type permanent magnet motor rotor |
CN105846579A (en) * | 2016-05-17 | 2016-08-10 | 华中科技大学 | A permanent magnet reluctance motor |
CN107749678B (en) * | 2017-11-27 | 2019-12-03 | 北京交通大学 | A kind of permanent magnet machine rotor sheath cooling structure device |
CN208316443U (en) * | 2018-06-25 | 2019-01-01 | 苏州汇川联合动力系统有限公司 | Rotor and magneto |
JP7094803B2 (en) * | 2018-07-02 | 2022-07-04 | 株式会社三井ハイテック | Method for manufacturing rotor laminated iron core and rotor laminated iron core |
CN108988534B (en) * | 2018-08-20 | 2020-06-19 | 中车永济电机有限公司 | High-speed permanent magnet motor rotor and processing method thereof |
CN113691043A (en) * | 2020-05-19 | 2021-11-23 | 中车株洲电力机车研究所有限公司 | Permanent magnet motor rotor structure suitable for automatic manufacturing, manufacturing method and permanent magnet motor |
CN114498977A (en) * | 2021-12-27 | 2022-05-13 | 华为数字能源技术有限公司 | A rotor iron core, rotor, motor, motor drive system and electric vehicle |
-
2021
- 2021-12-27 CN CN202111682531.XA patent/CN114498977A/en active Pending
-
2022
- 2022-08-25 WO PCT/CN2022/114790 patent/WO2023124152A1/en unknown
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015142871A1 (en) * | 2014-03-17 | 2015-09-24 | Delta T Corporation | Fan with remote temperature sensor and mounting arrangement |
CN108233573A (en) * | 2018-02-02 | 2018-06-29 | 东莞市博瓦特动力科技有限公司 | Permanent magnet motor with obliquely staggered poles of rotor |
CN110971032A (en) * | 2018-09-30 | 2020-04-07 | 杭州三花研究院有限公司 | Rotor assembly and electric pump |
JP2020145894A (en) * | 2019-03-08 | 2020-09-10 | 本田技研工業株式会社 | Rotor of rotary electric machine and manufacturing method therefor |
JP2021065023A (en) * | 2019-10-11 | 2021-04-22 | 本田技研工業株式会社 | Manufacturing method of rotary electric machine and manufacturing apparatus of the rotary electric machine |
CN213402602U (en) * | 2020-10-10 | 2021-06-08 | 厦门钨业股份有限公司 | Permanent magnet synchronous motor and permanent magnet synchronous motor rotor structure |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2023124152A1 (en) * | 2021-12-27 | 2023-07-06 | 华为数字能源技术有限公司 | Rotor core, rotor, motor, motor driving system and electric vehicle |
CN114938088A (en) * | 2022-06-13 | 2022-08-23 | 珠海格力电器股份有限公司 | Rotor subassembly, motor, new forms of energy car |
DE102022116994A1 (en) | 2022-07-07 | 2024-01-18 | Dr. Ing. H.C. F. Porsche Aktiengesellschaft | Rotor arrangement and electrical machine |
DE102022125974A1 (en) * | 2022-10-07 | 2024-04-18 | Dr. Ing. H.C. F. Porsche Aktiengesellschaft | Rotor of an electric machine |
EP4362285A1 (en) * | 2022-10-29 | 2024-05-01 | Huawei Digital Power Technologies Co., Ltd. | Rotor, motor, and vehicle |
WO2024087235A1 (en) * | 2022-10-29 | 2024-05-02 | 华为数字能源技术有限公司 | Electric motor and vehicle |
CN115940455A (en) * | 2022-12-01 | 2023-04-07 | 中鑫电机(洛阳)有限公司 | A new type of built-in high-speed permanent magnet motor rotor structure |
WO2024120543A1 (en) * | 2022-12-29 | 2024-06-13 | 天蔚蓝电驱动科技(江苏)有限公司 | Motor rotor and method for manufacturing motor rotor |
US20240250569A1 (en) * | 2023-01-24 | 2024-07-25 | GM Global Technology Operations LLC | Stabilized core assembly for carbon fiber sleeved electric motor rotor |
CN118117792A (en) * | 2024-03-15 | 2024-05-31 | 格至控智能动力科技(上海)有限公司 | Rotor and motor |
Also Published As
Publication number | Publication date |
---|---|
WO2023124152A1 (en) | 2023-07-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN114498977A (en) | A rotor iron core, rotor, motor, motor drive system and electric vehicle | |
CN102751799B (en) | Permanent magnet synchronous rotating electric machine and rotor | |
EP3240144B1 (en) | Sleeve rotor synchronous reluctance electric machine | |
CN103872824B (en) | The rotor and buried magnet synchronous motor of buried magnet synchronous motor | |
CN102782990B (en) | Rotating electrical machine | |
US7714479B2 (en) | Segmented composite rotor | |
JP4613599B2 (en) | Rotor structure of axial gap type rotating electrical machine | |
CN111884456B (en) | Rotor assembly and axial magnetic field motor | |
US20120293033A1 (en) | Rotor for electric rotating machine | |
JP2009005419A (en) | Rotating electric machine | |
EP3082224B1 (en) | System and method for supporting laminations of synchronous reluctance motors | |
JP6253520B2 (en) | Rotating electric machine | |
CN106374705B (en) | Axial flux permanent magnet machine | |
CN108141076B (en) | Magnet-type rotor, rotating electrical machine with magnet-type rotor, and electric vehicle with rotating electrical machine | |
US11342801B2 (en) | Stator for motor and motor | |
JP2018530303A (en) | Permanent magnet type rotor and manufacturing method thereof | |
WO2019116389A1 (en) | Unitary stator, slit rotor and a switched reluctance device thereof | |
CN107834732A (en) | A kind of highly effective permanent-magnet motor rotor core | |
CN218850479U (en) | A kind of rotor, motor and vehicle | |
CN113659746A (en) | Rotor punching sheet group, rotor iron core, rotor and motor | |
KR102515118B1 (en) | A rotor for interior permanent magnet motors | |
JPH0759280A (en) | Synchronous machine rotor structure and synchronous motor | |
CN219247548U (en) | Stator punching sheet, stator core and motor | |
CN112886739B (en) | Rotor core, motor rotor, motor | |
JP2012016112A (en) | End plate of rotation electrical machine for vehicle |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |