CN114498733A - Connecting circuit and photovoltaic inverter system - Google Patents
Connecting circuit and photovoltaic inverter system Download PDFInfo
- Publication number
- CN114498733A CN114498733A CN202111651221.1A CN202111651221A CN114498733A CN 114498733 A CN114498733 A CN 114498733A CN 202111651221 A CN202111651221 A CN 202111651221A CN 114498733 A CN114498733 A CN 114498733A
- Authority
- CN
- China
- Prior art keywords
- circuit
- module
- photovoltaic
- negative
- positive
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000004891 communication Methods 0.000 claims abstract description 23
- 238000000034 method Methods 0.000 description 12
- 238000010586 diagram Methods 0.000 description 6
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 230000008094 contradictory effect Effects 0.000 description 1
- 238000010248 power generation Methods 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J3/00—Circuit arrangements for AC mains or AC distribution networks
- H02J3/38—Arrangements for parallely feeding a single network by two or more generators, converters or transformers
- H02J3/381—Dispersed generators
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05F—SYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
- G05F1/00—Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
- G05F1/66—Regulating electric power
- G05F1/67—Regulating electric power to the maximum power available from a generator, e.g. from solar cell
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M3/00—Conversion of DC power input into DC power output
- H02M3/02—Conversion of DC power input into DC power output without intermediate conversion into AC
- H02M3/04—Conversion of DC power input into DC power output without intermediate conversion into AC by static converters
- H02M3/10—Conversion of DC power input into DC power output without intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
- H02M3/145—Conversion of DC power input into DC power output without intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
- H02M3/155—Conversion of DC power input into DC power output without intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
- H02M3/156—Conversion of DC power input into DC power output without intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02S—GENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
- H02S40/00—Components or accessories in combination with PV modules, not provided for in groups H02S10/00 - H02S30/00
- H02S40/30—Electrical components
- H02S40/32—Electrical components comprising DC/AC inverter means associated with the PV module itself, e.g. AC modules
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J2300/00—Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
- H02J2300/20—The dispersed energy generation being of renewable origin
- H02J2300/22—The renewable source being solar energy
- H02J2300/24—The renewable source being solar energy of photovoltaic origin
- H02J2300/26—The renewable source being solar energy of photovoltaic origin involving maximum power point tracking control for photovoltaic sources
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- General Physics & Mathematics (AREA)
- Radar, Positioning & Navigation (AREA)
- Automation & Control Theory (AREA)
- Photovoltaic Devices (AREA)
Abstract
Description
技术领域technical field
本发明涉及电路设计领域,尤其涉及一种连通电路及光伏逆变系统。The invention relates to the field of circuit design, in particular to a connecting circuit and a photovoltaic inverter system.
背景技术Background technique
现有技术中将光伏逆变系统中的BOOST电路对应连接一组光伏组串以组成光伏逆变系统,然而由于光伏逆变系统所能允许接入的组串最大电流有限,因此,在需要连接更大电流的光伏组串时,需要对逆变系统内部器件进行调整或更换,成本较高。In the prior art, the BOOST circuit in the photovoltaic inverter system is correspondingly connected to a group of photovoltaic strings to form a photovoltaic inverter system. However, since the maximum current of the strings that can be connected to the photovoltaic inverter system is limited, it is necessary to connect For larger current PV strings, it is necessary to adjust or replace the internal components of the inverter system, which is costly.
发明内容SUMMARY OF THE INVENTION
本发明的主要目的在于提出一种连通电路及光伏逆变系统,旨在解决现有技术中光伏逆变系统连接更大电流的光伏组串成本较高的问题。The main purpose of the present invention is to provide a connecting circuit and a photovoltaic inverter system, which aims to solve the problem that the photovoltaic inverter system in the prior art is relatively expensive to connect a photovoltaic string with a larger current.
为实现上述目的,本发明提供一种连通电路,所述连通电路连接在光伏组串与逆变系统之间,所述逆变系统包括若干个输出端并联到一起的升压电路,所述连通电路包括至少一个多联模块,所述多联模块的输入端与一路所述光伏组串连接,所述多联模块的多个输出端分别与多个升压电路的输入端对应连接,其中,所述多个升压电路作为一路MPPT电路进行控制。In order to achieve the above object, the present invention provides a communication circuit, the communication circuit is connected between a photovoltaic string and an inverter system, the inverter system includes a plurality of boost circuits whose output terminals are connected in parallel, and the communication circuit is The circuit includes at least one multi-connected module, the input end of the multi-connected module is connected to one of the photovoltaic strings in series, and the multiple output ends of the multi-connected module are respectively connected to the input ends of the plurality of boost circuits correspondingly, wherein, The multiple boost circuits are controlled as one MPPT circuit.
可选地,所述多联模块包括两个连通器,其中,连接在所述光伏组串的正极与所述升压电路的正极输入端之间的为正极连通器,连接在所述光伏组串的负极与所述升压电路的负极输入端之间的为负极连通器;其中:Optionally, the multi-connected module includes two connectors, wherein the positive connector connected between the positive electrode of the photovoltaic string and the positive input end of the booster circuit is a positive connector, which is connected to the photovoltaic array. Between the negative pole of the string and the negative input end of the boost circuit is a negative pole connector; wherein:
所述连通器包括一个用于与所述光伏组串连接的输入端口,所述连通器还包括多个用于与所述升压电路连接的输出端口。The connector includes an input port for connecting with the photovoltaic string, and the connector also includes a plurality of output ports for connecting with the boost circuit.
可选地,所述连通电路还包括单联模块,所述单联模块的输入端与未连接至所述多联模块的光伏组串中的任意一路光伏组串连接,输出端与所述作为一路MPPT电路进行控制的多个升压电路中的一个升压电路连接。Optionally, the communication circuit further includes a single-connected module, the input end of the single-connected module is connected to any photovoltaic string in the photovoltaic string not connected to the multi-connected module, and the output end is connected to the One booster circuit among the multiple booster circuits controlled by one MPPT circuit is connected.
此外,为实现上述目的,本发明还提供一种光伏逆变系统,所述光伏逆变系统包括多路光伏组串、逆变系统以及如权利要求1~3中任一项所述的连通电路。In addition, in order to achieve the above object, the present invention also provides a photovoltaic inverter system, the photovoltaic inverter system includes a multi-channel photovoltaic string, an inverter system, and a connection circuit according to any one of
可选地,所述升压电路包括多对连接接口,每对连接接口包括一个正极接口以及一个负极接口;所述多联模块包括正极连通器以及负极连通器;所述升压电路通过所述正极接口与所述正极连通器连接,所述升压电路通过所述负极接口与所述负极连通器连接。Optionally, the boost circuit includes multiple pairs of connection interfaces, each pair of connection interfaces includes a positive interface and a negative interface; the multi-connection module includes a positive connector and a negative connector; the boost circuit passes through the The positive interface is connected to the positive connector, and the booster circuit is connected to the negative connector through the negative connector.
可选地,所述连通电路还包括单联模块,所述单联模块的输入端与未连接至所述多联模块的一路所述光伏组串连接,所述单联模块的输出端与所述多个升压电路中一对未连接至所述多联模块的连接接口连接。Optionally, the communication circuit further includes a single-connected module, the input end of the single-connected module is connected to one of the photovoltaic strings that is not connected to the multi-connected module, and the output end of the single-connected module is connected to the A pair of connection interfaces that are not connected to the multi-connected module in the plurality of boosting circuits are connected.
可选地,所述光伏逆变系统同时包括第一连接方案与第二连接方案,其中:Optionally, the photovoltaic inverter system includes both a first connection scheme and a second connection scheme, wherein:
第一连接方案为,若干路光伏组串通过多联模块与单联模块的组合与多个升压电路连接,其中所述多个升压电路通过多联模块并联到一起,并作为一路MPPT电路进行控制;The first connection scheme is that several photovoltaic strings are connected to multiple boost circuits through a combination of multi-connected modules and single-connected modules, wherein the multiple boost circuits are connected in parallel through the multiple-connected modules, and serve as one MPPT circuit. to control;
第二连接方案为,其他未接入所述第一连接方案的光伏组串与其他未接入所述第一连接方案的任意一个升压电路连接,其中所述未接入所述第一连接方案的任意一个升压电路作为一路MPPT电路进行控制。The second connection scheme is that other photovoltaic strings that are not connected to the first connection scheme are connected to any other booster circuit that is not connected to the first connection scheme, wherein the first connection scheme is not connected to the first connection. Any one of the booster circuits in the scheme is controlled as a MPPT circuit.
可选地,所述光伏组串包括第一光伏组串以及第二光伏组串,所述升压电路包括第一升压电路以及第二升压电路,所述第一升压电路以及第二升压电路分别包括两个所述正极接口以及两个所述负极接口;所述多联模块包括第一多联模块以及第二多联模块,所述第一多联模块以及所述第二多联模块分别包括两个Y型连通器,所述Y型连通器包括一个输入端以及两个输出端;所述第一多联模块包括第一正极Y型连通器以及第一负极Y型连通器;所述第二多联模块包括第二正极Y型连通器以及第二负极Y型连通器;其中:Optionally, the photovoltaic string includes a first photovoltaic string and a second photovoltaic string, the boost circuit includes a first boost circuit and a second boost circuit, the first boost circuit and the second boost circuit The booster circuit includes two positive ports and two negative ports respectively; the multi-connected module includes a first multi-connected module and a second multi-connected module, the first multi-connected module and the second multi-connected module. The connecting modules respectively include two Y-shaped connectors, the Y-shaped connectors include one input end and two output ends; the first multi-connected module includes a first positive Y-shaped connector and a first negative Y-shaped connector ; The second multi-connection module includes a second positive Y-shaped connector and a second negative Y-shaped connector; wherein:
所述第一正极Y型连通器的输入端与所述第一光伏组串的正极连接,所述第一负极Y型连通器的输入端与所述第一光伏组串的负极连接;所述第二正极Y型连通器的输入端与所述第二光伏组串的正极连接,所述第二负极Y型连通器的输入端与所述第二光伏组串的负极连接;The input end of the first positive Y-connector is connected to the positive electrode of the first photovoltaic string, and the input end of the first negative Y-connector is connected to the negative electrode of the first photovoltaic string; the The input end of the second positive Y-connector is connected to the positive electrode of the second photovoltaic string, and the input end of the second negative Y-connector is connected to the negative electrode of the second photovoltaic string;
所述第一升压电路的第一正极接口与所述第一正极Y型连通器的第一输出端连接,所述第二升压电路的第一正极接口与所述第一正极Y型连通器的第二输出端连接;所述第一升压电路的第二正极接口与所述第二正极Y型连通器的第一输出端连接,所述第二升压电路的第二正极接口与所述第二正极Y型连通器的第二输出端连接;The first positive interface of the first boost circuit is connected to the first output end of the first positive Y-connector, and the first positive interface of the second boost circuit is connected to the first positive Y-connector The second output terminal of the first booster circuit is connected to the first output terminal of the second positive Y-connector, and the second positive terminal of the second booster circuit is connected to the first output terminal of the second positive Y-connector the second output end of the second positive Y-connector is connected;
所述第一升压电路的第一负极接口与所述第一负极Y型连通器的第一输出端连接,所述第二升压电路的第一负极接口与所述第一负极Y型连通器的第二输出端连接;所述第一升压电路的第二负极接口与所述第二负极Y型连通器的第一输出端连接,所述第二升压电路的第二负极接口与所述第二负极Y型连通器的第二输出端连接。The first negative interface of the first boost circuit is connected to the first output end of the first negative Y-type connector, and the first negative interface of the second boost circuit is connected to the first negative Y-type connector The second output terminal of the first booster circuit is connected to the second output terminal of the Y-connector; the second negative terminal of the second booster circuit is connected to the first output terminal of the second negative Y-connector. The second output end of the second negative Y-connector is connected.
可选地,所述光伏组串包括第一光伏组串、第二光伏组串以及第三光伏组串,所述升压电路包括第一升压电路以及第二升压电路,所述第一升压电路以及第二升压电路分别包括两个所述正极接口以及两个所述负极接口;所述多联模块包括两个Y型连通器,分别为第一正极Y型连通器以及第一负极Y型连通器,所述Y型连通器包括一个输入端以及两个输出端;所述连通电路还包括两个单联模块,分别为第一单联模块与第二单联模块,第一单联模块包括第一正极一型连通器以及第一负极一型连通器,第二单联模块包括第二正极一型连通器以及第二负极一型连通器,其中:Optionally, the photovoltaic string includes a first photovoltaic string, a second photovoltaic string and a third photovoltaic string, the boost circuit includes a first boost circuit and a second boost circuit, the first boost circuit The booster circuit and the second booster circuit respectively comprise two positive terminals and two negative terminals; the multi-connection module comprises two Y-connectors, which are a first positive Y-connector and a first positive Y-connector respectively. A negative Y-shaped connector, the Y-shaped connector includes an input end and two output ends; the communication circuit also includes two single-connection modules, which are a first single-connection module and a second single-connection module, the first single-connection module and the second single-connection module are respectively. The single-connection module includes a first positive type-1 connector and a first negative-electrode-type connector, and the second single-connection module includes a second positive-connector type-1 connector and a second negative electrode-type connector, wherein:
所述第一升压电路的第一正极接口通过所述第一正极一型连通器与所述第一光伏组串的正极连接,所述第一升压电路的第一负极接口通过所述第一负极一型连通器与所述第一光伏组串的负极连接;所述第二升压电路的第一正极接口通过所述第二正极一型连通器与所述第二光伏组串的正极连接,所述第二升压电路的第一负极接口通过所述第二负极一型连通器与所述第二光伏组串的负极连接;The first positive terminal of the first boost circuit is connected to the positive terminal of the first photovoltaic string through the first positive terminal type connector, and the first negative terminal of the first boost circuit is connected to the positive terminal of the first photovoltaic string through the first positive terminal. A
所述第一升压电路的第二正极接口与所述第一正极Y型连通器的第一输出端连接,所述第二升压电路的第二正极接口与所述第一正极Y型连通器的第二输出端连接;所述第一升压电路的第二负极接口与所述第一负极Y型连通器的第一输出端连接,所述第二升压电路的第二负极接口与所述第一负极Y型连通器的第二输出端连接;The second positive interface of the first boost circuit is connected to the first output end of the first positive Y-connector, and the second positive interface of the second boost circuit is connected to the first positive Y-connector The second output terminal of the first voltage booster circuit is connected to the second output terminal of the first voltage booster circuit; the second output end of the first negative Y-connector is connected;
所述第一正极Y型连通器的输入端与所述第三光伏组串的正极连接;所述第一负极Y型连通器的输入端与所述第三光伏组串的负极连接。The input end of the first positive Y-connector is connected to the positive electrode of the third photovoltaic string; the input end of the first negative Y-connector is connected to the negative electrode of the third photovoltaic string.
可选地,所述逆变系统包括所述升压电路以及逆变器,所述升压电路的输出端与所述逆变器的输入端连接,所述逆变器的输出端作为所述逆变系统的输出端。Optionally, the inverter system includes the boost circuit and an inverter, an output end of the boost circuit is connected to an input end of the inverter, and an output end of the inverter serves as the The output of the inverter system.
本发明提出的一种连通电路及光伏逆变系统,所述连通电路连接在光伏组串与逆变系统之间,所述逆变系统包括若干个输出端并联到一起的升压电路,所述连通电路包括至少一个多联模块,所述多联模块的输入端与一路所述光伏组串连接,所述多联模块的多个输出端分别与多个升压电路的输入端对应连接,其中,所述多个升压电路作为一路MPPT电路进行控制。通过设置多联模块,能够将多联模块连接的升压电路并联后与一个光伏组串连接,从而能够减少连接的光伏组串的数量,故能够采用组串电流更大的单个光伏组串,同时无需对逆变系统内部器件进行调整或更换,降低了成本。The present invention proposes a communication circuit and a photovoltaic inverter system. The communication circuit is connected between a photovoltaic string and an inverter system. The inverter system includes a plurality of boost circuits whose output terminals are connected in parallel. The communication circuit includes at least one multi-connected module, the input end of the multi-connected module is connected to one of the photovoltaic strings, and the multiple output ends of the multi-connected module are respectively connected to the input ends of the plurality of boost circuits, wherein , the multiple boost circuits are controlled as one MPPT circuit. By setting up multi-connected modules, the booster circuits connected by the multi-connected modules can be connected in parallel with one PV string, thereby reducing the number of connected PV strings. Therefore, a single PV string with a larger string current can be used. At the same time, there is no need to adjust or replace the internal components of the inverter system, which reduces the cost.
附图说明Description of drawings
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图示出的结构获得其他的附图。In order to explain the embodiments of the present invention or the technical solutions in the prior art more clearly, the following briefly introduces the accompanying drawings that need to be used in the description of the embodiments or the prior art. Obviously, the accompanying drawings in the following description are only These are some embodiments of the present invention, and for those of ordinary skill in the art, other drawings can also be obtained according to the structures shown in these drawings without creative efforts.
图1为本发明连通电路一实施例的功能模块图;1 is a functional block diagram of an embodiment of a communication circuit according to the present invention;
图2为本发明连通电路另一实施例的功能模块图;FIG. 2 is a functional block diagram of another embodiment of a communication circuit according to the present invention;
图3为本发明光伏逆变系统一实施例的电路结构图;3 is a circuit structure diagram of an embodiment of the photovoltaic inverter system of the present invention;
图4为本发明光伏逆变系统一实施例的电路结构图;4 is a circuit structure diagram of an embodiment of the photovoltaic inverter system of the present invention;
图5为本发明光伏逆变系统一实施例的电路结构图。FIG. 5 is a circuit structure diagram of an embodiment of the photovoltaic inverter system of the present invention.
本发明目的的实现、功能特点及优点将结合实施例,参照附图做进一步说明。The realization, functional characteristics and advantages of the present invention will be further described with reference to the accompanying drawings in conjunction with the embodiments.
附图标号说明:Description of reference numbers:
具体实施方式Detailed ways
应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。It should be understood that the specific embodiments described herein are only used to explain the present invention, but not to limit the present invention.
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明的一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。The technical solutions in the embodiments of the present invention will be clearly and completely described below with reference to the accompanying drawings in the embodiments of the present invention. Obviously, the described embodiments are only a part of the embodiments of the present invention, not all of the embodiments. Based on the embodiments of the present invention, all other embodiments obtained by those of ordinary skill in the art without creative efforts shall fall within the protection scope of the present invention.
需要说明,本发明实施例中所有方向性指示(诸如上、下、左、右、前、后......)仅用于解释在某一特定姿态(如附图所示)下各部件之间的相对位置关系、运动情况等,如果该特定姿态发生改变时,则该方向性指示也相应地随之改变。It should be noted that all directional indications (such as up, down, left, right, front, back...) in the embodiments of the present invention are only used to explain the The relative positional relationship between the components, the movement situation, etc., if the specific posture changes, the directional indication also changes accordingly.
另外,在本发明中涉及“第一”、“第二”等的描述仅用于描述目的,而不能理解为指示或暗示其相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。另外,各个实施例之间的技术方案可以相互结合,但是必须是以本领域普通技术人员能够实现为基础,当技术方案的结合出现相互矛盾或无法实现时应当认为这种技术方案的结合不存在,也不在本发明要求的保护范围之内。In addition, the descriptions involving "first", "second", etc. in the present invention are only for descriptive purposes, and should not be understood as indicating or implying their relative importance or implying the number of indicated technical features. Thus, a feature delimited with "first", "second" may expressly or implicitly include at least one of that feature. In addition, the technical solutions between the various embodiments can be combined with each other, but must be based on the realization by those of ordinary skill in the art. When the combination of technical solutions is contradictory or cannot be realized, it should be considered that the combination of such technical solutions does not exist. , is not within the scope of protection required by the present invention.
本发明提供一种连通电路,应用于光伏逆变系统,请参见图1,图1为本发明连通电路一实施例的功能模块图。在该实施例中,所述连通电路连接在光伏组串与逆变系统之间,所述逆变系统包括若干个输出端并联到一起的升压电路,需要说明的是,图1所示出的升压电路是常用于光伏逆变系统的典型BOOST电路,但本领域普通技术人员应当知晓,所述升压电路可以为任何其他具有升压功能的直流功率变换电路,本发明在此不作限定。所述连通电路包括至少一个多联模块100,所述多联模块100的输入端与一路光伏组串连接,所述多联模块100的多个输出端分别与多个升压电路的输入端对应连接,其中,所述多个升压电路作为一路MPPT电路进行控制。The present invention provides a connection circuit, which is applied to a photovoltaic inverter system. Please refer to FIG. 1 . FIG. 1 is a functional block diagram of an embodiment of the connection circuit of the present invention. In this embodiment, the communication circuit is connected between the photovoltaic string and the inverter system, and the inverter system includes a plurality of boost circuits whose output terminals are connected in parallel. It should be noted that, as shown in FIG. 1 The boost circuit is a typical BOOST circuit commonly used in photovoltaic inverter systems, but those of ordinary skill in the art should know that the boost circuit can be any other DC power conversion circuit with boost function, which is not limited in the present invention. . The communication circuit includes at least one
光伏组串是指在光伏发电系统中,将若干个光伏组件串联后,形成具有一定直流输出的电路单元。A photovoltaic string refers to a circuit unit with a certain DC output formed by connecting several photovoltaic modules in series in a photovoltaic power generation system.
具体的逆变系统结构可以根据实际应用场景以及需要进行设置,在此不进行限制;示例性地,逆变系统包括逆变器以及多个升压电路,各升压电路的输入端与连通电路连接,各升压电路的输出端分别与逆变器的输入端连接,逆变器的输出端作为逆变系统的输出端。The specific inverter system structure can be set according to actual application scenarios and needs, which is not limited here; exemplarily, the inverter system includes an inverter and a plurality of booster circuits, and the input end of each booster circuit is connected to a communication circuit The output ends of each booster circuit are respectively connected with the input ends of the inverters, and the output ends of the inverters are used as the output ends of the inverter system.
多联模块100将连接的升压电路并联到一起,连接至同一路光伏组串,同时这些并联到一起的升压电路作为一路MPPT(Maximum Power Point Tracking,最大功率点跟踪)电路进行控制。多联模块100包括多个输出端,一个输出端与一个升压电路连接,且不同的输出端连接的升压电路不同。The
需要说明的是,一个多联模块100所能连接的升压电路的数量可根据逆变系统中升压电路数量、实际应用场景以及需要进行设置。多联模块100的数量同样根据实际应用场景以及需要进行设置。It should be noted that the number of booster circuits that can be connected to one
本实施例通过设置多联模块100,能够将多联模块100连接的多个升压电路并联后与同一路光伏组串连接,且所述多个升压电路被合并为一路MPPT进行控制。因此,在不增加或改变光伏逆变系统内部元器件的前提下,接入的光伏组串的数量得以减少,MPPT电路电流得以提高,故能够采用组串电流更大的单个光伏组串,同时无需对逆变系统内部器件进行调整或更换,降低了成本。By setting the
进一步地,参见图2,所述多联模块100包括两个连通器,其中,连接在所述光伏组串的正极与所述升压电路的正极输入端之间的为正极连通器110,连接在所述光伏组串的负极与所述升压电路的负极输入端之间的为负极连通器120;其中:Further, referring to FIG. 2 , the
所述连通器包括一个用于与所述光伏组串连接的输入端口,所述连通器还包括多个用于与所述升压电路连接的输出端口。The connector includes an input port for connecting with the photovoltaic string, and the connector also includes a plurality of output ports for connecting with the boost circuit.
可以理解的是,光伏组串输出的为直流电,同样升压电路要求输入为直流输入,因此光伏组串具有正极与负极,升压电路具有正极输入端与负极输入端;设置正极连通器110连接光伏组串的正极与升压电路的正极输入端,设置负极连通器120连接光伏组串的负极与升压电路的负极输入端。It can be understood that the output of the photovoltaic string is DC, and the boost circuit also requires the input to be DC input. Therefore, the photovoltaic string has a positive pole and a negative pole, and the booster circuit has a positive input terminal and a negative input terminal; set the
连通器包括一个输入端与多个输出端,输入端与各输出端之间相互连接,每个输出端与一个升压电路连接,且不同输出端连接的升压电路不同。可以理解的是,所述连通器的输出端数量大于1,且小于或等于所述升压电路的数量。The connector includes an input end and a plurality of output ends, the input end and each output end are connected to each other, each output end is connected to a booster circuit, and the booster circuits connected to different output ends are different. It can be understood that the number of the output terminals of the through-connector is greater than 1 and less than or equal to the number of the booster circuits.
由于连通器的输出端需要分别与不同的升压电路连接,因此连通器的输出端数量最大为升压电路的数量。可以理解的是,连通器的输出端数量为整数,即连通器的输出端数量最小为2。需要说明的是,本实施例仅以将连通器的输出端完全连接为例进行说明,在实际应用中可以采用输出端数量大于升压电路数量的连通器,但是仅将连通器上小于或等于升压电路数量的输出端与各升压电路进行连接;如连通器输出端数量为4,升压数量为3,同样可以使用该连通器,仅将连通器上的3个输出端分别与各升压电路连接,或将连通器上的2个输出端分别与其中两个升压电路连接,而未连接升压电路的输出端则为空脚。Since the output terminals of the connector need to be connected to different boosting circuits, the maximum number of output terminals of the connector is the number of boosting circuits. It can be understood that the number of output ends of the connector is an integer, that is, the number of output ends of the connector is at least 2. It should be noted that this embodiment only takes the example of completely connecting the output ends of the connector. In practical applications, a connector with a number of output ends greater than the number of boost circuits can be used, but only a connector whose number is less than or equal to the number of boost circuits can be used. The output terminals of the number of booster circuits are connected to each booster circuit; if the number of output terminals of the connector is 4 and the number of boosters is 3, the connector can also be used, and only the 3 output ends on the connector are respectively connected with each other. The booster circuit is connected, or the two output terminals on the connector are respectively connected to two of the booster circuits, and the output terminal that is not connected to the booster circuit is empty.
进一步地,所述连通电路还包括单联模块,所述单联模块的输入端与未连接至多联模块的光伏组串中的任意一路光伏组串连接,输出端与所述作为一路MPPT控制的多个升压电路中的一个升压电路连接。Further, the communication circuit also includes a single-connected module, the input end of the single-connected module is connected to any photovoltaic string in the photovoltaic string not connected to the multi-connected module, and the output end is connected to the one-way MPPT control. One of the plurality of booster circuits is connected.
需要说明的是,单联模块可以为一字型连通器,或导线;一字型连通器包括一个输入端以及一个输出端,一字型连通器的输入端与光伏组串连接,一字型连通器的输出端与升压电路连接。It should be noted that the single-connection module can be an in-line connector, or a wire; the in-line connector includes an input end and an output end, and the input end of the in-line connector is connected to the photovoltaic string, and the in-line connector includes an input end and an output end. The output end of the connector is connected with the booster circuit.
本实施例能够合理地通过多联模块100减少需要连接的光伏组串的数量。This embodiment can reasonably reduce the number of photovoltaic strings that need to be connected through the
此外,本发明还保护一种光伏逆变系统,所述光伏逆变系统包括光伏组串、逆变系统以及如上所述的连通电路,该连通电路的结构可参照上述实施例,在此不再赘述。理所应当地,由于本实施例的光伏逆变系统采用了上述连通电路的技术方案,因此该光伏逆变系统具有上述连通电路所有的有益效果。In addition, the present invention also protects a photovoltaic inverter system, which includes a photovoltaic string, an inverter system, and the above-mentioned connecting circuit. The structure of the connecting circuit can refer to the above-mentioned embodiment, which is not repeated here. Repeat. As a matter of course, since the photovoltaic inverter system of this embodiment adopts the technical solution of the above-mentioned connected circuit, the photovoltaic inverter system has all the beneficial effects of the above-mentioned connected circuit.
进一步地,所述升压电路包括多对连接接口,每对连接接口包括一个正极接口以及一个负极接口;所述多联模块包括正极连通器以及负极连通器;所述升压电路通过所述正极接口与所述正极连通器连接,所述升压电路通过所述负极接口与所述负极连通器连接。Further, the boost circuit includes multiple pairs of connection interfaces, each pair of connection interfaces includes a positive interface and a negative interface; the multi-connection module includes a positive connector and a negative connector; the boost circuit passes through the positive connector. The interface is connected to the positive connector, and the booster circuit is connected to the negative connector through the negative connector.
升压电路的连接接口对数可以根据实际应用场景以及需要进行设置,在此不进行限定。The number of pairs of connection interfaces of the booster circuit can be set according to actual application scenarios and needs, and is not limited here.
进一步地,所述连通电路还包括单联模块,所述单联模块的输入端与未连接至所述多联模块的一路所述光伏组串连接,所述单联模块的输出端与所述多个升压电路中一对未连接至所述多联模块的连接接口连接。Further, the communication circuit further includes a single-connected module, the input end of the single-connected module is connected to one of the photovoltaic strings not connected to the multi-connected module, and the output end of the single-connected module is connected to the A pair of the plurality of boosting circuits is not connected to the connection interface of the multi-connected module.
单联模块将连接的升压电路与光伏组串连接。需要说明的是,单联模块可以为一字型连通器,或导线;一字型连通器包括一个输入端以及一个输出端,一字型连通器的输入端与光伏组串连接,一字型连通器的输出端与升压电路连接。The single-connected module connects the connected booster circuit with the PV string. It should be noted that the single-connection module can be an in-line connector, or a wire; the in-line connector includes an input end and an output end, and the input end of the in-line connector is connected to the photovoltaic string, and the in-line connector includes an input end and an output end. The output end of the connector is connected with the booster circuit.
下面选取几种情况下的光伏逆变系统的连接结构为例进行说明:The connection structure of the photovoltaic inverter system in several cases is selected as an example to illustrate:
参见图3,以升压电路的数量为两个,连接接口对数为2,多联模块的数量为两个,且多联模块中连通器的输出端的数量为两个,即连通器为Y型连通器,光伏组串数量为两个为例:Referring to Fig. 3, the number of booster circuits is two, the number of connection interface pairs is two, the number of multi-connected modules is two, and the number of output ends of the connector in the multi-connected module is two, that is, the connector is Y type connector, the number of PV strings is two as an example:
所述光伏组串包括第一光伏组串P1以及第二光伏组串P2,所述升压电路包括第一升压电路以及第二升压电路,所述第一升压电路以及第二升压电路分别包括两个所述正极接口以及两个所述负极接口;所述多联模块包括第一多联模块101以及第二多联模块102,所述第一多联模块101以及所述第二多联模块102分别包括两个Y型连通器,所述Y型连通器包括一个输入端以及两个输出端;所述第一多联模块101包括第一正极Y型连通器111以及第一负极Y型连通器112;所述第二多联模块102包括第二正极Y型连通器121以及第二负极Y型连通器122;其中:The photovoltaic string includes a first photovoltaic string P1 and a second photovoltaic string P2, the booster circuit includes a first booster circuit and a second booster circuit, the first booster circuit and the second booster circuit The circuits respectively include two of the positive ports and two of the negative ports; the multi-connected modules include a first
所述第一正极Y型连通器111的输入端与所述第一光伏组串P1的正极连接,所述第一负极Y型连通器112的输入端与所述第一光伏组串P1的负极连接;所述第二正极Y型连通器121的输入端与所述第二光伏组串P2的正极连接,所述第二负极Y型连通器122的输入端与所述第二光伏组串P2的负极连接;The input end of the first positive Y-
所述第一升压电路的第一正极接口A与所述第一正极Y型连通器111的第一输出端连接,所述第二升压电路的第一正极接口D与所述第一正极Y型连通器111的第二输出端连接;所述第一升压电路的第二正极接口B与所述第二正极Y型连通器121的第一输出端连接,所述第二升压电路的第二正极接口C与所述第二正极Y型连通器121的第二输出端连接;The first positive terminal A of the first boost circuit is connected to the first output end of the first positive Y-
所述第一升压电路的第一负极接口A-与所述第一负极Y型连通器112的第一输出端连接,所述第二升压电路的第一负极接口D-与所述第一负极Y型连通器112的第二输出端连接;所述第一升压电路的第二负极接口B-与所述第二负极Y型连通器122的第一输出端连接,所述第二升压电路的第二负极接口C-与所述第二负极Y型连通器122的第二输出端连接。The first negative terminal A- of the first boost circuit is connected to the first output end of the first negative Y-
由于第一升压电路与第二升压电路通过多联模块并联到一起,且作为一路MPPT进行控制,此时MPPT电路所允许的最大电流为IMPPT=2IBOOST,IBOOST为一路升压电路所允许的最大电流。当仅通过单联模块连接升压电路与光伏组串时,光伏组串的数量为4,每个升压电路与两个光伏组串连接,即每个光伏组串所允许的最大电流为Ipv=IBOOST/2,即IMPPT=2IBOOST=4Ipv。在通过上述连接方式进行连接时,光伏组串数量减少为2,因此每个光伏组串所允许的最大电流为IMPPT/2=2Ipv。Since the first boost circuit and the second boost circuit are connected in parallel through multi-connected modules and are controlled as a channel of MPPT, the maximum current allowed by the MPPT circuit at this time is I MPPT = 2I BOOST , and I BOOST is a boost circuit of one channel maximum current allowed. When the booster circuit and PV strings are connected only through a single module, the number of PV strings is 4, and each booster circuit is connected with two PV strings, that is, the maximum current allowed for each PV string is I pv =I BOOST /2, that is, I MPPT =2I BOOST =4I pv . When connected by the above connection method, the number of photovoltaic strings is reduced to 2, so the maximum current allowed by each photovoltaic string is I MPPT /2=2I pv .
参见图4,以升压电路的数量为两个,连接接口对数为2,多联模块的数量为一个,且多联模块中连通器的输出端的数量为两个,即连通器为Y型连通器,单联模块的数量为两个,光伏组串数量为三个为例:Referring to Figure 4, the number of booster circuits is two, the number of connection interface pairs is two, the number of multi-connected modules is one, and the number of output terminals of the connector in the multi-connected module is two, that is, the connector is Y-shaped For the connector, the number of single-connected modules is two, and the number of PV strings is three. For example:
所述光伏组串包括第一光伏组串P1、第二光伏组串P2以及第三光伏组串P3,所述升压电路包括第一升压电路以及第二升压电路,所述第一升压电路以及第二升压电路分别包括两个所述正极接口以及两个所述负极接口;所述多联模块包括两个Y型连通器,分别为第一正极Y型连通器111以及第一负极Y型连通器112,所述Y型连通器包括一个输入端以及两个输出端;所述连通电路还包括两个单联模块,分别为第一单联模块210与第二单联模块220,第一单联模块210包括第一正极一型连通器211以及第一负极一型连通器212,第二单联模块220包括第二正极一型连通器221以及第二负极一型连通器222,其中:The photovoltaic string includes a first photovoltaic string P1, a second photovoltaic string P2 and a third photovoltaic string P3, and the booster circuit includes a first booster circuit and a second booster circuit. The voltage circuit and the second booster circuit respectively include two positive terminals and two negative terminals; the multi-connection module comprises two Y-connectors, which are the first positive Y-
所述第一升压电路的第一正极接口A通过所述第一正极一型连通器211与所述第一光伏组串P1的正极连接,所述第一升压电路的第一负极接口A-通过所述第一负极一型连通器212与所述第一光伏组串P1的负极连接;所述第二升压电路的第一正极接口C通过所述第二正极一型连通器221与所述第三光伏组串P3的正极连接,所述第二升压电路的第一负极接口C-通过所述第二负极一型连通器222与所述第三光伏组串P3的负极连接;The first positive terminal A of the first booster circuit is connected to the positive terminal of the first photovoltaic string P1 through the first
所述第一升压电路的第二正极接口B与所述第一正极Y型连通器111的第一输出端连接,所述第二升压电路的第二正极接口D与所述第一正极Y型连通器111的第二输出端连接;所述第一升压电路的第二负极接口B-与所述第一负极Y型连通器112的第一输出端连接,所述第二升压电路的第二负极接口D-与所述第一负极Y型连通器112的第二输出端连接;The second positive terminal B of the first booster circuit is connected to the first output end of the first positive Y-
所述第一正极Y型连通器111的输入端与所述第二光伏组串P2的正极连接;所述第一负极Y型连通器112的输入端与所述第二光伏组串P2的负极连接。The input end of the first positive Y-
由于第一升压电路与第二升压电路通过多联模块并联到一起,且作为一路MPPT进行控制,此时MPPT电路所允许的最大电流为IMPPT=2IBOOST,IBOOST为一路升压电路所允许的最大电流。当仅通过单联模块连接升压电路与光伏组串时,光伏组串的数量为4,每个升压电路与两个光伏组串连接,即每个光伏组串所允许的最大电流为Ipv=IBOOST/2,即IMPPT=2IBOOST=4Ipv。在通过上述连接方式进行连接时,光伏组串数量减少为3,因此每个光伏组串所允许的最大电流为IMPPT/3=4Ipv/3。Since the first boost circuit and the second boost circuit are connected in parallel through multi-connected modules and are controlled as a channel of MPPT, the maximum current allowed by the MPPT circuit at this time is I MPPT = 2I BOOST , and I BOOST is a boost circuit of one channel maximum current allowed. When the booster circuit and PV strings are connected only through a single module, the number of PV strings is 4, and each booster circuit is connected with two PV strings, that is, the maximum current allowed for each PV string is I pv =I BOOST /2, that is, I MPPT =2I BOOST =4I pv . When connected by the above connection method, the number of PV strings is reduced to 3, so the maximum current allowed by each PV string is I MPPT /3=4I pv /3.
参见图5,以升压电路的数量为两个,连接接口对数为3,多联模块的数量为2个,且多联模块中连通器的输出端的数量为两个,即连通器为Y型连通器,单联模块的数量为两个,光伏组串数量为4个为例:Referring to Fig. 5, the number of booster circuits is two, the number of connection interface pairs is three, the number of multi-connected modules is two, and the number of output terminals of the connector in the multi-connected module is two, that is, the connector is Y type connector, the number of single-connected modules is two, and the number of PV strings is four, for example:
所述光伏组串包括第一光伏组串P1、第二光伏组串P2、第三光伏组串P3以及第四光伏组串P4,所述升压电路包括第一升压电路以及第二升压电路,所述第一升压电路以及第二升压电路分别包括三个所述正极接口以及三个所述负极接口;所述多联模块包括第一多联模块101以及第二多联模块102,所述第一多联模块101以及所述第二多联模块102分别包括两个Y型连通器,所述Y型连通器包括一个输入端以及两个输出端;所述第一多联模块101包括第一正极Y型连通器111以及第一负极Y型连通器112;所述第二多联模块102包括第二正极Y型连通器121以及第二负极Y型连通器122;所述连通电路还包括两个单联模块,分别为第一单联模块210与第二单联模块220,第一单联模块210包括第一正极一型连通器211以及第一负极一型连通器212,第二单联模块220包括第二正极一型连通器221以及第二负极一型连通器222,其中:The photovoltaic string includes a first photovoltaic string P1, a second photovoltaic string P2, a third photovoltaic string P3 and a fourth photovoltaic string P4, and the boost circuit includes a first boost circuit and a second boost circuit circuit, the first boost circuit and the second boost circuit respectively include three of the positive ports and three of the negative ports; the multi-connected module includes a first
所述第一升压电路的第一正极接口A通过所述第一正极一型连通器211与所述第一光伏组串P1的正极连接,所述第一升压电路的第一负极接口A-通过所述第一负极一型连通器212与所述第一光伏组串P1的负极连接;所述第二升压电路的第一正极接口D通过所述第二正极一型连通器221与所述第四光伏组串P4的正极连接,所述第二升压电路的第一负极接口D-通过所述第二负极一型连通器222与所述第四光伏组串P4的负极连接;The first positive terminal A of the first booster circuit is connected to the positive terminal of the first photovoltaic string P1 through the first
所述第一升压电路的第二正极接口B与所述第一正极Y型连通器111的第一输出端连接,所述第二升压电路的第二正极接口E与所述第一正极Y型连通器111的第二输出端连接;所述第一升压电路的第三正极接口C与所述第二正极Y型连通器121的第一输出端连接,所述第二升压电路的第三正极接口F与所述第二正极Y型连通器121的第二输出端连接;The second positive terminal B of the first boost circuit is connected to the first output end of the first positive Y-
所述第一升压电路的第二负极接口B-与所述第一负极Y型连通器112的第一输出端连接,所述第二升压电路的第二负极接口E-与所述第一负极Y型连通器112的第二输出端连接;所述第一升压电路的第三负极接口C-与所述第二负极Y型连通器122的第一输出端连接,所述第二升压电路的第三负极接口F-与所述第二负极Y型连通器122的第二输出端连接。The second negative terminal B- of the first boost circuit is connected to the first output end of the first negative Y-
所述第一正极Y型连通器111的输入端与所述第二光伏组串P2的正极连接;所述第一负极Y型连通器112的输入端与所述第二光伏组串P2的负极连接;所述第二正极Y型连通器121的输入端与所述第三光伏组串P3的正极连接;所述第二负极Y型连通器122的输入端与所述第三光伏组串P3的负极连接。The input end of the first positive Y-
由于第一升压电路与第二升压电路通过多联模块并联到一起,且作为一路MPPT进行控制,此时MPPT电路所允许的最大电流为IMPPT=2IBOOST,IBOOST为一路升压电路所允许的最大电流。当仅通过单联模块连接升压电路与光伏组串时,光伏组串的数量为6,每个升压电路与两个光伏组串连接,即每个光伏组串所允许的最大电流为Ipv=IBOOST/3,即IMPPT=2IBOOST=6Ipv。在通过上述连接方式进行连接时,光伏组串数量减少为4,因此每个光伏组串所允许的最大电流为IMPPT/4=3Ipv/2。Since the first boost circuit and the second boost circuit are connected in parallel through multi-connected modules and are controlled as a channel of MPPT, the maximum current allowed by the MPPT circuit at this time is I MPPT = 2I BOOST , and I BOOST is a boost circuit of one channel maximum current allowed. When the booster circuit and the PV strings are connected only through a single module, the number of PV strings is 6, and each booster circuit is connected with two PV strings, that is, the maximum current allowed for each PV string is I pv =I BOOST /3, that is, I MPPT =2I BOOST =6I pv . When connected by the above connection method, the number of photovoltaic strings is reduced to 4, so the maximum current allowed by each photovoltaic string is I MPPT /4=3I pv /2.
需要说明的是,上述仅为举例说明,具体在光伏逆变系统中单联模块与多联模块的数量以及具体连接关系可以根据实际需要进行设置。本实施例中的设置逻辑可归纳如下:It should be noted that the above is only an example, and the number of single-connected modules and multi-connected modules in the photovoltaic inverter system and the specific connection relationship can be set according to actual needs. The setting logic in this embodiment can be summarized as follows:
当仅通过单联模块连接光伏组串与升压电路时,可以等同于现有技术中的连接方式;在此基础上,以多联模块中的连通器为全连接,即连通器每个输出端均与一个升压电路连接为例;每通过一个多联模块替换单联模块连接在光伏组串与升压电路之间时,光伏组串的数量将减少,具体减少的数量为:多联模块中单个连通器的输出端数量-1个;如以升压电路为3个,且各升压电路包括3个正极输入端以及3个负极输入端,此时,按照仅通过单联模块连接的方式,所需要连接的光伏组串为9个,此时,采用一个连通器的输出端为3的多联模块替换三个单联模块,所需要连接的光伏组串为7个,减少的光伏组串的数量为3-1=2,若采用两个连通器的输出端为3的多联模块替换六个单联模块,所需连接的光伏组串为5个,减少的光伏组串的数量为2*(3-1)=4。When only the single-connected module is used to connect the photovoltaic string and the booster circuit, it can be equivalent to the connection method in the prior art; on this basis, the connectors in the multi-connected modules are fully connected, that is, each output of the connector is fully connected. For example, both terminals are connected to a booster circuit; each time a single-connection module is replaced by a multi-connected module and connected between the PV string and the booster circuit, the number of PV strings will be reduced, and the specific reduction is as follows: The number of output terminals of a single connector in the module is -1; for example, the number of booster circuits is 3, and each booster circuit includes 3 positive input terminals and 3 negative input terminals. In this way, the number of PV strings to be connected is 9. At this time, a multi-connected module with an output terminal of 3 is used to replace the three single-connected modules, and the number of PV strings to be connected is 7. The number of PV strings is 3-1=2. If the six single-connected modules are replaced by multi-connected modules with two connectors whose output terminals are 3, the number of PV strings to be connected is 5, and the number of PV strings is reduced. The number of is 2*(3-1)=4.
如上文所述,若干路光伏组串通过多联模块与单联模块的组合与多个升压电路连接,且此多个升压电路并联到一起,并作为一路MPPT进行控制,这种连接方案称为第一连接方案。此外,其他若干路光伏组串与未接入第一连接方案的任意一个升压电路连接,且此升压电路作为一路MPPT进行控制,这种连接方案称为第二连接方案。在一些实施例中,对于同一个光伏逆变系统而言,可以只按第一连接方案来连接;也可以按第一连接方案与第二连接方案进行混接,一方面支持接入更大组串电流的光伏组串,另一方面也能灵活调整MPPT路数,使得功率调节更精准、效率更高。As mentioned above, several photovoltaic strings are connected to multiple boost circuits through the combination of multi-connected modules and single-connected modules, and the multiple boost circuits are connected in parallel and controlled as one MPPT. This connection scheme It is called the first connection scheme. In addition, several other photovoltaic strings are connected to any booster circuit that is not connected to the first connection scheme, and this booster circuit is controlled as one MPPT. This connection scheme is called the second connection scheme. In some embodiments, for the same photovoltaic inverter system, it can be connected only according to the first connection scheme; it can also be mixed according to the first connection scheme and the second connection scheme, on the one hand, it supports access to a larger group On the other hand, the number of MPPT circuits can be flexibly adjusted for PV strings with string current, making power regulation more accurate and efficient.
需要说明的是,逆变系统中各升压电路的连接接口的对数可以不同,使用的各多联模块中的连通器的输出端数量也可以不同。It should be noted that the number of pairs of connection interfaces of each booster circuit in the inverter system may be different, and the number of output terminals of the connectors in each multi-connected module used may also be different.
本实施例通过设置多联模块减少光伏组串的数量,使得在不增加或改变光伏逆变系统内部元器件的前提下,提高光伏逆变系统允许接入的单个光伏组串的最大电流,从而使得光伏逆变系统能够支持更大功率以及更大电流的光伏组串。In this embodiment, the number of photovoltaic strings is reduced by arranging multiple modules, so that the maximum current of a single photovoltaic string allowed to be connected to the photovoltaic inverter system is increased without increasing or changing the internal components of the photovoltaic inverter system. The PV inverter system can support PV strings with higher power and higher current.
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者系统不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者系统所固有的要素。在没有更多限制的情况下,由语句“包括一个......”限定的要素,并不排除在包括该要素的过程、方法、物品或者系统中还存在另外的相同要素。上述本发明实施例序号仅仅为了描述,不代表实施例的优劣。It should be noted that, herein, the terms "comprising", "comprising" or any other variation thereof are intended to encompass non-exclusive inclusion, such that a process, method, article or system comprising a series of elements includes not only those elements, It also includes other elements not expressly listed or inherent to such a process, method, article or system. Without further limitation, an element qualified by the phrase "comprising a..." does not preclude the presence of additional identical elements in the process, method, article or system that includes the element. The above-mentioned serial numbers of the embodiments of the present invention are only for description, and do not represent the advantages or disadvantages of the embodiments.
以上仅为本发明的优选实施例,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。The above are only preferred embodiments of the present invention, and are not intended to limit the scope of the present invention. Any equivalent structure or equivalent process transformation made by using the contents of the description and drawings of the present invention, or directly or indirectly applied in other related technical fields , are similarly included in the scope of patent protection of the present invention.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111651221.1A CN114498733A (en) | 2021-12-29 | 2021-12-29 | Connecting circuit and photovoltaic inverter system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111651221.1A CN114498733A (en) | 2021-12-29 | 2021-12-29 | Connecting circuit and photovoltaic inverter system |
Publications (1)
Publication Number | Publication Date |
---|---|
CN114498733A true CN114498733A (en) | 2022-05-13 |
Family
ID=81508447
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202111651221.1A Pending CN114498733A (en) | 2021-12-29 | 2021-12-29 | Connecting circuit and photovoltaic inverter system |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114498733A (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108565884A (en) * | 2017-12-30 | 2018-09-21 | 广州飞毛腿数码技术有限公司 | A kind of solar panel MPPT control method of Adaptive Genetic optimization |
CN112736971A (en) * | 2020-12-28 | 2021-04-30 | 国网冀北电力有限公司秦皇岛供电公司 | Photovoltaic system dynamic reconstruction method, device, system and electronic equipment |
CN112736970A (en) * | 2020-12-28 | 2021-04-30 | 国网冀北电力有限公司秦皇岛供电公司 | Photovoltaic system dynamic reconstruction method, device, system and electronic equipment |
CN217010361U (en) * | 2021-12-29 | 2022-07-19 | 广东友电新能源科技有限公司 | Intercommunication circuit and photovoltaic inverter system |
-
2021
- 2021-12-29 CN CN202111651221.1A patent/CN114498733A/en active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108565884A (en) * | 2017-12-30 | 2018-09-21 | 广州飞毛腿数码技术有限公司 | A kind of solar panel MPPT control method of Adaptive Genetic optimization |
CN112736971A (en) * | 2020-12-28 | 2021-04-30 | 国网冀北电力有限公司秦皇岛供电公司 | Photovoltaic system dynamic reconstruction method, device, system and electronic equipment |
CN112736970A (en) * | 2020-12-28 | 2021-04-30 | 国网冀北电力有限公司秦皇岛供电公司 | Photovoltaic system dynamic reconstruction method, device, system and electronic equipment |
CN217010361U (en) * | 2021-12-29 | 2022-07-19 | 广东友电新能源科技有限公司 | Intercommunication circuit and photovoltaic inverter system |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN114007896B (en) | Charging system | |
US20220200290A1 (en) | Power System | |
CN106154086A (en) | A kind of MMC dynamic analog submodule unit with topological switching capability | |
CN217010361U (en) | Intercommunication circuit and photovoltaic inverter system | |
CN209559977U (en) | Inverter direct-flow side insulation resistance detection circuit and string type inverter | |
CN114498733A (en) | Connecting circuit and photovoltaic inverter system | |
CN204119075U (en) | Inversion unit and inverter | |
CN204190643U (en) | Inversion unit and inverter | |
CN108988672B (en) | A six-level circuit topology for power conversion systems | |
US12266474B2 (en) | Capacitor structure and power converter | |
CN103178736A (en) | Five-level inverter | |
CN218783786U (en) | Group tandem connection module, collection flow box and photovoltaic inverter | |
CN212752131U (en) | Combined boost power conversion module, inverter and photovoltaic power generation system | |
CN201430543Y (en) | A Universal Switched Capacitor Diode Clamp Combination Multilevel Circuit | |
CN111710741B (en) | Photovoltaic power generation device | |
CN213425786U (en) | Energy storage system, converter and fusing protection device thereof | |
CN211046865U (en) | Photovoltaic device and photovoltaic power station system | |
CN116404895A (en) | A split-inductance asymmetric dual-output multilevel converter topology circuit | |
CN113691134B (en) | Power conversion device and power supply system | |
CN105356747B (en) | A kind of power modules of flexible direct-current transmission converter | |
CN109713898A (en) | A kind of modular multilevel DC-DC converter topology without AC link | |
CN113162414A (en) | Base unit for electric energy converter, electric energy converter and universal power interface | |
CN213990507U (en) | Three-level topology module, inverter and electrical equipment | |
CN113629693A (en) | Direct-current direct access system of energy storage battery | |
CN105703656A (en) | Inversion unit, control method thereof and inverter |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
TA01 | Transfer of patent application right | ||
TA01 | Transfer of patent application right |
Effective date of registration: 20230724 Address after: 9/F, Keshida Industrial Park R&D Building, No.7 Road, Gaoxinyuan West District, Guangming District, Shenzhen, Guangdong 518107 Applicant after: SHENZHEN KSTAR NEW ENERGY Co.,Ltd. Address before: 516080 first floor of plant 1, No. 2, Hechang seventh Road West, Zhongkai high tech Zone, Huizhou City, Guangdong Province Applicant before: Guangdong Youdian New Energy Technology Co.,Ltd. |